WIRTSCHAFTS
UNIVERSITAT
WIEN VIENNA
UNIVERSITY OF
ECONOMICS
AND BUSINESS

EQUIS

CCREDITED

ePub"V Institutional Repository

Reinhold Hatzinger and Wolfgang Panny

Single and Twin-Heaps as Natural Data Structures for Percentile Point
Simulation Algorithms

Working Paper

Original Citation:

Hatzinger, Reinhold and Panny, Wolfgang (1993) Single and Twin-Heaps as Natural Data
Structures for Percentile Point Simulation Algorithms. Forschungsberichte / Institut fir Statistik,
32. Department of Statistics and Mathematics, WU Vienna University of Economics and Business,
Vienna.

This version is available at: http://epub.wu.ac.at/574/
Available in ePub™Y: July 2006

ePub™Y| the institutional repository of the WU Vienna University of Economics and Business, is
provided by the University Library and the IT-Services. The aim is to enable open access to the
scholarly output of the WU.

http://epub.wu.ac.at/

https://core.ac.uk/display/11006921?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://epub.wu.ac.at/574/
http://epub.wu.ac.at/

WIRTSCHAETS

Single and Twin-Heaps as Natural U
Data Structures for Percentile Point & ﬁ
Simulation Algorithms

Reinhold Hatzinger, Wolfgang Panny

Institut fUr Statistik
Wirtschaftsuniversitat Wien

Forschungsberichte

Bericht 32
May 1993

http://statmath.wu-wien.ac.at/

Statistics and Computing 3 (1993) 163-170

N

Single and twin-heaps as natural data
structures for percentile point simulation
algorithms

R. HATZINGER

Department of Statistics, Vienna University of Economics, Augasse 2—6, A-1090 Vienna, Austria

W. PANNY

Department of Computer Science, Vienna University of Economics, Augasse 2—6, A-1090 Vienna,
Austria

Submitted November 1992 and accepted May 1993

Sometimes percentile points cannot be determined analytically. In such cases one has to resort
to Monte Carlo techniques. In order to provide reliable and accurate results it is usually neces-
sary to generate rather large samples. Thus the proper organization of the relevant data is of
crucial importance. In this paper we investigate the appropriateness of heap-based data struc-
tures for the percentile point estimation problem. Theoretical considerations and empirical
results give evidence of the good performance of these structures regarding their time and
space complexity.

Keywords: Percentile point estimation, order statistics, Monte Carlo simulation, heap data

structures, twin-heaps

1. Introduction

To determine percentile points for distributions which are
intractable or analytically cumbersome one often has to
resort to simulation techniques. Virtually all simulation
approaches presented in the literature are based on the
following — also intuitively appealing — result due to
Pfanzagl (1974). if nothing is known about the distribution
of interest the appropriate sample order statistic provides
an estimator having the smallest asymptotic variance
among all translation-invariant estimators. To provide
reliable and accurate results it is usually necessary to gener-
ate rather large samples, where the proper organization of
the relevant data becomes crucial regarding computer
time and storage requirements. A closely related, asymp-
totically equivalent approach which is less critical
regarding its storage requirements has been suggested by
Tierney (1983). However, if one needs a minimal
squared error estimator there seems to be no alternative to
determine precisely the corresponding sample order
statistic. Even without the estimation context the latter
problem deserves some attention, especially for really large
samples.

0960-3174 © 1993 Chapman & Hall

The direct approach to store and sort all N simulated
values fails for such large samples: N sample points have
to be stored and sorting time is at least proportional to
N log N on the average. Since it is only necessary to extract
the kth sample order statistic, sorting in fact is more than is
actually needed and an appropriate selection algorithm
(e.g. Hoare, 1961) would do as well, thus reducing the
expected time to O(N). On the other hand, if memory con-
straints become critical one may consider storing and
updating only the upper (lower) part of the sample, depend-
ingon p > 0.5 (p- < 0.5), where x, denotes the percentile of
interest. Proceeding this way it suffices to allocate memory
for Np* sample points (p* = min {1 — p, p}), which is par-
ticularly advantageous if p is not too far away from one
of the tail regions of the distribution, e.g. p = 0.95. How-
ever, the proper organization of the relevant ‘one-sided
window’ then becomes decisive, since at any stage it is
necessary to know the Np* largest (smallest) values of the
sample generated so far, leading to a mean time complexity
proportional to Np*log (Np*).

The direct approach and its refinements certainly have
their merits for moderate N. But their memory require-
ments linearly grow with N, which eventually becomes

164

prohibitive whenever really large samples must be gener-
ated in order to assure a certain accuracy of the resulting
percentile point estimator. To cope better with these incon-
veniences a stochastic approach building on an earlier pro-
posal due to Krutchkoff (1986) has recently been presented
by Dunn (1991). This approach relies on the fact that the
number of sample points smaller or equal to the requested
percentile x, is by definition binomially distributed with
parameters (N, p), which, of course, may be approximated
by the normal distribution for sufficiently large N. The basic
idea is to determine and administer a sufficiently large ‘two-
sided window’ from the sample, which is very likely to con-
tain the requested percentile point at the end of the simula-
tion run. Appropriately using the latter approach, memory
and time requirements can be reduced to an order
of O(v/N) and O(v/Nlog N). However, even with Dunn’s
rather sophisticated method the technical issue of properly
organizing the simulated data remains a critical issue. These
technical considerations become even more important tak-
ing into account that, in general, a single large-sample per-
centile-point estimator is preferable to combining several
smaller-sample estimators, as shown by Juritz et al. (1983)
and Zelterman (1987).

In his paper Dunn suggests that a value ‘be sorted into
the stored list (using a divide and conquer algorithm)’. If
the window really has to be kept in sorted order, a tree-
like data structure, e.g. sorted binary trees, would provide
a good implementation with high performance but at
the cost of increased memory requirements due to the
necessary pointer fields. In this paper we investigate the
appropriateness of heap-based data structures for the
problem at hand. These structures do not keep the pertain-
ing windows completely sorted but provide for efficiently
updating their endpoints, in fact the only functionality
needed. It will be seen that single heaps allow for improving
the efficiency of the one-sided window variant within the
direct approach where no additional memory is required.
Above all, they provide a basis for the development of the
twin-heap data structure (cf. Knuth, 1973, 5.2.3 ex.31),
which naturally supports the managing of the relevant
two-sided window of the sample when applying the stochas-
tic approach.

2. Two typical algorithms

In this section two prominent simulation approaches to the
percentile point estimation problem will be presented,
namely the direct approach using a one-sided window and
Dunn’s stochastic procedure, which requires a two-sided
window. The basic algorithmic schemes will be explained
by C-like code. However, the main purpose of this algorith-
mic presentation is to identify the functions necessary to
administer the corresponding windows but not to annoy
the reader with intricate details.

Hatzinger and Panny

2.1. Direct approach with one-sided window

As outlined in the introduction, memory requirements for
the direct approach can be considerably reduced by storing
only nj = p*ny,, sample points, where np,, = N denotes
the total sample size and p* = min {1 — p, p}. In the follow-
ing algorithm we assume that p > 0.5.

1 ny = |npa(l —p) +1.5];

n, is the size of the one-sided window that will contain the
n, largest values of the sample at the end of the simulation
run. After properly initializing the window (initialize 1)
every generated value is inserted into the window by apply-
ing the insert_I-function during stage 1.

2 initialize_1();
3 forn=1n<m;n=n+1)
4 insert_1 (gen_value());

Throughout stage 2, the window always contains the n;
largest values generated so far. Consequently, a new value
x only has to be stored, if it exceeds the window’s actual
minimum, returned by the function min_value_1. In this
case the window’s minimum must be updated as well. The
function replace_min_1(x) performs the necessary storing
and updating operation.

S for(n=m+Ln<ng,n=n+1){
6 x = gen_value ();

7 if (x > min_value.1())

8 replace_min_1(x);

9}

Obviously, at the end of the simulation run the minimum
of the window is the pn,,, smallest value of the whole
sample and thus provides the requested estimate for the
percentile point of interest.

10 %, = min_value_1();

This scheme is easily adapted for the case p < 0.5.
Incidentally, also Krutchkoff’s one-sided stochastic
approach could conveniently be implemented along these
lines.

2.2. Dunn’s procedure with two-sided window

The direct approach is rather appealing since it is straight-
forward and relatively simple. However, its storage require-
ments grow linearly with the sample size n,,,, which
eventually becomes the bottleneck if really large samples
must be generated regarding the accuracy of the resulting
percentile point estimator. In contrast to this, Dunn’s algo-
rithm has a built-in ‘pinching’ mechanism that considerably
reduces the number of stored values, i.e. memory require-
ments now are proportional to /7., only.

Dunn’s procedure essentially consists of three stages.
Stage 1 comprises iterations 1 to n;, stage 2 iterations

X4

Single and twin-heaps as natural data structures for percentile point simulation algorithms 165

ny + 1 to n, and stage 3 the remaining iterations. The first
two stages algorithmically coincide with the direct
approach 2.1: during stage 1 all values are stored, through-
out stage 2 the window size n; remains fixed and every new
point not belonging to the largest n; values generated so far
is dropped, where we again assume that p > 0.5. The pro-
- portion of n; to n, (line 2) assures that at the end of stage
2 the window contains the order statistics with ranks
an_(nl_l)/z’ ”ZP—(”I"1)/2+1,--~»"2P—1a"2p,
mp+1,...,mp+ (n —1)/2, where for convenience we
assume that n,p and (n, — 1)/2 are integers. The deter-
mination of n, will be postponed until the explanation of
stage 3. .

ny = |(4+cip+/8ckp+cip?)/(2(1 - p)));
m = [2m(1 - p) - 1};
initialize 2();
for(n=1n<n;n=n+1)

insert_2(gen_value());
for(n=m+L;n<n;n=n+1){

x = gen_value();

if (x > min_value_2())

replace_min_2(x);

—
O O 000NN AW e

}

During stage 3 a two-sided window of order statistics
X1y Xpi1y - - -y Xu_1, X, has to be maintained. This window is
chosen to give a high probability that the interesting order
statistic with rank np is contained at the nth iteration,
n, < n < ng,,. The determination of the window relies on
the fact that the number of sample points less than or equal
to the percentile point x, follows a binomial distribution
with parameters (n,p). Hence the ranks of the bounding
order statistics at iteration n can be defined essentially by
by = np — ¢y4/np(1 — p) and uy = np + c,+/np(1 — p) using
the central limit theorem (cf. lines 18, 19), which also
determines n, (line 1). Dunn suggests using rather large
values for ¢, (4 or even 4.5), such that the actual window is
very likely to contain the order statistics x; and x,,also,
which define a confidence interval for the true percentile
point x,, where [/, =|np—c;/np(1-p)+0.5] and
uy = |np +c;y/np(1 — p) + 1.5].

At the beginning of stage 3 the actual window is bounded
by the (n, — n; + 1)th and n,th order statistics, of course
(line 11). If the actual sample value x does not belong to
the window (because x < x; or x > x,), it is dropped (lines
15, 37) and both / and u are updated accordingly. If x
belongs to the window the bounding indices /5, u, of the
‘theoretical’ window are updated (lines 18,19) and x has to
be stored in the actual window (lines 21, 24 or 26). The for-
mation of the actual window is now governed by /, and u,:
if the actual window protrudes to the left (/ < b, line 20) or
to the right (u > u,, line 23) the actual window must also be
adjusted by dropping the pertaining boundary point x; or x,,.
The necessary storing and updating operation is performed

by the functions replacemin2(x) and replace_.max2(x),
respectively. Otherwise, x is simply inserted into the
window by the function insert_2(x).

It can be shown by an inductive argument that the length
u; — I, + 1 of the theoretical window is always greater or
equal to the length u — / + 1 of the actual window. This is
important for the proper working of the algorithm: it
implies that the actual window can only protrude to
one side, on the other hand it guarantees that we can
never run out of memory, since enough storage is provided
for the theoretical window at iteration ng,,, viz.

[2¢y4/np(1 —p) + 3].

11 I=ny—ny 4+ 1, u=ny; term.ind =0,
12 for(n=nm+L;n<np;n=n+1){

13 x = gen.value();

14 if (x < min_value 2())

15 {I=1+YLu=u+1;} /[*dropleft*
16 else

17 if (x < max_value_2()) {

18 L=np—cy/np(1 —p) - 1;
19 uy =np+ c3\/np(1 —p) +2;

20 if (I < b)

21 {replace min 2(x);/=I1+ lu=u+1;}
22 else

23 if (u+12>u,)

24 replace_max_2(x);

25 else

26 {insert 2(x); u=u+1;}

27 if ((np < Dl|(np > u))

28 {term_ind = 2; break; }

29 if (max_value_2()-min_value 2()< e) {

30 Iy = |np — ¢/np(1 — p) + 0.5};
31 u; = |np+c\/np(1 — p) + 1.5];
32 if (1 > 1 && uy < u)

33 {term_ind = 1; break; }
34 }

35 }

36 else

37 3 I*

38}

39 if ((lnp+0.5] < 1)||(lnp + 0.5] > u))
40 term_ind = 2;

drop right */

Whenever a new value has been stored into the window
some checks must be done. It may happen that the npth
order statistic has shifted out of the actual window. In
this case an abnormal termination occurs (lines 27-28, 39—
40, 43). On the other hand the desired precision e might
have been attained. In that case we terminate prematurely
provided that x; dnd x,, are also contained in the window
(lines 29-34, 42). Otherwise the algorithm terminates after
Ny iterations (line 41).

166

41 switch (term_ind) { case 0: /* ny,, iterations */
break;

42 case 1: /* precision e achieved */
break;

43 case 2: /* x,, out of window */
break;

a4)

An obvious disadvantage of this stochastical procedure is
that it may fail because the npth order statistic has shifted
out of the window (case 2). However, if c, is large enough
this is rather unlikely to occur, which is also supported
by Dunn’s and our empirical results. In any case, if the pro-
cedure terminates normally (cases 0 or 1) the window is
guaranteed to contain the order statistic of interest. More-
over, in case 1 the window also contains a (2®(c;) — 1)%-
confidence interval, which allows us to assess the accuracy
of the resulting percentile-point estimator. This could also
be enforced in case 0 at the expense of a slightly increased
proportion of unsuccessful runs.

3. Heap-based data structures for implementing the
windows

In the preceding section we have presented two typical
algorithms for the percentile point estimation problem
and tried to identify the functionality needed to administer
the pertaining windows. For the one-sided window we
have the functions initialize_1(), insert_1(x), min_value_1()
and replace_min_1(x). For the two-sided window the func-
tions initialize 2(), insert 2(x), min_value_2(), max_value_2(),
replace_min_2(x) and replace_max_2(x) must be implemented.
At first sight one would probably think to use sorted arrays
for this purpose.

Another more sophisticated approach would consist of
considering sorted binary trees for implementation. In
this section the suitability of heap-based structures will be
discussed, which seem to constitute natural data structures
for the problems at hand. The adequacy of these structures
is due to the fact that they do not provide any additional
functionality not really needed, as already outlined in the
introduction.

3.1. One-sided window

In computer science heaps are well-known as efficient data
structures for implementing priority queues. A priority
queue may be seen as a generalization of a simple queue,
where a simple queue has a ‘first in, first out’ behavior, in
the sense that every deletion removes the oldest remaining
item. A related structure is a stack, where a ‘last in, first
out’ discipline has to be regarded in the sense that every
deletion removes the youngest item. Priority queues show
a ‘smallest in, first out’ behavior, where every deletion

Haztzinger and Panny

Fig. 1. Example of a min-heap-tree

removes the item having the smallest key. The name
priority queue is due to the fact that the key of an element
represents its priority to leave the queue. Hence, a ‘largest
in, first out’ discipline is possible as well. In this latter
case we speak of a maximum priority queue, as opposed
to the former minimum priority queue. It is not difficult
to see that the one-sided window within the direct
approach is just an instance of a priority queue. To be
more specific, we have to maintain a minimum or maxi-
mum priority queue depending on p > 0.5 or p <0.5,
respectively, which can most conveniently be implemented
by the heap data structure (cf. Williams, 1964; Knuth,
1973; Sedgewick, 1983; Gonnet, 1984). In this paper we
also use the term single heap to distinguish better the heap
data structure from the more elaborate twin-heap data
structure brought into play for the implementation of the
two-sided window.

A heap is a perfect binary tree represented implicitly in an
array. The nodes of a min-heap are subject to the min-heap
condition : the key in each node should be smaller or equal
to the keys in its descendants. This of course entails that the
smallest key is in the root. Since a heap is a binary tree it
can naturally be represented in an array: the root is located
in position 1, the left son in position 2, the right son in
position 3, In general, the left son of the node located
in position j is stored in position 2j, the right son is in
position 2j + 1. This linearization is dense, since a heap is
perfect. This is a great advantage over general binary trees
because no extra memory for link fields is required. Figure 1
shows a min-heap-tree. The corresponding array represen-
tation is:

1 2 3 4 5 6 7 8§ 9 10 11 12

25 32 37 53 46 62 85 87 92 95 64 7.1

To insert a new key x into the heap by insert_1(x) we first
put x to the next free location. If the heap condition is vio-
lated (because the new key is smaller than its father) the new
key is exchanged with its father. This may, in turn, cause a
violation, which can be mended in the same way, etc. This
process eventually stops at a father node whose key is

Single and twin-heaps as natural data structures for percentile point simulation algorithms 167

Fig. 2. min-heap-tree after insertion

smaller or equal to x, or after x has migrated to the root.
Figure 2 shows the state of the min-heap-tree after inser-
tion of the new key x = 3.5.

To insert a new key x into the heap and deleting the
current minimum at the same time by replace_min_1(x) we
may proceed as follows: we first put x to the root
location. If the heap condition is violated (because
the new root is larger than a son) this can be fixed by
exchanging the new root with its smallest son. Again, this
process possibly has to be repeated until eventually two
sons with key-values > x are encountered or until the
new key x has migrated to a leaf location. Figure 3
shows the state of the min-heap-tree after performing
replace_min_1(x), where x = 7.3.

The operation to delete the smallest element involves
almost the same process. It can be done essentially by
moving the element from the last location into the root.
Then the last location is freed by decrementing the location
counter. The heap-condition can be re-established in the
same way as for the replace_min_1-function.

The three update-functions outlined above have an
O(logn) behavior, even in the worst case. The minimum
of the heap can be inspected by simply accessing the root
element, i.e. location 1 of the pertaining array. Hence, the
function min_value_1 has an O(1) behavior. The same is
true for the function initialize_1, which only initializes the
current .location counter to zero. Moreover, an appro-
priate sentinel key (‘—o00’) can be stored in location 0,
which slightly simplifies the insert_1-function.

Fig. 3. min-heap-tree after replace-min

A max-heap can be implemented analogously. One only
has to replace the < relation by >.

3.2. Two-sided window

In the previous section we mentioned priority queues as
generalizations of simple queues and stacks. In particular,
we have shown that the one-sided window within the direct
approach may be seen as an instance of a priority queue.
Another fundamental structure is the so-called deque,
which incorporates the ‘first in, first out’ discipline of a
simple queue and the ‘last in, first out’ behavior of a
stack simultaneously. This means that one has the option
of either removing the oldest or the youngest element by a
deletion. The deque concept can be generalized to a priority
deque, where the simple time context of the deque is
replaced by a key concept representing the prionty of
each element. Accordingly, one now has the option to
delete either the element with the highest or the lowest
key value. Hence, the two-sided window within the stochas-
tic approach is just an instance of a priority deque. In
Knuth (1973, 5.2.3 ex.31) the basic ideas of an efficient,
heap-based implementation are sketched and the name
twin-heap for the corresponding data structure has been
introduced. '

We define a twin-heap to consist of both a min-heap and
a max-heap tied together by the following two conditions:

(a) Let us assume that the twin-heap contains » elements
at a given time. Then [n/2] elements are stored in the min-
heap and the remaining |n/2] elements are stored in the
max-heap.

Fig. 4. Example of a twin-heap

168

(b) Let g; and b; denote corresponding elements in the
min- and max-heap, respectively. Then the relation a; < b;
must hold for 1 <j< |n/2|. If nis odd, n = 2m + 1, say,
then b,,,; does not exist. In this case node b|(ni1)/2) is
defined to be the counterpart of a,,,, i.e. the relation
Ay < b[(m+l)/2j must also be true. Note that b[(m+l)/2j is
the ‘father of the missing node b,,,,".

Figure 4 gives an example of a twin heap containing
n =11 elements. The corresponding array representation
is:

b: 31 62 74 58 49

If a new key x is inserted into the twin-heap by insert 2(x),
two cases must be considered according to the parity of the
actual value of n.

n=2m+ 1: According to condition (a), the next free
location is b,,, ;. This location determines a unique path
from the root of the min-heap to the root of the max-
heap, viz. ay,..., 841, b1, Dymi1)2),- - -, b1 Note that
ay <. Ly S b|meryz) £--- < by as a consequence
of condition (b). If @1 < X < bjmyr)sz), X is stored in
location b,,,; and we are done (e.g. x = 6.7, referring to
Fig. 4). The case x > b|(y1)/2] amounts to a regular inser-

Hatzinger and Panny

tion of x into the max-heap (e.g. x=9.3). The case
X < @,y can be dealt with by removing a,., from the
min-heap and storing its content to b,,;. x is then
regularly inserted into the min-heap. This latter case is
illustrated by Fig. 5, which shows the state of the twin-
heap after inserting x = 2.0 into the twin-heap of Fig. 4.

n = 2m: The next free location is now a,,,, which deter-
mines the unique path ai,...,@\4mt1)/2)) @me1> O me1)/2)5
- ,b], where again ay <...< aL(m+1)/2J < b[(m+1)/2j <...
< by If aymeny2) £ X < b|pme1)/2)> X s stored in location
a,,+1 and no further action is needed (e.g. x = 6.3, referring
to Fig. 5). The case x < @|(n41)/2) amounts to a regular inser-
tion of x into the min-heap (e.g. x = 1.0). If x > by (ni1y/2)s
the content of b|(, 1), is stored in a,,,; and x is regularly
inserted into the max-heap starting at location b|(ni1y/2)-
This latter case is illustrated by Fig. 6, which shows the state
of the twin-heap after inserting x = 8.1 into the twin-heap of
Fig. 5.

The implementation of the functions replace_min_2(x) and
replace_max_2(x) can be accomplished in a similar way. The
same is true for the corresponding delete functions. The
crucial point consists of maintaining the integrity con-
straints (conditions (a) and (b)) of the twin-heap while oper-
ating on the two single heaps involved. Again, all these
update functions show an O(logn) behavior, even in the
worst case, whereas the inspection functions min_value 2()
and max_value 2() and the initialize_2()-function are only
o(1).

4. Empirical results and discussion

To investigate empirically the behaviour of the heap-based

Fig. 5. twin-heap after insertion of x = 2.0

Fig. 6. twin-heap after insertion of x = 8.1

Single and twin-heaps as natural data structures for percentile point simulation algorithms 169
Table 1. One-sided window, uniform distribution, p = 0.95

Rmax = 100000 Bmax = 1000000 Nmax = 10000000

Lot fnet mem bot Laet mem hot Lher mem
OSH 1.02 0.12 39 10.59 1.59 391 118.92 28.90 3906
OST 1.21 0.31 117 14.31 5.31 1172 171.37 81.35 11721
OSA 13.34 12.44 39 1341.96 1332.96 391 136 835.03 136 745.01 3906
Table 2. One-sided window, uniform distribution, p = 0.5

Npay = 100 000 Nmay = 1000000 Nmax = 10000 000

tiot thet mem Lot Lnet mem Lot Ler mem
OSH 1.28 0.37 391 15.88 6.88 3906 197.05 107.03 39063
OST 2.59 1.68 1172 36.16 27.16 11721 - - 117188
OSA 448.96 448.05 391 45520.62 45511.62 3906 - - 39063
Table 3. Two-sided window, uniform distribution, p = 0.95

Bmax = 100000 Nmax = 1 000000 Mmax = 10000000

Lot Inet mem Lot Inet mem Lot Inet mem
TSH 0.94 0.04 4 9.33 0.33 14 93.00 2.98 43
TST 0.95 0.05 13 9.38 0.38 41 93.12 3.10 129
TSA 0.98 0.08 4 9.74 0.74 14 96.99 6.97 43
Table 4. Two-sided window, uniform distribution, p = 0.5

Nmax = 100000 Bmax = 1000000 Bmax = 10000 000

t&ot tnet mem ttot tnet mem ttot tnel mem
TSH 0.96 0.05 10 9.40 0.40 31 93.56 3.54 9
TST 0.98 0.07 30 9.48 0.48 94 93.85 3.83 297
TSA 1.16 0.25 10 11.49 2.49 31 114.54 24.52 99

data structures they have been compared to sorted binary
trees and simple sorted arrays. Accordingly we have
written three programs for both the direct approach and
for Dunn’s procedure. The one-sided window (i.e. direct
approach) was organized as a single heap (OSH), as a
sorted binary tree (OST) and as a sorted array (OSA).
The corresponding programs for Dunn’s procedure are
TSH, TST and TSA, where the two-sided window was
organized as a twin-heap, as a sorted binary tree and as a
sorted array. The implementation of the sorted array
methods is straightforward and we think the reader can
easily figure out what must be done. In principle the same
is true for the sorted binary tree implementation which,

however, may be less obvious because the underlying data
structure is more sophisticated. A good description of this
data structure and the related access functions can be
found in Sedgewick (1983, pp. 178—184).

The programs have been coded in C and numerous runs
have been made on a HP 9000/720 workstation, where
sample size ngy,,, distribution type (standard uniform,
exponential, normal) and percentile p of interest have
been varied. Tables 1-4 summarize the results of some
runs, where the total CPU-time 1, (in seconds) and the
necessary memory mem (in Kbyte) for the different
windows are shown. Also the net CPU-time 1, (in
seconds) is recorded. f, Iis obtained from ¢, by

170

subtracting the time necessary to generate all n,,, sample
points.

Tables 1 and 2 show the superiority of the heap organiz-
ation for the one-sided window. As expected, computation
time for the sorted array (OSA) grows quadratically with
the sample size ng,,. The more sophisticated binary tree
organization (OST) can better compete with the heap
(OSH) regarding computing time but needs three times
more memory, due to the necessary link fields. Memory
requirements and net time do not change for other distri-
butions, whereas the total time, of course, reflects the com-
plexity of the value generating algorithm. Thus we have a
clear victory for the heap organization, when the direct
approach with a one-sided window is applied. However,
the empirical results also exhibit the limitations of the
direct approach. Its memory requirements of O(ng,,)
become prohibitive for really large sample sizes, especially
if p is far away from one of the tail regions of the distri-
bution and that is one reason why Table 2 is incomplete.
OSA obviously fails due to time considerations.

Tables 3 and 4 give the corresponding figures for Dunn’s
procedure using a two-sided window. The three approaches
to organize the two-sided window show the same ranking as
before. However, the differences between them are not as
remarkable as before.

Again, the sorted binary tree variant (TST) uses three
times more memory than the two other approaches. But
memory requirements grow at a rate of only O(,/fimax)
now, so this is not really a bottleneck. The total compu-
tation time is clearly dominated by its linear term due to
the generation of the sample values. The time advantage
of the heap-based organization decreases for several
reasons: The number of values contained in the window
is significantly reduced using Dunn’s procedure. For
instance, if npy,, = 10000000 and p = 0.5, the maximal
window size is only about 12000. Also the number of
sample points which require an update of the actual
window is rather small. For the above example about
22 000 update operations are necessary, which is a rate of
only 0.0022%. Additionally, the t,. figures in Tables 3
and 4 also comprise a rather large overhead due to
properly managing Dunn’s procedure. This overhead
cannot be attributed to the window updating functions
but it is difficult to eliminate within our time monitoring.
We know from other experiments that the true net time
factor between TST and TSH should be at least 1.7.

Summing up, it may be said that the heap-based variant
(TSH) is clearly superior to its competitors but this super-
iority has no tremendous effect within Dunn’s procedure,

Hatzinger and Panny

since Dunn’s approach to the percentile point estimation
problem is so clever. It should perhaps also be mentioned
that Dunn reports several of his runs terminating abnor-
mally, i.e. the order statistics of interest had drifted
out of the actual window. During the many runs we
did (for each of the three distributions 70 runs with
Nmax = 10000000), no such behavior was observed.

Finally, single heaps as well as twin heaps can easily be
implemented in a conventional programming language
like FORTRAN, since no link fields or recursive functions
are necessary. So it seems that heap-based structures are
actually natural for the percentile point estimation prob-
lem and they might prove their appropriateness also for
related problems in computational statistics.

Acknowledgement

We are indebted to the referee for his valuable com-
ments and suggestions which helped to improve the
exposition.

References

Dunn, C. L. (1991) Precise simulated percentiles in a pinch. The
American Statistician, 45, 207-211.

Gonnet, G. H. (1984) Handbook of Algorithms and Data Struc-
tures. Addison-Wesley, Reading, MA.

Hoare, C. A. R. (1961) Algorithm 65 (FIND). Communications of
the ACM, 4, 321-322.

Juritz, J. M., Juritz, J. W. F. and Stephens, M. A. (1983) On the
accuracy of simulated percentage points. Journal of the
American Statistical Association, 83, 441444,

Knuth, D. E. (1973) The Art of Computer Programming. Sorting
and Searching. Addison-Wesley, Reading, MA.

Krutchkoff, R. G. (1986) Percentiles by simulation: reducing time
and storage. Journal of Statistical Computation and Simu-
lation, 25, 304-305.

Pfanzagl, J. (1974) Investigating the quantile of an unknown dis-
tribution, in Contributions to Applied Statistics (Dedicated
to Arthur Linder), Birkhéduser, Basel, pp. 111-126.

Sedgewick, R. (1983) Algorithms. Addison-Wesley, Reading, MA.

Tierney, L. (1983) A space-efficient recursive procedure for esti-
mating a quantile of an unknown distribution. SIAM Jour-
nal on Scientific and Statistical Computing, 4, 706-711.

Williams, J. W. J. (1964) Algorithm 232 (HEAPSORT). Com-
munications of the ACM, 7, 347-348.

Zelterman, D. (1987) Estimating percentage points by simulation.
Journal of Statistical Computation and Simulation, 27, 107-
125.

