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SOME FURTHER RESULTS ON THE HEIGHT OF LATTICE PATHS

W. KATZENBEISSER and W. PANNY

University of Economics, Vienna

Introduction. Let X, k = 1,2,..., be independent and identically distributed
random variables with

P(X; =1)= P(X; = -1) = 1/2.

Consider the simple random walk
Sm=)Y Xi,m=1,2,...,2n with S;=0 and Sy, =0,
k=1

il.e. a simple random walk starting at 0 and leading to 0 after 2n steps. There
is a natural bijection between such random walks and lattice paths which helps
to better visualize the situation and allows to use lattice paths combinatorics. A
number of random variables can be associated to this random walk. Perhaps the
most prominent amongst these is D, the maximal (one-sided) height,

DY = max S
n 0<m<2n m

which essentially constitutes the test statistic of the one-sided Kolmogorov-Smirnov
two-sample test with equal sample sizes. There is an extremely large literature on
the Kolmogorov-Smirnov test; we only want to quote Kemperman [1959], Durbin
[1973], Katzenbeisser and Panny [1984a], Panny [1984]. Alternative notions of
height are discussed in Panny and Prodinger [1985]. Another random variable
closely related to D} is Q,,,

Q,, = [number of times where the random walk reaches its maximum].

The distribution of Q,, and the joint distribution of D} and Q,, are treated (among
other things) in Dwass [1967]. Some related results are included in Vincze [1957],
Vincze [1959] and Mohanty [1968].

In this paper we consider the conditional distribution of D} given Q, and
the conditional moments, taking Dwass’s results as a starting point. Exact and
asymptotic results will be derived, our main concern, however, is the analysis of
the asymptotic behavior. As main tools for the asymptotic analysis we rely on the
so-called generalized trinomial coefficients and the I'-function method.




EXACT RESULTS

Probability distribution. From Dwass [1967, p.1047] it is well known that

2n—r+1)
P(D; >k, Q,27)= %‘— (1)
where k = 0,1,2,...,r=1,2,..., k+r<n+1, and

2n—r+41
P(Q,>r)=-2rt2, (2)

)
From (1) one easily obtains

ok +r— 1 (2nn—_+_r,;|-1)

P(Df =k =r)= .
Another representation for (3) reads
2n—ry __ 2n—r)
P(D} =k, Q,=1)= "*"“I(Zn) e (4)
From (2) we get
(211 r
P(Q = "') (Zn) . (5)
Let py)r denote the conditional distribution of D:, given Q, , i.e.,
Dk|r =P(D-7t :‘len :T)‘
From (3) and (5) the following expression for p|, can be derived:
%4100 k-1 (0
Pk|r = m—r+1 (2n T n (2n—r+1) : (6)

Using (4) instead of (3) we get the alternative representation:

(2n—r _ {2n—r1
_ \n+k-1 n+k
Pkir = 2n—r

n—1

Moments. The s-th conditional moment can be expressed by

E(D;"|Q, =r)=) k'py, = e ,,)Z(zk‘+l+pk“)(2 N k”) (7)

k>0 k>0
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where (6) has been used and p = r — 1. Unfortunately, there exists no closed
form for the sum (7) (cf. Graham, Knuth, Patashnik [1989, p.165]). However, the
range of summation can considerably be reduced (namely from 0 < k < n —p to
0 <j < s+41) if we use hypergeometric functions. We first observe that

_ (2n—p (=n+p)atj(1)st; (= l)H-'7
2 [F <n+k)‘n'(n ,,).Z (it Dar; 4!

k>0

2
=3!(:+ )2F1(-—n+p+s s+1in+s+1;-1),

where (k); = k(k+1)---(k+3j—1)and [k]; = k(k—1)---(k—j +1). Converting

from powers to factorials by means of Stirling numbers of the second kind {Z}, viz.

e~

§=0

we have

Zka(2n—p)_i{s} (2n )F(—n—{— tiit it 1i—1).
£ n+k —j=0 j 7! ntj 24 p+757 J

Putting all together we obtain the following expression for E(D}°|Q, =r):

w7 =) %( {3+1} {s})f' <2n—{)) 2Fi(-n+p+j7,j+Lin+j5+1;-1).

J n+J

Unfortunately, the last expression is not too useful from a numerical point of view
since the hypergeometric functions must be computed in general (which essentially
corresponds to the summation over all k in formula (7)). Only for some particular
arguments special values are known, e.g. for s = 0, p = 0,1 (c¢f. Abramowitz,
Stegun [1972, p.557)).

The following results on the expectation and variance of DY and Q,, and on
their covariance are not directly used in the sequel. However, they may perhaps
be helpful to view the problems from a wider perspective. It is well known (cf.
Katzenbeisser, Panny [1984a, p.169]) that

E(D}) = %(é:; - 1) , var(D}) = §(4n+ 1- (3:;2) :

n

Using (5) a straightforward computation yields

2n+1 n2(2n+1)

E(Q.) = n+1"’ var(Q,) = (n+12(n+2)




From (4) we obtain after some manipulations the following closed form expression:

22" 2n+1
E(D;Q,) = Y wil
Hence )
1 24n
+ = — 9 —
COV(Dn, Qn) - 2(n + 1) ((2:) 2n 1)
and

corr(D}, Q,) = 21 \/_n—ﬁ (2n + 1)(2:)2—211 ~1
¥l \/(4n +1)(37) 24 —1

which shows that D} and Q,, are asymptotically uncorrelated.

ASYMPTOTIC ANALYSIS

The exact formulae presented in the preceeding section may become rather tedious
to compute for large n. Moreover, it is not too easy to get an impression of their
behavior for various arguments. This is especially true for the conditional moments.
The asymptotic approximations to be derived in the present section may be helpful
to avoid these problems; they are easy to compute and reflect their dependency on
their arguments in elementary terms. Moreover, it will be seen that they provide a
numerical accuracy suitable for most practical purposes. Finally we would like to
mention that the techniques applied in this section are not restricted to the present
context but might prove useful for similar problems.

Probability distribution. Let us first introduce the so called generalized tri-
nomial coefficients (see Katzenbeisser and Panny [1984b], Panny [1984]) defined

by
(2 = e + o ", ®

where [v¥]Q(v) denotes the coefficient of v* in the power series Q(v). They are
connected to the ordinary trinomial coefficients by the relation

n;a,ﬁ,'y — n anb,.c
( n+k ) B Z (a,b,c)a A

a,b,c>0
a+b+e=n

a—c=k

which entails the following representation as a hypergeometric function:

00,7\ | kan—kf? _n—k n—k-1 4oy
(n"l“k)_aﬂ (k)ZFl( 2 9 2 ’k+17 ﬂz .

An integral representation is

n;a, 8,7\ _ (a/7)}?
n+k - T

/ coskt (B + 2\/aycost)" dt.
0
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Clearly, the GTC’s are related to ordinary binomial coeflicients by

(1327 ()

Theorem 3 of Panny [1984] gives asymptotic approximations to the GTC’s for the
symmetric case @ = v. A weaker version, suitable for our purposes reads:

Lemma 1. Let N =an,d=1if a <1/2, and d = 2 if « = 1/2. Furthermore, let
n = k(2) for the purely binomial case a = 1/2. Then, the asymptotic behavior of
the GTC’s is

n;a, B, d 1—6a  kt k? k2
s &y Ly — 1 , R T, Yl /4N —-5/2
< o ) 5 ”_er[ + T (37 — 1277 +12)]e +O(n=5/2)

as n — 00, the O-term holding uniformly for all k.

Lemma 1 can be obtained by an application of Laplace’s method for integrals to the
integral representation given above. For details the reader is refered to Panny [1984,
p.-15].

Using GTC’s (6) can be expressed as:

2n—r+1;1/2,0,1/2
_2k+r-1 ((2:—:+1)+(2k+r-—1) 9
Pkjr = n (2n—r+1;1/2,0,1/2) : (9)
2n—r4+1)+(r-1)

An application of Lemma 1 to (9) furnishes the following

Theorem 1. Let r = O(n%‘e), € > 0. Then the asymptotic behavior of py|, can
be described by:

2k+7r -1 2k(k +r—1 1te
= BT oy B0} oo

L )

(10)

asn — oo.

Theorem 1 follows from a straight forward application of Lemma 1. Perhaps it is
helpful to consider the O-term in more detail. It is not hard to see that the binomial
coefficients in (6) (and, of course, the GTC’s in (9) also) have the property that the
coefficient in the numerator is always less than the coefficient in the denominator
except for k = 0, where they are equal. If we restrict the range of r to r = O(nl_;“e)
the quotient of the GTC’s becomes

e+ 0(n™1)
L+ O(n19))e=v (11)

)



by an application of Lemma 1, where z = (2k +r — 1)?/(2(2n — r + 1)) and
y = (r—1)?/(2(2n — r +1)). Consequently, the relative error of the denominator is
at most 1 + O(n~1%¢). After division the essential part of the numerator becomes

(1 + O(n—1+e))e—zey

which equals
e "t L O(n71te), (12)

since £ > y. For the error term in the numerator it suffices to observe that it
can not increase after division because the quotient (11) is at most equal to 1.
Consequently, the resulting error E is at most O(n™!) which is covered by the
O-term in (12). It should perhaps be mentioned that for very large values of k it
may happen that E dominates the whole expression (12), producing a considerable
relative error. However, for such values of k expression (12) is exponentially small.
Accordingly the absolute error is of the same order for that case.

Tables 1 and 2 show exact and approximate values for Pk|r, Where for each
k the first (second) row corresponds to exact (approximate) values. According to
Theorem 1 the range of r is restricted to r < n%7, which corresponds to a relatively
large value of e. It can be seen from these tables that even for small values of n
(and large values of r) the approximation shows a good accuracy.

Table 1 P(D} =k|Q,=71), n=10

k\r 1 2 3 4 5

0 0.000 0.100 0.200 0.300 0.400
0.000 0.100 0.200 0.300 0.400
1 0.182 0.245 0.291 0.318 0.327
0.181 0.243 0.286 0.312 0.321
2 0.273 0.273 0.255 0.223 0.182
0.268 0.266 0.247 0.216 0.179
3 0.252 0.206 0.157 0.110 0.070
0.244 0.198 0.151 0.108 0.072
4 0.168 0.113 0.070 0.038 0.018
0.162 0.110 0.070 0.041 0.022
S 0.084 0.046 0.022 0.009 0.003
0.082 0.047 0.025 0.012 0.005
6 0.031 0.014 0.005 0.001 0.000
0.033 0.016 0.007 0.003 0.001
7 0.009 0.003 0.001 0.000
0.010 0.004 0.001 0.000
8 0.002 0.001 0.000
0.003 0.001 0.000
9 0.000 0.000
0.001 0.000
10 0.000
0.000




Table 2 P(DF =k|Q,=r), n=>50

k\r 1 2 3 4 5 10 15

0 0.000 0.020 0.040 0.060 0.080 0.180 0.280
0.000 0.020 0.040 0.060 0.080 0.180 0.280
1 0.039 0.058 0.075 0.092 0.108 0.177 0.226
0.039 0.058 0.075 0.092 0.108 0.177 0.226
2 0.074 0.089 0.102 0.114 0.125 0.161 0.171
0.074 0.089 0.102 0.114 0.125 0.160 0.171
3 0.100 0.110 0.118 0.125 0.130 0.137 0.122
0.100 0.110 0.118 0.124 0.129 0.136 0.122
4 0.117 0.121 0.123 0.124 0.124 0.109 0.082
0.116 0.120 0.123 0.124 0.123 0.108 0.082
5 0.122 0.121 0.118 0.115 0.110 0.082 0.052
0.121 0.120 0.117 0.114 0.110 0.082 0.053
6 0.117 0.112 0.106 0.099 0.092 0.058 0.031
0.117 0.111 0.105 0.099 0.092 0.058 0.032
7 0.106 0.097 0.089 0.081 0.073 0.039 0.018
0.105 0.097 0.088 0.080 0.072 0.039 0.018
8 0.090 0.080 0.071 0.062 0.054 0.025 0.009
0.089 0.079 0.070 0.052 0.054 0.025 0.010
9 0.072 0.062 0.053 0.046 0.039 0.015 0.005
0.071 0.062 0.053 0.045 0.038 0.015 0.005
10 0.054 0.046 0.038 0.032 0.026 0.009 0.002
0.054 0.046 0.038 0.032 0.026 0.009 0.003

15 0.007 0.005 0.003 0.002 0.002 0.000 0.000
0.007 0.005 0.004 0.003 0.002 0.000 0.000

14¢

For k = O(n"7 ), r fixed, the following version of (10) can be derived:

1 2p p? p? _k? _
P = Fry o7 (B e R gk k)T (L 00 Y)
1 20,0, P s P P k2 -1
_N(2k+p—Nk + L5k —-—ﬁk—ﬁk)e ¥ (1+O(N™Y),

(13)

as N — oo, where p = r—1 and N = n—p/2. This version can be derived by writing
the exponential function in (10) as a product, viz. exp{—k®/N}exp{—kp/N}, and
replacing the second factor by its Maclaurin expansion. Version (13) will prove
useful for the asymptotics of the conditional moments. Notice that the restriction
on k and r is not unreasonable because for other values the joint tail probability (1)
gets exponentially small.




Table 2 P(Df =k|Q,=r1), n=50

k\r 1 2 3 4 5 10 15

0 0.000 0.020 0.040 0.060 0.080 0.180 0.280
0.000 0.020 0.040 0.060 0.080 0.180 0.280
1 0.039 0.058 0.075 0.092 0.108 0.177 0.226
0.039 0.058 0.075 0.092 0.108 0.177 0.226
2 0.074 0.089 0.102 0.114 0.125 0.161 0.171
0.074 0.089 0.102 0.114 0.125 0.160 0.171
3 0.100 0.110 0.118 0.125 0.130 0.137 0.122
0.100 0.110 0.118 0.124 0.129 0.136 0.122
4 0.117 0.121 0.123 0.124 0.124 0.109 0.082
0.116 0.120 0.123 0.124 0.123 0.108 0.082
5 0.122 0.121 0.118 0.115 0.110 0.082 0.052
0.121 0.120 0.117 0.114 0.110 0.082 0.053
6 0.117 0.112 0.106 0.099 0.092 0.058 0.031
0.117 0.111 0.105 0.099 0.092 0.058 0.032
7 0.106 0.097 0.089 0.081 0.073 0.039 0.018
0.105 0.097 0.088 0.080 0.072 0.039 0.018
8 0.090 0.080 0.071 0.062 0.054 0.025 0.009
0.089 0.079 0.070 0.052 0.054 0.025 0.010
9 0.072 0.062 0.053 0.046 0.039 0.015 0.005
0.071 0.062 0.053 0.045 0.038 0.015 0.005
10 0.054 0.046 0.038 0.032 0.026 0.009 0.002
0.054 0.046 0.038 0.032 0.026 0.009 0.003

15 0.007 0.005 0.003 0.002 0.002 0.000 0.000
0.007 0.005 0.004 0.003 0.002 0.000 0.000

For k = O(nl'?), r fixed, the following version of (10) can be derived:

1 2p P’ P\ a2 -
Pur = g7 (e k' k= ) (L 00
1 20,2, P s P P\ k2 -1
_N<2k+p—Nk + 25k - Lk Lk)em v (14 0N T),

(13)

as N — oo, where p = r—1and N = n—p/2. This version can be derived by writing
the exponential function in (10) as a product, viz. exp{—k*/N}exp{—kp/N}, and
replacing the second factor by its Maclaurin expansion. Version (13) will prove
useful for the asymptotics of the conditional moments. Notice that the restriction
on k and r is not unreasonable because for other values the joint tail probability (1)
gets exponentially small.




Moments. Let us introduce the f,(N)-functions, defined by

fo(N) =Y kee ¥

k>1

Applying them to (13), the s-th conditional moment of D}, given Q, can be
expressed as:

]—V—_*_lm (2fs+1 +po(fs - ']%‘fa+2)) (1+0(N71y),

where the arguments of the f,(N)-functions have been omitted for convenience.
Using the f,(N)-functions we have extended the range of summation for k£ beyond
the range of validity of (13). But it is not hard to see that this produces only an
exponentially small error, which is covered by the given O-term.

Asymptotic equivalents for the f,(N)-functions can conveniently be derived
by means of the so called I'-function method (cf. Knuth [1973, p.131]). This has
been done in Panny (1984, p.72]. They could also be obtained by an application of
Euler’s summation formula. The following Lemma gives the resultmg asymptotic
expansions for the f;(N)-functions.

Lemma 2. Let s =0,1,2,.... Then we have

LS

£ = 525>

~s)N~F L o(N—™),

forallm >0 as N — oo.

Hence the asymptotic behavior of the conditional moments of D} can be given by:

1
N psr(s+

EDY'1Qu =) = 575 03N ) 1+0(N ). (14

Using stronger versions of (13) this method allows to get further terms of the
asymptotic series (14). In principle it could be extended to achieve an O-term as
small as we please. Considering the next term in (14) and reverting back to the
actual quantity n one obtains the following result, summarized in

Theorem 2. Let p =7 — 1. Then we have

s+2

E(D}"|Q, =r) = [(—")nt

8+1 =1
—3 (—)n’

(8+4)(s+2) 6(1 — p+ p?)(s + 2) + 12p? 1,(s+2) a2
24

+0(n"7) asn— .
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Specializing on s = 1,2 we have

2
+ _N_ VT o p 20" —6p+1

2_2

Va2 4 0(n7),

4 -7 p?—4 2p% —6p+1
Var(DIIanr)z 1 n + 1 p_ 4 16P

T+ O0(n~1?).

In the following tables exact and approximate values for the conditional expectation
and variance of D}, given Q,, are shown. For each value of r, the first (second)
row gives the exact (approximate) values.

Table 3 E(D}|Q,=7)

r\n 10 20 50 100 500 1000

1 2.838 3.988 6.282 8.873 19.822 28.028
2.838 3.988 6.282 8.873 19.822 28.028
2 2.196 3.388 5.719 8.329 19.302 27.514
2.197 3.389 5.720 8.329 19.302 27.514
3 1.696 2.888 5.219 7.829 18.802 27.014
1.697 2.889 5.220 7.829 18.802 27.014
4 1.302 2.469 4.774 7.369 18.321 26.528
1.338 2.488 4.782 7.373 18.322 26.528

5 0.988 2.114 4.375 6.945 17.858 26.055
1.118 2.186 4.408 6.962 17.861 26.056

Table 4 var(D} |Q, =)

r\n 10 20 50 100 500 1000

1 1.95 4.09 10.53 21.26 107.10 214.41
1.95 4.10 10.53 21.26 107.10 214.41
2 1.98 4.13 10.57 21.30 107.14 214.44
1.99 4.13 10.57 21.30 107.14 214.44
3 1.73 3.88 10.32 21.05 106.89 214.19
1.74 3.88 10.32 21.05 106.89 214.19
4 1.40 3.50 9.89 20.59 106.39 213.68

' 1.20 3.35 9.78 20.51 106.35 213.66
5 1.07 3.08 9.36 19.99 105.68 212.94

0.38 2.53 8.96 19.69 105.53 212.83
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