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Abstract

Generating samples from multivariate distributions efficiently is an important task
in Monte Carlo integration and many other stochastic simulation problems. Markov
chain Monte Carlo has been shown to be very efficient compared to “conventional
methods”, especially when many dimensions are involved. In this article we propose
a Hit-and-Run sampler in combination with the Ratio-of-Uniforms method. We
show that it is well suited for an algorithm to generate points from quite arbitrary
distributions, which include all log-concave distributions. The algorithm works au-
tomatically in the sense that only the mode (or an approximation of it) and an
oracle is required, i.e., a subroutine that returns the value of the density function
at any point x. We show that the number of evaluations of the density increases
slowly with dimension.

Subject classification: Simulation: multivariate random variate generation
(Markov chain Monte Carlo, hit-and-run sampling, ratio-of-uniforms, log-concave
distributions)

1 Introduction

Sampling random vectors is an important part of many stochastic simulation
and randomized algorithms. When many dimensions are involved this becomes
a very challenging task. Conventional methods that have been developed for
the case of univariate random numbers like rejection or composition do not
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work efficiently for distributions with moderately many (8 or more) dimen-
sions (see e.g. Hörmann, Leydold, and Derflinger, 2004). Markov chain Monte
Carlo methods have proven to be more efficient for higher dimensions. The
algorithms generate correlated sequences of random points that converge to
the target distribution.

In this article we propose the Hit-and-Run sampler in combination with the
Ratio-of-Uniforms method. It is well suited for an algorithm to generate points
from quite arbitrary distributions, which include all log-concave distributions.
This algorithm works automatically in the sense that only the mode (or an
approximation of it) and an oracle is required, i.e., a subroutine that returns
the value of the density function at any point x. We use the number of calls to
the oracle as a measure of the performance of the algorithm. Some theoretical
results and our computational experiences show that this method is fast and
its performance decreases only slowly with increasing dimension such that
samples from distributions with 100 or more variables can be generated. One
should notice, however, that the costs for evaluating the density itself depends
on the dimension, e.g. it increases quadratically for a multinormal distribution.

The article is organized as follows: First we shortly describe the Hit-and-
Run sampler (Sect. 2) and state the main facts about the Ratio-of-uniforms
method (Sect. 3). In Section 4 we propose new algorithms based on these two
principles. Our computational experiences are summarized in Sect. 5.

2 The Hit-and-Run Sampler

For the problem of sampling random points uniformly distributed in some
fixed but arbitrary bounded open set S ∈ R

n Smith (1984) introduced the so
called Hit-and-Run samplers that are based on the following principle.

0. Choose a starting point X0 ∈ S and set k = 0.
1. Generate a random direction dk with distribution ν.
2. Generate λk uniformly distributed in Λk = S ∩ {x : x = xk + λdk}.
3. Set Xk+1 = Xk + λkdk and k = k + 1.
4. Goto 1.

Boneh and Golan (1979) and independently Smith (1980) first considered such
an algorithm with ν being the uniform distribution over a hypersphere. An-
other variant is to use random coordinate directions which can be seen as Gibbs
sampling with randomized directions. It has been shown that this Markov
chain is mixing fast (Chen and Schmeiser, 1993; Smith, 1984), that is, the
distribution of the generated point set converges to the uniform distribution
with increasing sample size; in particular when the set S is convex (Lovász,
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1999; Lovász and Vempala, 2004). Kaufman and Smith (1998) improved the
convergence of the Hit-and-Run sampler by non-uniform direction choice and
give a (worst case) optimal distribution ν. We restate the convergence result
by Smith (1984).

Theorem 1 (Smith, 1984) Let X0,X1,X2, . . . be the Markov chain gener-
ated by the Hit-and-Run Algorithm over an open bounded region S ∈ R

n.
Then for any measureable set A ⊆ S,

|P(Xm ∈ A|X0 = x)− µ(A)| <
(

1− (γ/n2n−1)
)m−1

where µ(·) denotes the n-dimensional content of A and γ is the ratio of the n-
dimensional content of S to the n-dimensional content of the smallest sphere
containing s.

The Hit-and-Run sampler can easily be generalized to sample from non-
uniform distributions with density f (Bélisle, Boneh, and Caron, 1998; Belisle,
Romeijn, and Smith, 1993; Chen and Schmeiser, 1996; Smith, 1996): Replace
the uniform distribution of λk in Step 2 of the above algorithm by the condi-
tional distribution of f :

2’. Choose λk ∈ Λk = S∩{x : x = xk+λdk} from the distribution with density

fk(λ) =
f(xk + λdk)

∫

Λk
f(xk + θdk) dθ

, λ ∈ Λk . (1)

Although it has been shown that this algorithm has fast mixing time as well
(Lovász and Vempala, 2003), there are some drawbacks. Besides the existence
of distributions where it converges arbitrarily slow (Bélisle, 2000), the necessity
of sampling from the conditional density (1) makes it difficult to apply for user-
defined distributions. Notice that only one random variate has to be drawn
from a particular conditional density. In the last decade automatic algorithms
for sampling from large classes of univariate distributions have been developed
(Gilks and Wild, 1992; Hörmann et al., 2004). However, these require some
setup which can be quite expensive both in time and memory compared to the
marginal generation time and thus they are often extremely slow when only
one random variate should be generated. Moreover, many of them require the
knowledge of some parameters of the (univariate) distributions (e.g. its mode).

3 The Ratio-of-Uniforms Method

The Ratio-of-Uniforms method has been introduced by Kinderman and Mon-
ahan (1977) and generalized to the multivariate case by Wakefield, Gelfand,
and Smith (1991). It is based on the following theorem.
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Theorem 2 (Wakefield, Gelfand, and Smith, 1991) Let f(x) be a posi-
tive integrable function on R

n. Let r > 0 and m ∈ R
n be constants. Suppose

the point (U, V ) ∈ R
n+1 with U = (U1, . . . , Un) is uniformly distributed over

the region

A(f) = Ar,m(f) =
{

(u, v) : 0 < v < rn+1

√

f(u/vr + m)
}

, (2)

then X = U/V r + m has probability density function f(x)/
∫

Rn f(z) dz.

The proof of this theorem is based on the fact that the map

(u, v) 7→ (x, y) =
(

u

vr
+ m, vrn+1

)

(3)

has constant Jacobian (equal to rn + 1). We can apply this theorem and get
the following algorithm. Notice that f need not be normalized, i.e., it can be
any positive multiple of a density function.

1. Generate a point (U, V ) uniformly in Ar,m(f).
2. Return X = U/V r + m.

An important observation is that the region A(f) is bounded for many distri-
butions (at least for sufficiently large values of r). Thus the originally proposed
algorithm uses rejection from the minimal bounding rectangle Rr,m(f) which
is given by

v+ = sup
x

(f(x))1/(rn+1) ,

u−

i = inf
xi

(xi −mi) (f(x))r/(rn+1) ,

u+
i = sup

xi

(xi −mi) (f(x))r/(rn+1) .

(4)

Usually m is set to the mode of the density f as this results in an (almost) op-
timal rejection constant. However, the acceptance rate decreases exponentially
with the dimension in this simple rejection algorithm (see e.g. Hörmann et al.,
2004) and hence is impractical for dimensions larger than 10. For example,
when A(f) is a ball then the expected number of points that must be gener-
ated within R(f) to obtain one within A(f) grows from 1.27 for dimension
n = 1 to 400 for n = 10, 4×107 for n = 20, and 6×1027 for n = 50. But we can
use the Hit-and-Run sampler to generate a sequence of uniformly distributed
points (u, v) in A(f) in Step 1 instead of rejection from R(f) even in high
dimensions. As A(f) is bounded we can expect that the uniform Hit-and-Run
sampler is mixing faster that the corresponding Hit-and-Run sampler on the
region

G(f) = {(x, y) : 0 < y < f(x)} . (5)

Moreover, this set need not be bounded and thus convergence is not assured.
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Fig. 1. Region A(f) for standard bivariate normal distribution (r = 1).

The parameter r can be used to control the shape of A(f). For increasing
values of r the family of distributions for which this set is bounded is growing.
For the special case r = 1 the region A(f) is convex in many cases and thus
the Hit-and-Run sampler converges fast. The following theorem generalizes a
result for the univariate case (Leydold, 2000).

Theorem 3 For a density f and r = 1 the region A(f) ⊂ R
n+1 is convex if

and only if the transformed density T (f(x)) = −(f(x))−1/(n+1) is concave.

Following Hörmann (1995) we call such a density Tc-concave with c = −1/(n+
1).

Proof. Since T (y) = −1/ n+1
√

y is strictly monotonically increasing, the trans-
formation (x, y) 7→ (X, T (y)) maps G(f) one-to-one onto T (f) = {(x, y) : y <
T (f(x))}, i.e. the region below the transformed density. Hence by T (vn+1) =
−1/v and transformation (3)

R
n × (0,∞)→ R

n × (−∞, 0), (u, v) 7→ (x, y) = (u/v + m,−1/v) (6)

mapsA(f) one-to-one onto T (f). Notice that f is T -concave if and only if T (f)
is convex. Thus it remains to show that A(f) is convex if and only if T (f)
is convex, and consequently if and only if hyperplanes remain hyperplanes
under transformation (6). Now let a′ x + b y = d be a hyperplane in T (f).
Then a

′ (u/v + m) − b/v = d or, equivalently, a
′
u − d v = b − a

′
m, is a

hyperplane in A(f). Analogously we find for a hyperplane a′ u + b v = d in
A(f) the hyperplane a′ x + d y = −b + a′ m in T (f). 2

The following result by Hörmann (1995) immediately holds for multivariate
distributions.

Theorem 4 (Hörmann, 1995) If a density f is Tc-concave for some c ∈ R

then f is Tc1-concave for all c1 ≤ c.
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The family of transformations Tc contains the special case T0(y) = log(y).
Thus we have the important corollary; see Fig. 1 for an example.

Corollary 5 For every log-concave density f and r = 1 the region A(f) is
convex.

We have to note that an analogous (simple) condition for the convexity of
Ar(f) for r 6= 1 is not known.

4 The Algorithms

Although we have presented all ingredients of the Hit-and-Run algorithms for
sampling from non-uniform multivariate distributions we have to make some
considerations about computational details.

4.1 Uniform Sampling

The demanding part of the Hit-and-Run sampler is to generate Xk+1 uniformly
in the line subset Λk = A(f) ∩ {(u, v) : (u, v) = (Uk, Vk) + λdk} for a chosen
direction dk. It can be accomplished by the following procedure (Smith, 1996):
First the intersection Lk = R(f) ∩ {(u, v) : (u, v) = (Uk, Vk) + λdk} is deter-
mined. Then a rejection method is employed by generating one-dimensional
uniform points on the line segment Lk until one falls within Λk. Notice that Lk

can be given by the corresponding values λ0 and λ1 of its endpoints. Since this
subproblem is one-dimensional the rejection method is typically very efficient
for this task.

The expected number of calls to the oracle, i.e., the expected number of iter-
ations is given by the ratio ρ of the length of the line segment Lk, µ(Lk), and
the length of the line segment Λk (or the sum of all segments constituting λk),
µ(Λk), see Hörmann et al. (2004, §2.2):

ρ =
µ(Lk)

µ(Λk)
. (7)

4.2 Adaptive Uniform Sampling

Although the acceptance rate in a univariate rejection step is much better
than those for rejection from the bounding rectangle it can still be improved
by the following procedure when Λk is an open interval. Assume that we have
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to sample uniformly from (0, ρ), ρ ∈ (0, 1). We generate a uniform random
number U1 in (0, u) with u = 1. If U1 ∈ (0, u) we accept U = U1 , otherwise
we set u = U1 (and thus shrink the interval (0, u)) and generate a new uniform
random number U2, independent from U1, and try again. We proceed until an
Uk is generated with Uk ∈ (0, Uk−1). (A similar procedure has been suggested
by Neal (2003) for the slice sampler.) The expected number of interations for
sampling U is much reduced by this adaptive algorithm. It can be estimated
by means of the following equivalent procedure Generate i.i.d. uniform random
numbers U1, U2, . . . ∈ (0, 1) until the first time U1 ·U2 · . . . ·UT < ρ and return
U = U1 · U2 · . . . · UT .

Lemma 6 The stopping time T−1 of the above sampling procedure is Poisson
distributed with parameter − log(ρ). Thus for the expectation of T we find
E(T ) = 1− log(ρ).

Proof. The probability for T = t is given by P(T = t) = P(U1 · . . . · Ut−1 ≥
ρ ∧ U1 · . . . · Ut < ρ) = P(Zt−1 ≤ b ∧ Zt−1 + Xt > b) where Xt = − log(Ut)
is standard exponential distributed, Zt−1 = −(log(U1) + · · · + log(Ut−1)) is
Γ(t−1, 1) distributed and b = − log(ρ). Hence using the density of the gamma
distribution we obtain P(T = t) =

∫ b
0 P(Xt > b−Zt−1|Zt−1 = z) zt−2e−z/Γ(t−

1) dz =
∫ b
0 e−(b−z) zt−2e−z/Γ(t − 1) dz = ebzt−1/(t − 1)!, i.e. T − 1 is Poisson

distributed with parameter b as proposed. 2

This idea can be used to sample from Λk more efficiently. For densities where
A(f) is convex, e.g., for log-concave and T−1/(n+1)-concave densities when r =
1, the set Lk is an open interval. This interval can be described as (λ0, λ1). In
each iteration step we choose a λk ∈ (λ0, λ1) at random. If Xk+1 = (Uk, Vk) +
λkdk ∈ Λk we accept Xk+1. Otherwise we shrink (λ0, λ1) and try again. This
is done by replacing λ0 or λ1 by the generated λk depending on the sign of λk.
Notice that (λ0, λ1) always contains 0. By Lemma 6 the expected number of
calls to the oracle for generating Xk+1 is then given by 1− log(ρ) where ρ is
the ratio of the length of the two line segments Lk and Λk.

Computational experience shows that computing the bounding rectangleR(f)
numerically is the most time consuming step in higher dimensions. A possible
solution is to replace the bounding rectangle R(f) by the unbounded “plate”

given by {(u, v) : 0 < v < n+1

√

f(m)}. Notice that the line Lk becomes infinitely
long when and only when the v-coordinate of the random direction is 0. Thus
for a direction drawn uniformly from the hypersphere (or any other absolutely
continuous distribution) Lk has finite length almost surely. However, it can
become very long and thus we have to use the adaptive sampling discussed
above. Otherwise the number of iterations becomes prohibitively large.

To get a first impression about the expected number of iterations E(I) when
we use the unbounded “plate” we assume that r = 1, f(m) = 1, and A(f) is a
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ball of radius 1. The length of a line segment LK is then given by
√

1 + tan(θ)2

where θ is the angle between the direction d and the v-axis. For a point Xk

and a direction d with angle θ the expected number of iterations is given by

log(
√

1 + tan(θ)2/`) by Lemma 6 where ` denotes the length of Λk. When the
direction d is uniformly distributed on the hypersphere, θ follows a distribution
with density Sn−1/Sn sin(θ)n−2 for 0 ≤ θ ≤ π where Sn = 2πn/2/Γ(n/2)
denotes the area of the surface of the unit n-sphere (i.e. in R

n) and Γ(·)
denotes the gamma function. Now assume that Xk is uniformly distributed in
the ball A(f). Then for a given θ the length ` of Λk depends on the distance
δ between Xk and d, given by ` = 2

√
1− δ2. The density of δ is given by

(n Sn−1)/((n−1)Sn)(1−δ2)(n−1)/2 for −1 < δ < 1. Consequently by a straight
forward computation we obtain for the expected number of iterations,

E(I) =
∫ π

0

∫ 1

−1
log

(

√

1 + tan(θ)2/2
√

1− δ2

)

·
n Sn−1

(n− 1)Sn
(1− δ2)

n−1

2

Sn−1

Sn
sin(θ)n−2 dδ dθ

=
n S2

n−1

2(n− 1)S2
n

∫ π

0

∫ 1

−1
(log(1 + tan(θ)2)− log(1− δ2)) ·

(1− δ2)
n−1

2 sin(θ)n−2 dδ dθ − log(2)

<
Sn−1

Sn

(
∫ π

0
log(1 + tan(θ)2) sin(θ)n−2 dθ −

∫ 1

−1
log(1− δ2)(1− δ2)

n−1

2 dδ
)

<
Sn−1

Sn

(
∫ π

0
log(1 + tan(θ)2) dθ +

∫ 1

−1
(1− δ2)

n−3

2 dδ
)

= 1 + π log(4)
Sn−1

Sn

= 1 +
√

π log(4)
Γ(n/2)

Γ((n− 1)/2)

i.e., the expected number of iterations is finite for every dimension n.

4.3 Direction Sampling

Hypersphere sampling, i.e. choosing direction dk uniformly distributed on the
sphere, seems to be a good choice as it is simple and easy to implement (see
e.g. Hörmann et al., 2004, §11.2.1). The improved method by Kaufman and
Smith (1998) is another possible algorithm. We made the experience that
the Hit-and-Run sampler mixes faster when the bounding rectangle R is a
hypercube. By a linear map we can transform every bounded rectangle R into
the unit hypercube (0, 1)n. Thus we can generate points (Uk, Vk) in (0, 1)n and
transform it back into the original scale.
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4.4 Floating Point Arithmetic

When stating the theoretical background of our method we have assumed
that we have real numbers, R. However, the algorithms are designed to be
implemented in real world computers which work with floating point numbers
that have only a limited precision; see Overton (2001) for an introduction to
floating point arithmetic. Thus expressions like n+1

√
f or vn+1 may result in a

reduction of significant digits, overflow, or underflow when the number n of
dimensions is large. As a consequence the generated distribution deviates too
much from the target distribution or the algorithm even may fail too work.
Therefore we need two strategies to reduce these problems:

(1) The density f is rescaled such that f(m) = 1 for the mode m.
(2) The oracle should return log(f(x)).

The latter point is quite convenient as the logarithms of many densities (or of
multiples of densities) are often easier to compute.

4.5 HITRO

We have compiled two algorithms 1 (HITRO-I and HITRO-II). The first one
uses bounding hyper-rectangle for the rejection steps, the second one uses the
unbounded “plate”.

There are a few remarks concerning these Algorithms:

• The set A(f) should be convex. This is, e.g., the case for r = 1 when
the density f is log-concave. Otherwise the conditions for the convergence
theorems are not satisfied, i.e., whenever Λk is disconnected and Step 11 in
Algorithm HITRO-I is used then

1. points sampled from Λk are not uniformly distributed, and
2. the Markov chain is not time reversible, i.e., the transition probability

function is not symmetric.
Thus when A(f) is not convex, then the adaptive Step 11 in Algorithm
HITRO-I should be skipped. (Algorithm HITRO-II becomes very slow with-
out Step 11.) Nevertheless, in our computational experiments it seemed that
the Markov chain still converged to the target distribution with adaptive
uniform sampling even if A(f) is not convex.
• We can replace the mode m by any other vector c. This is in particular

useful when f is multimodal. Then c could represent the “center” of the
distribution. Notice, however, that fm should be set to a value close to

1 Hitro is the Slovenian word for fast.
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Algorithm 1 HITRO-I

Input: Density function f in R
n, mode m; parameter r, sample size N .

Output: Sequence Xk of random vectors with asymptotic distribution f .
[ Setup ]

1: Compute fm ← f(m) and bounding rectangle Rr,m(f/fm) = (Rl,Ru).
2: Set (U0, V0)← (0, 1

2
) and k ← 0.

[ Generate chain ]

3: repeat
4: Generate a random direction dk uniformly on (n + 1)-sphere.

[ Generate a point uniformly in Λk ]

5: Compute λ0 and λ1. (End points of line segment
Lk = (Rl,Ru) ∩ {(u, v) : (u, v) = (Uk, Vk) + λdk})

6: loop
7: Generate λk uniformly distributed in (λ0, λ1).
8: Set (Uk+1, Vk+1)← (Uk, Vk) + λkdk.
9: Set Xk+1 ← Uk+1/(Vk+1)

r + m.
10: if (rn + 1) log(Vk+1) ≥ log(f(Xk+1)/fm) then
11: Set λ0 ← λk (if λk < 0) or λ1 ← λk (otherwise). [ Shrink Lk ]

12: else
13: Stop loop.

[ Append to chain ]

14: Set k ← k + 1.
15: until k = N .

Algorithm 2 HITRO-II

Input: Density function f in R
n, mode m; parameter r, sample size N .

Output: Sequence Xk of random vectors with asymptotic distribution f .
[ Setup ]

1: Compute fm ← f(m).
2: Set (U0, V0)← (0, 1

2
) and k ← 0.

[ Generate chain ]

3: repeat
4: Generate a random direction dk = (du, dv) uniformly on (n + 1)-sphere.
5: Set λ0 ← −|v/dv| and λ1 ← |(1− v)/dv|.
6: loop
7: Generate λk uniformly distributed in (λ0, λ1).
8: Set (Uk+1, Vk+1)← (Uk, Vk) + λkdk.
9: Set Xk+1 ← Uk+1/(Vk+1)

r + m.
10: if (rn + 1) log(Vk+1) ≥ log(f(Xk+1)/fm) then
11: Set λ0 ← λk (if λk < 0) or λ1 ← λk (otherwise).
12: else
13: Stop loop.
14: Set k ← k + 1.
15: until k = N .

10
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Fig. 2. Average number of oracle-calls (pdf-calls) for standard multivariate normal
distribution.

max f(x) (for computational reasons) in Step 1. Furthermore, the starting
point (U0, V0) must be set accordingly.
• R(f) need not necessarily be the minimal bounding rectangle as defined in

(4). It can be larger.

5 Computational Experiences

We ran many experiments with the multinormal distribution and many dimen-
sions and variance-covariance matrices. Figure 2 gives the average number of
oracle calls needed for one step of the Hit-and-Run sampler for the standard
multinormal distributions are used. The results for correlated components are
quite similar. It shows that the performance gain by adaptive uniform sam-
pling is very large in higher dimensions. Moreover, the ratio between the av-
erage number of calls needed when using an unbounded plate instead of a
bounding box is less than 2 and decreases with increasing dimension. On the
other hand using an unbounded plate only requires to compute the mode of
the density (or the approximate location of the mode and an upper bound for
the density) and thus saves finding all 2 n + 1 coordinates for the bounding
rectangle. The expected number of oracle-calls stays well below 10 even for di-
mensions as high as 100. For “conventional” rejection from bounding rectangle
the expected number of oracle calls would be 5.06× 1070.

The region A(f) should be convex when adaptive uniform sampling is used.
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Fig. 3. Graph of mixture density function (8), the surfaces of the RoU-shapes and
N = 1000 random sample points for µ = 0, µ = 2 and µ = 4 respectively.

Otherwise, the ergodicity of the proposed Hit-and-Run sampler has not been
shown, yet. Nevertheless, we ran experiments on normal mixtures. Figure 3
shows graphs, regions A(f), and chains of length 1000 produced by our algo-
rithm with adaptive uniform sampling for bivariate distributions with densities

f(x, y) =
1

4π
(e−((x−µ)2+(y−µ)2)/2 + e−((x+µ)2+(y+µ)2)/2) . (8)

Notice that A(f) is not convex in all cases. Moreover, for large values of µ
neither the Gibbs sampler nor a random walk Metropolis sampler would work
efficiently. Nevertheless, the Hit-and-Run algorithm seems to mix fast even for
this difficult distribution.
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6 Conclusion

Adaptive uniform sampling with an unbounded plate (Algorithm HITRO-
II) is the best suited practical algorithm among our proposed methods. The
computation of the the mode can be seen as equivalent to the burn-in phase
of other Markov chain samplers. Indeed, one could use the algorithm to find
the mode of the density f by starting with some guess for the upper bound
of f , generate a chain and adapt this guess whenever a larger value for f was
found (see Zabinsky (1998) for a survey on stochastic optimization).

Compared to the Gibbs sampler and the Random Walk Metropolis sampler
it seems to be less sensitive to higher correlation and seems to work also for
multimodal distributions like those in Fig. 3. Different to the original Hit-and-
Run sampler for multivariate distributions and the Gibbs sampler there is no
necessity to sample from non-uniform conditional distributions.

The slice sampler (Neal, 2003) has been proposed to sample points uniformly
in the region below the graph of f , G(f). There points are sampled uniformly
in slices {x : f(x) = y}. However, this requires a search algorithm to get a
cover for such a slice each time. The sampler proposed by Chen and Schmeiser
(1998) also generates a Markov chain with uniform stationary distribution in
G(f). However, it requires to fix two parameters which are crucial for the
performance of the algorithms.

An important feature of the new algorithm is its simplicity. No proposal dis-
tribution has to be adjusted for the target distribution. (The influence of the
parameter r is rather small). Of course rescaling can improve the convergence
of the sampler.

Remark:
When we finished this paper we became aware of a recent talk by Tierney
(2005) who also pointed out the usefulness of the ratio-of-uniforms method
for Markov chain Monte Carlo.
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calling our attention to the talk of Luke Tierney. This work was supported by
the Austrian Fonds zur Förderung der Wissenschaftlichen Forschung, Proj.No.
P16767-N12.

13



References

C. Bélisle. Slow hit-and-run sampling. Stat. Probab. Lett., 47(1):33–43, 2000.
C. Bélisle, A. Boneh, and R. J. Caron. Convergence properties of hit-and-run

samplers. Commun. Stat., Stochastic Models, 14(4):767–800, 1998.
C. J. P. Belisle, H. E. Romeijn, and R. L. Smith. Hit-and-run algorithms for

generating multivariate distributions. Mathematics of Operations Research,
18:255–266, 1993.

A. Boneh and A. Golan. Constraints’ redundancy and feasible region bounded-
ness by random feasible point generator (rfpg). In Third European Congress
on Operations Research, EURO III, Amsterdam, 1979.

M.-H. Chen and B. Schmeiser. Performance of the Gibbs, Hit-and-run, and
Metropolis samplers. Journal of Computational and Graphical Statistics, 2:
251–272, 1993.

M.-H. Chen and B. Schmeiser. Toward black-box sampling: a random-
direction interior-point Markov chain approach. Journal of Computational
and Graphical Statistics, 7:1–22, 1998.

M.-H. Chen and B. W. Schmeiser. General hit-and-run Monte Carlo sampling
for evaluating multidimensional integrals. Oper. Res. Lett., 19(4):161–169,
1996.

W. R. Gilks and P. Wild. Adaptive rejection sampling for Gibbs sampling.
Applied Statistics, 41(2):337–348, 1992.

W. Hörmann. A rejection technique for sampling from T-concave distributions.
ACM Trans. Math. Software, 21(2):182–193, 1995.
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