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NODAL DOMAIN THEOREMS AND BIPARTITE SUBGRAPHS∗

TÜRKER BıYıKOĞLU†, JOSEF LEYDOLD‡ , AND PETER F. STADLER§

Abstract. The Discrete Nodal Domain Theorem states that an eigenfunction of the k-th largest
eigenvalue of a generalized graph Laplacian has at most k (weak) nodal domains. We show that the
number of strong nodal domains cannot exceed the size of a maximal induced bipartite subgraph
and that this bound is sharp for generalized graph Laplacians. Similarly, the number of weak nodal
domains is bounded by the size of a maximal bipartite minor.
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AMS subject classifications. 05C50 Graphs and matrices, 05C22 Signed, gain and biased
graphs, 05C83 Graph minors.

1. Introduction. The eigenfunctions of elliptic differential equations of the form
L[u] + λρu = 0, (ρ > 0), on a domain D with arbitrary homogeneous boundary
conditions have an interesting geometric property: if the eigenfunctions are ordered
according to increasing eigenvalues, then the nodes of the nth eigenfunction un divide
the domain into no more than n subdomains [7, Chap.6, §6]. No assumptions are
made about the number of independent variables. These sub-domains have since
become known as nodal domains, see e.g. [4].

The discrete analogue of a “nodal domain” is a connected set of vertices, i.e., a
connected subgraph of a graph G, on which the eigenvector has the same, strict or
loose, sign. Of course, such a set of vertices is not “bounded” by “nodes”; it is merely
“bounded” by vertices of the opposite loose sign. An more appropriate name for
such an entity would thus appear to be sign graph [8]. We nevertheless use here the
established terminology from the manifold case. The discrete analogues of the elliptic
differential operator L[u] are a certain class of symmetric matrices that reflect the
structure of underlying graph G, so-called (generalized) graph Laplacians [6, 5, 12].

In general, generalized graph Laplacians satisfy an analog of Courant’s Nodal
Domain Theorem [8]. As in the case of manifolds, it is of interest to consider special
classes of graphs for which stronger and more detailed results, e.g. tighter bounds
on the number of nodal domains, could be derived. For some results on trees and
hypercubes we refer to [1, 2, 9]. In this letter we consider bipartite graphs and upper
bounds on the number of nodal domains that are determined by the structure of the
underlying graph itself.
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We briefly recall the construction of generalized graph Laplacians, derive a few
useful properties, and formally introduce strong and weak nodal domains in the fol-
lowing two sections. We then offer an alternative proof of a theorem by Roth demon-
strating that the largest eigenvalue of a graph Laplacian of a bipartite graph always
has as many nodal domains as vertices. The main results of this letter finally show
that bipartite induced subgraphs and bipartite minors can provide non-trivial bounds
on the number of nodal domains. In the cases of bipartite induced subgraphs we show
that the bound cannot be improved.

2. Generalized Graph Laplacians. Let G(V, E) be a simple graph with vertex
set V and edge set E. We use the convention that |V | = n and |E| = m, i.e., G is a
graph with n vertices and m edges. The Laplacian of G is the matrix

L(G) = D(G) −A(G) (2.1)

where D(G) is the diagonal matrix whose entries are the degrees of the vertices of G,
i.e. Dvv = d(v), and A(G) denotes the adjacency matrix of G. For the function Lf
we find

(Lf)(x) =
∑

y∼x

[f(x)− f(y)] = d(x) f(x) −
∑

y∼x

f(y) . (2.2)

We find this “functional” notation more convenient than using vectors indexed by
vertices. In particular, it simplifies comparison with analogous results on manifolds.
The quadratic form of the graph Laplacian can be computed via Green’s formula as

〈f,Lf〉 =
∑

x,y∈V

Lxyf(x)f(y) =
∑

xy∈E

(f(x)− f(y))2 . (2.3)

This equality immediately shows that the graph Laplacian is a nonnegative operator,
i.e., all eigenvalues are greater than or equal to 0.

The graph Laplacian L can be generalized in following way, see [6]: A symmetric
matrix M(G) is called a generalized Laplacian (or discrete Schrödinger operator) of
G if it has nonpositive off-diagonal entries and for x 6= y, Mxy < 0 if and only if the
vertices x and y are adjacent. On the other hand, for each symmetric matrix with
nonpositive off-diagonal entries there exists a graph where two distinct vertices x and
y are adjacent if and only if Mxy < 0. Similarly to (2.2) we have

(Mf)(x) =
∑

y∼x

(−Mxy)[f(x) − f(y)] + p(x) f(x) , (2.4)

where p(x) = Mxx +
∑

y∼x Mxy. The function p(x) can be viewed as a potential
defined on the vertices. Defining a matrix W consisting of Wxy = Mxy for x 6= y and
Wxx = −

∑

y 6=x Mxy and a diagonal matrix P with the potentials p(x) as its entries
we can decompose every generalized Laplacian as

M = W + P . (2.5)
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The matrix W can be seen as discrete elliptic operator. The quadratic form of the
generalized Laplacian can then be computed as

〈f,Mf〉 =
∑

xy∈E

(−Mxy)(f(x) − f(y))2 +
∑

x∈V

p(x) f(x)2 (2.6)

=
∑

x∈V

Mxxf(x)2 + 2
∑

xy∈E

Mxyf(x)f(y) . (2.7)

The following remarkable result for the eigenvalues of a generalized Laplacian can
be easily derived.

Theorem 2.1. Let λ be an eigenvalue of a generalized Laplacian M = W + P

with eigenfunction f . Then either
∑

v∈V f(v) =
∑

v∈V p(v) f(v) = 0, or

λ =

∑

v∈V p(v) f(v)
∑

v∈V f(v)
. (2.8)

Proof. Let 1 = (1, . . . , 1)T. Then a straightforward computation gives

〈1,Mf〉 =
∑

v∈V (
∑

w∼v(−Mvw)(f(v)− f(w)) + p(v) f(v))

=
∑

v,w∈V (−Mvw)(f(v) − f(w)) +
∑

v∈V p(v) f(v)

=
∑

v,w∈V Mvwf(w)−
∑

v,w∈V Mvwf(v) +
∑

v∈V p(v) f(v)

=
∑

v∈V p(v) f(v) .

(2.9)

Since f is an eigenfunction we find 〈1,Mf〉 = λ
∑

v∈V f(v), and thus the proposition
follows.

Remark 2.2. The case
∑

v∈V f(v) = 0 happens, for example, for all eigenfunc-
tions to an eigenvalue λ > λ1 when the eigenfunction f1 to λ1 is constant. This is
the case if and and only if p(v) is constant for all v ∈ V .

Remark 2.3. Theorem 2.1 has a more delicate form for the Dirichlet Eigenvalues
of a graph with boundary. There some of the vertices are considered as “boundary”
and the Dirichlet operator is the Laplacian restricted to the interior (non-boundary)
vertices of the graph, i.e., where the corresponding rows and columns of the Laplacian
matrix are removed [10]. Dirichlet operators can be seen as the discrete analogs of
Dirichlet eigenvalue problems on bounded manifolds. Denote the number of boundary
vertices adjacent to some vertex v by b(v). Then, by Thm. 2.1, we find [3]:

λ =

∑

v∈V b(v) f(v)
∑

v∈V f(v)
. (2.10)

3. Nodal Domains. Consider an a graph G and an arbitrary function f :
V (G) → R defined on its vertex set. A positive (negative) strong nodal domain
of f is a maximal connected induced subgraph H of G such that f(v) > 0 (f(v) < 0)
holds for all v ∈ V (H). In contrast, a positive (negative) weak nodal domain of f is
a maximal connected induced subgraph H of G such that f(v) ≥ 0 (f(v) ≤ 0) for
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all v ∈ V (H) and there is at least one non-zero vertex, i.e., there is a w ∈ V (H) for
which f(w) 6= 0. In the following we will be interested in the number of strong and
weak nodal domains of a function f which we denote by S(f) and W(f), respectively.
Obviously, W(f) ≤ S(f).

The obvious difference between the definitions of strong and weak nodal domains
is the rôle of zero vertices, i.e. vertices where the function f vanishes. While such
vertices separate positive (or negative) strong nodal domains, they join weak nodal
domains. In fact, each zero vertex simultaneously belongs to exactly one weak positive
nodal domain and exactly one weak negative nodal domain. If two different weak
nodal domains D1 and D2 overlap, then they must have opposite signs except on zero
vertices. In the following we will only consider nodal domains of an eigenfunction of
a generalized Laplacian.

We focus our attention on the k-th eigenvalue λk with multiplicity r of a general-
ized Laplacian M. We assume throughout this paper that the eigenvalues are labeled
in ascending order starting with 1, so that

λ1 ≤ · · · ≤ λk−1 < λk = λk+1 = · · · = λk+r−1 < λk+r ≤ · · · ≤ λn. (3.1)

An eigenfunction of M affording λk will be denoted by fk. These conventions allow
us to formulate discrete versions of Courant’s Nodal Domain Theorem in a compact
way.

Theorem 3.1 (Discrete Nodal Domain Theorem, [8]). Let M be a generalized
Laplacian of a connected graph with n vertices. Then any eigenfunction fk correspond-
ing to the k-th eigenvalue λk with multiplicity r has at most k weak nodal domains
and k + r − 1 strong nodal domains:

W(fk) ≤ k and S(fk) ≤ k + r − 1 . (3.2)

4. Bipartite Graphs. Let us first consider the largest eigenvalue of a connected
bipartite graph G. We start by providing an alternative proof of a result by R. Roth:

Theorem 4.1 ([14]). Let G(V1 ∪ V2, E) be a connected bipartite graph with
n = |V1 ∪ V2| vertices and let M be a generalized Laplacian of G. Then there is an
eigenfunction f to the largest eigenvalue of M, such that f is positive on V1 and
negative on V2 or vice versa and hence satisfies W(x) = S(x) = n.

Proof. The largest eigenvalue λn of M is determined by the maximum of the
Rayleigh quotient RM(f) = 〈f,Mf〉/〈f, f〉. We may assume that f is normalized so
that 〈f, f〉 = 1; thus by (2.7) we have

RM(f) =
∑

x∈V

Mxxf(x)2 + 2
∑

xy∈E

Mxyf(x)f(y) . (4.1)

Let fn be an eigenfunction affording λn and define g(x) = |fn(x)| if x ∈ V1 and
g(x) = −|fn(x)| if x ∈ V2. We have RM(g) ≥ RM(fn); this inequality is strict if and
only if there is an edge xy ∈ E such that fn(x)fn(y) > 0. Since fn maximizes RM

we have fn(x)fn(y) ≤ 0 for all xy ∈ E. Therefore g is an eigenfunction of λn.
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Fig. 5.1. Sign pattern of an eigenfunction to the Laplacian L with maximal number of strong
nodal domains: S(f) = 5 < 6 = |V (H)|. One easily checks that for all simple eigenvalues there are
at most 4 strong nodal domains. For the only multiple eigenvalue λ5 = 4 (multiplicity r = 2) we
have f(u) = f(v). If both are nonzero S(f) ≤ 4; otherwise we have 5 strong nodal domains.

Now suppose g(x) = 0 for some x ∈ V1. Then
∑

y∼x Mxyg(y) = λng(x) = 0. Since all
neighbors of x are contained in V2 this implies g(y) = 0 for all y ∼ x. Repeating the
argument shows that g must vanish, a contradiction to 〈g, g〉 = 1. Thus g(x) > 0 and
hence either fn = g or fn = −g. Since any two neighboring vertices have opposite
strict signs, we see that each vertex x ∈ V is a strong nodal domain, and the theorem
follows.

The Discrete Nodal Domain Theorem now directly implies another result from
[14]:

Corollary 4.2. The largest eigenvalue of a generalized Laplacian of a connected
bipartite graph is simple.

Proof. By Thm. 3.1 any eigenfunction to eigenvalue λn−1 has at most n− 1 weak
nodal domains. If the largest eigenvalue is not simple, i.e., λn−1 = λn, then the
eigenfunction of Thm. 4.1 would also be an eigenfunction to λn−1, a contradiction.

5. Bipartite Subgraphs and Minors. Obviously, a graph G cannot have n
nodal domains unless it is bipartite. This suggests to use maximal bipartite subgraphs
as a way of constructing bounds on the maximal number of nodal domains. Indeed,
we have

Theorem 5.1. Let G(V, E) be a connected graph and H be an induced bipartite
subgraph of G with maximum number of vertices. Then for any eigenfunction f of a
generalized Laplacian M(G), S(f) ≤ |V (H)|.

Proof. We delete all zero vertices and for each strong nodal domain we delete
all but one vertex. The subgraph H ′ induced by the remaining vertices is bipartite
and has |V (H ′)| = S(f) vertices. By construction, |V (H ′)| ≤ |V (H)|, and the result
follows.

Unfortunately, finding a maximal induced bipartite subgraph of G is a well known
NP-complete problem, see, e.g., [11]. In general, the upper bound of Thm. 5.1 is not
sharp for the graph Laplacian L, see Fig. 5.1 for a counterexample. However, we can
show that the bound of Thm. 5.1 is sharp for generalized Laplacians of every given
graph.

Theorem 5.2. Let G be a connected graph and H be a maximal induced bipartite
subgraph of G, then there exists a generalized Laplacian M(G) such that M(G) has
an eigenfunction f with |V (H)| strong nodal domains.

Proof. Let H be a maximum induced bipartite subgraph of G with components
C1, . . . , Ck and let R be the set of remaining vertices of G. Let M1, . . . ,Mk be
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generalized Laplacians of C1, . . . , Ck such that diagonal elements of Mi are positive.
By Thm. 4.1 the largest eigenvalue µi of Mi has an eigenfunction fi with S(fi) =
|V (Ci)|. The eigenvalues µi are positive, since Tr(Mi) > 0. Thus we can assume
without loss of generality that µi = 1 (otherwise replace Mi by 1

µi

Mi). We now
define a generalized Laplacian for G by

M =















M1 0 · · · 0 BT

1

0 M2 · · · 0 BT

2

...
...

. . .
...

...
0 0 · · · Mk BT

k

B1 B2 · · · Bk MR















(5.1)

where MR is some generalized Laplacian on the graph induced by R, and the Bi

matrices with nonpositive entries. Notice that each vertex v ∈ R has (at least) two
neighbors w1 and w2 in some Cj such that fj(w1) and fj(w2) have opposite (strict)
sign, since otherwise we could construct a new bipartite graph with more vertices
then H . Thus we can choose B1, . . . ,Bk such that B1 f1(v) + · · · + Bkfk(v) = 0.
Now construct a function f by f(v) = fi(v) if v ∈ Ci and f(v) = 0 if v ∈ R.
Then a straightforward computation gives (Mf)(v) = fi(v) = f(v) if v ∈ Ci and
(Mf)(v) = (B1 f1 + · · ·+ Bkfk)(v) = 0 = f(v) if v ∈ R. Hence Mf = f and f is an

eigenfunction with
∑k

i=1
|V (Ci)| = |V (H)| nodal domains.

Remark 5.3. Theorem 5.2 suggests to use eigenfunctions of (randomly gener-
ated) generalized Laplacians as a means of constructing approximate solutions of the
maximum induced subgraph problem. However, the performance of such an approach
for large graphs is an open problem and has to be studied by means of computational
experiments.

The obvious alternative to considering induced subgraphs is to investigate graph
minors. This yields a corresponding upper bound for the number of weak nodal
domains of an arbitrary function.

Theorem 5.4. Let G(V, E) be a connected graph and G∗ = (V ∗, E∗) be a bipartite
minor with a maximum number of vertices of G such that edges are only contracted in
G and multiple edges and loops are deleted in the resulting graph, if necessary. Then
for any eigenfunction f of a generalized Laplacian M(G), W(f) ≤ |V ∗|.

Proof. By contraction all edges uv for which f(u), f(v) ≥ 0 and all edges uv with
f(u), f(v) < 0 we get a bipartite minor of G. Thus every weak positive nodal domain
and every strong negative nodal domain of f collapses into a single vertex. This minor
is bipartite and the result follows, since G∗ is bipartite minor with maximum number
of vertices.

Heiko Müller [13] has remarked that finding maximal bipartite minors is also an
NP-complete problem.

The upper bound based on a maximal bipartite minor does not hold for strong
nodal domains. For the graph in Fig. 5.2 there exists an eigenfunction of the graph
Laplacian with values (1,−1, 0, 1,−1). Thus, it has four strong nodal domains while
a maximum bipartite minor obtained by edge contractions has at most three vertices.
Figure 5.3 shows an example where the maximal number of strong domains is not
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+ −

0

− +

Fig. 5.2. Counterexample: the number of vertices of the maximum bipartite minor is not
an upper bound for the number of strong nodal domains of an eigenfunction of a Laplacian; the
eigenfunction f has 4 strong nodal domains but |V ∗| = 3.

− + − + − +

0

Fig. 5.3. Sign pattern of an eigenfunction g with maximal number of strong nodal domains for
a minor H = G/uv of graph G from Fig. 5.1: S(g) = 6 > 5 = S(f).

even monotone for minors: There exists an eigenfunction of the Laplacian of the
minor G/uv with 6 strong nodal domains whereas eigenfunctions of the Laplacian of
the original graph G in Fig. 5.1 have at most 5 strong nodal domains.

Analogously to Thm. 5.1, one could ask whether the upper bound in Thm. 5.4 is
sharp. Again the graph in Fig. 5.1 serves as a counterexample for the graph Laplacian
L, as every eigenfunction has at most 5 weak nodal domains but there exists a bipartite
minor G∗ with 6 vertices. However, it is an open question whether this bound is sharp
for generalized Laplacians.

Problem 5.5. Let G∗ be a maximum bipartite minor of a graph G as defined in
Thm. 5.4. Is there a generalized Laplacian matrix M(G) such that an eigenfunction
of M(G) has |V (G∗)| weak nodal domains?
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