
ePubWU Institutional Repository

Michael Hahsler and Kurt Hornik and Thomas Reutterer

Implications of probabilistic data modeling for rule mining

Working Paper

Original Citation:
Hahsler, Michael and Hornik, Kurt and Reutterer, Thomas (2005) Implications of probabilistic data
modeling for rule mining. Research Report Series / Department of Statistics and Mathematics, 14.
Institut für Statistik und Mathematik, WU Vienna University of Economics and Business, Vienna.

This version is available at: http://epub.wu.ac.at/764/
Available in ePubWU: March 2005

ePubWU, the institutional repository of the WU Vienna University of Economics and Business, is
provided by the University Library and the IT-Services. The aim is to enable open access to the
scholarly output of the WU.

http://epub.wu.ac.at/

http://epub.wu.ac.at/764/
http://epub.wu.ac.at/

Implications of Probabilistic Data
Modeling for Rule Mining

Michael Hahsler, Kurt Hornik, Thomas Reutterer

Department of Statistics and Mathematics
Wirtschaftsuniversität Wien

Research Report Series

Report 14
March 2005

http://statistik.wu-wien.ac.at/

Implications of Probabilistic Data Modeling for Rule Mining

Michael Hahsler Kurt Hornik
Wirtschaftsuniversität Wien

Thomas Reutterer

March 2, 2005

Abstract

Mining association rules is an important technique for discovering meaningful patterns
in transaction databases. In the current literature, the properties of algorithms to mine
associations are discussed in great detail. In this paper we investigate properties of transaction
data sets from a probabilistic point of view. We present a simple probabilistic framework for
transaction data and its implementation using the R statistical computing environment. The
framework can be used to simulate transaction data when no associations are present. We
use such data to explore the ability to filter noise of confidence and lift, two popular interest
measures used for rule mining. Based on the framework we develop the measure hyperlift and
we compare this new measure to lift using simulated data and a real-world grocery database.

Keywords: data mining, transaction data model, association rules, interest measures.

1 Introduction

Mining association rules (Agrawal, Imielinski, and Swami, 1993) is an important technique for
discovering meaningful patterns in transaction databases. An association rule is a rule of the form
X ⇒ Y , where X and Y are two disjoint sets of items (itemsets). The rule means that if we find
all items in X in a transaction it is likely that the transaction also contains the items in Y .

A typical application of mining association rules is market basket analysis where point-of-
sale data is mined with the goal to discover associations between articles. These associations
offer useful and actionable insights to retail managers for product assortment decisions (Brijs,
Swinnen, Vanhoof, and Wets, 2004), personalized product recommendations (Lawrence, Almasi,
Kotlyar, Viveros, and Duri, 2001), and from adapting promotional activities to shelving. For
web-based systems (e.g., e-shops, digital libraries, search engines) associations found between
articles/documents/web pages in transaction log files can even be used to automatically and con-
tinuously adapt the user interface by presenting associated items together (Lin, Alvarez, and Ruiz,
2002).

Association rules are selected from the set of all possible rules using measures of statistical
significance and interestingness. Support, the primary measure of significance, is defined as the
fraction of transactions in the database which contain all items in the rule. For association rules,
a minimum support threshold is used to select the most frequent (and hopefully important) item
combinations called frequent itemsets. The process of finding these frequent itemsets in a large
database is computationally very expensive since it involves searching a lattice which grows in
the worst case exponentially in the number of items. In the last decade research has centered
on solving this problem and a variety of algorithms were introduced which render search feasible
by exploiting various properties of the lattice (see Goethals and Zaki (2004) as a pointer to the
currently fastest algorithms).

From the most chosen itemsets rules are generated using measures of interestingness. Numerous
measures were suggested in the literature. For association rules, the measure confidence was
developed (Agrawal et al., 1993). A practical problem is that often too many association rules are

1

time

Tr1Tr2 Tr2 Tr3Tr4 Trm-2 Trm-1 Trm0 t

Figure 1: Transactions occurring over time following a Poisson process.

produced. In this case, additional interest measures, such as e.g. lift, can be used to further filter
or rank found rules.

In this paper we will start with modeling transaction data. We will present a simple proba-
bilistic framework for transaction data which is based on independent Bernoulli trials. Using this
framework, we will present a small probabilistic data modeling exercise for transaction data and
show the implications of this exercise for support, confidence and lift. Based on the findings from
the framework we will develop a new interest measure called hyperlift and compare its performance
on simulated data and a real-world grocery database.

The paper is structures as follows: The next section develops the probabilistic framework.
In sections 3 and 4 we investigate the implications of the framework for the interest measures
confidence and lift. In section 5 we develop the measure hyperlift. Finally, section 6 compares lift
and hyperlift on real-world data.

2 A simple probabilistic framework for transaction data

A transaction database consists of a series of transactions where each transaction contains a
subset of the available items. We analyze transactions which are recorded in a fixed time interval
of length t. In figure 1 an example time interval is shown as an arrow with markings at the
points in time when the transactions denoted by Tr1 to Trm occur. We assume that transactions
occur randomly following a (homogeneous) Poisson process with parameter θ. The number of
transactions m in the time interval is then Poisson distributed with parameter θt:

P (M = m) =
e−θt(θt)m

m!
(1)

We denote the items which occur in the database by L = {l1, l2, . . . , ln} with n being the
number of different items. For the framework we assume that all items occur independently of
each other and that for each item li ∈ L there exists a fixed probability pi of being contained
in a transaction. Each transaction is then the result of n independent Bernoulli trials, one for
each item with success probabilities given by the vector p = (p1, p2, . . . , pn). Figure 2 contains
the typical representation of an example database as a binary incidence matrix with one column
for each item. Each row labeled Tr1 to Trm contains a transaction, where a 1 indicates presence
and a 0 indicates absence of the corresponding item in the transaction. Additionally, the success
probability for each item is given in an additional row labeled p and the row labeled c contains
the number of transactions each items is contained in (sum of the ones per column).

Following the model, ci, the observed number of transactions item li is contained in, can be
interpreted as a realization of a random variable Ci. Under the condition of a fixed number of
transactions m this random variable has a binomial distribution.

P (Ci = ci|M = m) =
(

m

ci

)
pci

i (1− pi)m−ci (2)

However, since for a fixed time interval the number of transactions is not fixed, the uncondi-
tional distribution gives:

2

items

tr
an

sa
ct

io
ns

 l1 l2 l3 ... ln

Tr1 0 1 0 ... 1

Tr2 0 1 0 ... 1

Tr3 0 1 0 ... 0

Tr4 0 0 0 ... 0
.
.
.
Trm-1 1 0 0 ... 1

Trm 0 0 1 ... 1

. . .

c 99 201 7 ... 411

p 0.005 0.01 0.0003 ... 0.025

Figure 2: Example transaction database with success probabilities p and transaction counts per
item c.

P (Ci = ci) =
∞∑

m=ci

P (Ci = ci|M = m) · P (M = m)

=
∞∑

m=ci

(
m

ci

)
pci

i (1− pi)m−ci
e−θt(θt)m

m!

=
e−θt(piθt)ci

ci!

∞∑
m=ci

((1− p)θt)m−ci

(m− ci)!

=
e−piθt(piθt)ci

ci!

(3)

The sum term in the last but one line in equation 3 is an exponential series with the limiting
sum e(1−pi)θt. With this it is easy to show that the unconditional probability distribution of
each Ci has a Poisson distribution with parameter piθt. For short we will use λi = piθt and
introduce the parameter vector λ = (λ1, λ2, . . . , λn) of the Poisson distributions for all items. This
parameter vector can be calculated from the success probability vector p and vice versa by the
linear relationship λ = pθt where θ is the intensity with which transactions occur and t is the
length of the observed time interval.

For a given database, the values of the parameter θ and the success vectors p or alternatively
λ are unknown but can be estimated from the database. The best estimate for θ from a single
database is m/t. The simplest estimate for λ is to use the observed counts for each item. However,
this is only a very rough estimate which especially gets unreliable for small counts. There exist
more sophisticated estimation approaches. For example, DuMouchel and Pregibon (2001) use the
assumption that the parameters of the count processes for items in a database are distributed
according to a continuous parametric density function. This additional information can improve
estimates over using just the observed counts. DuMouchel and Pregibon use the mixture of two
gamma distributions as the distribution for the parameters for their analysis of international calling
behavior.

For simplicity we assume for the following simulation that the parameters in λ are chosen
from a single gamma distribution. The gamma distribution is a very flexible distribution which
allows to fit a wide range of empirical data and the resulting Poisson-Gamma mixture model has
applications in many fields including related problems in market research (Johnson, Kotz, and
Kemp, 1993). We will simulate the counts ci, for n = 200 different items over a t = 30 day period
with transaction intensity θ = 300 (theta in the code) transactions per day. For the gamma

3

distribution we use the parameters k = 0.75 and a = 250.
First, we choose the number of transactions m in time interval t from a Poisson distribution

with parameter θt.

> m <- rpois(1, theta * t)

> m

[1] 8885

Next, we generate the parameter vector p by drawing values for the n λi from the gamma
distribution and transform them into probabilities pi by dividing by the database size m. For better
visualization later on, we sort the items by probability so that pi ≥ pi+1 for i = 1, 2, . . . , (n− 1).

> p <- sort(rgamma(n, shape = k, scale = a)/m, decreasing = TRUE)

Now we can simulate the transactions in the database by m Bernoulli tries for each of the n
items. The result is the database represented as the m× n incidence matrix Tr .

> Tr <- matrix(rbinom(m * n, 1, p), ncol = n, byrow = TRUE)

From the incidence matrix we calculate the item counts ci as the column sums. These counts
are the numbers of transactions in which the items (also called 1-itemsets since they can be treated
as itemset which consists only of 1 item) appear in the database.

> c <- (apply(Tr, 2, sum))

We can directly calculate the support of each item from the transaction counts. Support for
an itemset Z is defined as (Agrawal and Srikant, 1994):

supp(Z) = cZ/m, (4)

where cZ is the count of the itemset and m is the number of transactions in the database.

> supp1 <- c/m

> summary(supp1)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0063 0.0154 0.0243 0.0323 0.1640

> plot(supp1, type = "h", xlab = "items", ylab = "support")

The summary statistics of support over all 1-itemsets show that there is a significant difference
between the mean and the median. This indicates a skewed count distribution. The count distri-
bution of the simulated counts ci is presented in the plot in figure 3. As typical for transaction
data, only few items have a relatively high support while most items appear rather infrequently.

The number of items which appear in the database 0, 1, 2, . . . times in a Poisson-Gamma mix-
ture model follows a Negative Binomial distribution with the parameters determined by the pa-
rameters of the gamma mixing distribution. The Negative Binomial distribution can be used to
predict the expected number of items which are more frequent than a set minimum support.

> h <- hist(c, breaks = c(0:max(c)), plot = FALSE)

> plot(c(0:(length(h$counts) - 1))/m, y = n - cumsum(h$counts),

+ type = "l", xlab = "minimum support", ylab = "frequent items")

> lines(x = c(0:max(c))/m, (1 - cumsum(dnbinom(c(0:max(c)), size = k,

+ prob = 1/(1 + a)))) * n, col = "red", lty = 2)

4

Figure 3: Simulated item support.

Figure 4: Plot of frequent items by minimum support.

5

Figure 5: Simulated 2-itemset support

In figure 4 we show the number of frequent items in the database depending on the used
minimum support. The dashed line represents the number of items expected using the Negative
Binomial Distribution.

Next, we extend the framework to the occurrences of 2-itemsets which corresponds to co-
occurrences of two items in transactions in the database. The counts for the 2-itemsets can
be represented by a n × n matrix where each cell ci,j contains the co-occurrence count for two
items i, j ∈ L. The n×n matrix is symmetric with ci,j = cj,i and the diagonal with i = j contains
the counts of the individual items.

We can calculate the values ci,j from the database by counting the number of transactions for
each item combination in the n×n co-occurrence matrix (denoted by c2 in the code). We discard
the counts in the diagonal where i = j since by definition itemsets cannot contain the same item
more than once. Using the counts we can calculate the support values of all 2-itemsets.

> c2 <- sapply(1:n, function(i) {

+ apply(Tr[, i] & Tr[, 1:n], 2, sum)

+ })

> diag(c2) <- NA

> supp2 <- c2/m

> summary(as.vector(supp2))

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.000000 0.000000 0.000225 0.000585 0.000675 0.020700 200.000000

> persp(supp2, expand = 0.5, ticktype = "detailed", border = 0,

+ shade = 1, zlab = "support", xlab = "items", ylab = "items")

The summary statistics for support show that for many item combinations we obtained very
small support values, a property which seem typical for transaction data. We visualize the support
distribution over all possible 2-itemsets with a 3D-plot in figure 5. The x and y axes represent
the items and the simulated support value is represented by the z axis. The items on the x and
y axes are sorted by their individual occurrence probability starting with the most frequent item.
Of course, the 2-itemsets consisting of the most frequent items have the highest support (the most
frequent items appear in the plot in the front and to the left because of the ordering of the items).

Since in the model all items occur following independent Poisson processes, the count in each
cell of the n × n co-occurrence matrix can be modeled by n2 random variables Ci,j which follow
hypergeometric distributions with the marginal counts ci,· and c·,j defining the parameters. The
hypergeometric distribution arises for the so-called urn problem, where the urn contains m white
balls and n black balls. The number of white balls drawn with k tries without replacement follows a

6

Figure 6: Simulated 2-itemset confidence

hypergeometric distribution. This model is applicable for counting co-occurrences for independent
items li and lj in the following way: We already know that item lj occurs in cj transactions,
therefore, for lj the database can be represented as an urn which contains cj “good” transactions
(white balls) and m− cj “bad” transactions (black balls). For each item li 6= lj , we draw without
replacement the ci transactions it is contained in. The number of“good”transactions (transactions
which contain item lj) which are drawn for item li has a hypergeometric distribution.

The framework can be easily expanded to itemsets of arbitrary length by combining smaller
itemsets with an additional item. For example, the expected counts of a 4-itemset follows a
hypergeometric distribution with the parameters depending on the counts of a 3-item subset and
the count of the fourth item.

3 Implications for the interest measure confidence

We used the simple framework which implies independence between all items to simulated the
counts and support for individual items and 2-itemsets.

Confidence is defined by Agrawal et al. (1993) as

conf(X ⇒ Y) =
supp(X + Y)

supp(X)
, (5)

where X and Y are two disjoint itemsets. Often confidence is understood as the conditional
probability P (Y |X) (e.g., Hipp, Güntzer, and Nakhaeizadeh (2000)), where the definition above
is seen as an estimate for this probability. From our 2-itemsets we can generate rules of the from
li ⇒ lj , where i, j = 1, 2, . . . , n and i 6= j. We calculate confidence for the n(n− 1) possible rules
in the data set.

> conf2 <- supp2/supp1

> summary(as.vector(conf2))

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.0000 0.0000 0.0116 0.0242 0.0332 1.0000 598.0000

> persp(conf2, expand = 0.5, ticktype = "detailed", border = 0,

+ shade = 1, zlab = "confidence", xlab = "items", ylab = "items")

The summary shows that confidence values are generally very low which reflect the fact that
there are no associations in the data. However, the maximum indicates some rules with confidence
of one. The plot in figure 6 shows that confidence increases with the item in the right-hand-side

7

of the rule getting more frequent and the item in the left-hand-side getting less frequent. This
behavior directly follows the way confidence is calculated. But the fact that confidence clearly
favors some rules makes the measure problematic when it comes to ranking rules by their interest.

4 Implications for the interest measure lift

Typically, rules mined using minimum support (and confidence) are filtered or ordered using their
lift value. The measure lift (also called interest (Brin, Motwani, Ullman, and Tsur, 1997)) is
defined on rules of the form X ⇒ Y as

lift(X ⇒ Y) =
P (Y ∪X)
P (X)P (Y)

=
P (Y |X)
P (Y)

, (6)

where X and Y are two disjoint itemsets. P (Y ∪ X) is the probability that all items in X
and Y appear together in transactions. The product of the individual probabilities P (X)P (Y)
represents the expected probability for finding the items in X and Y together in transactions if
they occur independently given their observed individual probabilities. To calculate lift, confidence
and support values are normally used as estimates for the probabilities resulting in

lift(X ⇒ Y) =
conf(X ⇒ Y)

supp(Y)
(7)

A lift value of 1 indicates that the items are co-occurring in the database as expected under
independence. Values greater than one indicate that the items are associated. For marketing
applications it is generally argued that lift � 1 indicates complementary products and lift � 1
indicates substitutes.

For the rules generated from 2-itemsets, lift can be directly calculated from the already com-
puted confidence and support values.

> lift <- conf2/matrix(supp1, ncol = n, nrow = n, byrow = TRUE)

> summary(as.vector(lift))

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.000 0.000 0.817 0.987 1.240 159.000 994.000

> persp(lift, expand = 0.5, ticktype = "detailed", border = 0,

+ shade = 1, zlab = "lift", xlab = "items", ylab = "items")

> length(which(lift > 2))

[1] 3424

Interestingly, although the data do not contain associations, many zeros and some extremely
high lift values are found. For example, 3424 rules are found with a lift greater than 2. For
diagnostics we visualize the lift values in figure 7. The plot shows that many zeros and the highest
lift values are achieved for rare items (in the plot in the back right-hand corner). These lift values
are artifacts which result for items with very low counts. The product of the probabilities for such
rare items is close to zero and if such items co-occur together once by chance, an extremely high
lift will result.

To counter this problem. for most applications a minimum support threshold is used to filter
all itemsets and thus also rules which do not appear in the database frequently enough to be of
interest. We discard all 2-itemsets which do not satisfy a minimum support of 0.1%.

> min_supp <- 0.001

> length(lift[supp2 >= min_supp])

[1] 7096

8

Figure 7: Lift for 2-itemsets in the simulated data set.

Figure 8: Lift for 2-itemsets using a minimum support of 0.5%.

> summary(lift[supp2 >= min_supp])

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.462 0.918 1.060 1.120 1.250 3.690 200.000

> lift[supp2 < min_supp] <- 1

> persp(lift, expand = 0.5, ticktype = "detailed", border = 0,

+ shade = 1, zlab = "lift", xlab = "items", ylab = "items")

> length(which(lift > 2))

[1] 130

Requiring support leaves 7096 rules. The summary statistics show that most supported rules
have now a lift value around 1, the value which indicates that no associations are NA but there
are still 130 rules with a lift greater than 2. The plot in figure 8 clearly shows lift’s tendency to
produce higher values for rules containing one or two less frequent items. This indicates that the
lift measure performs poorly to filter random noise in transaction data especially if we are also
interested in relatively rare items. Furthermore, if lift is used to rank discovered rules, there is a
systematic tendency towards favoring rules with less frequent items.

9

5 Developing the measure hyperlift

In this section we will show how the knowledge that the co-occurrence counts of independent items
can be seen as realizations of hypergeometric distributed random variables with known parameters
can be used to better filter random noise.

The expected value of a random variable C with a hypergeometric distribution is

E[C] = kw/(w + b), (8)

where the parameter k represents the number of tries, w is the number of white balls, and b is the
number of black balls. Applied to co-occurrence counts for the two items li and lj in a transaction
database this gives

E[Ci,j] = cicj/m, (9)

where m is the number of transactions in the database. With using ci/m as an estimate for P (li)
we can rewrite lift as

lift(li ⇒ lj) =
P (li + lj)
P (li)P (lj)

=
ci,j

E[Ci,j]
(10)

For items with a relatively high occurrence frequency using the expected value for lift works
well. However, for relatively infrequent items, which are the majority in most transaction databases,
using the ratio of the observed count to the expected value is problematic. For example, let us
assume that we have the two independent items li and lj , and both items have a support of 1%
in the database. Then, E[Ci,j] is:

> c_i <- 0.01 * m

> c_j <- 0.01 * m

> c_i * c_j/m

[1] 0.8885

However, if we choose randomly there is a P [Ci,j > 1] of

> phyper(1, m = c_j, n = m - c_j, k = c_i, lower.tail = FALSE)

[1] 0.224

Therefore there is a substantial chance that we will see a lift value of 2, 3 or even higher.
Given the huge number of itemsets and rules generated by combining items (especially when
also considering itemsets containing more than one item), this is very problematic. Using larger
databases with more transactions reduces the problem, however, there are several drawbacks of
very large databases. Some drawbacks are:

� They are more time-consuming to mine which might lead to the need to sample transactions
(e.g., Mannila, Toivonen, and Verkamo (1994)). However, using a sampled database suffers
again from the problem shown above.

� They are usually collected over a long period of time and thus may contain outdated infor-
mation. For example, in a supermarket the articles offered may have changed.

To address the problem, we adapt lift by using instead of the expected value E[CX,Y], where
X and Y are itemsets, a quantile denoted by δ of the hypergeometric distribution. For the
quantile Qδ[CX,Y] we have Pr(CX,Y ≤ Qδ[CX,Y]) = δ. We call the resulting measure hyperlift,
which we define as

hyperlift(X ⇒ Y) =
cX,Y

Qδ[CX,Y]
. (11)

In the following we will use δ = 0.99 which results in hyperlift being more conservative compared
to lift. The measure can be interpreted as the number of times the observed co-occurrence count

10

Figure 9: Hyperlift for 2-itemsets in the simulated data set.

cX,Y is higher than the highest count we expect 99% of the time. This means, that hyperlift for
a rule with independent items will exceed 1 only in 1% of the cases, and then only slightly. Next,
we calculate hyperlift with δ = 0.99 for the simulated database.

> calc_hyperbase <- function(ci, cj) {

+ qhyper(0.99, m = cj, n = m - cj, k = ci)

+ }

> hyperlift <- c2/outer(c, c, FUN = calc_hyperbase)

> hyperlift[is.infinite(hyperlift)] <- NA

> summary(as.vector(hyperlift))

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.000 0.000 0.333 0.345 0.571 3.000 1492.000

> persp(hyperlift, shade = 1, ticktype = "detailed", border = 0,

+ expand = 0.5, zlab = "hyperlift", xlab = "items", ylab = "items")

> length(which(hyperlift > 2))

[1] 2

Hyperlift (we eliminated the hyperlift values which give infinity since they result in a division
by zero) produces for the simulated data set mostly values below one (only 2) rules have a lift
greater than 2. In figure 9 we see that the hyperlift values are generally smaller than 1 and
more evenly distributed indicating that hyperlift filters the random co-occurrences better than
lift. However, hyperlift also shows a systematic dependency on the occurrence probability of items
leading to smaller values for rules with less frequent items.

So far we only used an artificially generated data set which follows a model which we also
used in developing the hyperlift measure. Therefore, we will test hyperlift in the next section on
a real-world grocery database.

6 Comparing lift and hyperlift on a grocery database

We use 1 month of real-world point-of-sale transaction data from a local grocery outlet. To reduce
the number of items we use categories (e.g., popcorn) instead of the individual brands. In the
available m = 9835 transaction we found n = 169 different categories for which articles were
purchased. We preprocessed the data and stored the count information in the same format as
above (a vector called c for the count frequencies of individual items, and a matrix called c2 for
the co-occurrence counts of two items). First, we compute support and confidence and present
some descriptive statistics.

11

Figure 10: Item support in the grocery database.

> supp1 <- c/m

> summary(supp1)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000102 0.003860 0.010500 0.026100 0.031000 0.256000

> plot(supp1, type = "h", xlab = "items", ylab = "support")

> supp2 <- c2/m

> summary(as.vector(supp2))

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.000000 0.000000 0.000203 0.000983 0.000712 0.074800 169.000000

> persp(supp2, shade = 1, expand = 0.5, ticktype = "detailed",

+ border = 0, zlab = "support", xlab = "items", ylab = "items")

> conf2 <- supp2/supp1

> summary(as.vector(conf2))

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.0000 0.0000 0.0140 0.0412 0.0516 1.0000 169.0000

> persp(conf2, shade = 1, expand = 0.5, ticktype = "detailed",

+ border = 0, zlab = "confidence", xlab = "items", ylab = "items")

The summary statistics of support and the plot in figure 10 show that the grocery database
contains items with a similarly skewed count distribution as the simulated data set used above.
Both have an almost identical mean and median. Also the distributions of the 2-itemset support
and confidence in figures 11 and 12 exhibit a similar form as the simulated data. However, both
measures have a large number of combinations which reach several times higher values than in the
simulated data (compare figures 11 and 12 with 5 and 6 above). This indicates that the grocery
database contains associated items. Next, we calculate the lift measure.

12

Figure 11: 2-itemset support in the grocery database.

Figure 12: 2-itemset confidence in the grocery database.

13

> lift <- conf2/matrix(supp1, ncol = n, nrow = n, byrow = TRUE)

> summary(as.vector(lift))

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.00 0.00 1.23 1.78 2.07 224.00 169.00

> persp(lift, expand = 0.5, ticktype = "detailed", border = 0,

+ shade = 1, zlab = "lift", xlab = "items", ylab = "items")

> length(which(lift > 2))

[1] 7544

The database contains 7544 rules with a lift greater than 2. Figure 13 shows that, as before,
the rules with the least frequent items have the highest lift values. To assess the usefulness of the
rules found by lift, we inspect the itemsets with the highest lift values. Since lift is a symmetric
measure each line in the list actually represents the 2 rules li ⇒ lj and lj ⇒ li.

> lift.lower <- lift

> lift.lower[upper.tri(lift.lower, diag = TRUE)] <- NA

> best <- which(lift.lower >= sort(lift.lower, decreasing = TRUE)[10],

+ arr.ind = TRUE)

> best <- data.frame(l_i = names(c[best[, 1]]), l_j = names(c[best[,

+ 2]]), supp = supp2[best], lift = lift[best])

> best[order(best$lift, decreasing = TRUE),]

l_i l_j supp lift
9 preservation products cocoa drinks 0.0001017 223.52
4 baby food finished products 0.0001017 153.67
3 baby food soups 0.0001017 146.79
6 preservation products abrasive cleaner 0.0001017 140.50
10 baby cosmetics cream 0.0001017 126.09
2 sound storage medium frozen potato products 0.0001017 118.49
8 bags tidbits 0.0001017 106.90
5 preservation products spices 0.0001017 96.42
7 kitchen utensil fish 0.0001017 84.78
1 baby food cake bar 0.0001017 75.65

It is easy to see that these rules are not useful since the rules only contain very rare items. In
fact, the items in all rules have a co-occurrence count of only one.

To filter the rare items, we remove all itemsets which do not satisfy a minimum support of
0.1%.

> min_supp <- 0.001

> length(lift[supp2 >= min_supp])

[1] 6131

> summary(lift[supp2 >= min_supp])

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.311 1.300 1.620 1.770 2.030 13.000 169.000

> lift.supp <- lift

> lift.supp[supp2 < min_supp] <- 1

> persp(lift.supp, expand = 0.5, ticktype = "detailed", border = 0,

+ shade = 1, zlab = "lift", xlab = "items", ylab = "items")

> length(which(lift.supp > 2))

14

Figure 13: Lift values for the grocery database.

Figure 14: Lift for 2-itemsets for items with support of 0.1% in the grocery database.

15

[1] 1586

The support threshold leaves 6131 rules of which 1586 have a lift higher than 2. Figure 14
shows that, as for the simulated data, the combinations including the least frequent items tend
to have higher lift values. This indicates that lift values will be heavily influenced by the set
minimum support value. We inspect the rules with the highest lift values.

> lift.lower <- lift.supp

> lift.lower[upper.tri(lift.lower, diag = TRUE)] <- NA

> best <- which(lift.lower >= sort(lift.lower, decreasing = TRUE)[20],

+ arr.ind = TRUE)

> best <- data.frame(l_i = names(c[best[, 1]]), l_j = names(c[best[,

+ 2]]), supp = supp2[best], lift = lift[best])

> best[order(best$lift, decreasing = TRUE),]

l_i l_j supp lift
20 mayonnaise mustard 0.001423 12.965
8 Instant food products hamburger meat 0.003050 11.421
15 softener detergent 0.001118 10.600
16 liquor red/blush wine 0.002135 10.025
6 flour sugar 0.004982 8.463
4 popcorn salty snack 0.002237 8.192
11 processed cheese ham 0.003050 7.071
9 sauces hamburger meat 0.001220 6.684
3 meat spreads cream cheese 0.001118 6.605
14 house keeping products detergent 0.001017 6.346
13 pet care cat food 0.001322 6.003
2 processed cheese white bread 0.004169 5.975
17 flour baking powder 0.001830 5.950
18 roll products flour 0.001017 5.695
1 specialty fat margarine 0.001220 5.692
19 mustard canned fish 0.001017 5.632
7 pasta hamburger meat 0.002745 5.487
12 rice hard cheese 0.001017 5.441
5 baking powder sugar 0.003254 5.432
10 chocolate marshmallow candy 0.001423 5.262

Most rules in the list look reasonable. However, in the list we can see that most rules have
a support value close to the used minimum support threshold of 0.1% which results from lifts
tendency to favor less frequent items. Another disadvantage is that using the support threshold
we filtered many rules which might still be of interest.

We calculate hyperlift with δ = 0.99 for the data set.

> calc_hyperbase <- function(ci, cj) {

+ qhyper(0.99, m = cj, n = m - cj, k = ci)

+ }

> hyperlift <- c2/outer(c, c, FUN = calc_hyperbase)

> hyperlift[is.infinite(hyperlift)] <- NA

> summary(as.vector(hyperlift[c2 != 0]))

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.0588 0.5000 0.7000 0.7530 1.0000 4.2900 183.0000

> persp(hyperlift, shade = 1, ticktype = "detailed", border = 0,

+ expand = 0.5, zlab = "hyperlift", xlab = "items", ylab = "items")

> length(which(hyperlift > 2))

16

Figure 15: Hyperlift for 2-itemsets in the grocery database.

[1] 82

The summary statistics shows that most rules have a value well below 1, an indication that
do not observe many co-occurrence counts which can not be explained by chance. However,
the database contains 82 rules with hyperlift values greater than 2. In figure 15, there is no
clear pattern visible which would indicate that a high hyperlift is more likely to occur for rules
depending on the frequency of its items. We analyze the rules with the highest hyperlift values.

> hyperlift.lower <- hyperlift

> hyperlift.lower[upper.tri(hyperlift.lower, diag = TRUE)] <- NA

> best <- which(hyperlift.lower >= sort(hyperlift.lower, decreasing = TRUE)[20],

+ arr.ind = TRUE)

> best <- data.frame(l_i = names(c[best[, 1]]), l_j = names(c[best[,

+ 2]]), supp = supp2[best], hyperlift = hyperlift[best], lift = lift[best])

> best[order(best$hyperlift, decreasing = TRUE),]

l_i l_j supp hyperlift lift
11 Instant food products hamburger meat 0.0030503 4.286 11.421
9 flour sugar 0.0049822 4.083 8.463
15 liquor red/blush wine 0.0021352 3.500 10.025
17 cooking chocolate baking powder 0.0007117 3.500 15.826
18 mayonnaise mustard 0.0014235 3.500 12.965
6 processed cheese white bread 0.0041688 3.154 5.975
7 popcorn salty snack 0.0022369 3.143 8.192
13 processed cheese ham 0.0030503 3.000 7.071
3 liquor bottled beer 0.0046772 2.875 5.241
14 softener detergent 0.0011185 2.750 10.600
8 baking powder sugar 0.0032537 2.667 5.432
5 ham white bread 0.0050839 2.632 4.640
2 herbs root vegetables 0.0070158 2.556 3.956
4 berries whipped/sour cream 0.0090493 2.543 3.797
16 specialty vegetables pickled vegetables 0.0005084 2.500 16.435
19 cleaner female sanitary products 0.0005084 2.500 16.392
20 abrasive cleaner cleaner 0.0005084 2.500 28.100
10 pasta hamburger meat 0.0027453 2.455 5.487
12 sauces hamburger meat 0.0012201 2.400 6.684
1 beef root vegetables 0.0173869 2.342 3.040

17

All presented rules make sense intuitively. From the experiment with simulated data we know
that hyperlift somewhat favors rules with more frequent items. However, the resulting list shows
that the set of rules with highest hyperlift contains rules with support varying from very rare to
relatively frequent. If we compare hyperlift and lift for the selected rules, we see that all rules
selected by hyperlift also have a relatively high lift. However, the ranking of rules between the
two measures is different and hyperlift is also able to deal with very infrequent rules.

7 Conclusion

In this contribution we developed a simple probabilistic framework for transaction data. Using
this framework to simulate a transaction database which does not contain any associations and
calculated co-occurrence counts, support, confidence and lift. The distributions of these measures
show that the simulated data is very close to real-world grocery data.

We showed how the interest measures are systematic influenced by the frequencies of items in
the corresponding itemsets or rules. In particular, we discovered that the measure lift performs
poorly to filter random noise and always produces the highest values for the rules containing the
least frequent items.

Based on the presented framework, we developed a new interest measure called hyperlift which
is better able to filter random noise in the simulated database and can also deal with very infrequent
items.

The presented framework and the measure hyperlift provide many possibilities for further
research. Some directions are:

� The framework does not yet include dependencies between items. The explicit modeling of
dependencies would enable us to simulate transaction data sets with properties close to real
data and with known associations. Such a framework would provide an ideal test bed to
evaluate and compare different approaches and interest measures.

� The measure hyperlift only identifies complementary items, i.e., items which are associated.
Often finding substitutes is also important. Hyperlift needs to be adapted for this use.

� The experiment with simulated data showed that there exists a small but systematic influ-
ence of the occurrence frequency of items on the hyperlift measure. This makes comparing
hyperlift between rules with items of very different frequency inaccurate. A possible solution
would be to measure interest on the p-value scale instead.

References

R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large
databases. In Proceedings of the ACM SIGMOD International Conference on Management of
Data, pages 207–216, Washington D.C., May 1993.

Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules in large
databases. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, editors, Proc. 20th Int. Conf.
Very Large Data Bases, VLDB, pages 487–499, Santiago, Chile, Sept 1994.

Tom Brijs, Gilbert Swinnen, Koen Vanhoof, and Geert Wets. Building an association rules frame-
work to improve product assortment decisions. Data Mining and Knowledge Discovery, 8(1):
7–23, 2004.

Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur. Dynamic itemset counting
and implication rules for market basket data. In SIGMOD 1997, Proceedings ACM SIGMOD
International Conference on Management of Data, pages 255–264, Tucson, Arizona, USA, May
1997.

18

William DuMouchel and Daryl Pregibon. Empirical bayes screening for multi-item associations. In
F. Provost and R. Srikant, editors, Proceedings of the ACM SIGKDD Intentional Conference on
Knowledge Discovery in Databases & Data Mining (KDD01), pages 67–76. ACM Press, 2001.

Bart Goethals and Mohammed J. Zaki. Advances in frequent itemset mining implementations:
Report on FIMI’03. SIGKDD Explorations, 6(1):109–117, 2004.

Jochen Hipp, Ulrich Güntzer, and Gholamreza Nakhaeizadeh. Algorithms for association rule
mining - a general survey and comparison. SIGKDD Explorations, 2(2):1–58, 2000.

Norman L. Johnson, Samuel Kotz, and Adrienne W. Kemp. Univariate Discrete Distributions.
John Wiley & Sons, New York, 2nd edition, 1993.

Richard D. Lawrence, George S. Almasi, Vladimir Kotlyar, Marisa S. Viveros, and Sastry Duri.
Personalization of supermarket product recommendations. Data Mining and Knowledge Dis-
covery, 5(1/2):11–32, 2001.

Weiyang Lin, Sergio A. Alvarez, and Carolina Ruiz. Efficient adaptive-support association rule
mining for recommender systems. Data Mining and Knowledge Discovery, 6:83–105, 2002.

Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Efficient algorithms for discovering
association rules. In Usama M. Fayyad and Ramasamy Uthurusamy, editors, AAAI Workshop
on Knowledge Discovery in Databases (KDD-94), pages 181–192, Seattle, Washington, 1994.
AAAI Press.

19

