
ePubWU Institutional Repository

Günter Tirler and Peter Dalgaard and Wolfgang Hörmann and Josef Leydold

An Error in the Kinderman-Ramage Method and How to Fix It

Working Paper

Original Citation:
Tirler, Günter and Dalgaard, Peter and Hörmann, Wolfgang and Leydold, Josef (2003) An Error
in the Kinderman-Ramage Method and How to Fix It. Preprint Series / Department of Applied
Statistics and Data Processing, 48. Department of Statistics and Mathematics, Abt. f. Angewandte
Statistik u. Datenverarbeitung, WU Vienna University of Economics and Business, Vienna.

This version is available at: http://epub.wu.ac.at/218/
Available in ePubWU: July 2006

ePubWU, the institutional repository of the WU Vienna University of Economics and Business, is
provided by the University Library and the IT-Services. The aim is to enable open access to the
scholarly output of the WU.

http://epub.wu.ac.at/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elektronische Publikationen der Wirtschaftsuniversität Wien

https://core.ac.uk/display/11006743?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://epub.wu.ac.at/218/
http://epub.wu.ac.at/

An Error in the Kinderman-Ramage
Method and How to Fix It

Günter Tirler, Peter Dalgaard, Wolfgang Hörmann, Josef Leydold

Department of Applied Statistics and Data Processing
Wirtschaftsuniversität Wien

Preprint Series

Preprint 48
March 2003

http://statmath.wu-wien.ac.at/

An Error in the Kinderman-Ramage Method

and How to Fix It 1

Günter Tirler a, Peter Dalgaard b, Wolfgang Hörmann a,c,
Josef Leydold a,∗

aUniversity of Economics and Business Administration, Department for Applied

Statistics and Data Processing, Augasse 2-6, A-1090 Vienna, Austria

bDepartment of Biostatistics, University of Copenhagen, Blegdamsvej 3, DK-2200

Copenhagen N, Denmark

cIE Department, Boğaziçi University Istanbul, 80815 Bebek-Istanbul, Turkey

Abstract

An error in the Gaussian random variate generator by Kinderman and Ramage
is described that results in the generation of random variates with an incorrect
distribution. An additional statement that corrects the original algorithm is given.

Key words: Gaussian random variate generation
1991 MSC: 65C10

1 Introduction

Random variate generation plays a crucial role in every stochastic simulation.
This is in particular true for the Gaussian distribution. Thus the availability
of very fast and exact generation methods is essential for many applications.
Kinderman and Ramage [1] suggested such a fast Gaussian random variate
generator (algorithm KR in the sequel). It is sometimes referred as “the fastest
Gaussian variate generator” (which is not true any more as faster new methods
have been proposed meanwhile, see e.g. [2, 3, 4]) and is included in some
libraries for numerical and statistical computing, e.g. the IMSL library [5,

∗ Corresponding author. Tel +43 1 313 36–4695. FAX +43 1 313 36–738
Email address: Josef.Leydold@statistik.wu-wien.ac.at (Josef Leydold).

1 This work was supported by the Austrian Science Foundation (FWF), project
no. P12805-MAT

Preprint submitted to Computational Statistics & Data Analysis23 November 2003

routine RNNOA], R [6], or UNU.RAN [7], and in statistical programs, e.g. SPSS
[8] or GAUSS [9, routine rndKMn]. However, when we tested this generator with
R we encountered some deviations from the expected distribution near zero.
We generated 108 normal variates and transformed them with the cumulative
distribution function of the normal distribution. These transformed variates
should follow a uniform distribution but on drawing a histogram we observed
clear deviations from uniformity, see Fig. 1. As can be seen, this deviation is
unlikely to be detected by a global test (e.g., χ2-test for goodness of fit) if
the sample size is less than 107. Nevertheless, a simulation that is sensitive to
deviations from the normal distribution near the mode could produce wrong
results even for much smaller sample sizes.

In this contribution we give a short description of the algorithm, analyze the
reason for the observed error and propose a correction for it. For a more de-

0 0.5 1.0

0.97

0.98

0.99

1.00

1.01

1.02

1.03

0 0.5 1.0

0.99

1.00

1.01

1.02

(a) samplesize 106 (b) samplesize 107

0 0.5 1.0

0.99

1.00

1.01

1.02

0 0.5 1.0

0.99

1.00

1.01

1.02

(c) samplesize 108 (d) corrected algorithm, 108

Fig. 1. Histograms with 100 bins for a sample of Gaussian random variates generated
by the algorithm of Kinderman and Ramage [1] (a–c) and by the corrected algorithm
(d) for different sample sizes. The generated sequences have been transformed the
cumulative distribution function. The expected relative frequency for each bin is 1%
(solid horizontal line), the 99% confidence interval is shown by the dashed lines.

2

tailed introduction to the principles of non-uniform random variate generation
see e.g. [10, 11].

2 The algorithm by Kinderman and Ramage

The entire algorithm is presented as Algorithm 1. For comparability, we use
the same format as in [1] (with a fix for the error). It is based on two main prin-
ciples for random variate generation: First it utilizes the composition method,
that is, the density ϕ(x) of the normal distribution is decomposed into a mix-
ture of other densities fi(x), ϕ(x) =

∑
wifi(x), where the weights (w1, w2, . . .)

form a probability vector. Generation is then done by sampling one of these
densities at random by means of this probability vector. In algorithm KR the
normal density ϕ(x) is decomposed into a triangular density and a density
that is described by a difference function f(t),

f(t) = ϕ(t)− 0.180025191068563 max(ξ − |t|, 0) , (1)

where ξ = 2.2160358671, see Fig. 2(a). Sampling from this triangular density
is fast and easy by means of the sum of two uniform random numbers (step 1
in Algorithm 1). For the remaining part the acceptance/rejection method is
used. It requires a density h(x) and a constant α (≥ 1) such that αh(x) ≥ g(x),
where g(x) denotes the density of the desired distribution. αh(x) is then called
a hat function for g(x). A random variate X that follows h(x) is generated and
accepted if for the generated uniform (0,1) random number U the acceptance

t

ϕ(t)

ξ −γ δ η ξ t

f(t)

(a) (b)

Fig. 2. (a) Decomposition of (half-) normal density ϕ(x) into a triangular density
(dashed line) and the difference function f(t).
(b) Decomposition of the difference function f(t) into four parts using the intervals
[0, δ], [δ, η], [η, ξ], and [ξ,∞). For the first three intervals rejection from a triangular
hat (dashed line) is used; squeezes are shown as dotted lines.

3

t

f(t)

0−γ −s

Fig. 3. Region of incorrect acceptance. Random variates less than zero should have
been discarded. The coordinate −s is used in the computation of the probability of
incorrect acceptance.

condition Uαh(X) ≤ g(X) is fulfilled; otherwise X is rejected and we have to
try again. Since the evaluation of the density g(x) is often slow, simple lower
bounds s(x) ≤ g(x) (called squeezes) can be used to avoid the evaluation
of the density in most cases. As the difference function (1) is not easy to
handle, its domain is further decomposed into subintervals, see Fig. 2(b). For
the first three intervals, [0, δ], [δ, η], and [η, ξ], triangular hats and squeezes
are used. Generating random variates from these triangular distributions uses
the fact that both the maximum and the minimum of two uniform random
numbers have a triangular density. For the tail region [ξ,∞) rejection from the
hat function x exp((ξ2 − x2)/2) is used, see [10, p. 381] for details. The four
regions correspond to steps 8, 7, 5, and 3, respectively in Algorithm 1. Finally
the described algorithm utilizes the symmetry of the normal distribution and
samples a variate from the half-normal distribution with domain [0,∞) which
is then multiplied by −1 with probability 1/2.

3 Incorrect density function near zero

The difference function (1) is partitioned into four parts, where the first part
has support [0, δ] with δ = 0.479727404222441 (Fig. 2(b)). Sampling from this
part is done by the acceptance/rejection method in step 8 of Algorithm 1, using
the hat function h(t) = k (t + γ)/(δ + γ), where k = 0.053377549506886. The
support of the hat function is given by [−γ, δ], where γ = 0.1157797337934990,
and consequently, random variates Z less than zero must always be rejected,
see Figs. 2(b) and 3. However, the condition 0.53377549506886 |z| ≤ f(t) also
holds for some z < 0 and thus negative numbers are returned for the half-
normal distribution. Hence we have an invalid area of acceptance which is
indicated in Fig. 3. As a result the acceptance rate in the intervals (−γ, 0)
and (0, γ) are too high whereas they are too low in the intervals (−δ,−γ) and
(γ, δ).

4

Algorithm 1 Algorithm KR [1] in original notation with added correction
(framed part). (u, v, and w are (0, 1) uniform random numbers.)

1: Generate u. If u < .88407 04022 98758, generate v and
return x = ξ(1.13113 16354 44180 u + v − 1).

2: If u < .97331 09541 73898, go to 4.

3: Generate v,w. Set t = ξ2

2
− ln w. If v2t > ξ2

2
, begin this step again.

Otherwise return x =
√

2t if u < .98665 54770 86949 or return x = −
√

2t if not.
4: If u < .95872 08247 90463 go to 6.
5: Generate v,w. Set z = v − w and t = ξ − .63083 48019 21960min(v,w).

If max(v,w) ≤ .75559 15316 67601 go to 9. If .03424 05037 50111|z| ≤ f(t) go to
9. Otherwise, repeat this step 5.

6: If u < .91131 27802 88703 go to 8
7: Generate v,w. Set z = v − w and t = .47972 74042 22441

+ 1.10547 36610 22070 min(v,w). If max(v,w) ≤ .87283 49766 71790, go to 9.
If .04926 44963 73128 |z| ≤ f(t), go to 9. Otherwise, repeat this step 7.

8: Generate v,w. Set z = v − w and
t = .47972 74042 22441 − .59550 71380 15940 min(v,w).

If t < 0 repeat this step 8.

If max(v,w) ≤ .80557 79244 23817, go to 9.
If .05337 75495 06886 |z| ≤ f(t), go to 9.
Otherwise, repeat this step 8.

9: If z < 0, return x = t; otherwise, return x = −t.

To compute the deviation from the correct rate of acceptance notice that
step 8 in this algorithm is executed with probability p1 = 2 A where A =
∫ δ
0

f(t) dt = 0.013621189. Then the generated Z should fall into the interval
(0, γ) with probability Al/A, where Al =

∫ γ
0

f(t) dt = 0.0011036267 and into
(γ, δ) with probability 1 − Al/A. The respective probabilities to sample a
point in the intervals (0, γ) and (γ, δ) via step 1 (triangular density) are p2 =
∫ γ
0

0.180025191068563(ξ − t) dt = 0.0449828 and p3 = 0.125685. Hence we
should find for the probability of a point to fall into the interval (0, γ), p2 +
A Al

A
= 0.0460864, which of course is equal to

∫ γ
0

φ(t) dt.

However, the area of invalid acceptance is given by Ai =
∫
−s
−γ h(t) dt+

∫
0

−s f(t) dt
= 0.000397114 where s = 0.0396471 is the intersection of the hat and the
difference function f(|t|) for negative values of t (Fig. 3). Thus the generated Z
in step 8 of the original algorithm falls into the interval (0, γ) with probability
(Al +Ai)/(A+Ai) = 0.1070558 (which is larger than the correct value Al/A =
0.0810228) and into (γ, δ) with probability 1−(Al+Ai)/(A+Ai) in the original
algorithm. Thus we find for the probability of a point to fall into the interval
(0, γ), p2 + A (Al + Ai)/(A + Ai) = 0.046441. Table 1 summarizes the results.

This error, however, can be easily corrected if we add the framed statement
in Algorithm 1 which always rejects negative values for z. Figure 1(d) shows
that this modification leads to a correct algorithm.

5

Table 1
Probabilities in algorithm KR (γ = 0.11577973379349904, δ = 0.479727404222441)

domain normal distribution incorrect KR corrected KR

(0, γ) 4.6086 % 4.6441 % 4.6086 %

(γ, δ) 13.8203 % 13.7848 % 13.8203 %

(δ,∞) 31.5711 % 31.5711 % 31.5711 %

4 Detecting deviations from normality

When looking at Table 1 one might ask, how such small deviations from the
correct distribution can be detected empirically (or maybe contrary, why has
this error not been detected earlier). However, this is not a trivial task. We
detected the error incidently. The first author was curious about the random
variate generators in R version 1.6.3. When he was “playing around” with the
generator by Kinderman Ramage he found some small deviations from the
correct distribution. (Meanwhile this error has been fixed in R version 1.7.1.)

It should be noted here that in practice techniques such as the χ2-test for
goodness-of-fit are mainly used for checking the correctness of the implemen-
tation rather than for verifying the proposed algorithm. The latter must al-
ways be done by mathematical methods. Any goodness-of-fit test (such as the
χ2-test, Kolmogorov-Smirnov test or Anderson-Darling test) has only limited
power to detect small errors in a generation algorithm. For example, in our ex-
periment with a χ2-test with a sample of size 106, significance level α = 0.001
and 100 intervals the null hypothesis was only rejected in 1 out of 100 trials.
So the power is extremely small and we have almost no chance to detect the
problem of the generator. With sample size 107, α = 0.001 and 100 intervals
we observed 96 rejections of the null hypothesis in 100 trials; this indicates a
much better power but still some “luck” is required to find the error. For a
sample of size 108, α = 0.001 and 100 intervals we were able to reject the null
hypothesis in all one hundred trials and we are sure to detect the error. Notice,
however, that at the time when the paper was published it took more than
seven hours only to generate the random numbers of such a sample (according
to the timings given in the original paper [1]). Moreover, using such a sam-
ple size rather detects the deficiencies of most linear congruential generators
(LCG) with period length of about 109 that were mainly used as source of
uniform pseudo-random numbers at that time. When the deviations from the
exact distribution are already known one could construct a test with higher
power.

For visual inspection of random variates histograms are a very useful tech-
nique. However, deviations cannot be detected when they are small compared
to the expected value; see Fig. 4(a) where even for a sample of size 108 the

6

-4.0 -3 -2 -1 0 1 2 3 4

0.0

0.1

0.2

0.3

0.4

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

0.36

0.37

0.38

0.39

0.40

(a) (b)

Fig. 4. Histograms with 100 bins for a sample of 108 Gaussian random variates
generated by the algorithm of Kinderman and Ramage [1] in the intervals (−4, 4)
(a) and (−0.4, 0.4) (b). The normal density function is shown by the dashed lines.

error is not apparent. When we zoom into the critical region the error can be
clearly seen, Fig. 4(b).

A better way to visualize deviations from the correct distribution is the tech-
nique of transforming the generated random variates by means of the cumu-
lative distribution function. This should result in a random sample of the
uniform distribution and thus the bins of a histogram have the same expected
probability. Then even outliers where the frequency is only a little bit larger
than two times the standard deviation of the frequencies can be clearly seen
(Fig. 1). This is also supported by most plotting routines that automatically
zoom into the range of the given data. The technique of transforming data
with the cumulative distribution function is folklore for people who investigate
random variate generators but seems to be little known by many simulation
practioners. We express our gratitude to an anonymous referee who drew our
attention to this fact. Notice that the results of goodness-of-fit tests are in
general not changed by this transform, but for the χ2-test the transform leads
to a simple choice of the intervals. There also exists a lot of empirical tests
that have been developed especially for uniform random number generators,
see [12, 13]. Transforming the generated variates allows to use most of these
tests for nonuniform random variates as well; see e.g. [14].

5 Conclusion

There is an error in Algorithm KR [1]. When using global statistical tests this
is only likely to be detected for samples of size at least 107 which was very
large at the time when this algorithm was published (1976). However, with the
improvements in computing power, it has become routine to generate larger
samples. Any simulation that is sensitive to deviations from the correct density

7

in the vicinity of zero would then produce results with some bias. This error
can easily be fixed with the additional statement in Algorithm 1.

References

[1] A. J. Kinderman, J. G. Ramage, Computer generation of normal random
variables, J. Am. Stat. Assoc. 71 (356) (1976) 893–898.

[2] J. H. Ahrens, U. Dieter, Efficient table-free sampling methods for the
exponential, cauchy, and normal distributions, Commun. ACM 31 (1988)
1330–1337.

[3] W. Hörmann, G. Derflinger, The ACR method for generating normal
random variables, OR Spektrum 12 (3) (1990) 181–185.

[4] G. Marsaglia, W. W. Tsang, The monty python method for generating
random variables, ACM Trans. Math. Soft. 24 (3) (1998) 341–350.

[5] IMSL, IMSL Fortran Library User’s Guide, STAT/LIBRARY Volume 2,
Visual Numerics, Inc., version 5.0, http://www.vni.com/books/docs/
imsl/StatV2.pdf (1994–2003).

[6] The R project for statistical computing, http://www.r-project.org/.
[7] J. Leydold, W. Hörmann, E. Janka, G. Tirler, UNU.RAN – A Library for

Non-Uniform Universal Random Variate Generation, Institut für Statis-
tik, WU Wien, A-1090 Wien, Austria, available at http://statistik.

wu-wien.ac.at/unuran/ (2002).
[8] SPSS Inc. Headquarters, 233 S. Wacker Drive, Chicago, Illinois 60606,

version 11, http://www.spss.com/tech/stat/Algorithms.htm.
[9] GAUSS, Language Reference, Aptech Systems, Inc., 23804 SE Kent-

Kangley Road, Maple Valley, WA 98038 USA, version 5.0 http://www.

aptech.com/.
[10] L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag,

New-York, 1986.
[11] W. Hörmann, J. Leydold, G. Derflinger, Automatic Non-Uniform Ran-

dom Variate Generation, Springer-Verlag, Berlin Heidelberg, 2004.
[12] D. E. Knuth, The Art of Computer Programming. Vol. 2: Seminumerical

Algorithms, 3rd Edition, Addison-Wesley, 1998.
[13] P. L’Ecuyer, Random number generation, in: J. Banks (Ed.), Handbook

of Simulation, Wiley, 1998, Ch. 4, pp. 93–137.
[14] J. Leydold, H. Leeb, W. Hörmann, Higher dimensional properties of non-

uniform pseudo-random variates, in: H. Niederreiter, J. Spanier (Eds.),
Monte Carlo and Quasi-Monte Carlo Methods 1998, Springer-Verlag,
Berlin, Heidelberg, 2000, pp. 341–355.

8

