
ePubWU Institutional Repository

Günter Tirler and Josef Leydold

Automatic Nonuniform Random Variate Generation in R

Working Paper

Original Citation:
Tirler, Günter and Leydold, Josef (2003) Automatic Nonuniform Random Variate Generation in R.
Preprint Series / Department of Applied Statistics and Data Processing, 46. Department of Statistics
and Mathematics, Abt. f. Angewandte Statistik u. Datenverarbeitung, WU Vienna University of
Economics and Business, Vienna.

This version is available at: http://epub.wu.ac.at/382/
Available in ePubWU: July 2006

ePubWU, the institutional repository of the WU Vienna University of Economics and Business, is
provided by the University Library and the IT-Services. The aim is to enable open access to the
scholarly output of the WU.

http://epub.wu.ac.at/

http://epub.wu.ac.at/382/
http://epub.wu.ac.at/

Automatic Nonuniform Random
Variate Generation in R

Günter Tirler, Josef Leydold

Department of Applied Statistics and Data Processing
Wirtschaftsuniversität Wien

Preprint Series

Preprint 46
January 2003

http://statmath.wu-wien.ac.at/

Proceedings of the 3rd International Workshopon Distributed Statistical Computing (DSC 2003)March 20{22, Vienna, Austriahttp://www.ci.tuwien.ac.at/Conferences/DSC-2003/K. Hornik & F. Leisch (eds.) ISSN 1609-395X
Automatic Nonuniform Random VariateGeneration in RG�unter Tirler and Josef LeydoldInstitut f�ur Statistik, WU WienAugasse 2-6, A-1090 Vienna, Austria, EUAbstractRandom variate generation is an important tool in statistical comput-ing. Many programms for simulation or statistical computing (e.g. R) providea collection of random variate generators for many standard distributions.However, as statistical modeling has become more sophisticated there is de-mand for larger classes of distributions. Adding generators for newly requireddistribution seems not to be the solution to this problem. Instead so calledautomatic (or black-box) methods have been developed in the last decade forsampling from fairly large classes of distributions with a single piece of code.For such algorithms a data about the distributions must be given; typicallythe density function (or probability mass function), and (maybe) the (approxi-mate) location of the mode. In this contribution we show how such algorithmswork and suggest an interface for R as an example of a statistical library.1 IntroductionRandom variate generation is an important tool in statistical computing. Manyprogramms for simulation or statistical computing (e.g. R) provide a collection ofrandom variate generators for many standard distributions. There exists a vastliterature on generation methods for standard distributions; see, for example, thebooks by Devroye [4], Dagpunar [3], Gentle [5], or Knuth [8]. These books areusually the source for algorithms implemented in software. These algorithms areoften especially designed for a particular distribution and tailored to the featuresof each probability density function. The designing goals for these methods are fast

Proceedings of DSC 2003 2generators and/or simple code. However, as statistical modeling has become moresophisticated there is demand for larger classes of (non-standard) distributions.Adding generators for newly required distribution seems not to be the solution tothis problem.In the last decade so called automatic (also called universal or black-box) meth-ods have been developed for sampling from fairly large classes of distributions witha single piece of code. For such algorithms a data about the distributions must begiven; typically the density function (or probability mass function), and (maybe)the (approximate) location of the mode. Obviously these universal methods needsome setup step, in opposition to special generators, e.g., to the Box-Muller method[2]. Nevertheless, we always can select between a fast setup step and slow marginalgeneration times or (very) fast marginal generation times at the expense of a timeconsuming setup step. Some of the algorithms can be adjusted by a single pa-rameter to the needs of the current situation. Although originally motivated togenerate from non-standard distributions these universal methods have advantageswhich makes their usage attractive even for standard distributions. For univariatecontinuous distribution there are methods like Transformed Density Rejection [6],or algorithms based on a variant of the ratio-of-uniforms method [9] or on piecewiseconstant hat functions [1]. They have the following properties in common [see 10,for details]:� Only one piece of code, well implemented and debugged only once, is required.� By a simple parameter it is possible to choose between fast setup with slowmarginal generation time and vice versa.� It can sample from truncated distributions.� The algorithms can be made as close to inversion as requested.� The marginal generation time does not depend on the density function and isfaster than many of the specialized generators (even for the normal distribu-tion).� It can be used for variance reduction techniques.� The quality of the generated random numbers only depends on the underlyinguniform random number generator.For more details on these and many other universal methods see the forthcomingmonograph by H�ormann, Leydold, and Der
inger [7].2 UNU.RANUniversal methods are usually harder to implement since there is a setup step wherethe necessary constants for the generation steps have to be precomputed. Moreover,it might be necessary whether a particular method works with the given distribution.Thus we have implemented many of these automatic algorithms using ANSI C in

Proceedings of DSC 2003 3a library called UNU.RAN (Universal Non-uniform RANdom variate generators).Our main goal was to get a portable,
exible and robust program, see Leydoldet al. [11]. It is implemented using an object oriented programming paradigma.Using this library �rst a generator object has to be created that then can be usedto sample from the given distribution. Thus it is easy to exchanged distributionsin simulations. Moreover each generator object may have its own pseudo-randomnumber generator or share one with other generators.There exist two application programming interfaces: A \traditional" API wherethe generator object is created via new call and where replacement functions areused to replace default parameters by user de�ned. A second interface uses a stringwhich describes both the desired distribution and the choosen generation method.3 An R interfaceWe have proposed an R interface for this library, called Runuran. This extends theusual functionallity in R for random variate generation in several ways. First it iseasy to sample from non-standard distributions. Secondly it is possible to choosedi�erent methods for a particular distribution, which is not yet possible in R exceptfor normal distributions.The object oriented approach of UNU.RAN is reproduced using S4 classes. Thisprovides nearly all features of UNU.RAN and is very simple to use. In the followingchapter we will describe the main ideas of our implementation and give examplesof how to use UNU.RAN in R.As we can see in the following simple example it is very easy to create nonuniform random numbers for complicated distributions, e.g. the hyperbolic distri-bution:> hyp = new("unur","cont;pdf=\"1/sqrt(1+x^2)*exp(-2*sqrt(1+x^2)+x)\"")> x<-sample.unur(hyp,10000)> hist(x,breaks=50)Besides this default string interface of UNU.RAN there is also a second interfaceavailable with several strings. The �rst one describes the distribution, the secondone the method and the third one the parameters of the method.> gen = new("unur",distr="normal();domain=(0,inf)",method="arou", methodpars="max_sqhratio=0.9")> x<-sample.unur(gen,10000)> hist(x,breaks=50)The default values are the empty strings. The default method depends on thedistribution and is documented in [12]. We de�ne in R an special S4-class namedunur with two slots> setClass("unur",representation(string="character",p="externalptr"),prototype = list(string=character(), p="externalptr"))

Proceedings of DSC 2003 4In the slot string we save all necessary information about the distribution, usedmethod etc. to generate our 'generator object' in UNU.RAN. A full description canbe found in Leydold et al. [11]. The second slot contains an external pointer whichrefers to a generator object created by the C-code.With the de�nition of function initialize for our class unur we ensure thatafter the creation of a new instance of the class unur we have a pointer to thegeneration object created and handeled by the C-ode of UNU.RAN.> setMethod("initialize","unur",function(.Object,x=character()){Object@p <-.Call("R_unur_init",x).Object})The setup step of black box algorithms is hidden behind this initialization. If itfailed the user is informed by an error message. This can be happen for example ifthe choosen method does not work for a special distribution.The user does not need to know anything about the created generator objectunless that it contains all information to create the random variates very fast andeÆciently. Of course UNU.RAN allocates memory which should be deallocated inR . R provides an ideal function named R RegisterCFinalizer which ensures thatthe memory will be deallocated with the command gc().Our �rst version uses only the same built in uniform RNG for all generators al-though UNU.RAN can use multiple streams of uniform random number generators.With the functions> seed.unur(1234)> reset.unur()we can set and reset the seed.The following examples should show some interesting features of our interface.We can use di�erent algorithms for a large class of distributions> gen = new("unur",distr="beta()",method="tdr")> x<-sample.unur(gen,10000)or we can sample from truncated functions> gen = new("unur",distr="normal();domain=(-1,1)")> x<-sample.unur(gen,10000)or we can sample from a kernel density estimate with kernel smoothing> gen = new("unur",distr="cemp;data=(-0.1,0.05,....)",method="empk", methodpars="smothing=0.8")> x<-sample.unur(gen,10000) .

Proceedings of DSC 2003 54 ConclusionOur interface provides the possibility to use a lot of algorithms in R to generate nonuniform variates for large classes of distributions. Due to the implementation ofS4-classes the handling is very easy. A R package with automatic installation anddocumentation is in preparation. A closer relationship between R and UNU.RANshould be possible and easy to realize. For example to de�ne a distribution functionin R and use algorithms of UNU.RAN to generate random numbers. But this makesonly sense if we �rst de�ne a distribution object in R. This is already in planning bya group in Bayreuth [12]. A lot of contributed packages of R use random numbersof special distributions but everybody uses his own code and variables. Thereforewe think that a standard description of distribution objects including generation ofrandom variates will be helpful for a lot of code developers in R.References[1] J. H. Ahrens. A one-table method for sampling from continuous and discretedistributions. Computing, 54(2):127{146, 1995.[2] G. E. P. Box and M. E. Muller. A note on the generation of random normaldeviates. Annals of Math. Stat., 29(2):610{611, 1958.[3] J. Dagpunar. Principles of Random Variate Generation. Clarendon OxfordScience Publications, Oxford, U.K., 1988.[4] L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, New-York, 1986.[5] J. E. Gentle. Random Number Generation and Monte Carlo Methods. Statisticsand Computing. Springer, New York, 1998.[6] W. H�ormann. A rejection technique for sampling from T-concave distributions.ACM Trans. Math. Software, 21(2):182{193, 1995.[7] W. H�ormann, J. Leydold, and G. Der
inger. Automatic Non-Uniform RandomVariate Generation. Springer-Verlag, Berlin Heidelberg, 2003. accepted forpublication.[8] D. E. Knuth. The Art of Computer Programming. Vol. 2: SeminumericalAlgorithms. Addison-Wesley, 3rd edition, 1998.[9] J. Leydold. Automatic sampling with the ratio-of-uniforms method. ACMTrans. Math. Software, 26(1):78{98, 2000. URL http://www.acm.org/pubs/citations/journals/toms/2000-26-1/p78-leydold/.[10] J. Leydold and W. H�ormann. Universal algorithms as an alternative for gen-erating non-uniform continuous random variates. In G. I. Schu�eller and P. D.Spanos, editors, Monte Carlo Simulation, pages 177{183. A. A. Balkema, 2001.Proceedings of the International Conference on Monte Carlo Simulation 2000.

Proceedings of DSC 2003 6[11] J. Leydold, W. H�ormann, E. Janka, and G. Tirler. UNU.RAN { ALibrary for Non-Uniform Universal Random Variate Generation. Insti-tut f�ur Statistik, WU Wien, A-1090 Wien, Austria, 2002. available athttp://statistik.wu-wien.ac.at/unuran/.[12] private communications with R. Ruchdaschel and M.Kohl.

