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Abstract

In this paper we carry out fully Bayesian analysis of the general heterogeneity model, which is a
mixture of random effects model, and its special cases, the random coefficient model and the latent
class model. Our application comes from Conjoint analysis and we are especially interested in what is
gained by the general heterogeneity model in comparison to the other two when modeling consumers’
heterogeneous preferences.
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1 The Substantive Problem and the Data

Our application comes from Conjoint analysis, a procedure that is focused on obtaining the importance of
certain product attributes and their significance in motivating a consumer torward purchase from a holistic
appraisal of attribute combinations. Our data come from a brand - price trade off study in the mineral-water
category. Each of 213 Austrian consumers evaluated their likelihood of purchasing 15 different product-
profiles offering five different brands of mineral-water at different prices on 20 point rating scales. The
goal of the modeling exercise is to find a model describing consumers’ heterogeneous preferences towards
the different brands of mineral water and their brand-price trade offs.

Applying the general heterogeneity model to these data we follow up previous work on the same data
using the random coefficient model (Fr¨uhwirth-Schnatteret al., 1999) - this work was presented at the 14th
IWSM conference - and the latent class model (Otteret al., 2001).

2 Statistical Modeling Tools

2.1 The Heterogeneity Model

The data are described by amixture of random effects model:

yi � X�
i ��X�

i �i � �i� �i � N��� ���I�� (1)

whereyi is a vector ofTi observations for subjecti � �� � � � � N ,X�
i is theTi�d design matrix for thed��

vector of the fixed effects� andX�
i is the design matrix of dimensionTi � r for ther � � random effects

vector�i. I is the identity matrix. Due to unobserved heterogeneity the random effects�i are different for
each subjecti. The unknown distribution���i� of heterogeneity is approximated by a mixture distribution
�i �

PK
k�� �kN��Gk � Q

G
k � with the unknown group means�G� � � � � � �

G
K , the unknown group covariance

matricesQG
� � � � �, Q

G
K and the unknown group probabilities� � ���� � � � � �K�.

This model includes as special case theaggregate model, for K � �, QG � �, thelatent class model
(LCM), for K 	 �,QG

� � � � � � QG
K � � and therandom coefficient model (RCM), forK � �,QG �� �.
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Verbeke and Lesaffre (1996) study this model with the groups covariances being the same for all groups.
Bayesian estimation of heterogeneity models is discussed in Allenbyet al. (1998) for models without fixed
effects and in Lenk and DeSarbo (2000) for observations from distributions of general exponential families.

2.2 Bayesian Estimation of the Heterogeneity Model

MCMC Sampling Steps. Estimation of the heterogeneity model follows the ideas described in (Fr¨uhwirth-
Schnatteret al., 2002). It is carried out for a fixed numberK of groups using Markov Chain Monte
Carlo methods. LetyN � �y�� � � � � yN� denote all observations. We introduce discrete latent group in-
dicatorsSN � �S�� � � � � SN�, with Si taking values inf�� � � � �Kg and thereby indicating which group
subjecti belongs to, with the unknown probability distributionPr�Si � k� � �k. Following the prin-
ciple of data augmentation we augment the parameter vector of the unknown model parameters
 �
��� �G� � � � � � �

G
K � ��Q

G
� � � � � � Q

G
K � �

�
�� by the individual parameters�N � ���� � � � � �N � and the group in-

dicatorsSN . We apply standard Gibbs sampling to sample� from ���jSN � andQG
� � � � � � Q

G
K � �

�
� from

��QG
� � � � � � Q

G
K � �

�
� j�

N � SN � �� �G� � � � � � �
G
K � y

N�. Deviating from standard full conditional Gibbs sam-
pling the marginal heteroscedastic model, where the individual parameters�N are integrated out, serves
to obtainSN from ��SN j
� yN �. Finally we use the model’s representation as a switching random effect
model and apply a blocked Gibbs sampler to derive�� �G� � � � � � �

G
K and�N from

���G� � � � � � �
G
K � �� �

N jSN � QG
� � � � � � Q

G
K � �

�
� � y

N�. Therefore we derive�� �G� � � � � � �
G
K from

���� �G� � � � � � �
G
K jS

N � QG
� � � � � � Q

G
K � �

�
� � y

N � in one step and�N from
���N jSN � �G� � � � � � �

G
K � ��Q

G
� � � � � � Q

G
K � �

�
� � y

N � in another step.

Label Switching. As our model includes a discrete latent structure, we have to identify a unique la-
beling subspace to avoid biased estimates of the group specific parameters�G� � ��� �

G
K � Q

G
� � ��� Q

G
K � ��� ��� �K

andSN . To achieve a unique labeling we apply the method ofPermutation sampling described in (Fr¨uhwirth-
Schnatter, 2001a). The sampler is restricted to a unique labeling subspace by introducing a constraint
Rg � g��G� � Q

G
� � ��� � � � � � g��GK � Q

G
K � �K�, whereg is an appropriate function of the group specifics.

For a lot of estimation problems arising in the empirical analysis of the heterogeneity models it is not
necessary to identify a unique labeling. Such problems are for example the estimation of the individual
parameters�i �

PK
k�� �kN��Gk � Q

G
k � �

PK
k�� ���k�N��G

��k�� Q
G
��k��, (with some permutation� of the

labels�� � � � �K), and of the moments of the distribution of heterogeneity. Finally, it is possible to predict
the behaviour of each subject under designsX ���

i ,X���
i different from the ones used for estimation.

2.3 Model Comparison

We compare our models by their model likelihoods, which are computed from the MCMC outputs. For
computing the model likelihoods we apply the method of bridge sampling, which has proved to be robust
against label switching and more efficient than other methods (Fr¨uhwirth-Schnatter, 2001b).

3 Main Results of our Application from Conjoint analysis

Our fully parameterized design matrix consists of 15 columns corresponding to the constant, four brand
contrasts (of the brands R¨omerquelle -RQ, Vöslauer -VOE, Juvina -JU, Waldquelle -WA), a linear and
a quadratic price effect, four brand by linear price and four brand by quadratic price interaction effects,
respectively. We used dummy-coding for the brands. The fifth brand Kronsteiner (KR) was chosen as the
baseline. We subtracted the smallest price from the linear price column, and computed the quadratic price
contrast from the centered linear contrast. Therefore, the constant corresponds to the purchase likelihood
of Kronsteiner at the lowest price level, if quadratic price effects are not present. Earlier investigations of
these data indicated that a specification with fixed brand by quadratic price interactions is preferable (Otter
et al., 2001) and is therefore chosen in this paper.

We carried out����� MCMC iterations and based our inference on the last	���. The group spe-
cific means�Gk and the fixed effects� are a priori normally distributed withN�b�� B�� andN�a�� A��,
respectively. The prior meansb� anda� are equal to the population mean of the RCM model reported in
Frühwirth-Schnatteret al., (1999) and for the information matrices we chooseA��� � B��� � ���
 � I . The
prior distribution of the groups covariances is an inverted Wishart distributionIW �
Q� � S

Q
� �. We choose


Q� � �� and then deriveSQ� from E�QG
k � � �
Q� � �d � �������SQ� , whereE�QG

k � was computed by
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individual OLS estimation andd is the dimensionality ofQG
k . The prior on� is the commonly used Dirich-

let distributionD��� � � � � ��. We stay noninformative about the error variances��� and choose the inverted
Gamma distributionIG��� ��.

3.1 Model Selection

We estimated various models for our data, the general heterogeneity model, varying the number of groups
K, the special case of the LCM, also varying the number of groupsK and the special case of the RCM.

Table 1 shows estimates of the logarithm of model likelihoods for all these models. We see that the
RCM (columnQ �� �, lineK � �) is clearly prefered to all LCMs (columnQ � �). Under the assumption
of fixed brand by quadratic price interactions the optimallatent class model has seventeen classes. The
optimal model out ofall models under consideration is a general heterogeneity model withK � �.

logL�yN jModel� MSE
K QGk �� � QGk � � QGk �� � QGk � �

1 -9222.36 (0.05) -10077.31 (0.00) 19.69 38.98
2 -9165.66 (0.06) -9881.49 (0.01) 19.89 34.55
3 -9161.27 (0.06) -9733.98 (0.02) 19.80 31.11
4 -9165.73 (0.08) -9669.98 (0.05) 19.88 29.32
5 - -9596.61 (0.04) - 27.75
...

...
...

17 - -9460.61 (1.19) - 23.78
18 - -9465.79 (1.33) - 23.21

Table 1: Left-hand side: estimates of thelog L�yN jModel�, (rel. std. errors in parenthesis); right-hand
side: mean squared errors for the holdout data
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Figure 1: Marginal densities of��� for K � �� � � � � 
 classes, general model

Within the general heterogeneity specification this choice is also supported by the exploratory inspec-
tion of the model error variances��� plotted in Figure 1. We see that the model error variance decreases
only up toK � �.

3.2 Capturing Heterogeneity

We give bivariate plots of expected individual coefficients for the linearprice against theRQ parameter
in Figure 2 to illustrate to which extend the general heterogeneity model with three classes, the RCM and
the LCM with seventeen classes capture heterogeneity. For comparison we add estimates for the aggregate
model i.e. a model with no heterogeneity over the consumers and for individual OLS estimation, which
proceeds with zero degrees of freedom for our data. From the triangular form of the three heterogeneity
models’ plots we conclude that the more price sensitive consumers tend to behave more homogeneously
towards theRQ brand. This fact is also captured by the RCM despite its assumption of normally distributed
random effects. In contrast to the RCM the general model reflects three clusters - one with high price
sensitivity and low preference forRQ, one with low price sensitivity and low preference forRQ and the last
one with low price sensitivity and high preference forRQ. In line with expectations and previous research
the LCM captures least of the preference variation between consumers.
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Figure 2: Scatterplots of individual parameters�i, price againstRQ

3.3 Model Identification

We are now going to illustrate how to achieve a unique labeling for the general heterogeneity model with
K � � classes. First we analyze the output of theRandom Permutation Sampler (Frühwirth-Schnatter,
2001a) graphically. TheRandom Permutation Sampler explores the unconstrained posterior distribution
sampling from each labeling subspace with equal probability��K. This can be seen in the left plot of
Figure 3, where the group specific mean of theprice is plotted against the one ofRQ. Though there is no
association between individual MCMC chains and group specific parameters by definition of theRandom
Permutation Sampler - estimates from any chain integrate over between group differences - three clusters
and possible constraints to separate these may be found by visual inspection. In the middle of Figure 3 we
see the output of the model that has been identified by separating the first group from the remaining two by
the constraintprice� � price��� and by dividing the second group from the third one byRQ� � RQ�. In
Table 2 we give resulting estimates for the group specific means and the group weights. We have two big
groups of nearly equal size, one collecting very price sensitive consumers whereas the consumers of the
other group tend to value the ”high-image” brandsRQ andVOE. Moreover, they are less price sensitive.
The smallest group consists of consumers, who are neither price sensitive nor brand conscious. The right
plot of Figure 3 is a plot for the general model withK � 
 that again supports our choice ofK � �.
We find the same three clusters as before but the data do not support a fourth cluster. The widely spread
simulations overlaying the three clusters indicate that parameters are sampled from their prior because a
fourth class is empty on many iterations.
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Figure 3: Posterior group specific means for theprice againstRQ

3.4 Prediction

In addition to the 15 products our estimation was based on, the 213 consumers evaluated 5 further products.
These evaluations serve as holdout data to compare our models through their capability to predict. We
give the traditional measure mean squared error (MSE) in Table 1 and illustrate the differences between
predictive densities of selected models for one selected consumer in Figure 4. We include the estimates of
individual OLS estimation. The MSE as well as the predictive density plots clearly advocate for a model
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E��Gk jyN � E��Gk jyN�

Effect k=1 k=2 k=3 Effect k=1 k=2 k=3
const 14.99 12.16 13.38 RQ�p –0.78 –0.29 0.11

(0.79) (0.79) (1.49) (0.20) (0.22) (0.46)
RQ 5.45 7.57 0.17 VOE�p –0.89 –0.29 0.49

(0.77) (0.85) (1.72) (0.20) (0.24) (0.54)
VOE 5.23 6.91 –0.46 JU�p –0.54 0.16 –0.18

(0.78) (0.94) (2.08) (0.21) (0.21) (0.51)
JU 1.83 0.02 1.76 WA�p –0.67 –0.08 –0.38

(0.81) (0.94) (1.64) (0.18) (0.18) (0.38)
WA 2.35 1.09 2.66

(0.81) (0.92) (1.72)
p –2.87 –1.09 –0.85

(0.18) (0.18) (0.42) E��kjyN�

p� 0.01 –0.08 –0.15 0.46 0.44 0.10
(0.09) (0.07) (0.18) (0.05) (0.05) (0.03)

Table 2: Posterior estimates of the group specific means�Gk and the group specific weights�k for the
general model with K=3, (std.dev. in paranthesis)
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Figure 4: Predicitive densities for various models, (the full point indicates the true value, the circle indicates
the OLS estimator)

with random effects being included. As it was to be expected from Section 3.2 the general models with
K 	 � do not differ much from the RCM withK � � and the LCMs are clearly outperformed.
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