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ON THE NUMBER OF TIMES WHERE A SIMPLE RANDOM WALK
REACHES A NONNEGATIVE HEIGHT

W. KATZENBEISSER and W. PANNY

University of Economics, Vienna

The purpose of this note is to generalize the distribution of the local time of
a purely binomial random walk for simple random waiks allowing for three
directions with different probabilities.

1. Introduction. Let X,;, 7 = 1,2,..., be independent and identically distributed
random variables with

PX;=1)=a PX;=0)=8 PX;=-1)=1,

where a + 3 + v = 1. Consider the random walk

k
Se=So+ ) Xj, k=1,2,...,n with S,=¢,

=1

i.e. a simple random walk in the sense of Cox and Miller (1965) starting at Sp and leading
to £ after n steps. Confining to Sy = 0 actually constitutes no restriction at all. So this
assumption will be made in the sequel.

The purpose of this paper is to discuss distributional properties of the random variable
N, (r) = [the number of visits to height r| ,

with r > 0; of course, for 7 = 0, N,,(0) counts the number of times where a simple random
walk visits the origin.

A wisit to height r occurs if Sy = Sg41 = Sgyo = ... = Sgyy = 7, and Sp_; # 1,
Sk4m+1 F# 7 for 0 < k < k+m < n. This may be summarized by saying that if there
should be one or more consecutive horizontal steps coinciding with the line y = r (i.e.
m > (), this counts only as a single visit to height r. If So = r then a visit to height
r begins at the origin by definition. Correspondingly, if S, = r then a wisit to height r
terminates at the end-point by definition. The following figure shows a sample path with
N,(0) =6, N,(1) =7, N,(2) =4, N,(3) =2, and S, = 1:
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In a recent paper Katzenbeisser and Panny (1996) derived the joint probability distribution
P(N,(r) > k,S, = £), with £ arbitrary but fixed: For all ¥ > 0 and r > 0 we have

P(Nn(r) > k,Sp =) = zk k+,~+$_¢...£)__Jﬂ ij( Jk) ( n; a, ﬂa72k ~ 2j)’ (1)

= n—r—|l—r|l-

where p = a/v and generalized trinomial coefficients (GTC) are used. They have gener-
ating function (av?+pBv+7)", ie.

(n; a],cﬂ, ’Y) — [vk](av2+ﬂv+7)n’

where [v*]P(v) denotes the coefficient of v* in P(v); a probabilistic interpretation of the
GTC’s is given by
n;a, B3,

for all admissible ¢, i.e. the probability that an unrestricted simple random walk reaches
the state £ after n steps and £ € {—n,—n+1,...,n}. Further properties of the GTC’s can
be found in Panny(1984) or B6hm (1993).

For the symmetric random walk with & = v and therefore p = 1 we get from (1)

P(Nn(r) > .S, _e)_zkz( )(n_r_’l’g‘j’ﬁ’f‘%_zj), 3)

j=20

which further can be specialized for the purely binomial random walk with o = v = 1/2
and therefore 3 = 0:

P(N,(r) > k,Sp = £) = 2~ (n_rf'];,.k, ~ k) . (4)
2

This result follows from the fact that the GTC’s and the ordinary binomial coefficients are

related by
n;1/2,0,1/2\  (n\__,
(") = () ®

cf. Panny (1984) and an application of Vandermonde’s convolution formula. Obviously,
by means of formulae (1) and (2) the conditional distribution P(N,(r) > k|S,, = £) can be
derived; specializations for r = 0,£ = 0 are discussed in Katzenbeisser and Panny (1984);
moreover, substituting n — 2n we obtain for the purely binomial random walk the well
known result due to Dwass (1967):

(o)

6
@) ©

P(N2,(0) > k|S2, = 0) = 2%




N2,(0)|S2, = 0 counts the number of times where a purely binomial random walk termi-
nating at zero after n steps returns to the origin; the moments of Ny, (0) > k|S3, = 0 are
discussed in Katzenbeisser and Panny (1986) and Kemp (1987). Statistical properties of
an alternative test to the Kolmogorov-Smirnov two sample test with equal sample sizes,
based on N5, (0)|S2, = 0 are discussed in Katzenbeisser and Hackl (1986).

The basic tool in deriving formula (1) is a generating function ®(k,¢,r;y) for the joint
probabilities P(N,,(r) > k,S,, = £) given by

Bk, t,r;y) = Y P(Nn(r) > k, 8, = )" =

n>0 7)
D ey w2 (
=2 5 g = (av? +ﬁv+’7)(1+pv2) ;

where the substitution y = g(v) = v/(av?® + Bv + 7) has been used, which considerably
simplifies the calculations. An explicit expression for P(N,(r) > k,S,, = £) can be found
by an application of Cauchy’s integral formula

1 ok, L,
P(N,(r) > k,S, = £) = m}( (ym Y gy,

which yields after the change of variables y = g(v)

PNM(r) > b 8a = 0 = o § ZEn 00 g0y,

with

(v 1-— n—
znﬂf =Y ,,+1 (av + B+ )", (8)

for further technical details cf. Katzenbeisser and Panny (1996, p.324).

This generating function can also be used to derive distributional properties of N, (r)
irrespective, where the random walk terminates after n steps, which will be done in the
sequel of this paper.

2. The distribution of N,(r). Of course, the interesting marginal probabilities
P(N,(r) > k) can be derived by summation over all admissible values for £ in the joint
distribution (1) or, equivalently, in the generating function (7):

Z@kzry D D P(Nu(r) > k,S, = )y" =

£ n>0

=Y P(Nn(r) > k)y" := &(k,39),

n>0

and P(Ny,(r) > k) is given as [y"]| ®(k, r; y). Therefore, to obtain ®(k, r; y) we have to sum
over all admissible values of £, i.e. ~n < £ < n in the corresponding generating function
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(7). However, a careful investigation of the summation shows that the contribution of all
terms with ¢ > n and ¢ < —n to this sum are zero;thus we can take

I —r| !8—1‘) ]. v
Y oyl = + .
7 l1—pv 1-w

Therefore we get for the generating function ®(k,r;y)

1 1 pv® Nk 1 v
®(k,r;y) = 250" = ——— (a? '
(k,r;y) =2 71_pv2(av +ﬁv+7)(1+pv2) v [1—p’U+1—’U] , o (9)

and we only have to extract [y"] ®(k,r;y), where the substitution (8), i.e. y = g(v) =
v/(av?+ Bv++) has to be taken into account. Technically, P(N,(r) > k) can be obtained
as

1 1 v
n 2k k+r_ 2k+4r 2 n
[v ]{ p T (v + Pu + ) Ar w0 |Top T 120))

and is given in the following
Theorem 1. Forallr > 0and £ > 0

P(Ny(r) > k) =2kph+7 > " pf (‘z’“) X

i>0

: n;a, 3,y n;a, B,y
2 [pj(n—2k—r—-2i-j) +(n—2k—r—1—2i—j)] '

320

(10)

For some special cases we get immediately: Let r = k = 0 then we find
P(NA(0) > 0) = 3 [pj(";a’ﬂf"’) N (n;a,ﬂ,’Y.)] ’
>0 n—7J n—1-—7

and because of the quasi-symmetry property of the GTC’s (Panny (1986)), i.e.
pj (n; a, ﬁs 7) anm (n; a, ﬁa 7)
n-—j n+j

P(NA(0)>0) =) [(n;nafj 7) + (: ° fl;)] -

320
=P(S, >0)+P(S, < -1)=1.

we obtain

Moreover, for arbitrary r > 0 and k = 0 we get
P(N,(r)>0)=P(S, 2r)+p"P(S, < —r—1).

4




Finally, for the simple special case r = n and k£ = 0 we find from (10)

n;a,ﬁ,v) _

P(No(n) > 0) = p,,( .

which is the probability that a simple random walk moves n consecutive steps upwards.

Formula (10) specializes for the symmetric random walk to

P(Na(r)> k) =2") (_zk) 2 [(n - 2:;f,rﬁiazz' ~j) * (n — 2k T’C‘Y’—ﬂ;a‘ 2 ‘j)] |

i>0 §>0
(11)
Moreover, for the purely binomial random walk we find
p _ k—ﬂ n — k
P(Nu(r) > k) =267 (L"‘Z'Z'J B k) , (12)

>0

which follows from formulae (11), (5), and repeated applications of Vandermonde’s convo-
lution formula. From (12) we get for example for all £ > 0

2k—n (’,’._2;_,’»_“) , m—T even

P(N,(r)=k+1) = {zk—n+1 (’i—}-:fc) , m—r odd,
2

which specializes for r = 0:

P(N,(0) = k +1) = 2%-2L%] (21%; k) |
2

showing that
P(N,(0) =k +1) =P(£(0,n) = k),

where £(z,n) = #[k : 0 < k < n,Sg = z], is the local time of the purely binomial random
walk, cf. Revesz (1990, p.95, Theorem 9.3).

3. The Moments of N, (r). In principle, the generating function ®(k,r;y) can also be
used to obtain the moments of the random variable N, (r). Muitiplication of ®(k,r;y) by
(k+1)® — k* and summation over all admissible k¥ > 0 in (9) leads to a generating function

B(r;siy) = ((k+1)° —k]®k,my) =D ) [(k+1)° = kK[P(Na(r) > k)y" =

k>0 n>0k>0

=Y EN ()",

n>0
and the s-th moment of N, (7) is given as [y"]|®(r; s;y).
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Specializing on s = 1 we get the generating function for the expectation of N, (r):

o(r; 1;y) Z@(k, TiY) = ZZP(N (r) > k)y"™ —ZE(N (r))y™.

k>0 n20k>0 n>0

Again, a careful investigation of the summation necessary shows that we can take
2 \k 2

Z ( 2p’U ) _ 1+ pu
2 T 1 — g2

k>0 1+ pv 1-pv

and we get, after taking the substitution (8) into account:

BN (r) = (7] {07 @n? + o 4 (14 ) =

Extracting this coeflicient yields the expression for the expectation of E(IN,(r)):
Theorem 2. The expectation of N, (r) is given by

SERCIETS V) ol (ke B (R |

>0 j>0

— (n;na,_ﬂ; 7) (1 + p) A0 (1 ) (:_arﬁ_';) .

j=>1

(13)

Using the quasi-symmetry property of the GTC’s, we have for the special case r = 0

E(N,(0)) = (n;a;zﬁ,’y) 1 +pz [(n @, ﬁ, ) B (n,;noz_,'_ﬂj3 7)] =

1+p

=P(Sn=0)+ 1= [P(S < ~1) = P(Sp 2 1)] .

Of course, equation (13) can be specialized for the symmetric- as well as for the purely
binomial random walk.

For the symmetric random walk we get from (13)
n; o, ﬁ; [N Qy )81 a
E(Np(r)) = ( o )+221(n_r_j). (14)

For the special case r = n we obtain immediately from (13) and (14): E(N,(n)) = a™.
For the purely binomial random walk formula (14) specializes :

2-"[(,&) +43 515 (azt ?-j)] BT ever (15)

E(Nn(r)) = { 9—n ZJ>0 4 + 2)(ﬂ_;_1_j) ,n—r odd
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which yields for r = n: E(Np(n)) = (3)".

Moreover for the special case r = 0 we can further simplify formula (15). Because of
Z;:Oj(azfj) = a(*%") for all integers o, and 3 7, (%F) = (2a+1)(*; 1) —2%*! for
a=1,2,..., cf. Riordan (1968, p.34) we can rewrite (15):

) ,n even,

(1+n)2~(
? ,nodd,n > 3.

E(Nﬂ(o)) = { 2—n+2(

n
n
2
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