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AbstractWe show a Faber-Krahn-type inequality for regular trees with boundary.



Leydold: A Faber-Krahn-type inequality for regular trees1. IntroductionThe eigenvectors of the Laplacian � on graphs have received little attention com-pared to the spectrum of this operator (see e.g. [6, 9, 10]) or the eigenfunctionsof the \classical" Laplacian di�erential operator on Riemannian manifolds (e.g.[1, 2]). Recently these eigenvectors seem to become more important. Grover [7]has discovered that the cost function of a number of well-studied combinatorialoptimisation problems, e.g. the travelling salesman problem, are eigenvectors ofthe Laplacian of certain graphs. Thus global properties of such eigenvectors areof interest.In the last years some results for the Laplacian on manifolds have been shown tohold also for the graph Laplacian, e.g. Courant's nodal domain theorem ([3, 5])or Cheeger's inequality ([4]). In [5] Friedman described the idea of a \graph withboundary" (see below). With this concept he was able to formulate Dirichlet andNeumann eigenvalue problems. He also conjectured another \classical" result formanifolds, the Faber-Krahn theorem, for regular bounded trees with boundary.The Faber-Krahn theorem states that among all bounded domains D � Rn with�xed volume, a ball has lowest �rst Dirichlet eigenvalue.In this paper we want to show such a result for trees. We give restrictive conditionsfor trees with boundary where the �rst Dirichlet eigenvalue is minimized for a given\volume". Amazingly Friedman's conjecture is false, i.e. in general these trees arenot \balls". But we will show that these are similar to \balls".2. Statement of the ResultLet G = (V;E) be an undirected (weighted) graph, with weights 1ce > 0 for eache 2 E. The Laplacian of G is the matrix� = �(G) = D(G) �A(G)where A(G) is the adjacency matrix of G and D(G) is the diagonal matrix whoseentries are the sums of the weights of the edges at the vertices of G, i.e. Dv;v =Pe=(v;u)2E 1ce . The associated Rayleigh quotient on real-valued functions f on Vis the fraction RG(f) = h�f; fihf; fi = P(u;v)2E 1ce (f(u) � f(v))2Pv2V (f(v))21



Leydold: A Faber-Krahn-type inequality for regular treesNotice that in opposite to the Laplacian di�erential operator on manifolds, �(G)is de�ned as a positive operator.The geometric realization of G is the metric space G consisting of V and arcs oflength ce glued between u and v for every edge e = (u; v) 2 E. We de�ne twomeasures on G (and G). Let �1(G) = jV j be the number of vertices of G and�2(G) = Pe2E ce, i.e. the Lebesgue measure of G. Now let S denote the set ofall continuous functions on G which are di�erentiable on G n V . We introduce a(Laplacian) operator �G on G by the Rayleigh quotientRG(f) = RG jrf j2d�2RG f2d�1 ; f 2 SThe operator �G is the continuous version of the Laplacian � on G.Proposition 1: (see [5])The Rayleigh quotient RG(f) is minimized at, and only at, edgewise linear func-tions f 2 S, i.e. those functions whose restrictions to each edge are linear.The eigenvalues and eigenfunctions of �G exist and are those of � (i.e. the restric-tions of the �G eigenfunctions to V are the Laplacian eigenvectors).On G we can avoid the problems that arise from the discreteness of our situation.Now the (proper) nodal domains of an eigenfunction f of �G are the componentsof the complement of f�1(0), i.e. of the nodal set of f . Thus analogously to theclassical situation (see [2]) f vanishes on the \boundary" of each nodal domain.It makes sense to introduce the Dirichlet eigenvalue problem for graphs withboundary. A graph with boundary is a graph G(V0 [ @V;E0 [ @E) where eachvertex in @V (boundary vertex ) has degree 1 (i.e. it is the endpoint of one edge notnecessarily of length 1) and each vertex in V0 (interior vertex ) has degree greaterthan or equal to 2. Each edge e 2 E0 (interior edge) joins two interior vertices,each edge e 2 @E (boundary edge) connects an interior vertex with a boundaryvertex. On such a graph we can de�ne the \Dirichlet operator" by restricting f inthe Rayleigh quotient RG(f) to those functions f 2 S which vanish at all bound-ary vertices. Then the Dirichlet eigenvalue problem is to �nd the eigenvalues andeigenfunctions of this operator. Equivalently we can de�ne this Laplacian operatoron a graph with boundary by a linear operator that acts on the interior verticesof G only, i.e. on V0: �0 = D0 �A02



Leydold: A Faber-Krahn-type inequality for regular treeswhere A0 is the adjacency matrix restricted to V0 and where D0 is the diagonalmatrix whose entry corresponding to v 2 V0 is (note E = E0 [ @E)(D0)v;v = Xe=(v;u)2E 1ceOur goal is to �nd the eigenvalues and eigenvectors of this Laplacian.If we now insert new vertices on each point in G where the eigenfunction f vanishes,then the closure of each nodal domain of f is the geometric realization of a graph.The restriction of f to this graph (i.e. the nodal domain) is an eigenfunction tothe �rst Dirichlet eigenvalue of this graph.Since there is no risk of confusion, we denote the Laplacian on a graph withboundary G simply by � = �(G). We denote the lowest Dirichlet eigenvalue ofG by �(G). We then have the following properties of �.Proposition 2: (see [5])Let G be a graph with boundary.(1) �(G) is a positive operator, i.e. �(G) > 0.(2) An eigenfunction f to the eigenvalue �(G) of �(G) is either positive or neg-ative on all interior vertices of G.(3) �(G) is continuous as a function of G in the metric �(G;G0) = �2(G�G0) +�2(G0 �G).(4) �(G) is monotone in G, i.e. if G � G0 then �(G) > �(G0).(5) �(G) is a simple eigenvalue, if G is connected.We refer the reader to [5] for the proofs and for more details.In this paper we restrict our interest to regular trees with boundary. We get sucha graph, when we take the geometric realization of an in�nite d-regular tree andcut out a bounded region.De�nition 3:A d-regular tree with boundary is a tree where all interior edges have length 1(i.e. weight 1), all boundary edges length � 1, and where all interior vertices havedegree d and all boundary vertices degree 1. The set of interior vertices is notempty, i.e. jV0j � 1. 3



Leydold: A Faber-Krahn-type inequality for regular treesWe say a d-regular tree with boundary G(V;E) ful�lls the Faber-Krahn-property, ifand only if �(G) � �(G0) for every d-regular tree with boundary G0 with �2(G0) =�2(G).A ball is d-regular tree with boundary with a center c 2 G, not necessarily a vertex,and a radius r > 0, such that dist(c; v0) = r for all boundary vertices v0 2 @V .dist(u; v) denotes the geodesic distance between u; v 2 G.Every tree with the Faber-Krahn-property is \similar" to a ball.Theorem 1:Let G(V0 [@V;E0[@E) be a d-regular tree with the Faber-Krahn-property. Let fbe a nonnegative eigenfunction of the �rst Dirichlet eigenvalue and m a maximumof f , i.e. f(m) � f(v) for all v 2 V . Then(1) G is connected and(2) jdist(m;u0) � dist(m; v0)j � 1, for all boundary vertices u0; v0 2 @V .Now one might conjecture, that every tree with the Faber-Krahn-property is a ballcentered at a vertex (see conjecture 4.3 in [5]). But this is not true in general.Theorem 2:If a ball G(V0 [ @V;E0 [ @E) centered at a vertex has the Faber-Krahn-property,then all boundary vertices have length 1 or jV0j = 1 or degree d = 2.Theorem 3:Let G(V0 [ @V;E0 [ @E) be a d-regular tree with boundary with degree d � 5which has the Faber-Krahn-property. Then there exists at most one vertex v, sothat all boundary edges adjacent to v have length c, for a c 2 (0; 1). I.e. almostall boundary edges have length 1.Figure 1 shows the geometric realization of a d-regular tree with boundary thathas the Faber-Krahn-property. In this example d = 6 and �2(G) = 18. There are4 interior vertices.3. Proof of the theoremsIn the following we derive properties of trees with the Faber-Krahn property byrearrangements and small perturbations of d-regular graphs. We denote these4



Leydold: A Faber-Krahn-type inequality for regular trees
mfigure 1: A 6-regular tree with the Faber-Krahn-propertyproperties by (M1){(M4). Notice that with this technique we only get necessaryconditions for these types of trees.We can restrict our interest to connected trees.Proposition 4: (see [5], Theorem 4.4)Every d-regular tree with boundary with the Faber-Krahn-property is connected.Now we take an arbitrary d-regular tree with boundary. In certain situations it ispossible to rearrange the edges of the trees so that �(G) decreases.Let G(V0[@V;E0[@E) be a connected d-regular tree with boundary and f a non-negative eigenfunction to the �rst Dirichlet eigenvalue �(G). Let (v1; u1); (v2; u2) 2E edges with lengths c1 and c2, respectively, so that u2 is in the geodesic pathfrom v1 to v2, but u1 is not. Since G is a tree, (v1; v2); (u1; u2) 62 E. Thus wecan replace edge (v1; u1) by edge (v1; v2) with length c2 and edge (v2; u2) by edge(u1; u2) with length c1. Denote this new graph by G(V 0; E0). Since by assumptionu2 is in the geodesic path from v1 to v2 and u1 is not, G(V;E0) again is a connec-ted d-regular tree with boundary (Figure 2 illustrates the situation). Obviously�2(G0) = �2(G).Lemma 5:Let G(V;E) be a connected d-regular tree with boundary and f a nonnegativeeigenfunction to the �rst Dirichlet eigenvalue �(G). Construct a d-regular treeG0(V;E0) with boundary as described above.5
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1 figure 2(1) Whenever f(v1) � f(u2), f(v2) � f(u1) and c1 � c2, then �(G0) � �(G).(2) If one of these three inequalities is strict, then �(G0) < �(G).Proof: To verify (1) it remains to show that� = h�(G0)f; fi � h�(G)f; fi � 0 (5:1)Since we remove and insert two edges we have� = h 1c2 (f(v1)� f(v2))2 + 1c1 (f(u1) � f(u2))2i� h 1c1 (f(v1)� f(u1))2 + 1c2 (f(v2)� f(u2))2i= ( 1c1 � 1c2| {z }�0 )(f(u2)2 � f(v1)2| {z }�0 ) + 2( 1c1 f(u1) � 1c2 f(v2)| {z }�0 )(f(v1)� f(u2)| {z }�0 ) � 0The third factor is nonpositive because c1 = 1 or f(u1) = 0 and c2 = 1 or f(v2) = 0and c1 � c2 (If c1 < 1 then u1 is a boundary vertex.).To prove (2) notice that �(G0) = �(G) if � = 0 in (5:1) and f is an eigenfunctionto �(G0) on G0, since �(G0) is simple (proposition 2). Therefore if �(G0) = �(G)we �nd�(G)f(v1) = �(G)f(v1) = Xw�v1;w 6=u1 1ce (f(v1) � f(w)) + 1c1 (f(v1) � f(u1))= �(G0)f(v1) = �(G0)f(v1) = Xw�v1; v1 6=v2 1ce (f(v1)� f(w)) + 1c2 (f(v1) � f(v2))Thus 1c1 (f(v1)� f(u1)) = 1c2 (f(v1)� f(v2))and f(v1)( 1c1 � 1c2| {z }�0 ) = 1c1 f(u1)� 1c2 f(v2)| {z }�0Since v1 2 V0, f(v1) > 0 by proposition 2. Hence c1 = c2 and f(u1) = f(v2). Usingthis result we analogously derive from �(G)f(u1) = �(G0)f(u1), f(v1) = f(u2).Thus the proposition follows. 6



Leydold: A Faber-Krahn-type inequality for regular treesNow we take an arbitrary d-regular tree with boundary G. Then we can rearrangeits edges without increasing the lowest Dirichlet eigenvalue such that the resultinggraph is similar to a ball.Lemma 6:Let G(V0 [ @V;E0 [ @E) be a connected d-regular tree with boundary. Let f bea nonnegative eigenfunction to the �rst Dirichlet eigenvalue �(G). We denote amaximum of f by m, i.e. f(m) � f(v) for all v 2 V . Then by rearranging edgeswe can construct a d-regular tree with boundary G0(V;E0) with properties(1) �2(G0) = �2(G).(2) �(G0) � �(G).(M1) jdist(m;u0)� dist(m; v0)j � 1 for all boundary vertices u0; v0 2 @V of G0.(M2) f(u) � f(v) if dist(m;u) > dist(m; v), for all interior vertices u; v 2 V0.(M3) f(u1) � f(u2) if f(v1) < f(v2) for all edges (u1; v1); (u2; v2) 2 E0.Proof: We construct this graph G0 by rearranging the edges of G. This re-arrangement will be done by moving pairs of edges stepwise. We start at vertexv1 = m, a maximum of f . Let W1 = fv1g and G1(V;E1) = G(V;E).In the �rst step we denote a maximum of f in V nW1 by v2. LetW2 =W1[fv2g. Ifv2 is adjacent to v1 we have nothing to do. Otherwise there are vertices u1; u2 62W2with (v1; u1); (v2; u2) 2 E1 and (v1; v2); (u1; u2) 62 E1, since G is a tree. Moreoverwe can choose these vertices so that either u1 or u2 is in the geodesic path fromv1 to v2. (Figure 3 illustrates the situation. Two cases are possible.) We replacethe edges (v1; u1) and (v2; u2) by (v1; v2) and (u1; u2). If either (v1; u1) or (v2; u2)is a boundary edge, then let (u1; u2) be a boundary edge of same length. Wedenote the resulting graph by G2(V;E2). Since f(v1) � f(v2) � f(u1); f(u2) wecan apply lemma 5 and hence �2(G2) = �2(G1) and �(G2) � �(G1).In the next step, let v3 denote a maximum of f in V nW2. Analogously to the�rst step we connect v1 and v3 by an edge. We get a d-regular tree with boundaryG3(V;E3), with �2(G3) = �2(G2) and �(G3) � �(G2). In this way we arriveat a d-regular tree with boundary Gk1(V;Ek1), where Wk1 contains v1 and allits adjacent vertices. Furthermore for each vertex v 2 Wk1 and every u 62 Wk1 ,f(v) � f(u).Next we do the same with v2, i.e. we connect v2 and vk1+1, where vk1+1 is a7



Leydold: A Faber-Krahn-type inequality for regular trees
u

v
u

2

2
v
1

1

m m

u

v

u2

2

1

1

v

figure 3maximum of f in V nWk1 . Then we connect v2 with vk1+2, and so on, until allvertices, that are adjacent to v2, are in aWk. Then we continue with v3, v4 and allthe other vertices adjacent to v1. We arrive at a graph Gk2 , where dist(m; v) � 2if and only if v 2 Wk2 and where for each vertex v 2 Wk2 and each u 62 Wk2 ,f(v) � f(u).In the same way we continue until only boundary vertices remain in V nWki . Atlast we exchange boundary edges until f(v) � f(u) is satis�ed whenever boundaryedge (v; v0) is longer than boundary edge (u; u0) and until (M1) holds. Again wecan apply lemma 5 (Now u1 and v2 are boundary vertices).We �nish with a d-regular tree with boundary G0(V;E0). (1) and (2) holds foreach single step by lemma A1. Properties (M1), (M2) and (M3) are satis�ed byconstruction, as claimed.We also can decrease the lowest Dirichlet eigenvalue �(G) when we change thelength of the boundary edges in such a way, that the normal derivative of theeigenfunction to �(G) at all boundary edges becomes the same (except at boundaryedges of length 1). The normal derivative of f at a boundary edge (v; v0) 2 @E oflength ce is given by f(v)ce .Lemma 7:Let G(V;E0[@E) be a connected d-regular tree with boundary and f a nonnegativeeigenfunction to the �rst Dirichlet eigenvalue �(G). By changing the length ofboundary edges we can construct a d-regular tree with boundary G0(V;E0 [ @E0)which has the properties 8



Leydold: A Faber-Krahn-type inequality for regular trees(1) �2(G0) = �2(G).(2) �(G0) � �(G).(M4) The normal derivative of f at all boundary edges of length c0e < 1 is thesame. It is less than or equal to the normal derivative at each boundaryedge of length c0e = 1. Moreover all boundary edges at the same interiorvertex have the same length.(3) Equality in (2) holds if and only if G and f already ful�ll property (M4).Proof: The normal derivative of f at the boundary edge ej = (vj ; uj) 2 @E oflength cj = cej is f(vj)cj (vj 2 V0). Now take n boundary edges of G. The \average"normal derivative is given by Pnj=1 f(vj )Pnj=1 cjWe replace each of these n edges ej by edges �ej of length �cj , where each �cj satis�esf(vj )�cj = Pni=1 f(vi)Pni=1 ci , �cj = f(vj ) Pni=1 ciPni=1 f(vi) (7:1)Then we have nXj=1 �cj = nXj=1 f(vj ) Pni=1 ciPni=1 f(vi) = nXi=1 cii.e. �2( �G) = �2(G).Next notice that by (7:1)nXj=1 f(vj )2�cj = nXj=1 f(vj )Pni=1 f(vi)Pni=1 ci = (Pni=1 f(vi))2Pni=1 ci � nXi=1 f(vi)2ci (7:2)The last inequality follows from inequality 65 in [8], where equality holds if andonly if f(vi)ci does not depend on i. Hence h�( �G)f; fi � h�(G)f; fi.It may happen, that �cj > 1 for a j. Thus �G is not a d-regular tree. For that reasonwe replace the edges ej by edges ej (") of length cj(") = (1 � ")cj + " �cj , where" 2 [0; 1]. Denote the resulting graph by G("). Then again �2(G(")) = �2(G).Furthermore inequality nXj=1 f(vj )2cj(") � nXj=1 f(vj )2cj (7:3)9



Leydold: A Faber-Krahn-type inequality for regular treesholds for all " 2 [0; 1], since the left hand side of (7:3) is convex in " and (7:3) is validfor " = 0 and " = 1. Hence h�(G("))f; fi � h�(G)f; fi and thus �(G(")) � �(G).If " is su�ciently small, then cj(") � 1 for all j, i.e. G(") is a d-regular tree.Now take all boundary edges of G. Construct a graph G1("1) as described abovewith "1 2 [0; 1] as great as possible. Then we �nd "1 = 1 or at least one of theboundary edges cj("1) has length 1. In the latter case take all boundary edges ofG1("1) of length less than 1 and construct a graph G2("2). Continue until the �rsttime "k = 1 occurs.Let G0 = Gk("k). Then G0 is a d-regular tree with boundary which satis�esproperties (1), (2) and (M4) by construction. Equality in (7:2) holds if and onlyif the normal derivative f(vi)ci does not depend on i. Thus (3) follows.Yet we have shown methods for decreasing the �rst Dirichlet eigenvalue �(G). Nowwe prove that on the other side all trees with the Faber-Krahn-property satisfy(M1){(M4).Lemma 8:Let G(V0[@V;E0[@E) be a tree with boundary and f a nonnegative eigenfunctionto �(G). If G has the Faber-Krahn-property then G and f satisfy properties (M1)-(M4).Proof: Property (M4) holds by lemma 7.If (M3) does not hold, then there exist two edges (v1; u1); (u2; v2) 2 E wheref(u1) < f(v2) and f(v1) > f(u2). Replacing these edges by (v1; v2); (u1; u2) weget a graph G0 with �(G0) < �(G) by lemma 5, a contradiction.Suppose (M2) does not hold. By applying the rearrangement steps of lemma 6we get a sequence of d-regular trees Gi with boundary. All these trees have theFaber-Krahn-property and hence �(Gi) = �(Gi+1) for each step. Moreover fis an eigenfunction to the �rst Dirichlet eigenvalue for all i, since f is simple(proposition 2). By lemma 6 there is a k such that (M2) is satis�ed for Gk+1 butnot for Gk. In the rearrangement step we then replace the edges (v1; u1); (v2; u2) 2Ek by (v1; v2); (u1; u2), where f(u1) > f(v2), dist(m;u1) > dist(m; v2) in Gkand dist(m;u1) � dist(m; v2) in Gk+1. Thus �(Gk+1) < �(Gk) by lemma 5, acontradiction.Now suppose (M1) fails. Again can construct sequence of trees Gi as describedabove. For every Gi (M2) holds, since every tree has the Faber-Krahn-property.10



Leydold: A Faber-Krahn-type inequality for regular treesMoreover there is a k such that (M1) is satis�ed for Gk+1 but not for Gk. For allboundary edges e1 = (v1; w1); e2 = (v2; w2) 2 @Ei, wi 2 @V , with dist(m; v1) <dist(m;w1) � dist(m;w2) < dist(m; v2) we have by (M2) and (M4) ce1 � ce2.Thus in Gk edges e1 = (v1; u1) 2 @E and e2 = (u2; v2) 2 E0 with dist(m; v1) <dist(m;u1) � dist(m;u2) < dist(m;u2) + 1 = dist(m; v2) exist, since (M1) is notsatis�ed (see �gure 4).
v
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m figure 4For the rearrangement step from Gk to Gk+1 we have to replace these edges(v1; u1); (v2; u2) by the edges (v1; v2) and (u1; u2). Moreover f(v1) � f(v2) �f(u2) � f(u1) = 0 (Otherwise we had not replaced these edges, see proof oflemma 6). Thus by lemma 5, f(v1) = f(v2) = f(u2) = f(u1) = 0, a contradictionto proposition 2.Proof of theorem 1: Immediately from proposition 4 and lemma 8.For the case �(G) > 1 we are able to decrease the Rayleigh quotient again bymaking long boundary edges longer and short boundary edges shorter.For this purpose we need some information about �(G).Proposition 9: (see [5])Let G be a d-regular tree with boundary. Then�(G) > d� 2pd� 111



Leydold: A Faber-Krahn-type inequality for regular treesLemma 10:If G consists of exactly two interior vertices and if all 2(d � 1) boundary edges ofG have length 1, then �(G) = d� 1.Proof: �(G) is the smallest eigenvalue of � d �1�1 d �.Lemma 11:Let G(V0 [ @V;E0 [ @E) be a connected d-regular tree with boundary, d � 5 andf a nonnegative function on G that satis�es the properties (M1){(M4). If thereexist two boundary edges of length less than 1 which have no common vertices,then we can construct a d-regular tree with boundary G0(V0 [@V;E0[@E0) whichsatis�es(1) �2(G0) = �2(G)(2) �(G0) < �(G)Proof: Assume there exist two such edges. Then by (M4) there are n1 boundaryedges (v1; u1i) of length c1 < 1 and n2 boundary edges (v2; u2i) of length c2 < 1where v1 6= v2 2 V0. Let 0 < c1 � c2 < 1. Without loss assume f(v1) = c1and f(v2) = c2. Let (v1; w1); (v2; w2) 2 E0 be interior edges. By property (M3)f(w1) � f(w2). (If f(v1) = f(v2) and f(w1) > f(w2) we change the rôle of v1 andv2.) We always can choose v1, v2, w1 and w2 so that one of the following holds(ni = d� 1 means all but one edge at vi are boundary edges):(a) n1 = n2 = d� 1 and (v1; v2) 62 E(b) n1 = d� 1, n2 = d� 2 and w1 = v2 and w2 6= v1(c) n1 = n2 = d� 1 and jV0j = 2To prove our result, we construct a new graph for the cases (a) and (c), and showthat (b) can be avoided.For case (a) we de�ne for " 2 (0; c1)\(0; 1�c2] a function f" by f"(v1) = f(v1)�",f"(v2) = f(v2) + " and f"(v) = f(v) otherwise. We replace edges (v1; u1i) and(v2; u2i) by (v1; u1i(")) and (v2; u2i(")) of lengths c1(") = c1�" and c2(") = c2+".Denote the resulting graph by G("). Obviously G(") is a d-regular graph withboundary and (1) holds. 12



Leydold: A Faber-Krahn-type inequality for regular treesNotice that 0 < f(v1) = c1 � f(v2) = c2 and 0 < f(w1) � f(w2). Then we �ndhf"; f"i = Xv 6=v1;v2 f2(v) + (f(v1)� ")2 + (f(v2) + ")2= hf; fi + 2 "(f(v2) � f(v1)) + "2:andh�(G("))f"; f"i = Xe=(u;v)2E 1ce (f"(u)� f"(v))2= X(u;v)2Eu;v 62fv1;v2g 1ce (f(v) � f(u))2+ (f(w1)� (f(v1)� "))2 + (f(w2)� (f(v2) + "))2+ d�1Xi=1 1c1 � " (f(v1) � ")2| {z }=P f(v1)2c1 �(d�1)" + d�1Xi=1 1c2 + " (f(v2) + ")2| {z }=P f(v2)2c2 +(d�1)"=h�(G)f; fi + 2 "(f(v2)� f(v1)) + 2 "(f(w1)� f(w2)) + 2 "2�h�(G)f; fi + 2 "(f(v2)� f(v1)) + 2 "2To verify (2) we have to show thath�(G)f; fi + 2 "(f(v2)� f(v1)) + 2 "2hf; fi + 2 "(f(v2)� f(v1)) + 2 "2 < h�(G)f; fihf; fiUsing the fact that �(G) � h�(G)f;fihf;fi and that for any positive numbers x; y; a; b >0, x + ay + b < xy , ab < xy , it remains to show that2 "(f(v2)� f(v1)) + 2 "22 "(f(v2)� f(v1)) + 2 "2 = 1 < �(G)But this immediately follows from proposition 9 for d � 5.If jV0j = 2 (case(c)), then we have (f(vi) = ci)h�(G("))f" ; f"i = d� 1c1 � " (f(v1)� ")2 + d� 1c2 + " (f(v2) + ")2 + ((f(v1) � ") � (f(v2) + "))2=h�(G)f; fi + 4"(f(v2)� f(v1)) + 4"213



Leydold: A Faber-Krahn-type inequality for regular treesAgain it remains to show that4"(f(v2)� f(v1)) + 4"22"(f(v2)� f(v1)) + 2"2 = 2 < �(G)Since jV0j = 2, G is contained in a graphG0 with exactly two interior vertices whereall boundary edges have length 1. Hence �(G) > �(G0) = d�1 by lemma 10. Thus(2) holds.Now let w1 = v2 and w2 6= v1 (case(b)). Since f is an eigenfunction we have((d � 1) 1c1 f(v1) + f(v1))� f(w1) = �(G)f(v1)Notice that f(v1) = c1 > 0 and f(w1) = f(v2) = c2 < 1Since f(v1) = c1 < 1 and f(v2) = c2 < 1, we arrive at(d� 1) = (�(G) � 1)c1 + c2 < �(G)Then G cannot contain a graph G0 with two interior vertices where all boundaryedges have length 1 by proposition 2 and lemma 10. But then we either havesituation (a) or situation (c).This �nishes the proof.Proof of theorem 3: Immediately from lemmata 8 and 11.For the proof of our last theorem we have to calculate the lowest Dirichlet eigen-value for balls with a given radius.Lemma 12:Let G(V0 [ @V;E0 [ @E) be a ball with radius % = k% � 1 + c and center p 2 V .Then �(G) is the lowest root of(d � �)fk% � d fk%�1 = 0, if % > 1;where f1 = c, f2 = (d � 1) + (1 � �)c and fi = (d � �)fi�1 � (d � 1)fi�2 for alli � 3.If % � 1, then �(G) = dc . 14



Leydold: A Faber-Krahn-type inequality for regular treesProof: Since �(G) is simple, f(v) only depends on dist(p; v). Let vk 2 V denote avertex with dist(vk; @V ) = (k�1)+c. Without loss we can assume f(v1) = c = f1.Since f is an eigenfunction to �(G) we then �nd f(v2) = f2 = (d � 1) + (1� �)c,f(v3) = (d � �)f2 � (d � 1)f1, and so on (see [5], pp.501{502). Thus f(p) = fk%and f(v) = fk%�1 for all vertices v 2 V0 adjacent to p. Hence the result follows.Proof of theorem 2: The statement is trivial if d = 2. If jV0j = 1 or d � 5,then it holds by lemma 7 and theorem 3, respectively.Now assume d = 3 or d = 4. Let G be a ball centered a vertex m and let f be anonnegative eigenfunction to �(G). Then f(v) only depends on dist(m; v). Let thelength of all boundary edges be c 2 (0; 1), i.e. the length of the boundary lengthis less than 1. Without loss we assume that f(v) = c for all vertices adjacent toboundary vertices. Now take two branches B1 and B2 rooted at m. De�ne fora su�ciently small " > 0 a function f" by f"(v1) = f(v1) + " for all v1 2 B1,f"(v2) = f(v2) + " for all v2 2 B2, f"(m) = f(m) and f"(v) = f(v) otherwise.Replace all boundary edges in B1 by boundary edges of length c(") = c + " andall boundary edges in B2 by boundary edges of length c(") = c � ". Denote theresulting graph by G("). For su�ciently small ", G(") is a d-regular tree withboundary. Then analogously to the proof of lemma 11 we �ndhf"; f"i = hf; fi + jVBj"2where jVBj is the number of interior vertices (except root m) in both branches.Notice that we can map the vertices v1 2 B1 to vertices v2 2 B2 one-to-one, sothat f(v1) = f(v2). Similarlyh�(G("))f"; f"i = h�(G)f; fi + 2"2Hence it remains to show thath�(G("))f"; f"ihf"; f"i = h�(G)f; fi + 2"2hf; fi + jVBj"2 < �(G)or equivalently 2jVBj < �(G) , �(G) � jVBj > 2If G is not contained in a ball of radius 3, then jVBj � 2d2 � 2d + 2. Thus byproposition 9 �(G) � jVBj > (d� 2pd� 1) � (2d2 � 2d+2) > 2 for d = 3 and d = 4.15



Leydold: A Faber-Krahn-type inequality for regular treesIf G is contained in a ball K of radius 2, then jVBj = 2 and by proposition 2 andlemma 12 �(G) > �(K) = d �pd. If G is contained in a ball K of radius 3 we�nd jVBj = 2d and �(G) > �(K) = d�p2d� 1. In both cases we �nd for d = 3and d = 4, �(G) � jVB j > 2, as claimed.AcknowledgementThe author is grateful for useful conversations with Thomas Ho�mann-Ostenhof,Peter Stadler, Michael Hauser and William Martin.References[1] I. Chavel. Eigenvalues in Riemannian Geometry. Academic Press, OrlandoFl., 1984.[2] S. Y. Cheng. Eigenfunctions and nodal sets. Comment. Math. Helvetici,51:43{55, 1976.[3] Y. C. de Verdi�ere. Multiplicit�es des valeurs propres laplaciens discrets etlaplaciens continus. Rend. di Matematica, Series VII, 13:433{460, 1993.[4] Y. C. de Verdi�ere. Le trou spectral des graph et leurs properi�et�es d'expansion.S�eminaire de th�eorie spectrale et g�eometrie, pages 51{68, 1993{1994.[5] J. Friedman. Some geometric aspects of graphs and their eigenfunctions. DukeMath. J., 69(3):487{525, 1993.[6] R. Grone, R. Merris, and V. Sunder. The laplacian spectrum of a graph.SIAM J. Matrix Anal. Appl., 11:218{238, 1990.[7] L. Grover. Local search and the local structure of NP-complete problems.Oper.Res.Lett., 12:235{243, 1992.[8] G. H. Hardy, J. E. Littlewood, and G. P�olya. Inequalities. Cambridge Uni-versity Press, 2nd edition, 1952.[9] B. Mohar. The laplacian spectrum of graphs. In Y. Alavi, G. Chartrand,O. Ollermann, and A. Schwenk, editors, Graph Theory, Combinatorics, andApplications, pages 871{898, New York, 1991. John Wiley and Sons, Inc.16
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