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Abstract

Emanating from classical Weibull mixture models we propose a framework for cluster-
ing survival data with various proportionality restrictions imposed. By introducing mixtures
of Weibull proportional hazards models on a multivariate data set a parametric cluster ap-
proach based on the EM-algorithm is carried out. The problem of non-response in the data
is considered. The application example is a real life data set stemming from the analysis of a
world-wide operating eCommerce application. Sessions are clustered due to the dwell times a
user spends on certain page-areas. The solution allows for the interpretation of the navigation
behavior in terms of survival and hazard functions. A software implementation by means of
an R package is provided.

Keywords: proportional hazards models, Weibull mixture models, EM-algorithm, incomplete data,
Web usage mining.

1. Introduction

In this paper we extend the idea of probabilistic clustering to observed survival times or, as in our
example, dwell times. Within a web mining context we postulate that there exist a number of
different segments of users generating different dwell time patterns over the sessions. Within each
segment the user behavior with respect to the dwell times is similar in some sense; between these
segments the user behavior is different. Since the segments themselves are unknown, our approach
leads us to the problem of unobserved heterogeneity within the context of survival data (Heckman
and Singer 1984; Honoré 1990) and it is solved by means of a parametric clustering approach.
To achieve a parametric clustering some assumptions concerning the distribution have to be estab-
lished. Our core assumption is that dwell times are Weibull distributed with different parameters
over the clusters (i.e., a Weibull mixture model). Methodological and application issues are elab-
orated in the next sections. In addition, we propose a more parsimonious modeling strategy by
using mixture Weibull proportional hazards models (WPHM). To estimate the parameters, the
EM-algorithm (Dempster, Laird, and Rubin 1977; McLachlan and Krishnan 1997; Ramon, Albert,
and Baxter 1995) is used and since not every page is visited by every user, we have to take into
account the problem of incomplete data.
From the application perspective we focus on the segmentation of users according to their dwell
times on various areas of a web-site. This means that we aggregate the often complex and spacious
topology of the site into a set of non-overlapping areas. A session is then characterized by a vector
of dwell times a user spends when visiting the according area of the site.
Recent research in web usage mining has focused on various methods of modeling user navigation
history on web sites. Most of these approaches deal with the traversal order of pages within a
session. The methodology applied covers a wide spectrum: hidden Markov chain models, sequence
alignment methods, hypertext probabilistic grammars, semi-structured temporal graphs, and se-
quential association analysis. Notable works are provided by Smyth (1999), Cadez, Heckerman,
Meek, Smyth, and White (2001), and Ypma and Heskes (2002). The main idea behind the men-
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tioned papers is the application of model-based clustering procedures which are primarily defined
by mixture models. Each single mixture component corresponds to a cluster. Within these com-
ponents the modeling idea is that of a Markov chain, i.e., each session is regarded as a finite state
Markov model. Clusters are formed on the base of the navigation pattern (clickstream) and the
resulting transition probabilities.

However, these approaches do not take into account the dwell times. The potential of approaches
focusing on dwell time analyses is well-known in methodological marketing literature. For instance,
Montgomery, Li, Srinivasan, and Liechty (2004) propose a dynamic multinomial probit model of
navigation patterns which leads to a remarkable increase of conversion rates. Park and Fader (2004)
developed multivariate exponential gamma models which enhance cross-site customer acquisition.

In this paper, first, the analogy of“dwell times” in web usage mining and“survival times” in medical
statistics is taken into consideration. This view opens a large framework of well-known survival
models for the analysis of web usage patterns. In a second step methodological issues pertaining to
multivariate mixtures of Weibull proportional hazard models with incomplete data are developed.
Dealing with missing values is an important aspect for our application since usually a user does
not visit all possible pages on a host. First elaborations can be found in Mair and Hudec (2008).
All practical computations are performed with the mixPHM package (Mair and Hudec 2007) in R
(R Development Core Team 2008).

2. Webshop Data for Session Dwell Times

The whole methodology as described in Section 3 is driven by a project in cooperation with a
world-wide operating Austrian eCommerce company. The main goal of this running project is to
develop successful web mining strategies in the context of experimental research and to implement
the analysis tools into the business process to improve the efficiency of their shop in the long run.

The data collection and preparation is carried out in an automated way. Basically, when visiting
the company host, each subject leaves a “trace” by means of a server protocol. In web mining
applications this type of data is commonly referred to as “clickstream”. Hence, the source of the
data are log-files (using pixel-log methodology) provided by the company’s webserver. These log-
files include various fields such as date, time, client IP, server IP, cookie information etc. in a
rather unstructured manner. At the end each log-file is a string which has to be parsed in order
to analyze the data statistically. This parsing process is carried out by means of a customized
ETL-tool (Extract, Transform, Load). Note that the server provides one log-file for each day.
Each page impression (PI) accomplished by a visitor of the shop produces one line in the log-file.

Subsequent to the ETL process each pixel-log is structured in a file with over 100 fields. Having
this raw file on a PI-level integrated into a database, the following crucial steps are executed in
order to have a flat file appropriate for dwell time analysis.

The first step is to coarsen the topology of the web-site which has a granularity much too fine (e.g., a
single web page for each offered product), as to find reasonable navigation paths. Hence, the single
pages are categorized into page-types (i.e., site-areas) by means of content-driven considerations.
For instance, pages of products of a certain type are merged into one site-area, all pages during
the checkout process are combined, etc.).

The second relevant information for our purposes is the time stamp of the PI. Based on the time
that a particular page A is opened until the time the next page B is called, the dwell time for
page A can be computed straightforwardly. At the end of this step we have an assignment to a
particular site-area and the corresponding dwell time for each PI. Anticipatory to the subsequent
computation of the likelihood it is important to point out that in our example the dwell times
between different page areas do not show any noticeable correlation structure.

In most web mining applications the researcher is not interested in doing analyses on a PI-level
but rather on a session/user level. By using cookies it is easy to identify which PI belongs to
which session. The user identification based on multiple sessions is somewhat more tricky but in
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practice it is accomplished again by cookies or by IP (if it is static). We focus our analyses on the
user level but it is straightforward to apply our algorithm to a session level; it is just a matter of
data aggregation/preparation.
Once having the data at a session level the final aggregation step is carried out. Obviously,
a particular page-type can be visited more times during a session. In our approach we want to
cluster the sessions due to their joint dwell times on the site-areas and thus, corresponding multiple
dwell times on the same page-type are added. Finally, we have a flat file of i = 1, . . . , N unique
sessions in the rows and p = 1, . . . , P site-areas in the columns (see Section 4). Since not each
page-type will be visited by each user, our approach must be able to handle a large amount of
informative missing values. These missings provide important information for achieving the final
cluster solution, namely that a certain page-type was not visited within the corresponding session.

3. Model Specification and Estimation

3.1. Weibull Mixtures and Proportional Hazard Models

Since survival analysis focuses on duration times until some event occurs (e.g., the death of a
patient in medical applications) it seems straightforward to apply these concepts to the analysis
of dwell times in web usage mining applications.
With regard to dwell time distributions we assume that they follow a Weibull distribution with
density function f(t) = λγtγ−1 exp(−λtγ), where λ is the scale parameter and γ the shape pa-
rameter. To model the heterogeneity of the observed population, we assume K latent segments of
sessions/users. Since the Weibull assumption holds within all segments, different segments exhibit
different parameter values. This leads to the underlying idea of a Weibull mixture model. For each
page category p the resulting mixture density is of the following form:

f(tp) =
K∑
k=1

πkf(tp;λpk, γpk) =
K∑
k=1

πkλpkγpkt
γpk−1
p exp(−λpkt

γpk
p ) (1)

where tp represents the dwell time on page category p with mixing proportions πk > 0 which
corresponds to the relative size of each segment k such that

∑K
k=1 πk = 1.

Assuming that the dwell times over various page areas are independent, the joint likelihood expres-
sion can be determined straightforwardly. The parameters are estimated with the EM-algorithm
and corresponding identifiability and convergence issues can be found in Ishwaran (1996) and
Jewell (1982).
To reduce the number of parameters involved we impose restrictions on the hazard rates of different
mixture components and pages, respectively. An common way of doing this is offered by the
concept of proportional hazards models (PHM) as for instance given in Kalbfleisch and Prentice
(1980), Cox and Oakes (1984), Collett (2003):

h(t; z) = h0(t) exp(zβ). (2)

This model assumes that the underlying hazard rate is a function of the baseline hazard h0(t) and
of covariates z with corresponding regression parameters β. Based on the distribution assumption
h0(t) is specified. For the Weibull distribution the PHM above becomes

h(t; z) = λγtγ−1 exp(zβ) (3)

which is called WPHM. If the Weibull assumption may not be appropriate, on the one hand less
parameterized distribution such as exponential and Rayleigh can be modeled. On the other hand
less restrictive models such as semi-parametric Cox regression (Cox 1972) can be used where h0(t)
is nonparametric. In WPHM the model parameters λ, γ, and β can be estimated jointly by
maximum likelihood.
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3.2. Parsimonious Modeling Strategies

Within the context of our data example we propose five different models with respect to dif-
ferent proportionality restrictions in the hazard rates. Hence, by imposing such restrictions the
parameters are reduced with respect to the Weibull mixture model. In order to have a common
WPHM framework, the Weibull mixture model can be stated as WPHM: The hazard of session
si belonging to component k on page category p is

h(ti,p; 1) = λk,pγk,pt
γk,p−1
i,p exp(β1). (4)

The parameter matrices can be represented jointly as

Λ =

 λ1,1 . . . λ1,P

...
. . .

...
λK,1 . . . λK,P


for the scale parameters and

Γ =

 γ1,1 . . . γ1,P

...
. . .

...
γK,1 . . . γK,P


for the shape parameters. Both the scale and the shape parameters can vary freely and there
is no assumption of hazard proportionality. The number of parameters is 2 × K × P and they
correspond to Weibull mixture model parameters.
The first restriction we impose is proportionality of hazards across groups. This can be modeled
by imposing the latent component vector g as a contrast. This vector is of length N and assigns
each session to a cluster k. Hence, we model h(t; g). Again, the elements of the matrix Λ
of scale parameters can vary freely, whereas the shape parameter matrix reduces to the vector
Γ = (γ1,1, . . . , γ1,P ). Thus, the shape parameters are constant over the components and the
number of parameters is reduced to K × P + P .
If we impose page contrasts in the WPHM, i.e., h(t;p), as before the elements of Λ are not
restricted at all but this time the shape parameters are constant over the pages, i.e., Γ =
(γ1,1, . . . , γ1,K). The total number of parameters is now K × P +K.
The most restrictive model is the main-effects model h(t; g + p) where we impose proportionality
restrictions on both Λ and Γ such that the total number of parameters is reduced to K + P .
For the scale parameter matrix proportionality restrictions of this model hold row-wise as well as
column-wise:

Λ =

 λ1 c2λ1 . . . cPλ1

...
...

. . .
...

λK c2λK . . . cPλK

 =


λ1 . . . λP
d2λ1 . . . d2λP

...
. . .

...
dKλ1 . . . dKλ1

 .

The c- and d-scalars are proportionality constants over the pages and components, respectively.
The shape parameters are constant over the components and pages. Thus, Γ reduces to one shape
parameter γ which implies that the hazard rates are proportional over components and pages.
To relax the rather restrictive assumption with respect to Λ we can extend the main effects model
by the corresponding component-page interaction term, i.e., h(t; g ∗ p). The elements of Λ can
vary freely whereas Γ is again reduced to one parameter only, leaving us with a total number of
parameters of K×P+1. With respect to the hazard rate this relaxation implies again proportional
hazards over components and pages.

3.3. EM-Estimation of the Mixture Proportional Hazard Models

Since our approach is primarily intended for modeling dwell times on web pages, we have to take
into account that many observations will not have a dwell time because certain pages are not
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frequented by users. In other words, not many users will visit each page-area. This incomplete
data problem is solved in the following way.
In mixture modeling the maximum likelihood equation typically consists of the joint density func-
tion composed of the single components with the corresponding mixture weights (McLachlan and
Peel 2000). For establishing the likelihood function, i.e., taking the product over the joint prob-
ability density over all individuals (sessions), it is required that the data in the multidimensional
space are complete over all variables. Otherwise, the session is excluded case-wise. For our case
this would mean that nearly every session would be excluded from the analysis since very few
users visited all page categories. Setting a missing failure time equal to zero would not be feasible,
since the Weibull distribution is defined only for t > 0.
To solve this issue we introduce a “prior” probability that an element (session) si of component k
visits page p. It is denoted by τp(si|k) and estimated by the corresponding relative frequency. Tak-
ing into account the Weibull dwell-time assumption, the resulting “posterior” probability φp(si|k)
for session si being in component k (for each page p) is

φp(si|k) =
{
f(tp; λ̂k,p, γ̂k,p)τp(si|k) if p was visited by si
1− τp(si|k) if p was not visited by si

(5)

where tp are the observed dwell times on page p. Correspondingly, f(tp; λ̂k,p, γ̂k,p) is the Weibull
density with parameters λ̂k,p and γ̂k,p estimated using WPHM presented above. Note that
prior/posterior are double-quoted since they are not priors/posteriors in the classical EM-context
such as in (7). To establish the page joint likelihood, independence of the dwell times over pages
is assumed and thus,

L(si|k) =
P∏
p=1

φp(si|k). (6)

By looking at each session si separately, a vector of likelihood values

Ψi = (L(si|k = 1), L(si|k = 2), . . . , L(si|k = K))

results. These are the final values in the E-step: The likelihood that a certain session si belongs
to group k = 1, . . . ,K.
In the subsequent M-step there are several possibilities of achieving an assignment of a session to
a component. The classical EM-algorithm computes the posterior probabilities

ν(si|k) =
L(si|k)∑K
k=1 L(si|k)

(7)

that session si is assigned to component k = 1, . . . ,K. Straightforwardly the posterior computation
implies that

∑K
k=1 ν(si|k) = 1. By applying this classical EM-strategy, at the end we have a

probabilistic or “soft” assignment of the sessions to the components.
Alternative ways such as proposed by Celeaux and Govaert (1992) provide a deterministic or
“crisp” cluster assignment by a modified M-step: In their classification EM (CEM) each session is
assigned deterministically to a cluster due to the maximal posterior probability. If the posteriors
are quoted as vector

ν(si) = (ν(si|k = 1), ν(si|k = 2), . . . , ν(si|k = K)) , (8)

the assignment for each si is carried out due to supk (ν(si)). Note that in the CEM the com-
putation of the posterior matrix ν = (ν(s1),ν(s2), . . . ,ν(sN )) can be omitted since the group
assignment can be achieved by supk (Ψi). This strategy leads to a remarkable decrease in compu-
tation time and hence, if a probabilistic cluster assignment is not necessarily needed, this strategy
is recommended for large data set applications typical for web mining. Alternatively, a stochastic
CEM version provides a corresponding randomized group assignment which takes into account the
probability values of the posteriors.
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Irrespective of the M-strategy used, the joint likelihood value can be computed by means of the
following steps. Let us denote

L̃(si) = sup
k

(Ψi) (9)

as the maximum likelihood value for si over the groups. Correspondingly, the joint log-likelihood
` becomes

` =
N∑
i=1

log L̃(si). (10)

The EM iterations are carried out in the following way: We start with an initial group assignment
vector g(0) for CEM or a posterior matrix ν(0) for classical EM. Within each iteration l the

parameter matrices Λ̂
(l)

and Γ̂
(l)

are estimated in the E-step. Based on these estimators the
session-wise likelihood values Ψ(l)

i are computed. In the M-step the group vector g(l) and ν(l),
respectively, are updated which in turn act as starting values for iteration l + 1. Finally, the
log-likelihood value `(l) is calculated. The iteration stops when a convergence criterion such as∣∣`(l) − `(l−1)

∣∣ ≤ ε is reached.

4. Clustering Webshop Users

Now we demonstrate a prototypical way of performing parametric session/user clustering with
corresponding interpretation of various restricted models. All computations are performed with
the mixPHM package in R. Emanating from the data file prepared according the steps described in
Section 2 a sample of 10000 users is drawn. To be able to visualize the results properly, we limit our
computations to a 6-cluster solution and to the following 6 site areas: search page which allows for
searching products, gift finder where one can get a recommendation of gifts for special occasions,
three areas of product groups, and checkout which includes all the pages from the shopping basket
until the final payment. Note that due to nondisclosure agreements the product pages are made
anonymous. The input data structure webdata (N = 10000, P = 6) with the dwell times in
seconds is of the following form:

search giftfinder product1 product2 product3 checkout
User1 785 2180 127 3388 2 NA
User2 94 63 51 1434 174 450
User3 NA 115 195 NA 99 NA
User4 70 8 546 621 10 NA
User5 79 1301 79 4 4 NA
...

In this section we focus on the interpretation of the different models in the context of web usage
mining. For K = 6 all different models are computed and the hazard behavior will be examined.
The mixture Weibull model will be denoted as Msep since all parameters are estimated separately
from each other. It is the most general model. Mp includes the page contrasts; the hazard rates
are proportional over pages. Mg includes the group contrast; the hazards are proportional over
groups. Mp+g is the main effects model which leads to hazard proportionality over groups and
pages and Mp∗g accounts for interactions. First, we look closer at the results of the unrestricted
Msep. The cluster mean dwell times for represented as profile plot in Figure 1 are the following:

search giftfinder product1 product2 product3 checkout
Cluster 1 41.95 116.57 40.36 787.12 19.03 9.73
Cluster 2 89.07 162.81 404.12 809.56 50.25 662.87
Cluster 3 46.18 98.16 398.56 38.67 55.76 3.73
Cluster 4 307.65 331.93 677.49 858.63 206.03 4.89
Cluster 5 7.99 83.33 497.35 1118.92 158.33 270.02
Cluster 6 44.03 128.79 519.87 527.63 115.81 135.93
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Figure 1: Cluster Profiles

Inspecting the mean dwell times we see that members of Cluster 4 have throughoutly high dwell
times except for the checkout page. The highest dwell time on this page is achieved by Cluster 2
followed by Cluster 5. Cluster 1 and Cluster 3 have considerably low dwell times depending on the
page-type. For an external validation the covariate “buyer” (yes/no) is taken into account. A cor-
responding cross-classification with the deterministic cluster solution of Msep (and all subsequent
models) with “buyer” leads to Table 1.

Table 1: Cluster Evaluation with Buyers

Model Msep Mp Mg Mg∗p
Buyer no yes no yes no yes no yes

Cluster 1 1331 244 1305 396 836 1112 1109 511
Cluster 2 143 1634 884 569 2130 214 111 539
Cluster 3 1550 145 194 1168 1076 949 1789 477
Cluster 4 1573 135 1286 417 981 401 498 478
Cluster 5 895 1086 1011 959 937 364 1291 159
Cluster 6 903 361 1715 96 435 565 1597 1441

Obviously, for Msep Cluster 2 is mainly decomposed by buyers; Cluster 1, 3, and 4 mainly by
non-buyers. Cluster 5 is also interesting since we have a considerably large amount of buyers in
there as well. Basically, at this point the interpretation in an “ordinary” cluster analysis such
as k-means would stop. With the proposed parametric survival approach we can examine (apart
from probabilistic cluster assignment) interesting clusters in terms of their navigation behavior;
i.e., the relative risk to leave a certain page depending on the dwell time. We can produce the
hazard plots from two different perspectives: “group perspective”, where for each cluster the
survival/hazard functions over the single pages are plotted and “page perspective” where for each
page these functions are plotted over the single clusters. We focus our analyses on the most
appealing clusters 2, 3, and 5.



8 Session Clustering Using Mixtures of Proportional Hazards Models

0 20 40 60 80 100

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Cluster 2

Survival Time

H
az

ar
d 

F
un

ct
io

n

search
giftfinder
product1
product2
product3
checkout

0 20 40 60 80 100

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Cluster 3

Survival Time

H
az

ar
d 

F
un

ct
io

n

search
giftfinder
product1
product2
product3
checkout

0 20 40 60 80 100

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Cluster 5

Survival Time

H
az

ar
d 

F
un

ct
io

n

search
giftfinder
product1
product2
product3
checkout

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cluster 2

Survival Time

S
ur

vi
va

l F
un

ct
io

n

search
giftfinder
product1
product2
product3
checkout

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cluster 3

Survival Time

S
ur

vi
va

l F
un

ct
io

n

search
giftfinder
product1
product2
product3
checkout

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cluster 5

Survival Time

S
ur

vi
va

l F
un

ct
io

n

search
giftfinder
product1
product2
product3
checkout

Figure 2: Hazard and Survival Function - Group Perspective
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The survival plots in Figure 2 show the survival function by means of the dwell times. Hence, our
cluster approach allows a detailed examination of the cluster behavior beyond common cluster cen-
troids. In this section we will explain differences between various restrictive models. These become
obvious in the hazard plots and therefore we will limit our further elaborations and interpretations
on this plot type.
At first glance clusters 2 and 5 show a similar transition behavior. A remarkable difference can be
found by examining the hazard for the “search” page: For Cluster 5 the hazard for this page-type
is constantly close to 0. By inspecting the search-dwell times for this particular page we find lots
of non-visits and a few rather large dwell times (> 600). In Cluster 2 the relative risk to leave this
page is considerably large (throughoutly). However, for these two clusters all hazard functions
(except Product 2 in Cluster 2) are decreasing. For Cluster 3 we have obvious differences in the
hazards. They are increasing for the search page and the checkout area. These people (mostly
non-buyers as seen before), if at all, visit the checkout page only for a short time. Let us represent
these three crucial pages from the “page perspective” for across six clusters (see Figure 3).
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Figure 3: Hazard Function - Page Perspective

For the checkout area we have similar hazard patterns for clusters 1, 3, and 4. These are clusters
with mostly non-buyers assigned. Note that for webshop providers dwell time models are helpful
in detecting “anomalies” in the checkout area: Let us consider that a certain “non-buyer” cluster
has large checkout dwell times and similar hazard patterns as “buyer” clusters on other pages.
Obviously, members of the “non-buyer” cluster do not finish the checkout. This can be an advice
that some parts of the checkout are not very user-friendly.
However, at this point the hazard behavior for the more restrictive WPHM is examined. All
further plots are limited to the “group perspective”. The hazard functions for Mp, which reflect
proportionality over pages, are represented in Figure 4. Note that the cluster solution differs from
Msep as given in Table 1. The plot is limited to the most interesting clusters 3 (mainly buyers), 5
(buyer and non-buyer), and 6 (mainly non-buyers).
Each hazard function is montonically decreasing and furthermore, within each cluster the hazards
are proportional to each other. Thus, from a practical point of view Mg, i.e., non-proportional
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Figure 4: Hazard Function Page Proportionality

hazards for the pages within groups but proportional hazards for the groups within pages, is useful.
The table for external buyer evaluation (Table 1) does not show such a clear separation between
buyers and non-buyers over the clusters. The corresponding hazard functions for the clusters 1,
2, and 3 are given in Figure 5. By inspecting the dwell times for a certain page over the clusters
it is obvious that they are proportional to each other.
For the model Mg+p the hazards are proportional in both directions which is typically too restric-
tive in web mining applications and thus it is not plotted here. This leads to the fact that the
ranking of the hazard rates is the same over groups/pages. This can be relaxed by the interaction
model Mg∗p which is plotted in Figure 6 (Cluster 2, 4, 5).
Similar to Mg we do not have any clear buyer/non-buyer separation (see Table 1). Over the
groups the Product 3 page has throughoutly the largest hazards. The hazard ranking is different:
In Cluster 2 Product 3 is followed by search and gift finder; in Cluster 4, for instance, Product
1 is between Product 3 and gift finder. However, the proportionality restrictions hold in both
directions. The interaction in Mg∗p leads to different hazard orderings compared to Mg+p and
is therefore less restrictive. In Cluster 5 all page hazards are very close to each other and hence
these users show similar behavior on the site-areas.

5. Discussion

In this paper we presented a survival mixture approach for dwell time based session clustering.
Based on the concept that dwell times correspond to survival times in medical statistics we adopted
mixture Weibull modeling for the webshop data and enhanced the methodology by providing
mixtures of proportional hazard models with incomplete data. The whole modeling approach can
be regarded as a framework to cluster sessions with respect to different proportionality restrictions.
Various types of the EM-algorithm can be used to estimate the parameters.
Practical problems can occur during the EM-iteration: First of all, it is possible that cluster
consists of less than 2 observations. In this case the survival distribution cannot be estimated in
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Figure 5: Hazard Function Group Proportionality

the E-step and the package mixPHM stops at this point. The user can re-run the analysis with
the same K but with a different starting solution (e.g., from a precursory k-means clustering),
decrease the number of components, or remove outliers, if any.

Furthermore, it can occur that within a cluster k a certain page p is not visited at all. This has
to be taken into account when estimating Λ̂ and Γ̂. The corresponding elements λ̂k,p and γ̂k,p are
missing and thus ignored in the likelihood computation.

In general, survival analysis provides censored data, i.e., individuals where the end-point of interest
has not been observed (“right-censored”). The concept of censoring data can be applied straight-
forwardly to our dwell time case: For instance, if a user keeps a page open during the night. The
corresponding dwell time is huge and not informative for cluster analysis. So far we excluded
such dwell times but as a topic of future implementations the likelihood equations accounting for
censored data will be established.

For exponential or Rayleigh distributions the hazard rates are constant. The Weibull assump-
tion leads to hazard rates which are monotonic increasing or decreasing. For our example this
assumption is reasonable and from an interpretational point of view it leads to valuable results
for the provider. Due to the parsimonity of these models the results are easily understandable
and they can be communicated straightforwardly. However, one may argue that these models
are too restrictive. If the Weibull assumption does not hold, semi-parametric approaches such as
the Cox-regression can be taken into account (Kim, Yun, and Dohi 2003). Alternatively, higher
parametrized survival distributions such as the 3-parametric Hjorth distribution (Hjorth 1980) or
beta-log-normal families (Walker and Stephens 1999) can be considered. In the latter case the
hazard rates can increase and decrease over time. If the linearity in the PHM is doubted, also
non-linear hazard models come into question as, e.g., given in Batchelor, Turner, and Firth (2007).
However, with all these possible extensions the convergence of the EM algorithm has to be ensured
theoretically.

Finally, the independence assumption can be doubted. As mentioned earlier, in order to apply
our mixture approach the pages have to be categorized into proper site-areas. However, if such
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Figure 6: Hazard Function Group/Page Proportionality with Interactions

independent site segments cannot be achieved, the covariance structure between the pages has
to be taken into account. This would correspond to a multivariate mixture Weibull distribution
as for instance given in Patra and Dey (1999) and the mixtures of PHM as elaborated in Guo
and Rodriguez (1992). From a practical point of view this is the most appealing extension of our
approach and will be implemented in a subsequent version of the mixPHM package.
Further, the package allows for an explorative model selection (different number of clusters, dif-
ferent hazard restrictions) using the BIC criterion. Usually, the BICs decrease continuously with
an increasing number of components. Thus, the aim is to find a reasonable cut point for k with
the common trade-off between statistical goodness-of-fit and substantial interpretability. A BIC
scree plot as provided in the package can be helpful.
For testing specific models several strategies can be considered. Graphically, since no censored
observations are taken into account, the survival function from the underlying model can be plotted
against the empirical survival function. If censored data are included, life-table or Kaplan-Meier
estimators can be used. Testing for model fit can be accomplished by means of ordinary LR-tests
if the models are nested, e.g., by testing Mp against Msep for a fixed K. This example implies
testing the proportional hazard assumption (Collett 2003). In the case of non-nested models (e.g.,
Mp with 3 components against Mg+p with 4 components) specific non-nested testing strategies
have to be carried out.
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