

AND BUSINESS

ePubWU Institutional Repository

Walter Katzenbeisser and Wolfgang Panny

On The Number of Times where a Simple Random Walk reaches a Nonnegative Height

Working Paper

Original Citation:

Katzenbeisser, Walter and Panny, Wolfgang (1998) On The Number of Times where a Simple Random Walk reaches a Nonnegative Height. *Forschungsberichte / Institut für Statistik*, 59. Department of Statistics and Mathematics, WU Vienna University of Economics and Business, Vienna.

This version is available at: http://epub.wu.ac.at/600/

Available in ePubWU: July 2006

ePub^{WU}, the institutional repository of the WU Vienna University of Economics and Business, is provided by the University Library and the IT-Services. The aim is to enable open access to the scholarly output of the WU.

On The Number of Times where a simple Random Walk reaches a nonnegative Height

Walter Katzenbeisser, Wolfgang Panny

Institut für Statistik Wirtschaftsuniversität Wien

Forschungsberichte

Bericht 59 September 1998

http://statmath.wu-wien.ac.at/

ON THE NUMBER OF TIMES WHERE A SIMPLE RANDOM WALK REACHES A NONNEGATIVE HEIGHT

W. KATZENBEISSER and W. PANNY

University of Economics, Vienna

The purpose of this note is to generalize the distribution of the local time of a purely binomial random walk for simple random walks allowing for three directions with different probabilities.

1. Introduction. Let X_j , $j=1,2,\ldots$, be independent and identically distributed random variables with

$$\mathbf{P}(\mathbf{X}_j = 1) = \alpha, \quad \mathbf{P}(\mathbf{X}_j = 0) = \beta, \quad \mathbf{P}(\mathbf{X}_j = -1) = \gamma,$$

where $\alpha + \beta + \gamma = 1$. Consider the random walk

$$\mathbf{S}_k = \mathbf{S}_0 + \sum_{j=1}^k \mathbf{X}_j, \quad k = 1, 2, \dots, n \quad \text{with} \quad \mathbf{S}_n = \ell,$$

i.e. a simple random walk in the sense of Cox and Miller (1965) starting at S_0 and leading to ℓ after n steps. Confining to $S_0 = 0$ actually constitutes no restriction at all. So this assumption will be made in the sequel.

The purpose of this paper is to discuss distributional properties of the random variable

$$\mathbf{N}_n(r) = [\text{the number of visits to height } r]$$
,

with $r \geq 0$; of course, for r = 0, $\mathbf{N}_n(0)$ counts the number of times where a simple random walk visits the origin.

A visit to height r occurs if $\mathbf{S}_k = \mathbf{S}_{k+1} = \mathbf{S}_{k+2} = \ldots = \mathbf{S}_{k+m} = r$, and $\mathbf{S}_{k-1} \neq r$, $\mathbf{S}_{k+m+1} \neq r$ for $0 \leq k \leq k+m \leq n$. This may be summarized by saying that if there should be one or more consecutive horizontal steps coinciding with the line y = r (i.e. m > 0), this counts only as a single visit to height r. If $\mathbf{S}_0 = r$ then a visit to height r begins at the origin by definition. Correspondingly, if $\mathbf{S}_n = r$ then a visit to height r terminates at the end-point by definition. The following figure shows a sample path with $\mathbf{N}_n(0) = 6$, $\mathbf{N}_n(1) = 7$, $\mathbf{N}_n(2) = 4$, $\mathbf{N}_n(3) = 2$, and $\mathbf{S}_n = 1$:

In a recent paper Katzenbeisser and Panny (1996) derived the joint probability distribution $\mathbf{P}(\mathbf{N}_n(r) > k, \mathbf{S}_n = \ell)$, with ℓ arbitrary but fixed: For all $k \geq 0$ and $r \geq 0$ we have

$$\mathbf{P}(\mathbf{N}_n(r) > k, \mathbf{S}_n = \ell) = 2^k \rho^{k+r+\frac{(\ell-r)-|\ell-r|}{2}} \sum_{j \geq 0} \rho^j \binom{-k}{j} \binom{n; \alpha, \beta, \gamma}{n-r-|\ell-r|-2k-2j}, \quad (1)$$

where $\rho = \alpha/\gamma$ and generalized trinomial coefficients (GTC) are used. They have generating function $(\alpha v^2 + \beta v + \gamma)^n$, i.e.

$$\binom{n; \alpha, \beta, \gamma}{k} = [v^k](\alpha v^2 + \beta v + \gamma)^n,$$

where $[v^k]P(v)$ denotes the coefficient of v^k in P(v); a probabilistic interpretation of the GTC's is given by

$$\mathbf{P}(\mathbf{S}_n = \ell) = \binom{n; \alpha, \beta, \gamma}{n + \ell}$$
 (2)

for all admissible ℓ , i.e. the probability that an unrestricted simple random walk reaches the state ℓ after n steps and $\ell \in \{-n, -n+1, \ldots, n\}$. Further properties of the GTC's can be found in Panny(1984) or Böhm (1993).

For the symmetric random walk with $\alpha = \gamma$ and therefore $\rho = 1$ we get from (1)

$$\mathbf{P}(\mathbf{N}_n(r) > k, \mathbf{S}_n = \ell) = 2^k \sum_{j \ge 0} {\binom{-k}{j}} {\binom{n; \alpha, \beta, \alpha}{n - r - |\ell - r| - 2k - 2j}}, \tag{3}$$

which further can be specialized for the purely binomial random walk with $\alpha = \gamma = 1/2$ and therefore $\beta = 0$:

$$\mathbf{P}(\mathbf{N}_n(r) > k, \mathbf{S}_n = \ell) = 2^{k-n} \begin{pmatrix} n-k \\ \frac{n-r-|\ell-r|}{2} - k \end{pmatrix}. \tag{4}$$

This result follows from the fact that the GTC's and the ordinary binomial coefficients are related by

$$\binom{n;1/2,0,1/2}{2m} = \binom{n}{m} 2^{-n}, \tag{5}$$

cf. Panny (1984) and an application of Vandermonde's convolution formula. Obviously, by means of formulae (1) and (2) the conditional distribution $\mathbf{P}(\mathbf{N}_n(r) > k | \mathbf{S}_n = \ell)$ can be derived; specializations for $r = 0, \ell = 0$ are discussed in Katzenbeisser and Panny (1984); moreover, substituting $n \to 2n$ we obtain for the purely binomial random walk the well known result due to Dwass (1967):

$$\mathbf{P}(\mathbf{N}_{2n}(0) > k | \mathbf{S}_{2n} = 0) = 2^k \frac{\binom{2n-k}{n-k}}{\binom{2n}{n}}.$$
 (6)

 $\mathbf{N}_{2n}(0)|\mathbf{S}_{2n}=0$ counts the number of times where a purely binomial random walk terminating at zero after n steps returns to the origin; the moments of $\mathbf{N}_{2n}(0) > k|\mathbf{S}_{2n}=0$ are discussed in Katzenbeisser and Panny (1986) and Kemp (1987). Statistical properties of an alternative test to the Kolmogorov-Smirnov two sample test with equal sample sizes, based on $\mathbf{N}_{2n}(0)|\mathbf{S}_{2n}=0$ are discussed in Katzenbeisser and Hackl (1986).

The basic tool in deriving formula (1) is a generating function $\Phi(k, \ell, r; y)$ for the joint probabilities $\mathbf{P}(\mathbf{N}_n(r) > k, \mathbf{S}_n = \ell)$ given by

$$\Phi(k,\ell,r;y) = \sum_{n\geq 0} \mathbf{P}(\mathbf{N}_{n}(r) > k, \mathbf{S}_{n} = \ell) y^{n} =
= 2^{k} \frac{\rho^{r+\frac{|\ell-r|+(\ell-r)}{2}}}{\gamma} \frac{v^{r+|\ell-r|}}{1 - \rho v^{2}} (\alpha v^{2} + \beta v + \gamma) \left(\frac{\rho v^{2}}{1 + \rho v^{2}}\right)^{k},$$
(7)

where the substitution $y = g(v) = v/(\alpha v^2 + \beta v + \gamma)$ has been used, which considerably simplifies the calculations. An explicit expression for $\mathbf{P}(\mathbf{N}_n(r) > k, \mathbf{S}_n = \ell)$ can be found by an application of Cauchy's integral formula

$$\mathbf{P}(\mathbf{N}_n(r) > k, \mathbf{S}_n = \ell) = \frac{1}{2\pi i} \oint \frac{\Phi(k, \ell, r; y)}{y^{n+1}} dy,$$

which yields after the change of variables y = g(v)

$$\mathbf{P}(\mathbf{N}_n(r) > k, \mathbf{S}_n = \ell) = \frac{1}{2\pi i} \oint \frac{\Phi(k, \ell, r; g(v))}{g^{n+1}(v)} g'(v) dv,$$

with

$$\frac{g'(v)}{g^{n+1}} = \gamma \frac{1 - \rho v^2}{v^{n+1}} (\alpha v^2 + \beta v + \gamma)^{n-1}, \tag{8}$$

for further technical details cf. Katzenbeisser and Panny (1996, p.324).

This generating function can also be used to derive distributional properties of $N_n(r)$ irrespective, where the random walk terminates after n steps, which will be done in the sequel of this paper.

2. The distribution of $N_n(r)$. Of course, the interesting marginal probabilities $P(N_n(r) > k)$ can be derived by summation over all admissible values for ℓ in the joint distribution (1) or, equivalently, in the generating function (7):

$$\sum_{\ell} \Phi(k, \ell, r; y) = \sum_{\ell} \sum_{n \geq 0} \mathbf{P}(\mathbf{N}_n(r) > k, \mathbf{S}_n = \ell) y^n =$$

$$= \sum_{n \geq 0} \mathbf{P}(\mathbf{N}_n(r) > k) y^n := \Phi(k, r; y),$$

and $P(N_n(r) > k)$ is given as $[y^n] \Phi(k, r; y)$. Therefore, to obtain $\Phi(k, r; y)$ we have to sum over all admissible values of ℓ , i.e. $-n \le \ell \le n$ in the corresponding generating function

(7). However, a careful investigation of the summation shows that the contribution of all terms with $\ell > n$ and $\ell < -n$ to this sum are zero; thus we can take

$$\sum_{\ell} \rho^{\frac{|\ell-r|+(\ell-r)}{2}} v^{|\ell-r|} = \frac{1}{1-\rho v} + \frac{v}{1-v}.$$

Therefore we get for the generating function $\Phi(k, r; y)$

$$\Phi(k, r; y) = 2^{k} \rho^{r} \frac{1}{\gamma} \frac{1}{1 - \rho v^{2}} (\alpha v^{2} + \beta v + \gamma) \left(\frac{\rho v^{2}}{1 + \rho v^{2}} \right)^{k} v^{r} \left[\frac{1}{1 - \rho v} + \frac{v}{1 - v} \right], \quad (9)$$

and we only have to extract $[y^n] \Phi(k, r; y)$, where the substitution (8), i.e. $y = g(v) = v/(\alpha v^2 + \beta v + \gamma)$ has to be taken into account. Technically, $\mathbf{P}(\mathbf{N}_n(r) > k)$ can be obtained as

$$[v^{n}]\left\{2^{k}\rho^{k+r}v^{2k+r}(\alpha v^{2}+\beta v+\gamma)^{n}\frac{1}{(1+\rho v^{2})^{k}}\left[\frac{1}{1-\rho v}+\frac{v}{1-v}\right]\right\},\,$$

and is given in the following

Theorem 1. For all $r \geq 0$ and $k \geq 0$

$$\mathbf{P}(\mathbf{N}_{n}(r) > k) = 2^{k} \rho^{k+r} \sum_{i \geq 0} \rho^{i} {\binom{-k}{i}} \times \sum_{i \geq 0} \left[\rho^{j} {\binom{n; \alpha, \beta, \gamma}{n - 2k - r - 2i - j}} + {\binom{n; \alpha, \beta, \gamma}{n - 2k - r - 1 - 2i - j}} \right].$$

$$(10)$$

For some special cases we get immediately: Let r = k = 0 then we find

$$\mathbf{P}(\mathbf{N}_n(0) > 0) = \sum_{j>0} \left[\rho^j \binom{n; \alpha, \beta, \gamma}{n-j} + \binom{n; \alpha, \beta, \gamma}{n-1-j} \right] ,$$

and because of the quasi-symmetry property of the GTC's (Panny (1986)), i.e.

$$\rho^{j}\binom{n;\alpha,\beta,\gamma}{n-j} = \binom{n;\alpha,\beta,\gamma}{n+j}$$

we obtain

$$\mathbf{P}(\mathbf{N}_{n}(0) > 0) = \sum_{j \ge 0} \left[\binom{n; \alpha, \beta, \gamma}{n+j} + \binom{n; \alpha, \beta, \gamma}{n-1-j} \right] =$$
$$= \mathbf{P}(\mathbf{S}_{n} > 0) + \mathbf{P}(\mathbf{S}_{n} < -1) = 1.$$

Moreover, for arbitrary r > 0 and k = 0 we get

$$\mathbf{P}(\mathbf{N}_n(r) > 0) = \mathbf{P}(\mathbf{S}_n \ge r) + \rho^r \mathbf{P}(\mathbf{S}_n \le -r - 1).$$

Finally, for the simple special case r = n and k = 0 we find from (10)

$$\mathbf{P}(\mathbf{N}_n(n) > 0) = \rho^n \binom{n; \alpha, \beta, \gamma}{0} = \alpha^n,$$

which is the probability that a simple random walk moves n consecutive steps upwards.

Formula (10) specializes for the symmetric random walk to

$$\mathbf{P}(\mathbf{N}_{n}(r) > k) = 2^{k} \sum_{i \geq 0} {\binom{-k}{i}} \sum_{j \geq 0} \left[{\binom{n; \alpha, \beta, \alpha}{n - 2k - r - 2i - j}} + {\binom{n; \alpha, \beta, \alpha}{n - 2k - r - 1 - 2i - j}} \right].$$

$$(11)$$

Moreover, for the purely binomial random walk we find

$$\mathbf{P}(\mathbf{N}_n(r) > k) = 2^{k-n} \sum_{j \ge 0} {n-k \choose \left\lfloor \frac{n-r-j}{2} \right\rfloor - k}, \tag{12}$$

which follows from formulae (11), (5), and repeated applications of Vandermonde's convolution formula. From (12) we get for example for all $k \ge 0$

$$\mathbf{P}(\mathbf{N}_{n}(r) = k+1) = \begin{cases} 2^{k-n} {n-k \choose \frac{n+r}{2}}, & n-r \text{ even} \\ 2^{k-n+1} {n-1-k \choose \frac{n+r-1}{2}}, & n-r \text{ odd}, \end{cases}$$

which specializes for r = 0:

$$\mathbf{P}(\mathbf{N}_n(0) = k+1) = 2^{k-2\lfloor \frac{n}{2} \rfloor} \binom{2\lfloor \frac{n}{2} \rfloor - k}{\lfloor \frac{n}{2} \rfloor},$$

showing that

$$P(N_n(0) = k + 1) = P(\xi(0, n) = k)$$

where $\xi(x,n) = \#[k:0 < k \le n, \mathbf{S}_k = x]$, is the local time of the purely binomial random walk, cf. Revesz (1990, p.95, Theorem 9.3).

3. The Moments of $\mathbf{N}_n(r)$. In principle, the generating function $\Phi(k,r;y)$ can also be used to obtain the moments of the random variable $\mathbf{N}_n(r)$. Multiplication of $\Phi(k,r;y)$ by $(k+1)^s - k^s$ and summation over all admissible $k \geq 0$ in (9) leads to a generating function

$$\begin{split} \Phi(r;s;y) &= \sum_{k\geq 0} [(k+1)^s - k^s] \Phi(k,r;y) = \sum_{n\geq 0} \sum_{k\geq 0} [(k+1)^s - k^s] \mathbf{P}(\mathbf{N}_n(r) > k) y^n = \\ &= \sum_{n\geq 0} \mathbf{E}(\mathbf{N}_n^s(r)) y^n \,, \end{split}$$

and the s-th moment of $\mathbf{N}_n(r)$ is given as $[y^n]\Phi(r;s;y)$.

Specializing on s=1 we get the generating function for the expectation of $\mathbf{N}_n(r)$:

$$\Phi(r;1;y) = \sum_{k\geq 0} \Phi(k,r;y) = \sum_{n\geq 0} \sum_{k\geq 0} \mathbf{P}(\mathbf{N}_n(r) > k) y^n = \sum_{n\geq 0} \mathbf{E}(\mathbf{N}_n(r)) y^n.$$

Again, a careful investigation of the summation necessary shows that we can take

$$\sum_{k \ge 0} \left(\frac{2\rho v^2}{1 + \rho v^2} \right)^k = \frac{1 + \rho v^2}{1 - \rho v^2}$$

and we get, after taking the substitution (8) into account:

$$\mathbf{E}(\mathbf{N}_{n}(r)) = [v^{n}] \left\{ \rho^{r} v^{r} (\alpha v^{2} + \beta v + \gamma)^{n} (1 + \rho v^{2}) \frac{1}{1 - \rho v} \frac{1}{1 - v} \right\}.$$

Extracting this coefficient yields the expression for the expectation of $\mathbf{E}(\mathbf{N}_n(r))$:

Theorem 2. The expectation of $N_n(r)$ is given by

$$\mathbf{E}(\mathbf{N}_{n}(r)) = \rho^{r} \sum_{i \geq 0} \rho^{i} \sum_{j \geq 0} \left[\binom{n; \alpha, \beta, \gamma}{n - r - i - j} + \rho \binom{n; \alpha, \beta, \gamma}{n - r - 2 - i - j} \right] =$$

$$= \rho^{r} \binom{n; \alpha, \beta, \gamma}{n - r} + \frac{\rho^{r} (1 + \rho)}{1 - \rho} \sum_{j \geq 1} (1 - \rho^{j}) \binom{n; \alpha, \beta, \gamma}{n - r - j}.$$
(13)

Using the quasi-symmetry property of the GTC's, we have for the special case r=0

$$\mathbf{E}(\mathbf{N}_{n}(0)) = \binom{n; \alpha, \beta, \gamma}{n} + \frac{1+\rho}{1-\rho} \sum_{j\geq 1} \left[\binom{n; \alpha, \beta, \gamma}{n-j} - \binom{n; \alpha, \beta, \gamma}{n+j} \right] =$$

$$= \mathbf{P}(\mathbf{S}_{n} = 0) + \frac{1+\rho}{1-\rho} \left[\mathbf{P}(\mathbf{S}_{n} \leq -1) - \mathbf{P}(\mathbf{S}_{n} \geq 1) \right].$$

Of course, equation (13) can be specialized for the symmetric- as well as for the purely binomial random walk.

For the symmetric random walk we get from (13)

$$\mathbf{E}(\mathbf{N}_n(r)) = \binom{n; \alpha, \beta, \alpha}{n-r} + 2\sum_{j \ge 1} j \binom{n; \alpha, \beta, \alpha}{n-r-j}. \tag{14}$$

For the special case r = n we obtain immediately from (13) and (14): $\mathbf{E}(\mathbf{N}_n(n)) = \alpha^n$. For the purely binomial random walk formula (14) specializes:

$$\mathbf{E}(\mathbf{N}_{n}(r)) = \begin{cases} 2^{-n} \left[\left(\frac{n}{n-r} \right) + 4 \sum_{j \geq 1} j \left(\frac{n}{n-r-j} \right) \right], n-r & \text{even} \\ 2^{-n} \sum_{j \geq 0} (4j+2) \left(\frac{n}{n-r-1-j} \right), n-r & \text{odd} \end{cases}$$
 (15)

which yields for r = n: $\mathbf{E}(\mathbf{N}_n(n)) = (\frac{1}{2})^n$.

Moreover for the special case r=0 we can further simplify formula (15). Because of $\sum_{j=0}^{\alpha} j \binom{2\alpha}{\alpha-j} = \alpha \binom{2\alpha-1}{\alpha}$ for all integers α , and $\sum_{j=0}^{\alpha} j \binom{2\alpha+1}{\alpha-j} = (2\alpha+1) \binom{2\alpha-1}{\alpha} - 2^{2\alpha-1}$ for $\alpha=1,2,\ldots$, cf. Riordan (1968, p.34) we can rewrite (15):

$$\mathbf{E}(\mathbf{N}_n(0)) = \begin{cases} (1+n)2^{-n}\binom{n}{\frac{n}{2}}, n \text{ even }, \\ n2^{-n+2}\binom{n-2}{\frac{n-1}{2}}, n \text{ odd }, n \geq 3. \end{cases}$$

REFERENCES

- BÖHM, W. [1993] Markovian Queuing Systems in Discrete Time, Mathematical Systems in Economics, Vol.137, Hain, Frankfurt/Main.
- COX, D. R. and MILLER, H. D. [1968] The Theory of Stochastic Processes, Methuen, London.
- DWASS, M. [1967] Simple random walk and rank order statistics, Ann. Math. Statist. 38, 1042–1053.
- KATZENBEISSER, W. and PANNY, W. [1984] Asymptotic results on the maximal deviation of simple random walks, *Stochastic Processes Appl.* 18, 263–275.
- KATZENBEISSER, W. and PANNY, W. [1986] A note on the higher moments of the random variable T associated with the number of returns of a simple random walk, Adv. Appl. Prob., 18, 279-282
- KATZENBEISSER, W. and HACKL, P. [1986] An alternative to the Kolmogorov-Smirnov two-sample test, Comm.Statist.-Theor.Meth., 15(4), 1163-1177
- KATZENBEISSER, W. and PANNY, W. [1996] Simple random walk statistics. Part I: Discrete time results, *J.Appl.Prob.*, **33**, 311-330.
- KEMP, A. W. [1987] The moments of the random variable for the number of returns of a simple random walk. Adv. Appl. Prob., 19, 505-507.
- MOHANTY, S. G. [1979] Lattice Path Counting and Applications, Academic Press, New York.
- PANNY, W. [1984] The Maximal Deviation of Lattice Paths, Athenäum/Hain/Hanstein, Königstein/Ts.
- REVESZ, P. [1990] Random Walk in Random and Non-Random Environments, World Scientific, Singapore.
- RIORDAN, J. [1968] Combinatorical Identities, J.Wiley&Sons, New York.