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Smoothed Transformed Density Rejection 1Josef Leydold a;� and Wolfgang H�ormann a;baUniversity of Economics and Business Administration, Department for AppliedStatistics and Data Processing, Augasse 2-6, A-1090 Vienna, AustriabIE Department, Bo�gazi�ci University Istanbul, 80815 Bebek-Istanbul, TurkeyAbstractThere are situations in the framework of quasi-Monte Carlo integration wherenonuniform low-discrepancy sequences are required. Using the inversion methodfor this task usually results in the best performance in terms of the integrationerrors. However, this method requires a fast algorithm for evaluating the inverse ofthe cumulative distribution function which is often not available. Then a smoothedversion of transformed density rejection is a good alternative as it is a fast methodand its speed hardly depends on the distribution. It can easily be adjusted suchthat it is almost as good as the inversion method. For importance sampling it iseven better to use the hat distribution as importance distribution directly. Thenthe resulting algorithm is as good as using the inversion method for the originalimportance distribution but its generation time is much shorter.Key words: Monte Carlo method, quasi-Monte Carlo method, nonuniform randomvariate generation, transformed density rejection, smoothed rejection, inversion1991 MSC: 65C05, 65C10, 65D30
1 IntroductionThere are quite a few situations in the framework of Monte Carlo and quasi-Monte Carlo computation where the application of nonuniform (quasi-) ran-dom variates is required. Among them the computation of expected valueswith respect to some distribution and importance sampling are the most im-portant ones.� Corresponding author. Tel +43 1 313 36{4695. FAX +43 1 313 36{738Email address: Josef.Leydold@statistik.wu-wien.ac.at (Josef Leydold).1 This work was supported by the Austrian Science Foundation (FWF), projectno. P16767-N12Preprint submitted to Monte Carlo Methods and Applications 23 December 2003



In the framework of Monte Carlo integration nonuniform variates are gen-erated by transforming uniform pseudo-random numbers. There exists a lotof transformation methods for this task, see [4, 6] for surveys. For all thesemethods the convergence rate of the estimator is then O(N�1=2). For quasi-Monte Carlo integration so called low-discrepancy sequences (or quasi-randomnumbers) have to be transformed. Motivated by the Koksma-Hlawka inequal-ity one then expects the convergence rate O(N�1 logdN), for an integrationproblem in Rd . If nonuniform variates are required the inversion method isusually used, i.e. uniform (quasi-) random numbers Ui are transformed bymeans of the inverse of the distribution function F�1, Xi = F�1(Ui), sincethis method does not change the discrepancy of the sequence. However, theinversion method is often slow and for arbitrary importance distributions onlyapproximate numerical algorithms like Newton's methods or those proposed in[1] or [5] are available. Thus one would like to use more eÆcient methods. Themost powerful of these is the rejection method. But in practice one observesthat the rate of convergence is then much slower and sometimes even close tothat of the Monte Carlo method, i.e. O(N�1=2). This observation is caused bythe fact that the rejection method involves the integration of a discontinuousfunction [8, 9]. To overcome this problem Moskowitz and Caisch [10] sug-gested smoothed rejection from a constant hat. In this article we discribe thisconcept and generalize it to non-constant hat functions. We continue with nu-merical examples and demonstrate that automatic methods like transformeddensity rejection are well suited for quasi-Monte Carlo integration and canlead to more accurate results if exact inversion is impossible or slow.Throughout this article f and F denote the density and cumulative distribu-tion function, resp., of some distribution of interest; i.e. of the distributionfrom which we have to draw random samples. Then the expectation of somefunction g with resepect to distribution F is given by the integralA = Ef (g) = ZRd g(x ) dF (x ) = ZRd g(x ) f(x ) dx ; (1)for which the following simple estimator can be used:~AN = 1N NXi=1 g(xi) ; (2)where xi � F is a sample of (pseudo-) random variates with distribution F .Importance Sampling is the variance reduction technique most commonly usedfor Monte Carlo integration. There the following identity is used to computethe integral of some function g over a domain D � Rd :A = ZD g(x ) dx = ZRd g(x )f(x ) f(x ) dx = ZRd g(x )f(x ) dF (x ) = Ef (g=f) : (3)2



Thus we get an estimator for this integral by~AN = 1N NXi=1 g(xi)f(xi) ; (4)where again xi � F is a sample of (pseudo-) random variates with distri-bution F . Here the distribution F is called importance distribution. If it ischosen such that f behaves similar to the function g of interest, the varianceof the importance estimator (4) is smaller than that of the naive estimatorRD g(x ) dx � 1N PNi=1 g(ui), where ui are uniformly distributed over D.
2 Smoothed RejectionThe standard rejection method has been introduced already by von Neumann[11] in 1951. It requires an integrable nonnegative function called hat functionthat majorizes the density f of the given distribution. It is often written as amultiple �h(x ) of some density function h. Optionally a lower bound s for f ,called squeeze, is used. We then have0 � s(x ) � f(x ) � � h(x ) : (5)Of course it must be easy to sample from the hat distribution. The basicalgorithm itself is rather simple:1. Generate X � h.2. Generate Y � U(0; � h(X )).3. If Y � s(X ) return X .4. If Y � f(X ) return X .5. Else try again.Step 3 is optional and could be skipped. However, it saves some evaluationsof the (sometimes) expensive density function. The multiple � above is calledthe rejection constant of the algorithm. It is equal to the expected number ofiterations for one random variate. Universal methods like transformed densityrejection create hat function and squeeze for the given density automatically.Moreover, sampling from the hat distribution is done by inversion and is typi-cally very fast, see [6, Sect. 4] for an introduction into such methods. Using therejection method for f can be seen as integration of a discontinuous function:A = ZRd g(x ) f(x ) dx = ZRd Z �h(x)0 g(x )�fy�f(x)g dy dx ; (6)3



where �f�g denotes the characteristic function (indicator function). The esti-mate (2) then reads~AN = 1PN�i=1 �fyi�f(xi)g N�Xi=1 g(xi)�fyi�f(xi)g ; (7)where (xi; yi) is uniformly distributed in the region f(x ; y) : 0 � y � �h(x )g,and N� is chosen such thatPN�i=1 �fyi�f(xi)g � N . Notice that N�=N is (approx-imately) equal to the rejection constant �. Thus N� is just the total numberof points generated in Step 1 of the rejection algorithm.However, quasi-Monte Carlo integration does not work very well for discon-tinuous functions. This is indicated by the fact that the Koksma-Hlawka in-equality cannot be applied to such functions. Wang [12] has shown that theintegration error of the characteristic function of the rejection method (whenusing a constant hat function) is given by O(N�(d+2)=2(d+1)).To overcome this problem Moskowitz and Caisch [10] suggested to replacethe discontinuous characteristic function by some smooth weight functionw(y; f(x )) such that Z 10 w(y; f(x )) dy = f(x ) (8)and use the estimator~AN = 1PN�i=1 w(yi; f(xi)) N�Xi=1 g(xi)w(yi; f(xi)) ; (9)where N� is chosen such that PN�i=1 w(yi; f(xi)) � N .Moskowitz and Caisch [10] and Wang [12] construct such weight functions bychoosing lower and upper bounds a(x ) and b(x ), resp., to the density f , i.e.0 � a(x ) < f(x ) < b(x ) � � h(x ). Then w(y; f(x )) is de�ned as a continuouspiecewise linear function that it is equal to 1 on [0; a(x )] and vanishes on[b(x ); �h(x )], see Fig. 1.For choosing these functions a(x ) and b(x ) we have to keep in mind that onone side we want to reduce the number of evaluations of the density, whichis only required if a(x ) < Y < b(x ). On the other hand the resulting weightfunction w should be \suÆciently" smooth. In both articles considerable im-provements of the performance in the framework of quasi-Monte Carlo arereported when smoothed rejection is used whereas there is hardly any e�ectwhen using pseudo-random numbers (as one would expect).However, there are some drawbacks with this approach. In both articles rejec-tion from a constant hat over the unit cube [0; 1]d is used. This usually has avery poor performance, especially if d is larger than 1. Secondly, if the hat �h4



�f�gw(�)a(x ) f(x ) b(x ) h(x )Fig. 1. Characteristic function �f�g (dashed line) and weight function as introducedin [12] (bold line)

Fig. 2. Transformed density (l.h.s.) and original scale (r.h.s.) with hat and squeezeis close to the density f then it is not necessary that the weight function van-ishes at �h(x ). This allows for a \smoother" weight function w. The fact thatupper and lower bound has to be chosen \manually" can be seen as a thirddisadvantage of this method. To overcome these drawbacks it is natural to tryto apply the idea of smoothed rejection to transformed density rejection. Thisis done in the next section.3 Transformed Density RejectionTransformed density rejection (TDR) is based on the fact that the densitiesof many (univariate) distributions can be transformed into concave functionsby means of a monotone di�erentiable transformation T , i.e. the transformeddensities T (f(x)) are then concave. Such densities are called T -concave densi-ties; log-concave densities are an example with T (x) = log(x). Then tangentsand secants are used to construct hat and squeeze for the transformed density.The hat is then the minimum of all these tangents. By transforming back intothe original scale using T�1 we get hat �h(x) and squeeze s(x) for the density;see Fig. 2 for an illustration and [6, Sect. 4] for details. Although the rejectionconstant is a good measure for the performance of the rejection method, the5



�f�g w(�)a(x ) f(x ) h(x )Fig. 3. Characteristic function �f�g (dashed line) and new weight function (boldline)ratio � = R �h(x) dx= R s(x) dx = area below hat=area below squeeze is easierto obtain in practice. It is a very convenient control parameter for the TDRalgorithm. � can be made as small as desired. Then TDR is close to the in-version method and the marginal generation speed is fast and depends onlyon transformation T rather than f . What is most important for us is thatTDR automatically delivers an upper (hat) and lower (squeeze) bound for thedensity which can be used for smoothed rejection. Thus we can construct thefollowing smooth weight function (see Fig. 3): De�nea(x ) = max[2 s(x )� �h(x ); 0] and z(x ) = 2 f(x )� a(x )�h(x )� a(x ) � 1 (10)andw(y; f(x )) = 8>>>>>>>><>>>>>>>>:
1 if y 2 [0; a(x )];1� (1� z(x )) y � a(x )�h(x ) � a(x ) if y 2 (a(x ); �h(x )] and z(x ) � 0;1� y2 f(x ) if y 2 [0; 2 f(x )] and z(x ) < 0;0 otherwise: (11)It can be easily checked that z(x ) < 0 can only happen if a(x ) = 0. Moreoverw(y; f(x )) is continuous in y for y 2 [0; �h(x )] and (8) holds. The lower bounda(x ) is used instead of the squeeze s(x ) to avoid too steep descents near �h(x ).Currently the theory of TDR is developed mainly for the univariate case.There the restriction of T -concavity can even be dropped provided that theinection points of the transformed density are known. It is also easy to useTDR for importance distributions with independent components, i.e.f(x ) = dYi=1 fi(xi) : (12)6



Then we construct hat functions �i hi and squeezes si for each marginaldensity fi and use hat function and squeeze � h(x ) = Qdi=1 �ihi(xi) ands(x ) = Qdi=1 si(xi), where � = Qdi=1 �i. Notice that we also �nd for the ratio� = Qdi=1 �i.It is also noteworthy that many practical integration problems (e.g. expec-tations with respect to arbitrary multivariate normal distributions) can beformulated as expectations with respect to independent identical components.When running our experiments we asked ourselves: Why not use the hat dis-tribution h directly as importance distribution f? In our framework the hatfunction is a good approximation to the original importance distribution whenthe control parameter � is close to one. The performance is better than for(smoothed) rejection as we can completely skip the rejection step and thecalculation of the weight function, respectively. We then have the followingprocedure: choose a (T -concave) density as a model for the importance distri-bution. Compute the hat function for TDR and use it for importance sampling.4 Computational experiencesWe have implemented smoothed TDR and want to compare it to original (non-smoothed) TDR and to the inversion method. For TDR we used hat functionswith di�erent ratios � from rather large (1:34 for each marginal density) tovery small values (1:001). First we considered importance sampling examples.The results we obtained for several di�erent experiments were very similar. Sowe report them only for the following importance sampling problem:Example 1 Integrate g(x ) = exp��12 Pdk=1 x2k�=(2�)d=2 on [0; b]d by meansof the importance density f(x ) = Qdk=1 1=(�(1 + xk)2) (Cauchy distribution)restricted to [0; b]d.We run the experiments with b = 1, 2, 3, and 5 for dimensions d = 3, 5, and7. As point sets we used a pseudo-random sequence (combined multiple recur-sive generator mrg31k3p by L'Ecuyer and Touzin [7]), a base-2 Niederreitersequence [3], and a Sobol sequence [2]. As explained above we also tried whathappens when the desired importance distribution is replaced by the hat dis-tribution. We applied randomized quasi-Monte Carlo using randomly shiftedpoint sets. We repeated our experiments with M = 100 random shifts forvarious sample sizes and computed empirical root mean square error (rmse)as measurement for average integration errorrmse = 1Mvuut MXn=1 � ~AN;n � A�2 (13)7
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Fig. 5. Result for Experiment 2 in dimension d = 3 for base-2 Niederreiter se-quence. The performance for smoothed TDR is better than for TDR. In both casesit increases when � becomes smaller.We also tested QMC integration for computing expected values with respectto a certain distribution. Thus we run the following experiment, again indimensions 3, 5, and 7.Example 2 Integrate g(x ) = qPdi=1 x2i with respect to the standard normaldistribution with independent marginal distributions, i.e. with density f(x ) =exp��12 Pdk=1 x2k�=(2�)d=2.Again it is simple to obtain the exact result. So we have no problems tocalculate the exact errors. A typical result is shown in Fig. 5. Here exactinversion is { as expected { best method. For TDR and for smoothed TDRthe error depends on the quality of the chosen hat distribution. If � close to one(i.e. the hat function is a good approximation of the density) than the resultsare better than for larger values of �. Smoothed TDR is better than (original)TDR, actually it is the best method if exact inversion is not available.As a conclusion we may say that smoothed TDR is a good method as it is afast method and its speed hardly depends on the distribution. If the control9



parameter � is set close to 1 it is almost as good as the inversion methodand it can even be used to compute integrals with respect to distributionswith unknown CDF. For importance sampling it is even better to use thehat distribution as importance distribution immediately. Then the resultingalgorithm is as good as using the inversion method for the original importancedistribution but its generation time is much faster.References[1] J. H. Ahrens and K. D. Kohrt. Computer methods for eÆcient sam-pling from largely arbitrary statistical distributions. Computing, 26:19{31, 1981.[2] P. Bratley and B. L. Fox. Algorithm 659: implementing Sobol's quasir-andom sequence generator. ACM Trans. Math. Software, 14(1):88{100,1988.[3] P. Bratley, B. L. Fox, and H. Niederreiter. Implementation and tests oflow-discrepancy sequences. ACM Trans. Model. Comput. Simul., 2(3):195{213, 1992.[4] L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag,New-York, 1986.[5] W. H�ormann and J. Leydold. Continuous random variate generation byfast numerical inversion. ACM Trans. Model. Comput. Simul., 13(4):347{362, 2003.[6] W. H�ormann, J. Leydold, and G. Deringer. Automatic NonuniformRandom Variate Generation. Springer-Verlag, Berlin Heidelberg, 2004.[7] P. L'Ecuyer and R. Touzin. Fast combined multiple recursive generatorswith multipliers of the form a = �2q � 2r. In J. A. Joines, R. R. Bar-ton, K. Kang, and P. A. Fishwick, editors, Proc. 2000 Winter SimulationConference, pages 683{689, 2000.[8] W. Moroko� and R. E. Caisch. A quasi-Monte Carlo approach to particlesimulation of the heat equation. SIAM Journal on Numerical Analysis,30:1558{1573, 1993.[9] W. Moroko� and R. E. Caisch. Quasi-Monte Carlo integration. J. Comp.Phys., 122(2):218{230, 1994.[10] B. Moskowitz and R. E. Caisch. Smoothness and dimension reductionin quasi-Monte Carlo methods. Math. Comput. Modelling, 23(8{9):37{54,1996.[11] J. v. Neumann. Various techniques used in connection with random digits.In A. S. Householder et al., editors, The Monte Carlo Method, number 12in Nat. Bur. Standards Appl. Math. Ser., pages 36{38. 1951.[12] X. Wang. Improving the rejection sampling method in quasi-Monte Carlomethods. J. Comput. Appl. Math., 114(2):231{246, 2000.
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