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Abstract

The “Ahrens method” is a very simple method for sampling from univariate distri-
butions. It is based on rejection from piecewise constant hat functions. It can be
applied analogously to the multivariate case where hat functions are used that are
constant on rectangular domains. In this paper we investigate the case of distribu-
tions with so called orthounimodal densities. Technical implementation details as
well as their practical limitations are discussed. The application to more general
distributions is considered.

1 Introduction

There exist many methods to sample from a univariate distribution when
only the probability density function (pdf) f is given (see [1, 2] for a survey).
Among them the “Ahrens method” is one of the simplest, see [2, 3]. It is a
rejection/acceptance method that uses piecewise constant hats and squeezes.
On some interval [bl, br] the hat function is simply defined by the maximum of
f and the squeeze by its minimum. For a monotone density these extrema are
located on the boundary points bl and br. The performance can be increased by
subdividing the domain [bl, br] into N intervals [a0, a1], [a1, a2], . . . , [aN−1, aN ]
where the hat and squeeze is constructed on each interval which results in
staircase-shaped hat and squeeze, see Fig. 1.

Thus for the setup we have to compute maximum hj and minimum sj for each
subinterval [aj−1, aj]. The sampling algorithm is then quite simple:

1. Choose an interval [aj−1, aj] at random with probability vector proportional
to the areas below the hat, (aj − aj−1) · hj.

2. Generate a point X uniformly distributed in the selected interval [aj−1, aj].
3. Generate a point U ∼ U(0, hj).
4. If U ≤ sj (below squeeze) accept and return X
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Fig. 1. Ahrens method for the truncated exponential distribution.
Probability density (solid line), staircase-shaped hat (dashed line) and squeeze (dot-
ted line)

5. If U ≤ f(X) (below density) accept and return X.
6. Otherwise reject and try again.

Step 4 is optional but can speed up the algorithm when the evaluation of
the density is expensive. Indeed, when the rejection constant is close to one
the marginal generation time of this algorithm does hardly depend on the
density f and is extremely fast. Step 1 can be done in constant time, i.e.,
independently of the number of subintervals by means of indexed search [4] or
the alias method [5].

The Ahrens method can also be applied to an arbitrary distribution with given
density provided that the domain can be split into intervals where f behaves
monotonically (called slopes in [3]). Such slopes can be easily computed if
the extrema of f are known. However, when the domain of the density is
unbounded it must be truncated in such a way that the tail regions are com-
putationally not relevant, i.e., the probability of falling into these tail regions
must be much too small to happen in any long running simulation.

The design points a0, a1, . . . , aN can be chosen such that the rejection constant
(i.e., the ratio α between the area below the hat and the area below the density)
is as small as desired. However, in practice it is often more convenient to look
at the ratio % between the area below the hat and the area below the squeeze
since densities are often not normalized (e.g. for posterior densities in Bayesian
inference) and the area below the density function is not available. There
exist many approaches for the task of finding good construction points. Such
methods are either deterministic and minimize the rejection constant [3, 6, 7]
or the memory consumption [8], or use adaptive rejection sampling [9]. A
very simple and powerful method is derandomized adaptive rejection sampling
where iteratively those intervals are subdivided where the area between hat
and squeeze is too large, see [2, §5.1.4].

The advantages of the Ahrens method are its extreme simplicity and its good
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performance when the rejection constant is small. On the other hand its draw-
backs are that it requires many subintervals when a small rejection constant
is required (then α = 1 +O(1/N)). Moreover, without detailed knowledge of
the positions of the maxima and minima of the density function, relatively
time-intensive optimization problems must be solved.

The generation of multivariate random vectors from general distributions is
much more difficult. Only a few methods exist, see [2, §11]. However, efficient
sampling methods to obtain random points from large classes of multivari-
ate probability density functions are especially important, as the applications
thereof in Monte Carlo integration and other stochastic simulation problems
are increasing.

It is evident that the Ahrens method can be generalized to multivariate dis-
tributions. However, optimization problems are much more difficult then and
we need the right concept of a monotone function. Moreover, it is not clear
how a domain can be subdivided such that the performance of the sampling
algorithm is not too bad. For our task we will look at so called orthomono-

tone and orthounimodal densities. In Sect. 2 we describe these concepts and
compile a multivariate Ahrens algorithm for this class of distributions. Com-
putational experiences are reported in Sect. 3. At last we discuss the difficulties
of applying the Ahrens method to more general distributions in Sect. 4.

2 Orthomonotone and orthounimodal densities

The Ahrens algorithm could be easily generalized to multivariate distribu-
tions in R

d with a rectangular domain D = [bl1, br1] × · · · × [bld, brd]: Split
D into rectangular subdomains Rj = [lj1, uj1] × · · · × [ljd, ujd] and compute
maximum hj and minimum sj in each of the hyperrectangles. Sampling is
done analogously to the univariate case where a particular hyperrectangle Rj

is chosen at random with probability vector proportional to the volumes of
the bars Rj × [0, hj]. However, this approach has the drawback that we have
to solve an optimization problem for each subdomain. Simply computing all
maxima and minima of the density on the entire domain D and derive the
location of the extrema in each subdomain as in the univariate case does not
work in general. Thus we have to look at appropriate classes of multivariate
distributions.

The notion of orthomonotone densities is a proper multivariate generaliza-
tion of univariate monotone density functions. A density f(x) = f(x1, . . . , xd)
on a hyperrectangle [bl1, br1] × · · · × [bld, brd] (or, more generally, on R

d) is
called orthounimodal if within each orthant (quadrant) defined by the mode
m = (m1, . . . , md), the density is a monotone function of each of its arguments
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individually [10]. The mode m partitions R
d into 2d quadrants. On each quad-

rant, the density f is orthomonotone, i.e., f(x1, . . . , xd) is non-increasing in
each of the d variables ±xi, with the 2d sign combinations according to the
position of the quadrant. The class of orthounimodal distributions is of partic-
ular interest as many densities of unimodal distributions can be transformed
such that it is orthounimodal by some linear transformation.

Orthomonotone densities have the very important property that the maxi-
mum and minimum of the density in each hyperrectangle Rj are found at
the vertices which have smallest and largest distance to mode m, respectively.
This property enables us to construct hat and squeeze with relative ease.

In [2, §11.4.3] a sampling method for a bounded and orthomonotone quasi-
density on the unit-cube D = [0, 1]d is presented, wherein the original cube is
split into N = Nd

1 smaller cubes of equal size. The authors also propose an
improved version using derandomized adaptive rejection sampling in which
each cube is splitted into 2d smaller cubes whenever the difference between
the hat and squeeze is bigger than a certain threshold.

The main idea of the present strategy in the multivariate Ahrens method is
to recursively split each hyperrectangle Rj into only two smaller cells.

We start with one single hyperrectangle R1 covering the whole domain of an
orthomonotone density – or alternatively – with 2d hyperrectangles Rj decom-
posing the original domain into its orthants for an orthounimodal density.

Each subdomain is then splitted whenever the area between hat and squeeze is
too large. This is realized by the following scheme: In each iteration compute
the average volume B over all bars Rj × [sj, hj]. If for such a bar the volume
is above some threshold value τ B, it is split along some direction by halving
the length of a particular size (see also Fig. 2). The direction can be chosen
at random or deterministically using some simple rule.

The threshold constant τ is introduced to overcome an initial deadlock and
numerical issues in the case of a symmetric orthounimodal density, where the
2d initial subdomains Rj all have the same bar-volume Rj×[sj , hj] being equal
to the average bar volume B. This constant should be chosen to be τ < 1. We
have fixed its value to be τ = 0.9 in all our runs.

Algorithm 1 compiles the general idea of our implementation of the multi-
variate Ahrens algorithm using standard abstract programming notation. The
hyperrectangles Rj are stored by their left lower and right upper vertices,
(lj1, . . . , ljd) and (uj1, . . . , ujd), maximum (hat) hj and minimum (squeeze) sj.

The algorithm can also be applied to densities with an arbitrary mode m in
combination with an initial translation of m into the coordinate origin. For a
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distribution with bounded but non-hyperrectangular domain the density has
to extended to an hyperrectangle such that f(x) = 0 for every x not in the
original domain.

Algorithm 1 Multivariate Ahrens Method for Orthounimodal Densities

Input: Orthounimodal density f in hyperrectangle D = [bl1, br1] × · · · ×
[bld, brd] with mode m = (0, . . . , 0); maximal number of subdomains ND;
minimal ratio %; threshold constant τ < 1.

Output: Random vector X with distribution f .
[ Setup ]

1: Initialize set of subdomains R = {Rj} by all 2d orthants.
2: Set number of vertices N ← 2d.
3: For each Rj compute volume Aj = Vold(Rj), maximum hj and minimum

sj (at vertex with smallest norm and largest norm, resp.), and volume of
bars Vj = Aj · hj.

4: repeat

5: Calculate the average volume between the hat and squeeze
B = 1

N

∑N
j=1 Aj · (hj − sj).

6: for all Rj ∈ R with Aj · (hj − sj) ≥ τ B do

7: Split hyperrectangle Rj along its longest side into two smaller subdo-
mains, R′

j and R′′
j .

8: Compute volumes Aj, Vj, maximum, and minimum of R′
j and R′′

j .
9: Replace Rj by R′

j and R′′
j in R and increment counter N .

10: until N ≥ ND or
∑N

j=1 Ajhj/
∑N

j=1 Ajsj ≤ %

[ Sampling ]

11: loop

12: Generate J with probability vector proportional to (V1, . . . , VN) (by
indexed search).

13: Generate a point X uniformly in hyperrectangle RJ .
14: Generate U ∼ U(0, hJ).
15: if U ≤ sj then [ below squeeze ]

16: Return X.
17: if U ≤ f(X) then [ below pdf ]

18: Return X.

The performance of this algorithm (the expected number of repetitions to get
one random point) depends on the rejection constant α which converges to
one with α = 1 + O(N−1/d). (This follows from an argument similar to [2,
Thm. 11.7].)
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3 Computational experiences

Our numerical experiments with orthomonotone distributions covered the
multinormal distribution

f(x) =
1

(2π)
d

2

√

|Σ|
e−

1

2
x
t·Σ−1·x

and the multicauchy distribution

f(x) =
Γ(d+1

2
)

π
d+1

2

√

|Σ|

1

(1 + xt ·Σ−1 · x)
d+1

2

3.1 Orthomonotone distributions

We ran our experiences on multinormal and multicauchy distributions with
positive diagonal matrices Σ and with their domains restricted to hyperrect-
angles of the form [0, b]d.

In Fig. 3 and Fig. 4 the convergence of the hat and squeeze volumes is displayed
for the multinormal distribution. We find a rapid decrease of the relative hat
volumes (rejection constant) also in the case where the extent of the domain
D is large.

From our runs and the following figures, where the setup and sample times
have been depicted, we may draw some conclusions as to the efficiency of
the multivariate Ahrens method. Firstly we note, that the setup times are
increasing nearly linear with the number of subdomains ND (Fig. 5).

The decrease of the rejection constant would theoretically lead to an equivalent
decrease of the sample times, but as we have found in our practical implemen-
tations using guide-tables of length 2 ND, the sampling times are not always
decreased as expected due to memory caching effects, where for small dimen-
sions we notice an increase in the times to pick the right subdomain using
longer guide-tables (Fig. 6).

3.2 Orthounimodal distributions

There is only a marginal increase of complexity when applying the multivariate
Ahrens method to orthounimodal distributions when compared with the case
of orthomonotone distributions. In each of the 2d quadrants (orthants) the
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Fig. 2. Subdomain splittings (left) and random samples (right) for the multinormal
distribution (top) and the multicauchy distribution (bottom). We may clearly see
how the domain splittings adapt to the different shapes of the distributions. Note
that a high density of the subdomains is by construction expected to reside in areas
where the absolute value of the gradient of the pdf is large. In the present example
(d = 2), the only non-vanishing elements of Σ were the two diagonal elements having
the values 3 and 1 respectively.

Fig. 3. Convergence of hat volume for the orthomonotone multinormal distribution
with unit covariance-matrix and dimension 2 ≤ d ≤ 8. The domain D covers one
quadrant, D = [0, 1]d (left) and D = [0, 4]d (right).
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Fig. 4. Convergence of squeeze volume for the orthomonotone multinormal distri-
bution with unit covariance-matrix and dimension 2 ≤ d ≤ 8. The domain D covers
one quadrant D = [0, 1]d.

Fig. 5. Absolute setup times for the orthomonotone multinormal distribution with
unit covariance matrix and domain D = [0, 1]d as a function of the dimension.
(measured on a Mobile AMD Turion 64 ML-32 running at 800 MHz)

orthounimodal density function is orthomonotone and we may thus reduce
this case to the previous one.

We present a typical result for the hat and squeeze convergence for a multi-
normal distribution with diagonal variance-covariance matrix and with d ∈
{2, . . . , 8} restricted to same domains [−a, a]d. We would clearly need 2d times
more subdomains to achieve the same rejection constant as in the orthomono-
tone case. Nevertheless it is interesting to compare these two cases as the
domains are being splitted in a different order.
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Fig. 6. Absolute sampling times (µs/sample) for the orthomonotone multinormal
distribution with unit covariance matrix and domain D = [0, 1]d as a function of the
dimension. (measured on a Mobile AMD Turion 64 ML-32 running at 800 MHz) The
number of samples was kept fixed at N = 106, whereas the number of subdomains
ND were varied between 102 and 106. For small dimensions, the sampling times
are seen to increase with the number of subdomains due to architecture dependent
memory caching effects.

Fig. 7. Convergence of hat volume (left) and squeeze volume (right) for the or-
thounimodal multinormal distribution with unit covariance-matrix and dimension
2 ≤ d ≤ 8. The domain D covers all quadrants D = [−1, 1]d.
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4 General distributions

In this section we study the performance of the Ahrens method in cases, where
the positions of the minima or maxima of the probability density function are
not necessarily located at the domain corners.

We can model such cases by e.g. using a special form of the covariance matrix
of an AR1-process

Σd(ρ) = [ρ|i−j|], 1 ≤ i, j ≤ d

with ρ 6= 0. We were thus interested to see to which extent our multivari-
ate Ahrens implementation might be able to cope with a ”slightly” non-
orthounimodal distribution, i.e., for relatively small values of ρ.

Fig. 8. Probability distribution function (left) and the norm of its gradient (right)
for a multivariate normal distribution with covariance-matrix Σ2(0.5)

Fig. 9. Domain splittings for a multivariate normal distribution with covari-
ance-matrix Σ2(0.5). The numbers of subdomains are 200 and 800 respectively.
As the subdomains are constructed to minimize the volume–differences between
the hat and squeeze, we can recognize an increased density of subdomains in areas
where the absolute value of the gradient of the pdf is large (c.f. Fig. 8)
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In Fig. 10 the convergence of the hat volumes is displayed for a non-orthounimodal
distribution. It might at first sight look as if the algorithm is behaving prop-
erly in that case too, but we cannot be sure if the constructed hat is a true
hat at all. The reason for this is, that in the case of non-orthounimodal dis-
tributions, our variant of the multivariate Ahrens method (Algorithm 1) is
not providing a correct hat (and squeeze) as the maxima (and minima) of the
pdf are not necessarily residing at the vertices of the constructed subdomains.
A time-intensive Monte-Carlo min/max search for each subdomain might be
performed – this is the approach currently implemented in the ROOT/FOAM
package [11]. However, Fig. 11 displays very clearly what might possibly go
wrong when the minima and maxima are way off the vertices – the total
hat volume decrease as more and more subdomains are added, but at certain
points the total hat volume may suddenly start to increase as a splitting is
performed of a ”wrong” subdomain leading to two ”less wrong” subdomains.

# Subdomains
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Fig. 10. Convergence of hat volume for a multivariate normal distribution with
covariance-matrix Σ2(0.5). The domain D covers one quadrant D = [0, 1]d.

5 Conclusion

Our computational experiences and results with the multivariate Ahrens method
as described in Algorithm 1, indicate that it is useful for strictly orthounimodal
distributions and small to medium size dimensions (2 ≤ d ≤ 8). However much
care must be taken to assure that compiler and cache–size dependent effects
are not overshadowing the theoretical gain and efficiency of the method. Fur-
thermore, the error committed by applying the multivariate Ahrens method
to non-orthounimodal distributions may possibly become large without any
noticeable increases of the total hat-volume during the splitting process.
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Fig. 11. Convergence of hat volume for a multinormal distribution with covari-
ance-matrix Σ2(0.5). The domain D covers all quadrants D = [−4, 4]d and the
mode is shifted a distance m = 0.01 off the center. In this case, the multivariate
Ahrens algorithm is not providing a correct hat according to the fact, that the
maxima of the pdf are not residing at the vertices of the constructed subdomains.

A quick and necessary (but not sufficient) indicator for a wrongly assumed
hat – in the case that the maximum of the distribution function is not found
at one of the vertices – should be tested at each domain-splitting, by ensuring
that the sum of the hat volumes for the split-domains is not larger than the
original hat volume before the splitting.

In the general case, there is no unique and simple solution to the problem of
finding the global maximum and minimum of an arbitrary multivariate density
distribution on a subdomain – from the knowledge of its values at its 2d corners
only. One might be tempted to construct n-point interpolating multivariate
polynomials by adding additional support points or nodes in between the
existing 2d corners. Alternatively, a Monte-Carlo search for the maxima and
minima in each domain may be performed. However, both approaches are very
time consuming, i.e. leading to very long setup times of the domains. We may
suggest to use other methods to sample from general multivariate densities,
like for instance the very fast HITRO–method [12].
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