
ePubWU Institutional Repository

Alexandros Karatzoglou and Ingo Feinerer

Text Clustering with String Kernels in R

Working Paper

Original Citation:
Karatzoglou, Alexandros and Feinerer, Ingo (2006) Text Clustering with String Kernels in R.
Research Report Series / Department of Statistics and Mathematics, 34. Department of Statistics
and Mathematics, WU Vienna University of Economics and Business, Vienna.

This version is available at: http://epub.wu.ac.at/1002/
Available in ePubWU: May 2006

ePubWU, the institutional repository of the WU Vienna University of Economics and Business, is
provided by the University Library and the IT-Services. The aim is to enable open access to the
scholarly output of the WU.

http://epub.wu.ac.at/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elektronische Publikationen der Wirtschaftsuniversität Wien

https://core.ac.uk/display/11007135?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://epub.wu.ac.at/1002/
http://epub.wu.ac.at/

Text Clustering with String Kernels
in R

Alexandros Karatzoglou, Ingo Feinerer

Department of Statistics and Mathematics
Wirtschaftsuniversität Wien

Research Report Series

Report 34
May 2006

http://statmath.wu-wien.ac.at/

Text clustering with string kernels in R

Alexandros Karatzoglou
Department of Statistics and Probability Theory,

Technische Universität Wien, A-1040 Wien, Austria
alexis@ci.tuwien.ac.at

Ingo Feinerer
Department of Statistics and Mathematics,

Wirtschaftsuniversität Wien, A-1090 Wien, Austria
h0125130@wu-wien.ac.at

May 6, 2006

Abstract

We present a package which provides a general framework, including
tools and algorithms, for text mining in R using the S4 class system. Us-
ing this package and the kernlab R package we explore the use of kernel
methods for clustering (e.g., kernel k-means and spectral clustering) on
a set of text documents, using string kernels. We compare these meth-
ods to a more traditional clustering technique like k-means on a bag of
word representation of the text and evaluate the viability of kernel-based
methods as a text clustering technique.

1 Introduction

The application of machine learning techniques to large collections of text docu-
ments is a major research area with many application such as document filtering
and ranking. Kernel-based methods have been shown to perform rather well in
this area, particularly in text classification with SVM using either a simple “bag
of words” representation (i.e. term frequencies with various normalizations) [6],
or more sophisticated approaches like string kernels [11], or word-sequence ker-
nels [1]. Despite the good performance of kernel methods in classification of
text documents, little has been done on the field of clustering text documents
with kernel-based methods.

2 Software

R [13] is a natural choice for a text mining environment. Besides the basic
string and character processing functions it includes an abundance of statistical
analysis functions and packages and provides a Machine Learning task view with
a wide range of software.

1

2.1 textmin R Package

The textmin package provides a framework for text mining applications within
R. It fully supports the new S4 class system and integrates seamlessly into the
R architecture.

The basic framework classes for handling text documents are:

TextDocument: Encapsulates a text document, irrelevant from its origin, in
one class. Several slots are available for additional meta data, like an
unique identification number or a description.

TextDocumentCollection: Represents a collection of text documents. The
constructor provides import facilities for common data formats in textmin-
ing applications, like the Reuters21578 news format or the Reuters Corpus
Volume 1 format.

TermDocumentMatrix: Stands for a term-document matrix with documents
(in fact their id numbers) as rows and terms as columns. Such a term-
document matrix can be easily built from a text document collection. A
bunch of weighting schemes are available, like binary, term frequency or
term frequency inverse document frequency. This class can be used as a
fast representation for all kinds of bag-of-words textmining algorithms.

2.2 kernlab R Package

Kernel-based learning methods, like kernel k-means, use an implicit mapping of
the input data into a high dimensional feature space defined by a kernel function,
i.e., a function returning the inner product 〈Φ(x),Φ(y)〉 between the images of
two data points x, y in the feature space. The learning then takes place in the
feature space, provided the learning algorithm can be entirely rewritten so that
the data points only appear inside dot products with other points. This is often
referred to as the “kernel trick” [14]. More precisely, if a projection Φ : X → H
is used, the inner product 〈Φ(x),Φ(y)〉 can be represented by a kernel function k

k(x, y) = 〈Φ(x),Φ(y)〉, (1)

which is computationally simpler than explicitly projecting x and y into the
feature space H. Once a valid kernel function has been selected, one can prac-
tically work in spaces of any dimension without paying any computational cost,
since feature mapping is never effectively performed. One can also design and
use a kernel for a particular problem that could be applied directly to the data
without the need for a feature extraction process. This is particularly impor-
tant in problems where a lot of structure of the data is lost by the feature
extraction process as is the case in text processing. The inherent modularity of
kernel-based learning methods allows one to use any valid kernel on a kernel-
based algorithm. kernlab is an extensible package for kernel-based machine
learning methods in R. It takes advantage of R’s new S4 object model and pro-
vides a framework for creating and using kernel-based algorithms. The package
contains implementations of most popular kernels, and also inludes a range of
kernel methods for classification, regression (support vector machine, relevance
vector machine) clustering (kernel k-means, spectral clustering), ranking, and
principal component analysis. Moreover it provides a general purpose quadratic

2

programming solver ipop, and methods for computing a incomplete Cholesky
decomposition. kernlab also includes methods for computing commonly used
kernel expressions (e.g., the kernel matrix) and allows the user to define and
easily use a kernel with any of the existing methods in the package.

3 Methods

The k-means clustering algorithm is one of the most commonly used clustering
methods providing solid results but also having some drawbacks. Denoting clus-
ters by πj and a partitioning of points as πj

k
j=1 the k-means objective function

using Euclidean distances becomes:

D(πj
k
j=1) =

k∑
j=1

∑
a∈πj

‖a−mj‖2 (2)

where mj = 1
‖πj‖

∑
a∈πj

a (3)

A major drawback of k-means is that it cannot separate clusters that are not
linearly separable in input space.

3.1 Kernel k-means

One technique for dealing with this problem is mapping the data into a high-
dimensional non-linear feature space with the use of a kernel. Kernel k-means
uses a kernel function to compute the inner product of the data in the feature
space. All computations are then expressed in terms of inner products thus
allowing the implicit mapping of the data into this feature space. If Φ is the
mapping function then the k-means objective function using Euclidean distances
becomes:

D(πj
k
j=1) =

k∑
j=1

∑
a∈πj

‖Φ(a)−mj‖2 (4)

where mj = 1
‖πj‖

∑
a∈πj

Φ(a) (5)

in the expansion of the square norm only inner products of the form 〈Φ(a),Φ(b)〉
appear which are computed by the kernel function k(a, b).

The implementation of kernel k-means included in kernlab makes use of
the triangle inequality [3] in order to avoid unnecessary and computational
expensive distance calculations. This leads to significant speedup particularly
on large data sets with a high number of clusters.

3.2 Spectral Clustering

Spectral clustering [12], [15] works by embedding the data points of the parti-
tioning problem into the subspace of the k largest eigenvectors of a normalized
affinity matrix. The use of an affinity matrix also brings one the advantages
of kernel methods to spectral clustering, since one can define a suitable affinity

3

for a given application. For example if the feature vectors represent color his-
tograms simple k-means clustering is inappropriate since an L2 distance between
histograms is not meaningful. In such a case one can employ a suitable affinity
function such as the χ2-distance. In our case we use a string kernel to define the
affinities between two documents and construct the kernel matrix. The data is
then embedded into the subspace of the largest eigenvectors of the normalized
kernel matrix. This embedding usually leads to more straightforward clustering
problems since points tend to form tight clusters in the eigenvector subspace.
Using a simple clustering method like k-means on the embedded points usually
leads to good performance. It can be shown that most spectral clustering meth-
ods boil down to a a graph partitioning problem [2] that can be solved by a
weighted kernel k-means algorithm.

3.3 String kernels

String kernels [17], [5] are defined as a similarity measure between two sequences
of characters x and x′. The generic form of string kernels is given by the
equation:

k(x, x′) =
∑

svx,s′vx′

λsδs,s′ =
∑

s∈A∗

nums(x)nums(x′)λs (6)

where A∗ represents the set of all non empty strings and λs is a weight or decay
factor which can be chosen to be fixed for all substrings or can be set to a
different value for each substring. This generic representation includes a large
number of special cases, e.g. setting λs 6= 0 only for substrings that start and
end with a white space character gives the “bag of words” kernel [7]. In this
paper we will focus on the case where λs = 0 for all |s| > n that is comparing
all substrings of length less that n, this kernel will be referred to in the rest of
the paper as full string kernel. We also consider the case where λs = 0 for all
|s| 6= n which we referred to as the string kernel. The computational complexity
of the string kernels we consider is O(n, |x|, |x′|).

4 Experiments

We will now compare the performance of the various clustering techniques on
text data by running a series of experiments on the well known Reuters text
data set.

4.1 Data

The Reuters-21578 dataset [10] contains stories for the Reuters news agency. It
was compiled by David Lewis in 1987, is publicly available and is currently one
of the most widely used datasets for text categorization research. A Reuters
category can contain as few as 1 or as many as 2877 documents. In our exper-
iments we used a subset of the Reuters dataset so that the computation of a
full kernel matrix in memory was not a concern. We used the “crude” which
contains about 580 documents, the “corn” category which includes 280 docu-
ments and a sample of 1100 documents from the “acq” category. Our dataset
thus consists of 1720 documents after preprocessing:

4

We removed the stop words that occur in a stop list and any empty docu-
ments and convert all characters to lower case. We also removed punctuation
and white space and performed stemming on the documents using the Rstem
[8] omegahat R package.

4.2 Experimental Setup

We perform clustering on the dataset using the kernel k-means and spectral
clustering methods in the kernlab package and the k-means method in R. For
the kernel k-means and spectral methods we also use the string kernels imple-
mentations provided in kernlab. In order to learn more about the effect of the
string kernels hyper-parameters on the clustering results we run the clustering
algorithms over a range of the length parameter n which controls the length
of the strings compared in the two character sets and the decay factor λ. We
study the effects of the parameters by keeping the value of the decay parameter
λ fixed and varying the length parameter. Note that for each parameter set a
new kernel matrix containing different information has to be computed.

We use values from n = 3 to n = 14 for the length parameter and λ = 0.2,
λ = 0.5 and λ = 0.8 for the decay factor. We also use both the string (or
spectral) and the full string kernel and normalize in order to remove any bias
introduced by document length. We thus use a new embedding φ̂ = φ(s)

‖φ(s)‖ which
gives rise to the kernel:

K̂(s, s′) = 〈φ̂(s), φ̂(s′)〉 =
〈

φ(s)
‖φ(s)‖

φ(s′)
‖φ(s′)‖

〉
= (7)

〈φ(s), φ(s′)〉
‖φ(s)‖‖φ(s′)‖

=
K(s, s′)√

K(s, s)K(s′, s′)
(8)

For the classical k-means method we create a term document matrix of the term
frequencies and also an inverse term frequencies matrix.

4.3 Performance measure

We evaluate the performance of the various clustering techniques using the recall
rate which is a typical measure for evaluating the performance of a clustering
algorithm when the actual labels of the clustered data are known. Given a
discovered cluster γ and the associated reference cluster Γ, recall R is defined
as in:

R =
∑k

Γ=1 nγΓ∑k
Γ=1 NΓ

(9)

where nγΓ is the number of documents from reference cluster Γ assigned to
cluster γ, NΓ is the total number of documents in cluster γ and NΓ is the total
number of documents in reference cluster Γ.

4.4 Results

The main goal of these experiments is to establish if kernel methods along with
string kernels are a valiable solution for grouping a set of text documents.

From the experiments we run it became obvious that the λ parameter influ-
ences the performance only minimally and thus we chose to look at the results

5

kernel matrix calculations ≈ 2 h.
spectral clustering ≈ 20 sec.
kernel k-means ≈ 30 sec.
term matrix k-means ≈ 40 sec.

Table 1: Timings for the clustering methods and the computation of the kernel
matrix.

in relation to the string length kernel parameter which seems to have a more
profound influence on the performance of the kernel-based clustering methods.
The performance of the k-means clustering method is also very similar with
both the simple document matrix or the inverse frequency document matrix.

Figure 1 shows the average recall rate over 10 runs for the spectral clustering
methods, and the kernel k-means method with the full string kernel compared
to the reference recall rate of the inverse term document matrix clustered with
a simple k-means algorithm. The plot shows that both the spectral method
and kernel k-means fail to improve over the performance of the standard k-
means clustering technique. We also note that the spectral clustering technique
provides very stable results thous almost zero variance. This can be attributed to
the fact that the projection of the data into the eigenspace groups the data into
tight clusters which are easy to separate with a standard clustering technique.

Figure 2 displays the average recall rate of the kernel k-means with a string
kernel along with the standard k-means clustering results. It is clear that for
a range of values of the string length parameter the kernel k-kmeans functions
outperforms k-means clustering and the full string kernel methods with a full
string kernel. The method does not provide stable performance and the variance
of the recall rate over the 10 runs seems quite high compared to the other
methods.

Figure 3 shows the recall rate of the spectral clustering method with a string
kernel averaged over 10 runs compared to the standard k-means clustering re-
sults. This is clearly the best performing clustering method for this set of text
documents and also exhibits some interesting behavior. For rather small lengths
of substrings considered (3, 4, 5) the performance seems to increase monotoni-
cally and at the the value of 6 hits a threshold. For the range of values between
6 and 10 the performance increase is much smaller and for the value of 10 the
highest recall rate of 0.927 is reached. For higher values of the length parameter
the performance drops sharply only to increase again for a string length value
of 14. Again this method is very stable and exhibits minimal variance.

4.5 Timing

We have also evaluated the methods in terms of running time. The experiments
where run on a Linux machine with a 2.6 GHz Pentium 4 CPU. Table 1 provides
the running time for the calculation of a full kernel matrix and the running time
for the clustering methods. Note that the running time for the kernel-based
clustering methods is the time needed to cluster data with a precomputed kernel
matrix. From the results it is clear that most of the computing time is spend
on the calculation of the kernel matrix.

6

● ● ● ● ● ● ● ●

4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

string length

re
ca

ll
ra

te

● spectral c. full string

●

●

●

●

●
●

●

●

●

●

kernel k−means full string
spectral c. full string

● ● ● ● ● ● ● ● ● ● ●

●

●

●

k−means text matrix
kernel k−means full string
spectral c. full string

●

●

●

●

●
●

●

●

Figure 1: Average recall rate over 10 runs for the spectral clustering , kernel
k-means, with full string kernels and k-means on a inverse frequencies term
matrix methods. On the y axis is the recall rate and the x axis the string length
hyper-parameter of the string kernel.

● ● ● ● ● ● ● ● ● ● ●

4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

string length

re
ca

ll
ra

te ●

●
●

●

●

●

●
●

● ●

●

●

●

kernel k−means string
k−means text matrix

●

●
●

●

●

●

●
●

● ●

●

Figure 2: Average recall rate over 10 runs for the kernel k-means, with
string/spectral kernels and k-means on a inverse frequencies term matrix meth-
ods. On the y axis is the recall rate and the x axis the string length hyper-
parameter of the string kernel.

7

●

●

●

● ● ●
●

●

● ●

●

4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

string length

re
ca

ll
ra

te

● ● ● ● ● ● ● ● ● ● ●

●

●

spectral c. string
k−means text matrix

Figure 3: Average recall rate over 10 runs for the spectral clustering with a
string/spectral kernel and the k-means on a inverse frequencies term matrix
methods. The x axis represents the string length hyper-parameter of the string
kernel.

5 Conclusions

From the results it is clear that the spectral clustering technique combined with
a string kernel outperforms all other methods and provides very strong per-
formance even comparable to the classification performance of an SVM with a
string kernel on similar dataset [11]. This is very encouraging and shows that
kernel-based clustering methods can be considered as a viable text grouping
method. The behavior of the kernel-based algorithms, particularly of the spec-
tral clustering method, seem to strongly depend on the value of the string length
parameter. It is an open question if the range of good values of this parameter
(6− 10) on this dataset can be also used on other text datasets in the same or
other languages to provide good performance. It is interesting to note that a
string length of 6 to 10 characters corresponds to the size of one or two words in
the English language. It would also be interesting to study the behavior of the
method for string lengths higher than 14. The good performance of the spectral
clustering technique could be an indication that graph partitioning methods
combined with string kernels could provide good results on text clustering.

One drawback of the kernel based methods is the amount of time spend on
the computation of the kernel matrix and, particularly for the spectral methods,
the necessity to store a full m×m where m the number of text documents, in
memory. A suffix tree based implementation of the string kernels as in [16]
combined with the Nystrom method [18] for computing the eigenvectors of the
kernel matrix as in [4] by using only a sample of the data points could provide
a solution to this issues. It would also be interesting to explore the application
of some other types of string kernels on text clustering. Of particular interest
would be the mismatch [9] kernels especially on raw (i.e. non pre-processed)

8

text data.

References

[1] Nicola Cancedda, Eric Gaussier, Cyril Goutte, and Jean-Michel Renders.
Word-sequence kernels. Journal of Machine Learning Research, 3:1059–
1082, 2003.

[2] Inderjit Dhillon, Yuqiang Guan, and Brian Kulis. A Unified view of Kernel
k-means, Spectral Clustering and Graph Partitioning. Technical report,
University of Texas at Austin, February 2005.

[3] Charles Elkan. Using the triangle inequality to accelerate k-means. In Pro-
ceedings of the Twentieth International Conference on Machine Learning
(ICML’03), pages 147–153, 2003.

[4] Charles Fowlkes, Serge Belongie, Fan Chung, and Jitendra Malik. Spectral
grouping using the nystrom method. Transactions on Pattern Analysis and
Machine Intelligence, 26(2):214–225, 2004.

[5] Ralf Herbrich. Learning Kernel Classifiers Theory and Algorithms. Adap-
tive Computation and Machine Learning. The MIT Press, 2002.

[6] Thorsten Joachims. Making large-scale SVM learning practical. In Ad-
vances in Kernel Methods — Support Vector Learning, 1999.

[7] Thorsten Joachims. Learning to Classify Text Using Support Vector Ma-
chines: Methods, Theory, and Algorithms. The Kluwer International Se-
ries In Engineerig And Computer Science. Kluwer Academic Publishers,
Boston, 2002.

[8] Duncan Temple Lang. Rstem: Interface to Snowball implementation of
Porter’s word stemming algorithm., 2005. R package version 0.2-0.

[9] Christina Leslie, Eleazar Eskin, Adiel Cohen, Jason Weston, and
William Stafford Noble. Mismatch string kernels for discriminative pro-
tein classification. Bioinformatics, 20(4):467–476, 2004.

[10] David Lewis. Reuters-21578 text categorization test collection, 1997.

[11] Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and
Chris Watkins. Text classification using string kernels. JMLR, 2:419–444,
2002.

[12] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering:
Analysis and an algorithm. Advances in Neural Information Processing
Systems, 14, 2001.

[13] R Development Core Team. R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria, 2005.

[14] Bernhard Schölkopf and Alex Smola. Learning with Kernels. MIT Press,
2002.

9

[15] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation.
Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–905,
2000.

[16] S.V.N. Vishwanathan and A.J. Smola. Fast kernels for string and tree
matching. In K. Tsuda, B. Schölkopf, and J.P. Vert, editors, Kernels and
Bioinformatics, Cambridge, MA, 2004. MIT Press.

[17] C. Watkins. Dynamic alignment kernels. In A.J. Smola, P. L. Bartlett,
B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Clas-
sifiers, pages 39 – 50, Cambridge, MA, 2000. MIT Press.

[18] Christoper K. I. Williams and Matthias Seeger. Using the Nystrom method
to speed up kernel machines. In T. K. Leen, T. G. Dietterich, and V. Tresp,
editors, Advances in Neural Information Processing Systems 13, pages 682
– 688, Cambridge, MA, 2001. MIT Press.

10

