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SIMPLE RANDOM WALK STATISTICS
PART I: DISCRETE TIME RESULTS

W. KATZENBEISSER and W. PANNY

University of Economics, Vienna

In a famous paper Dwass [1967] proposed a method to deal with
rank order statistics, which constitutes a unifying framework to
derive various distributional results. In the present paper an alter-
native method is presented, which allows to extend Dwass’s results
in several ways, viz. arbitrary endpoints, horizontal steps, and ar-
bitrary probabilities for the three step types. Regarding these ex-
tensions the pertaining rank order statistics are extended as well
to simple random walk statistics. This method has proved appro-
priate to generalize all results given by Dwass. Moreover, these
discrete time results can be taken as a starting point to derive the
corresponding results for randomized random walks by means of a
limiting process.

Introduction. In the literature on rank order statistics two generic approaches for
determining distributional results are generally distinguished, namely Gnedenko’s
method and Dwass’s method (cf. Mohanty [1979]). Gnedenko’s method is essentially
of combinatorial nature and involves a random walk consisting of nonindependent
steps in the sense that the number of 41’s and —1’s is given in advance, i.e. the
endpoint is fixed (in most cases (2n,0)); the main tools are various path counting
techniques. In contrast, the basis of the Dwass method is the consideration of a
transient random walk (p < 1/2) with independent steps. On that basis one often
conveniently obtains an expression h(p) for the probability of the corresponding
event in the unrestricted random walk, where h(p) reflects the dependency of this
probability on p. Technically, the distribution of the interesting rank order statistic
can be obtained by expanding h(p)/(1 — 2p) in powers of pq. For details of both
methods the reader is refered to Sidak [1973], Mohanty [1979], Aneja and Kanwar
Sen [1972], and Dwass [1967] of course.

In this paper we directly approach the p.g.f. for the interesting rank order
statistic where nonindependent steps in the underlying random walk are considered
in the sense that the difference £ between the number of +1’s and —1’s is fixed,
i.e. for all endpoints (n,£), n = 0,1,... simultaneously, £ fixed. It turns out
that the p.g.f.’s for all statistics considered in Dwass [1967] can be derived from a
single basic p.g.f., say ¥4 m ¢(y). Once the interesting p.g.f. has been obtained —
essentially by convoluting appropriate versions of ¥y, ,, ¢(v), which corresponds to
the concatenation of respective segments in the underlying paths — one only has
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to extract the coefficients in the resulting p.g.f., which is more or less a routine
task. Our method allows to generalize Dwass’s results in several ways. First, we
consider arbitrary endpoints (n,£), permitting to deal with rank order statistics for
unequal sample sizes also. Secondly, we introduce horizontal steps as third step
type. Moreover, we allow arbitrary probabilities a, 3,7 for the three step types.
Regarding these extensions the pertaining rank order statistics are extended as well
to “simple random walk statistics”, where the term simple random walk is used in
the sense of Cox and Miller [1965]. In part II it will be shown how the pertaining
results can be translated to the corresponding results for randomized random walks
by means of a limiting process.

Prerequisites. Let X, £ =1,2,..., be independent and identically distributed
random variables with

PXy=1)=a, PXr=0=8 PXr=-1)=17,

where a + 8 + v = 1. Consider the random walk

k
Sk =80+ X;, k=12,...,n with S,=¢,

=1

i.e. a simple random walk in the sense of Cox and Miller [1965] starting at Sy and
leading to £ after n steps. Confining to Sy = 0 actually constitutes no restriction at
all. So this assumption will be made in the sequel if not explicitly stated otherwise.
For a = v = 1/2 and Sy = 0 a sample path of Sy, 4n, = 71 —n2, Sp =0
corresponds to the graph of the rank order indicators, where the corresponding
sample sizes are n; and n, respectively. In Dwass [1967] a number of rank order
statistics are compiled and their probability distributions are given for the special
case ny = ng which is equivalent to the condition £ = 0.

All results contained in this paper are based on the probability generating
function ¥y, ., ¢(¥),

Upme(y) = Zp(h,m,e,n)y“, h,m > 0.

n>0

p(h,m,£,n) gives the probability that a particle obeying a random walk with ab-
sorbing barriers at —m and h reaches the state £ when it started from state 0,
1.e.

p(h’maean) =P(—mSS1 <h...,m<Sp 1 <h,-m<S, =< R[S =0)-

The definition of p(h,m,£,n) shows that touching the barriers is admissible and the
particle is absorbed only if it crosses them. Following Barton and Mallows [1965]
this type of absorption could be termed weak sense absorption. It has been shown
(cf. Panny [1984], Katzenbeisser and Panny [1984]) that

¥ M v 4 Bvy [L=(po?) i [1— (pu?) -
h,m,f(y) = ” v 1— p’Uz 1 — (pvz)h+m+2 3 (1)




where p = /v and the substitution y = g(v) = v/(av® + Bv + 7) has been used.
This substitution is crucial for our approach because it considerably simplifies the
original generating function in terms of y. The generating function also comprises
the one-sided cases, viz.

1oL+ _l-e
1— ,02 m—+1 3
B ) e (2)
144t 2\h41-1LEE
p z pu 2
U nly) = Eillar? o) B )
and the unrestricted case
pra v +hv+y
‘I’oo,m,e(y) = 1 - pvz * (4)

Explicit expressions for the probabilities p(h,m,£,n) can be derived by an applica-
tion of Cauchy’s integral formula,

1 Vs m,e(y
p(hym,b,n) = o— f ’;,,fl( )dy- (5)

Since y = v/v + O{v?) as v — 0, and g(v) is analytic in a sufficiently small neigh-
borhood of 0, (5) remains valid also after substituting y = g(v). Hence

p(h,m,f,n) — 1 'f‘]?hmf(g(v)) '(v)dv,

27i ntl(y)

where ) -
g\v _ n— 1
9" H1(v) =7 n+1 (a” +pv +7)

Consequently

) —JD nya, B, HI n; o, B, '
PR ) = j= 0:t1 [(n—l-f-i-?]l) n+{—2(h+1)+25D/ ]’ )

m _ n; a,,@,'y —(m+1) n a>ﬂ=7 ) !
oo, ’e’")"( n+ ) . (n+z+2(m+1) )
(a8, n; o ﬂ,v ,
_(nia, B,y ;
plooyoo,tm) = ("5 ) (@)

where D = h+m+2 and where generalized trinomial coefficients (GTC’s) (™*#7)
are used. They have the generating function (av?+Bv+7)", i.e.

(n; Cﬁ;}ﬁﬁ”) - [vk](av2+ﬂv+7)n,
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and [v*]P(v) denotes the coefficient of v* in P(v). GTC’s are quasi-symmetric, i.e.

n;aaﬁa7 — -k n;aaﬁ’7
n—£k P n+k

and comprise binomial coefficients as a special case, viz.

(327 ()

They are connected to ordinary trinomial coefficients by the relation

n;asﬂ77 _ n apnb_c
( n+k ) = 2 (a,b,C)aﬂ ’

n;a,ﬁ,’y _ kaon—k n _n_k _n—-k_l.k .4_0"1
(n+k)—aﬂ (k)2F1( 2 H 2 3 +19 ﬂz .

An integral representation is

. kf2 T
(n,a,ﬁﬂ) _ !EZLY_L_/ cos kt (B + 2 /aycost)" dt,

™

which can easily be verified by the residue theorem.

List of random variables. The following list contains all rank order statistics
considered by Dwass. Regarding the possibility of horizontal steps the pertaining
definitions had to be adapted, bearing in mind also their suitability for randomized
random walks. However, in the absence of horizontal steps (i.e. 8 = 0) they are
equivalent to Dwass’s definitions. Fig.1l illustrates the definitions in terms of a
random walk diagram.

I. N,,, the number of visits to zero. A wvisit to zero occurs if Sp = Sg41 = Sgq2 =
e = Sk+m =0, and Sk—-l 750, Sk+m+1 -‘/: 0 for 0 S k S k+m Sn. IfSo = 0 then
a visit to zero begins at the origin by definition. Correspondingly, if S,, = 0 then a
visit to zero terminates at the end-point by definition. This may be summarized by
saying that if there should be one or more consecutive horizontal steps coinciding
with the z-axis (i.e. m > 0), this counts only as a single visit to zero.

II. N}, N7, the number of positive and negative sojourns. A positive (negative)
sojourn occurs, if Sk,Sk+1,Sk+2,. .- 7Sk+m > 0(< 0), and S;_; =0, Sk+m+1 =0
for0<k<k4+m<n.

III. N,(r), the number of visits to r. A wvisit to 7 occurs if S = Sy = Sp42 =
cee=Spym =r,and Sy # 7, Sppmpr Frior 0L kLk+mSn Sy =17
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then a visit to r begins at the origin by definition. Correspondingly, if S,, = » then
a visit to r terminates at the end-point by definition. This may be summarized by
saying that if there should be one or more consecutive horizontal steps coinciding
with the line y = r (i.e. m > 0), this counts only as a single visit to 7.

IV. N:(r), the number of positive sojourns with respect to r. A positive sojourn with
respect to v occurs, if Sk, Sp41,Sk+2,- 3 k+m > 7 and Sg—1 =7, Sjymy1 =7 for
O<k<k+m<n.

V. N;.(r), the number of crossings of r. A crossing of r occurs if Sg—y =r F 1,
S = Sk+1 = Sk+2 =L,..= Sk+m =r, Sk+m+1 =r+]l,0< k < k+m < n. Aga.in,
if there should be one or more consecutive horizontal steps coinciding with the line
y =7 (i.e. m > 0), this counts only as a single crossing of r.

VI. D',t, D, , the one-sided mazimum deviations. D',t' = maXo<k<n Sk. Analo-
gously, D = ming<<n Si.

VIIL. D, the two-sided mazimum deviation. D, = maxo<r<n |Sk|-

VIII. Q,,, the number of times where the mazimum 18 achieved. The maximum is
achieved, if Sy = Sj41 = Sk42 = ... = Sg4m = DT and Si_1,Sk4m+1 < DY,
0 <k<k+m<n. By definition, if Sy = Di’ the path starts with a maximum;
accordingly, if S,, = D7 the path ends with a maximum. As before, if there should
be one or more consecutive horizontal steps coinciding with the line y = D7 (i.e.
m > (), this counts only as a single maximum.

IX. Q,, 1, the position of the k-th return to zero. Q,, , is the first index of the k-th
return to zero. The visit to zero that automatically occurs at the origin is not taken
into account, i.e. Q,, ; > 2.

X. R}, the position where the mazimum is first achieved. R} = min{k|S, = D]}.
XI. L,,, the number of steps strictly above the z-azis.

F

Y

LN,=6ILNI=4, N, =1L ILN,1)=7 N,(2) =4
IV: NI (1) =2, N} (2)=2; V: NX(1) =4, N*(2) =2;

VI: D',f =3, D, =4, VI D, =4; VIII. Q, = 2;

IX: Qn,l = 6) Qn,z = 97 Qn,3 = 21, Qn,4 = 237 Qn,5 = 33;
X: R} =26; XI: L, = 21.

Fig.1: Random walk diagram, values of random variables
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Distribution results. In the following formulae the condition Sy = 0 and the
conjunct S, = £ are omitted for convenience. That is we write e.g. P(IN,, > k) as
a shorthand notation for P(N,, > k,S, = £|Sy = 0). For each random variable we
give the distribution for the general case and its specialization to the binomial case
a = - =1/2. The binomial results cover Dwass’s results, which can be checked by
specializing on £ = (, substituting 2n for n and dividing by the probability of the
conditioning event, viz. P(S2, = 0|5 = 0) = 272" (*™).

I. For all & > 0 we have

N ok k41t (—k n;a, B,
P > By =2 Z”J(a‘)(n—lﬂ—zk—w)'

i>0

For the special case a = =1/2,8 = 0 one obtains

-k
P(N, >k)=2"( D .
( >) (nzf__k)
II. For all k£ > 0 we have

P(N* > &) = P(N= > k) = i+t [ %87 )
(N3 2k)=P(N_ 2k)=p""" n— €] - 2k

For the binomial case a = v =1/2,8 = 0 one obtains

P(NT > k) =P(NI > k) = 2-’*(,,__15__,6).

2

IIL. For all £ > 0 and » > 0 we have

P(No(r) > k) = 2% p=t+ == 2 o) (‘“’") ( n; a, B, )

= J/J\n+r+|l—r|+2k+27
n;a, B, n;ya, 8,7
—p" f; <
P(Nn(r)=0)={(n+£> p(n+£—-2r) orf <,
0 for £ > r.

Observe that the distribution of N,(r) does not depend on r if £ > r. Specializing
on the binomial case we get for all k > 0

—n n—k
P(Nn(’l‘) > k) = 2k (n—r—zll-—r| _ k)a

P(Na(r) =0) = {"‘[(_’jﬂ) - (ﬁzzun_ BT

0 for £ > »r.



IV. For all £ > 0 and » > 0 we have

+(p) > k) = p kI n; o, B,y )
PINI() 2 by = prbeistiet (| b ),

n; o, B, r+1 'n;a,ﬁ,”f
- for £ <
( n+4 ) P (n+£-—2r—2) o=

n;a7ﬂ37 _ -1 n;a,ﬁ)7 f £>
(n+£) P (n+£+2) ort=t

P(N7(r) = 0) =

Here again the distribution of NF(r) does not depend on r if £ > r. For the
binomial case this entails for all £ > 0 and r > 0

PO 2 8) =2 (poeily ),
2

[ [/ n n
2n(.’!ﬂ>_(ﬁ€*,~_1)} for £ < r,
L\ ™2 2

[ n n
2-" (n )— (n ¢ )] for & > r.
A A S

The subcase £ = 0 has been delt with in Mihalevic [1952].

P(Nt(r) =0) = {

V. For r > 0 we have

4 .
k-1 n;a, B, ! E=1
P (n—£—2k+2) > r, 3350y,

P(N%(r) > k) = { prt+-1 ™ B, £<r k=2,4,6,...
i)z = prreni( R ) enk=2a0

rik | TP
\p+k(n’_2’k:rr) b=rk=1,23,...
n;a, B, _rtl n;a, B, <
P(N:(T)=0)=< n 4 ¢ ) P (n+£—2r-—2) £<r,
. 0 £>r.

Similar as before, the distribution of N}, (r) does not depend on r for £ > r > 0.
For » = 0 one obtains

( L4 JE18 n'aﬂry
k+ ‘a, B3, )
P(N;(0) > k) o (”—2’c—lfl) £#0,k=0,1,2,...
=(0) > k) = { .
9pk+1 YN n,a,ﬁ,fy _ _ N
’ Z( l)p (n—zk—Zj—Z £=0,k=1,2,3,
\ i20
* _ _ Tb;a,ﬁa'}' _ nya, B,y an L
P(Nn(O)—-O)—Z[( > ) p( ok )] 5 ke
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For the binomial case o = v = 1/2 we have for r > 0

'2-"( " ) e>r k=1,305,...

P(N*(r) > k)={ 27"

P(N(r) = 0) = <, g—n (-"—1;14) _ (%& n 1)] e<r,

. 0 £>r.

For » = 0 and all £ > 0 one obtains
( n
27" | . £#£0,

cntrf m—1 -
(0 e

which is equivalent to Kanwar Sen’s result [1965]. The subcase £ = 0,r > 0 is
treated in Csdki and Vincze [1961]. Incidentally, the corresponding formula of
Dwass seems to be erroneous.

VI(a). For all k > 0 we have

PD+>k — k n;a7ﬂ’7 PD_>k — -k n;“’ﬁ’q’

P(N2(0) > k) = 4

which is equivalent to (14) of Katzenbeisser and Panny [1984]. For the binomial
case this becomes

+> =97 n n . 2> k)= " " *
P(D} > k) =2 (%L_e_k), P(D, 2 k) =2 (nT-i-lf+k)

This is equivalent to Lemma 1 in Feller [1968, p.89]. For £ = 0 this is the well-known
result due to Gnedenko and Korolyuk [1951].

VI(b). For all k,» > 0 the joint distribution of both maximal deviations can be
given by

P(DY < &k, D: — —j(k+7) n; o, B,
(DI <kDi<r)= 3 n+£€+2j(k +r)

J=0,%1,...
_ k —j(k+r) n;a, B,y )
'j}:ﬂ P (n+£—2k+2j(k+r)



This is Theorem 1 of Katzenbeisser and Panny [1984]. For the binomial case we
can write

+ - — 9—n n
P(D} < kD, <r)=2"") (&;té+j(k+r))

i=0,£1,...
n
_g-n (n . >’
rdn ki)

which comprises the result of Gnedenko and Rvaceva [1952].
VII. For all £ > 0 we have

D k) = —2jk[ MmiaB,7 _ k ~2jk n;a, B,y
P(Dn <) jzozi:l g (n+£+4jk /,)-=02ﬂ P\t £ =2k +4jk)°

which is equivalent to (13) of Katzenbeisser and Panny [1984]. For the binomial
case we get

n n
P Dn < k = 2—7’1 o - 2""‘ - )
( ) 2 (-—”Z" + 2Jk) 2 (—"2" —k+ 2Jk)

Jj=0,%1,... j=0,%1,...

which covers the result due to Gnedenko and Korolyuk [1951].
VIII(a). For all k,r > 0 we have

. k+1‘ n;a, B,
P(D; 2k,Q,>7) ZP( )(n+e 2k —2r—2j5)°

j20

which entails for the binomial case
I(Dn2k7qn>r) 2 n(_nj:l kr )
2 — — 1"

The last formula is equivalent to (4.9) in Mohanty [1979, p.93].
VIII(b). For all » > 0 we have

P(Qu=r) =y Y (—Jr) (n - Ieriaéf ,jzj + 2)'

Jj>0

For the binomial case Vandermonde’s convolution formula yields

P@u=n) =2 (i)
2
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IX(a). For all i, k,r subject to 2 <2k <i<n—1£,0<2r <n—1i—|f,1i.e. for all
possible cases, we have

P(Qn,k = 'l:, Nn =k +7r 4+ 1) — a2k+rpk+r+1+l!_|§ﬁ

i(—E\[1(i-150,8,7 i—Lie,0,7

] - —
xj;op(j)[p(iuzk—zj) (z‘—Zk—2j+2

j —r—1 l n_i;a7ﬁ97 i n-—z';a,ﬂ,fy
X,Z:gp( J >[p n—i—[{|—2r—2; n—i—|f|—2r—25-2/ |

For the binomial case this simplifies to the following: for all i, %,r subject to 2 <
2k<i<n—l{[,0<2r <n—i—{,n—1>0i.e. for all possible cases excluding
only the trivial case n — i = 0 we have

: - k fi—k\ r4+f| m—i—7
_ — I = g—ntkr K (1KY T[] .
P(Qus = Na =kt 1) = 2iitr L (V) AL (ML)

which checks with the right hand side of Dwass’s result. On the left hand side of
Dwass’s result the visit to zero that automatically occurs at the origin has been
overlooked. The natural formulation of the event reads: the k-th return to zero
occurs at 1 and there are &k + r returns to zero altogether. Using N,,, which counts
the visits to zero in the formal definition of the event, makes it necessary to consider
the wvisit to zero at the origin, too.

IX(b). For all i,k subject to 2 < 2k <i < n—|¢|,0 < n—1i—|£|, i.e. for all possible
cases, we have

P —_ n k) = 2k k n_i;a)ﬂa’)'
(Qui =1, No> k) =0 p( n—i+t

""1 a,ﬂ,’y i-l;a,ﬂ,’)’
X;P('M (z—2k 2_7) (i—2k—2j+2)]'

Specializing on the binomial case we get

—n k t—k\[/n—1
o=t ()

2
where again all possible cases (2 <2k <i<n—|{£],0 <n—i-—|f) are covered.

X(a). For all k,m satisfying 0 < k < n + £ — k < n, which excludes only the
trivial case k = m = 0 we have

1aﬁm 1fm-10,8,7
PDf =k Rt =m) = 1 ’

x L maaﬂa')’ n_m;aaﬂa'}'
n—m+l-k) P\n-m+t—k-2/|"
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For the binomial case one obtains for the same range of k, m-values

P(D* = k, RY = m) = 2—" k(k+1-12) ( m )(n—m+1)'

m(n -m+ 1) m;{-k n—mz—k-!-l’

For £ = 0 this specializes to Vincze’s result [1957).

X(b). Let us first consider the non-trivial case k > 0, n > 0. For all possible values
of k, viz. max{2,24} < k < n + £, we have

[ k—j—2;a,,8,7 - k"‘j"z;a,ﬁ,'T
+ + Ly — p—1
P(Dn—I—Rn—L)“aj;O.( Lo ) P ( L
><- n—k+j+Lapy\  (n—k+ji+leB,y
k0 P\ n—k+e—2 '

For the trivial case k = 0, n > 0 we obtain

n;a, 3,7 n;a, B,
- <
0 £> 0.

Let us now turn to the binomial case. We first consider the non-trivial case &k >
0, n > 0. The following formula is valid for all possible values of k, viz. max{2,2£} <
k < n + ¢, more explicitly: k = 2,4,...,n + £, n + £ even, of course.

g-n+2 k—j—-1\/n—k+3
+ + 1.y = (3 -
P(Dn +Rn _k)— k(n—-—k-{—ﬂ) ;J(J'f'l e)( lzc__l )(n—gil_l)a

For £ = (0 we have the following closed form expression

1 n
P(DF+RY =k)=2"" ()

n
2

which shows that D} + R} is uniformly distributed over k = 0,2,...,n for that
case. For the trivial case k = 0, n > 0 we obtain

£ +1 n

x)—n+1 l

P(D;';+Ri:0)={" n+|2|+2(%‘-‘1) £=0
0 £> 0.

XI. In general the range of k is f;%lﬁl <k<n+ B—_ZM Let us first consider the
non-trivial case £k > 0, n > 0. For £ < 0 we get

(k-7 —2;0a,8, i fk—7—-2a,8, _

j20*

y '(n~k+j+1;a,ﬁ,’r) _p(n—k+j+1;a,ﬂ,7)]

n—Fk4+/¢ n—k+4£€-2
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For £ > 0 one obtains

(k-7 -1 a(k—7-1a
P(Ln=k)=a2( £+E_’2ﬂ,7)“ﬁ’ 1( Jk+e,ﬁ,7)]

j20"

x- n—k+ja,8,7\ (n-k+jja,B,7
i n—=k p n—k-—2 ]

For the trivial case k = 0, n > 0 we obtain

n;avﬁ"y nya, B,y
— <
0 £>0.

The last two expressions show that the random variables D} + R} and L, have
the same distribution for £ < 0. This remains true for the binomial case, of course.

Accordingly, for the case £ < 0,n >0,k =2,4,...,n+4 £, n + £ even, the following
formula applies

g-nt2 ~1\[n—k+j
P =) = g D+ 1 E)( (AT,

2
- 1 n
S (3]

for£ =0,k =0,2,...,n (cf Chung and Feller [1949], Feller [1968, p.94f.]). For
£>0,n>0, L—£Z+2 .,n; n + £ even, we have

PLn =4 = 2,:;;: sri+oi+0 (e ) (),

2

which becomes

For the trivial case k = 0, n > 0 we obtain as before

—nt1_ €l +1 n
P(Ln=0)={2 n+ 4] + 2 "—*;ﬁ £<0,
0 £>0.

Proofs of distribution results.

I. Fig.2 shows a sample path for the event N,, = 3.

i
C A C B C E

_/\/\ /\/b£>0

=0

YT T N

= O

Fig.2: Visits to zero (I)
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A path corresponding to the event N, = k can symbolically be characterized by
Cl(A+ B)C)*'E, k = 1,2,..., where the segments 4, B,C,and E are illustrated
in Fig.2. The p.g.f.’s for the segments are:

Te(y) = ¥o,0,0(y),

ayv?

(ev? + Bo +7)°
2

Ta(y) = 79> ¥eo0,0(y) = Yoo,0,0(9);

ayv
(av? + fu +7)’

0y ¥ oo 0,e—1(y) = (pv)* £>0,
Te(y) =

Ta(y) = a7y’ ¥o,00,0(y) = ¥o,00,0(¥) = Taly),

1 £=0,
Ty ¥0,00,641(y) =v™¢  £<0.

Hence, the p.g.f. ¢1(k,£;y) for P(N,, = k) reads

¢1(k, G y) = 2" LN () TEW) TE(Y)

Lyt e 2

_ok—1p 2 W7 (p‘v )"
2 5 pvz(a'v + Bv + ) T+ 07

Consequently, the p.g.f. ®1(k,£;y) for the tail probabilities P(N,, > k,k = 0,1,...)

18

ij'é'lzi-i v|£| 0 p,uz k
&,(k, b;y) = 2* ( ) .
1(k, & y) " 1__pvz(oz'v + Bv +7) T+ 07

Picking out the coefficient of ¥ by means of Cauchy’s integral formula where we
have to take into account that

dy  1-—pv?
gt = Y n

(av?® + Bv + )" 1dv

yields the given result.

I1. Fig.3 shows a sample path for the event N} = 2.

B A B A E

1 AN LN A A A0

£ <0

Fig.3: Positive sojourns (1I)
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A path corresponding to the event N,, = k can symbolically be written as (BA)*E,
k=0,1,..., where the segments A, B,and F are illustrated in Fig.3. The p.g.f.’s

for the segments are:

T a(y) = avy? Voo 0,0(),
TB(IU) = ‘I’o,oo,o(y),

[ ¥o,000¥) ay ¥eopp,e-1(y)  £>0,
Is(y) = { Voo e(y) (<o

Hence, the p.g.f. for P(IN} = k) is

$11(k, &y) = [Ta(@)TB)*Te()

leie
= p7 Coll(pv®)(av? + Bu +7),

and the p.gf. for P(N} > k) is

1el+¢ )2
&11(k, b y) = 2— ol (2 )" (av? + Bo + 7).
Bt | 7 1 pvz

Again, the coefficient of y™ can be determined by means of Cauchy’s integral for-
mula and the result follows. Proceeding correspondingly for N, leads to the same
generating functions.

III. This generalizes the wvisits to zero dealt with in I. It is easily seen from the
decomposition given in Fig.4 that we only have to shift the line ¥y = 0 into the
line y = r for the paths considered in I and prefix them by those paths (segment
S) which have their first visit to r in their connecting point. Hence, the p.g.f.
Prrr(k,L,r;y) for P(N,(r) > k) is ¥y co,r—1(y) ay 1(k, £ — r;y), which results
in

L=r|4+(L—

s 4 ngr ; pTHE=T pv? Nk
III(]", aray)_ y l_p Z(av +,6’U-|—’)’)(1+pv2) ’

and the coefficient of y™ can be extracted by the same method as before. The result
for the trivial case k = 0 follows from a straight forward application of (2').

S C A C B C E

. PN AT
T+

r L=r
r—1

N T N,

Fig.4: Visits to r (III)
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IV. This generalizes II in the same way as III generalizes I. To obtain the p.g.f.
we may proceed as under III, i.e. choosing an appropriate prefix for the paths
considered in II, which leads to the p.gf. ¥,._1c0,r—1(y) ay ®rr(k,€ — r;y) for
P(N}(r) > k), viz.

pr+1—1—i——2“”;"’ e (p0?)E \
rv(k, L, riy) = o o™ _rlmz‘(av + By +7).

For k = 0 we have to distinguish the cases £ > r and £ < ». For the first case the
general formula applies, because r is visited at least once and the connecting point
actually exists. The second case is equivalent to the event N,(r +1) = 0.

V. Fig.5 shows an appropriately decomposed sample path for the case r > 0, k > 0.

A

S Cu A Ca | B Cu| A Cal E
r—:.—l 7 .
r—1 AN
\/ N¢ <7
0

Fig.5: Number of crossings of r (V)

A path corresponding to the event N} (r) = k can symbolically be represented as
SC,(AC;BC,)\s-D/2(AC,)(k-1med2 B The p.g.f.’s for the segments are:

Ts(y) = ¥ro0,r—1(¥),
Te.(y) = (ay)*Po,0,0(y),

Ta(y) = ¥oo,1,0(y),
Teu(y) = (79)*Zo,0,0 (),
To) = ¥1,00,0(¥),

. ‘I’oo,l ,e—r-1(y) k
Tely) = { U1 0,6-r+1(y) K

1 grey

1,3
2,4,....

Hence, the p.gf. for P(N,(r) =k),r >0,k > 01is

dv(k, £,r5y) = Ts@)[ Lo, @] FUTa(@) Lo, @) EH [T a@)] 11 TE ().

Summation over k in the resulting p.g.f. and determining the corresponding coef-
ficient yields the given tail probabilities. Of course, if £ # r then k& = 1,3,5,...
implies £ > r, and k = 0,2,4,... implies £ < r. P(N},(r) = 0) follows from an
application of (3').

Above p.g.f. applies for » = 0 too, but it only covers the cases £ > 0, k =
1,3,...,and £ < 0, k = 2,4,.... For the cases £ < 0, k = 1,3,..., and £ > 0,
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k = 2,4,..., we have to consider also paths which have a down-crossing as their
first crossing, symbolically §'Cy(BC, AC,){*—D/2](BC, )(k-1mod2 pr where

fS'(y) = "I’oo,o,l (y):

! ) U1 00,041(Y) k=1,3,...,
ﬂ”‘{w&qu) b4,

Combining the T’s results in the following p.g.f. for P(N(0) = k),k > 0,£#£0,

1 ST
¢(k,£,0;y) = ;(p't)"’)k,oj'lj‘_t'ul‘”(cw2 + Bv + 7). (6)

For the trivial case r = 0, k = 0, £ # r we have the p.g.f.

{ VYoo0,e(y) £>0,
\IIO,oo,l(y) £< Oa

which is also comprised in (6). Summation over k and extracting the coefficients in
the usual way leads to the given result.

It only remains to consider the case r = 0, £ = 0. Let us first deal with the
subcase k > 0. The corresponding p.g.f. can be obtained from (6) in the following
way

¢(k,0,05y) = ¢(k,1,0;9) vy Yo,0,0(y) + $(k, —1,0;3) ay T g o(y)
) v 4 o 41
B ¥ 1+p02
and the result follows. The trivial subcase k = 0 is a consequence of (2') and (3'),

viz. p(0,0,0,7) + p(0,00,0,7) — 8", which gives the probability that a path leads
to the point (n,0) without crossing the axis y = 0.

VL. The results are direct consequences of formulae (3'), (2’ ), and (1').
VIIL. This follows from (1') by substituting k£ — 1 for m and k.

VIIL. Let us first consider the case k > 0,4 < k. Fig.6 shows an appropriately
decomposed sample path (with r = 3).

A
S A B A B A E

Fig.8: Number of times where the mazimum is achieved (VIII)

| &
Y
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A path corresponding to the event D} = %, Q,, = r can symbolically be written as
SA(BA)""'E. The p.g.I.’s for the individual segments are

TS(‘!]) = ‘I’k—l,oo,k—l(y)7

Ta(y) = avy® Yo,0,0(¥),
TB(y) - ‘IIO,OO,O(y)a
TE(y) = Yo,00,6-k+1(Y)-

Hence, the p.gf. for P(D} =k, Q, =7),r>0,k>0,£< kis
YTs(y)Ta@)TE ()T e(y),

which entails

(v?) ™

) (e? + o+ )2

1( pv?

k,l,r;y) = —
¢vir(k,£,r;y) 7 \1 ¥ po?

A separate investigation of the remaining cases shows that the last formula applies
for all cases, i.e. forr > 0, k > 0, £ < k. Summation over k& and r and extraction
of the corresponding coeflicient yields the result VIII(a). Accordingly, summation
over all possible values of k (k > max{0,£}) for fixed 7 in the p.g.f. leads to VIII(b).

IX(a). The probability under consideration can be expressed as
[P(Ni—1=k-1,8;1=1)+aP(N;_;=k-1,5;.1=-1)] P(N,_;=r+1,S,,_;=4¢).
The occurring probabilities are known from I.

IX(b). Obviously, this probability can be written as [yYP(N;_; =k—1,S;_; =1)
+aP(N; .1 =k-1,S;_1 =-1)]P(S,,—;={), and the involved probabilities are known
from I and (4').

X(a). Wehave P(D} =k, R} = m) = p(k—1,00,k—1,m—1) a p(0, 00, £—k,n—m)
and the result follows from an application of (3').
X(b). For the non-trivial case one only has to sum over all complementary values
of D} and RY,i.e. D} + R} =k, and the result follows after some manipulations.
For the trivial case k = 0,£ < 0 the probability is p(0, oo, £,n).

The derivation of the closed form expression for the binomial case and £ = 0 is
a little intricate. Here we may adopt the following path-combinatorial argument:
Spezializing the general formula for P(D} + R} = k) to the case at hand (viz.a =
v =1/2, £ =0), we see that the resulting expression equals

1 . . . .
;Zp(ooaoajak_J _2)]3(00,0,] +17n"k+.] + 1)°
©j>0

By reverting the paths contributing to p(c0,0,j +1,n —k+ 7+ 1) and shifting their
end-points into (n,0) we see that

p(00,0,7+1,n—k+35+1) =P(S,=0,S, >0for k—j—1 <k <n|Sk_;—1=7+1).
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On the other hand we obviously have
p(oo,O,j,k—j—2) = P(Sk—j—2= 58 20for0< k< k—j-2 I So= 0)’

and )
P(Sk—j—1=j+1|Sk—j—2=j) = ok

Hence, a single term in the above sum gives the probability that a non-negative

path starting at the origin leads to the point (n,0) and has an edge from (k—j—2, )

to(k—j—1,7+1), 7 > 0. Fig.7 illustrates the situation.

?

Y

3

0 k-2 k
Fig.7

Since every non-negative (binomial) path bridges the stripe between the lines y =
k—2—2z and y = k — z by exactly one such edge the whole sum represents the
probability p(c0,0,0,n) and the result follows. Unfortunately, this construction
works only for the binomial case and even there only if £ = 0.

XI. Let us first consider the non-trivial case k > 0. We have to distinguish between
the subcases £ < 0 and £ > 0. For £ < 0 we may refer to Fig.3. A path corresponding
to the event L, = m, N} = k can symbolically be written as (BA)*E. Hence

P(L, =m) =Y ["{Th)} " "H{Ts®)Te®)},

k>1

and the result follows by the usual procedure. For £ > 0 the path can be charac-
terized by B(AB)¥E', where E' represents the (strictly positive) segment from the
last visit to zero to the end-point. The pertaining p.g.f. reads

Tg (y) = ay ‘I’oo,O,l—l(y),

which entails

P(L,=m) =Y "{Th@)Te @)} " "{T5 )},
k21

and the result follows. As to the trivial case k = 0, n > 0 we have P(L, = 0) =
P(N,(1) = 0), and the result follows from III.
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