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Automati
 Sampling with the Ratio-of-UniformsMethodJosef LeydoldUniversity of E
onomi
s and Business Administration, Department for Applied Statisti
sand Data Pro
essingApplying the ratio-of-uniforms method for generating random variates results in very eÆ
ient, fastand easy to implement algorithms. However parameters for every parti
ular type of density mustbe pre
al
ulated analyti
ally. In this paper we show, that the ratio-of-uniforms method is alsouseful for the design of a bla
k-box algorithm suitable for a large 
lass of distributions, in
ludingall with log-
on
ave densities. Using polygonal envelopes and squeezes results in an algorithm thatis extremely fast. In opposition to any other ratio-of-uniforms algorithm the expe
ted numberof uniform random numbers is less than two. Furthermore we show that this method is in somesense equivalent to transformed density reje
tion.Categories and Subje
t Des
riptors: G.3 [Probability and Statisti
s℄: Random number gener-ationGeneral Terms: AlgorithmsAdditional Key Words and Phrases: random number generation, non-uniform, reje
tion method,ratio of uniforms, log-
on
ave, T-
on
ave, adaptive method, universal method1. INTRODUCTIONThere exists a large literature on generation methods for standard 
ontinuous dis-tributions; see, for example, Devroye [1986℄. These algorithms are often espe
iallydesigned for a parti
ular distribution and tailored to the features of ea
h density.However in many situations the appli
ation of standard distributions is not ade-quate for a Monte-Carlo simulation. Besides sheer brute for
e inversion (that is,tabulate the distribution fun
tion at many points), several universal methods forlarge 
lasses of distributions have been developed to avoid the design of spe
ial al-gorithms for these 
ases. Some of these methods are either very slow (e.g. Devroye[1984℄) or need a slow set-up step and large tables (e.g. Ahrens and Kohrt [1981℄,This work was partially supported by the Austrian S
ien
e Foundation (FWF), proje
t no. P12805-MATAddress: Augasse 2-6, A-1090 Vienna, Austria. email: Josef.Leydold�statistik.wu-wien.a
.atPermission to make digital or hard 
opies of part or all of this work for personal or 
lassroom use isgranted without fee provided that 
opies are not made or distributed for pro�t or dire
t 
ommer
ialadvantage and that 
opies show this noti
e on the �rst page or initial s
reen of a display alongwith the full 
itation. Copyrights for 
omponents of this work owned by others than ACM mustbe honored. Abstra
ting with 
redit is permitted. To 
opy otherwise, to republish, to post onservers, to redistribute to lists, or to use any 
omponent of this work in other works, requires priorspe
i�
 permission and/or a fee. Permissions may be requested from Publi
ations Dept, ACMIn
., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions�a
m.org.



2 � Josef LeydoldMarsaglia and Tsang [1984℄, and Devroye [1986, 
hap. VII℄).Re
ently two more eÆ
ient methods have been proposed. The transformed den-sity reje
tion by Gilks andWild [1992℄ and H�ormann [1995℄ is an a

eptan
e/reje
tionte
hnique that uses the 
on
avity of the transformed density to generate a hat fun
-tion automati
ally. The user only needs to provide the probability density fun
tionand perhaps the (approximate) lo
ation of the mode. A table method by Ahrens[1993℄ also is an a

eptan
e/reje
tion method, but uses a pie
ewise 
onstant hat.A region of immediate a

eptan
e makes the algorithm fast when a large numberof 
onstant pie
es is used. The tail region of the distribution is treated separately.In Ahrens [1995℄ the algorithm is modi�ed to use a pie
ewise 
onstant hat su
hthat the area below ea
h pie
e is the same. Thus generation is simpli�ed but thealgorithm requires more adjustments for the setup for ea
h distribution.The ratio-of-uniforms method introdu
ed by Kinderman and Monahan [1977℄ isanother 
exible method that 
an be adjusted to a large variety of distributions.It has be
ome a popular transformation method to generate non-uniform randomvariates, sin
e it results in exa
t, eÆ
ient, fast and easy to implement algorithms.Typi
ally these algorithms have only a few lines of 
ode (e.g. Barabesi [1993℄ givesa survey and examples of FORTRAN 
odes for several standard distributions). Itis based on the following theorem.Theorem 1 (Kinderman and Monahan 1977). Let X be a random variablewith density fun
tion f(x) = g(x)= R g(x)dx, where g(x) is a positive integrablefun
tion with support (x0; x1) not ne
essarily �nite. If (V; U) is uniformly dis-tributed in A = Ag = f(v; u): 0 < u �pg(v=u); x0 < v=u < x1g; (1)then X = V=U has probability density fun
tion f(x).For sampling random points uniformly distributed in Ag reje
tion from a 
onve-nient enveloping region Rg is used. The basi
 form of the ratio-of-uniforms methodis given by algorithm rou.Algorithm rouRequire: fun
tion g(x) (prop. to density f(x)); enveloping region R1: repeat2: Generate random point (V; U) uniformly distributed in R.3: X  V=U .4: until U2 � g(X).5: return X .Usually the input in rou is prepared by the designer of the algorithm for ea
hparti
ular distribution. To redu
e the number of evaluations of the density fun
-tion in step 4, squeezes are used. It is obvious that the performan
e of this simplealgorithm depends on the reje
tion 
onstant, i.e. on the ratio jRj=jAj, where jRjdenotes the area of region R. Kinderman and Monahan [1977℄ and others use re-je
tion from the minimal bounding re
tangle, i.e. the smallest possible re
tanglef(v; u): 0 � u � u�; v� � v � v�g. This basi
 algorithm has been improved in sev-
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 Sampling with the ratio-of-uniforms method � 3eral ways1: A tighter �tting en
losing region de
reases the reje
tion 
onstant. Pos-sible 
hoi
es are parallelograms (e.g. Cheng and Feast [1979℄) or quadrati
 bounding
urves (e.g. Leva [1992℄). Often it is 
onvenient to de
ompose A into a 
ountableset of non-overlapping subregions (\
omposite ratio-of-uniforms method", Robert-son and Walls [1980℄ give a simple example). Dagpunar [1988, p. 65℄ 
onsiders thepossibility of an en
losing polygon.In this paper we develop a new algorithm that uses polygonal envelopes andsqueezes. Random variates inside the squeeze are generated by mere inversionand therefore in opposition to any other ratio-of-uniforms method the expe
tednumber of uniform random numbers is less than two. For a large 
lass of distri-butions, in
luding all log-
on
ave distributions, it is possible to 
onstru
t envelopeand squeeze automati
ally. Moreover we show that the new algorithm is in somesense equivalent to transformed density reje
tion.The new method has several advantages:|Envelopes and squeezes are 
onstru
ted automati
ally. Only the probability den-sity fun
tion is ne
essary.|The expe
ted number of uniform random numbers is 1 + %, where % > 0 
an bemade arbitrarily small.|For small % the method is 
lose to inversion and thus the resulting random variates
an be used for varian
e redu
tion te
hniques. Moreover the stru
ture of theresulting random variates is similar to that of the underlying uniform randomnumber generator. Hen
e the non-uniform random variates inherit its qualityproperties.|It avoids some possible defe
ts in the quality of the resulting pseudo-randomvariates that have been reported for the ratio-of-uniforms method [H�ormann1994a; H�ormann 1994b℄.|It is the �rst ratio-of-uniforms method and the �rst implementation of trans-formed density reje
tion where the expe
ted number of uniform random numbersis less than two.In se
tion 2 we give an outline of this new approa
h and in se
tion 4 we dis
ussthe problem of getting a proper envelope for the region R. Se
tion 5 des
ribes thealgorithm in detail and se
tion 6 reports the 
omputational experien
es we have hadwith the new algorithm and 
ompare these with other algorithms. Se
tion 3 showsthat this algorithm is appli
able for all T -
on
ave densities, with T (x) = �1=px.Remarks on the quality of random numbers generated with the new algorithm aregiven in se
tion 7.1Moreover the method has been extended: Wake�eld, Gelfand, and Smith [1991℄ repla
es thefun
tion q(u) = u2 by a more general stri
tly in
reasing di�erentiable fun
tion q(u).Stadlober [1989, 1990℄ gives a modi�
ation for dis
rete distributions.Jones and Lunn [1996℄ embeds this method into a \general random variate generation framework".Wake�eld et al. [1991℄ and Stef�anes
u and V�aduva [1987℄ apply this method to the generation ofmultivariate distributions.



4 � Josef Leydold2. THE METHODEnveloping polygonsWe are given a distribution with probability density fun
tion f(x) = g(x)= R g(x)dxwith 
onvex set Ag . Noti
e that g must be 
ontinuous and bounded sin
e otherwiseAg would not be 
onvex. To simplify the development of our method we �rst assumeunbounded support for g. (This restri
tion will be dropped later.)For su
h a distribution it is easy to make an enveloping polygon: Sele
t a 
oupleof points 
i, i = 0; : : : ; n, on the boundary of A and use the tangents at these pointsas edges of the en
losing polygon P e (see �gure 1). We denote the verti
es of P e by

vu 
onstru
tion points 
i+1

i mi

tangentFig. 1. Polygonal envelope and squeeze for 
onvex set Ag.mi. These are simply the interse
tion points of the tangents. Obviously our 
hoi
eof the 
onstru
tion points of the tangents has to result in a bounded polygon P e.The pro
edure even works if the tangents are not unique for a point (v; u), i.e. ifg(x) is not di�erentiable in x = v=u. Furthermore it is very simple to 
onstru
tsqueezes: Take the inside of the polygon P s with verti
es 
i.Sampling from the enveloping polygonNoti
e that the origin (0; 0) is always 
ontained in the polygon P e. Moreoverevery straight line through the origin 
orresponds to an x = v=u and thus itsinterse
tion with A is always 
onne
ted. Therefore we use 
0 = (0; 0) for the �rst
onstru
tion point and the v-axis as its tangent. To sample uniformly from theen
losing polygon we triangulate P e and P s by making segments Si, i = 0; : : : ; n,at vertex 
0. Figure 2 illustrates the situation. Segment Si has the verti
es 
0,
i, mi and 
i+1, where 
n+1 = 
0 for the last segment. Ea
h segment is dividedinto the triangle Ssi inside the squeeze (dark shaded) and a triangle Soi outside(light shaded). Noti
e that the segments S0 and Sn have only three verti
es andno triangles Ss0 and Ssn.To generate a random point uniformly distributed in P e, we �rst have to samplefrom the dis
rete distribution with probability ve
tor proportional to (jS0j; jS1j;. . . ,jSnj),
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0 
i+1

i mi

SnSiS3S2S1 S0Fig. 2. Triangulation of enveloping polygonto sele
t a segment and further a triangle Soi or Ssi . This 
an be done by inversion:Algorithm get segmentRequire: list of segments1: Generate R � U(0; 1).2: Find the smallest k, su
h that Pi�k jSij � jP ejR.3: if Pi�k jSij � jP ejR � jSskj then4: return triangle Ssk.5: else6: return triangle Sok .For step 2 indexed sear
h (or guide tables) is an appropriate method (Chen andAsau [1974℄, see also Devroye [1986, xIII.2.4℄).Uniformly distributed points in a triangle (v0; v1; v2) 
an be generated by thefollowing simple algorithm [Devroye 1986, p. 570℄:Algorithm triangleRequire: triangle (v0; v1; v2)1: Generate R1; R2 � U(0; 1).2: if R1 < R2 then swap R1 and R2.3: return (1�R1)v0 + (R1 �R2)v1 +R2v2.For sampling from Ssi this algorithm 
an be mu
h improved. Every point in su
ha triangle 
an immediately be a

epted without evaluating the probability densityfun
tion and thus we are only interested in the ratio of the 
omponents. Sin
e thetriangle Ssi has vertex 
0 = (0; 0), we arrive atx = vu = (R1 �R2) 
i;1 +R2 
i+1;1(R1 �R2) 
i;2 +R2 
i+1;2 = 
i;1 +R (
i+1;1 � 
i;1)
i;2 +R (
i+1;2 � 
i;2) (2)



6 � Josef Leydoldwhere 
i;j is the j-th 
omponent of vertex 
i, and R = R2=R1 again is a (0; 1)-uniform random variate by the ratio-of-uniforms theorem, sin
e 0 � R2 � R1 � 1[Kinderman and Monahan 1977℄. Noti
e that we save one uniform random numberin the domain P s by this method. Furthermore we 
an reuse the random numberR from routine get segment by R0 = (Pi�k jSij � jP ejR)=jSskj without risk. We�nd x = vu = jSskj 
i;1 + (Pi�k jSij � jP ejR)(
i+1;1 � 
i;1)jSskj 
i;2 + (Pi�k jSij � jP ejR)(
i+1;2 � 
i;2) (3)Sampling from P s 
an then be seen as inversion from the 
umulative distributionfun
tion de�ned by the boundary of the squeeze polygon. Thus for a ratio jP sj=jP ej
lose to 1 we have almost inversion for generating random variates. The inversionmethod has two advantages and is thus favored by the simulation 
ommunity (seeBratley, Fox, and S
hrage [1983℄): (1) The stru
ture of the generator is simple and
an easily be investigated (see se
tion 7). (2) These random variates 
an be usedfor varian
e redu
tion te
hniques.Expe
ted number of uniform random numbersLet % = jP e n P sj=jP ej = 1 � jP sj=jP ej. Then the expe
ted number of uniformrandom numbers for generating one ratio v=u is given by (1�%)+2% = 1+%. Sin
ewe have to reje
t this ratio if (v; u) 62 A andA � P s we �nd for the expe
ted numberof uniform random numbers per generated non-uniform variate E � (1+%)=(1�%).Noti
e that by a proper 
hoi
e of the 
onstru
tion points, % 
an be made arbitrarilysmall.Bounded domain for gIf x0 > �1 or x1 <1 than the situation is nearly the same. We have to distinguishbetween two 
ases:(1) f(xi) > 0 and f 0(xi) exists for the limit point xi. We then use xi as 
onstru
tionpoint and the respe
tive triangular segment S0 or Sn is not ne
essary.(2) Otherwise we 
an restri
t the triangular segment S0 or Sn, i.e. we use thetangent line v � xi u = 0 at vertex 
0 = (0; 0), instead of the v-axis. Noti
ethat we then have di�erent tangent lines at 
0 for S0 and Sn.Adding a 
onstru
tion pointTo add a new point for a given ratio x = v=u we need (
v ; 
u) on the \outerboundary" of A and the tangent line of A at this point. These are given by thepositive root of u2 = g(x) and the total di�erential of u2 � g(v=u), hen
eboundary: 
u =pg(x); 
v = x 
u;tangent: av v + au u = a
 = av 
v + au 
u;where au = 2u+ g0(x)x=u and av = �g0(x)=u (4)3. RATIO-OF-UNIFORMS AND TRANSFORMED DENSITY REJECTIONTransformed density reje
tionOne of the most eÆ
ient universal methods is transformed density reje
tion, in-trodu
ed in Devroye [1986℄ and under a di�erent name in Gilks and Wild [1992℄,
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eptan
e/reje
tion te
hnique uses the
on
avity of the transformed density to generate a hat fun
tion and squeezes au-tomati
ally by means of tangents and se
ants. The user only needs to provide thedensity fun
tion and perhaps the (approximate) lo
ation of the mode. It 
an beutilized for any density f where a stri
tly in
reasing, di�erentiable transformationT exists, su
h that T (f(x)) is 
on
ave (see H�ormann [1995℄ for details). Su
h a den-sity is 
alled T -
on
ave; log-
on
ave densities are an example with T (x) = log(x).Figure 3 illustrates the situation for the standard normal distribution and the trans-formation T (x) = log(x). The left hand side shows the transformed density withthree tangents. The right hand side shows the density fun
tion with the resultinghat. Squeezes are drawn as dashed lines. Evans and Swartz [1998℄ have shown thatthis te
hnique is even suitable for arbitrary densities provided that the in
e
tionpoints of the transformed density are known.

Fig. 3. Constru
tion of a hat fun
tion for the normal density utilizing transformed density re-je
tion.Densities with 
onvex region AStadlober [1989℄ and Dieter [1989℄ have 
lari�ed the relationship of the ratio-of-uniforms method to the ordinary a

eptan
e/reje
tion method. But there is alsoa deeper 
onne
tion to the transformed density reje
tion, that gives us a useful
hara
terization for densities with 
onvex region Ag . We �rst provide a proof oftheorem 1.Proof of theorem 1. Consider the transformationR � (0;1)! R � (0;1); (V; U) 7! (X;Y ) = (V=U;U2): (5)Sin
e the Ja
obian of this transformation is 2, the joint density probability fun
tionof X and Y is given by w(x; y) = 1=(2 jAj), if 0 < y � g(x), and w(x; y) = 0otherwise. Thus X has marginal density w1(x) = R g(x)0 1=(2 jAj) dy = g(x)=(2 jAj).Consequently jAj = 1=2 R g(x)dx and w1(x) = f(x). Therefore X = V=U hasprobability density fun
tion f(x).Transformation (5) maps Ag one-to-one onto Bg = f(x; y): 0 < y � g(x); x0 <x < x1g, i.e. the set of points between the graph of g(x) and the x-axis. Moreover



8 � Josef Leydoldthe \outer boundary" of Ag , f(v; u):u2 = g(v=u); u > 0; x0 < v=u < x1g, ismapped onto the graph of g(x).Theorem 2. Ag is 
onvex if and only if g(x) is T -
on
ave with transformationT (x) = �1=px.Proof. Sin
e T (x) = �1=px is stri
tly monotoni
ally in
reasing, the transfor-mation (X;Y ) 7! (X;T (Y )) maps Bg one-to-one onto Cg = f(x; y): y � T (g(x)); x0 <x < x1g, i.e. the region below the transformed density. Hen
e by T (u2) = �1=u,R � (0;1)! R � (�1; 0); (V; U) 7! (X;Y ) = (V=U;�1=U): (6)maps Ag one-to-one onto Cg. Noti
e that g is T -
on
ave if and only if Cg is 
on-vex. Thus it remains to show that Ag is 
onvex if and only if Cg is 
onvex, and
onsequently that straight lines remain straight lines under transformation (6).Let a x+b y = d be a straight line in Cg. Then a (v=u)�b=u = d and a v�d u = b,i.e. a straight line in Ag . Analogously we �nd for a straight line a v+ b u = d in Agthe line a x+ d y = �b in Cg.Remark 1. By theorem 2 the new universal ratio-of-uniforms method is in somesense equivalent to transformed density reje
tion. It is a di�erent method to gen-erate points uniformly distributed in the region below the hat fun
tion. But inopposition to the new method transformed density reje
tion always needs at leasttwo uniform random numbers. A similar approa
h for the transform density re-je
tion, i.e. de
omposing the hat fun
tion into the squeeze (region of immediatea

eptan
e) and the region between squeeze and hat, does not work well. Samplingfrom the se
ond part is very awkward and prone to numeri
al errors [H�ormann1999℄.Sin
e every log-
on
ave density is T -
on
ave with T (x) = �1=px [H�ormann1995℄, our algorithm 
an be applied to a large 
lass of distributions. Examples aregiven in table 1. The given 
onditions on the parameters imply T -
on
avity on thesupport of the densities. However the densities are T -
on
ave for a wider rangeof their parameters on a subset of their support. E.g. the density of the gammadistribution with b = 1 is T -
on
ave for all a > 0 and x � �1+p2� 2a+ a � 1=2.4. CONSTRUCTION POINTSThe performan
e of the new algorithm depends on a small ratio of % = jP e nP sj=jP ej, and thus on the 
hoi
e of the 
onstru
tions points for the tangents ofthe enveloping polygon. There are three possible solutions: (1) simply 
hooseequidistributed points, (2) use an adaptive method, or (3) use optimal points. Itis obvious that setup time is in
reasing and marginal generation time is de
reasingfrom (1) to (3) for a given number of 
onstru
tion points.Equidistributed pointsThe simplest method is to 
hoose points x1; : : : ; xn with equidistributed angles:xi = tan(��=2 + i �=(n+ 1)) i = 1; : : : ; n: (7)If the density fun
tion has bounded domain, (7) has to be modi�ed toxi = tan(�l + i (�r � �l)=(n+ 1)) i = 1; : : : ; n (8)
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on
ave forNormal e�x2=2 RLog-normal 1=x exp(� ln(x� �)2=(2�2)) [0;1) � � p2Exponential � e��x [0;1) � > 0Gamma xa�1 e�b x [0;1) a � 1, b > 0Beta xa�1 (1� x)b�1 [0; 1℄ a; b � 1Weibull xa�1 exp(�xa) [0;1) a � 1Perks 1=(ex + e�x + a) R a � �2Gen. inv. Gaussian xa�1 exp(�bx� b�=x) [0;1) a � 1, b; b� > 0Student's t (1 + (x2=a))�(a+1)=2 R a � 1Pearson VI xa�1=(1 + x)a+b R a; b � 1Cau
hy 1=(1 + x2) RPlan
k xa=(ex � 1) [0;1) a � 1Burr xa�1=(1 + xa)b [0;1) a � 1, b � 2Snede
or's F xm=2�1=(1 +m=nx)(m+n)=2 [0;1) m;n � 2Table 1. T -
on
ave densities (normalization 
onstants omitted)where tan(�l) and tan(�r) are the left and right boundary of the domain (see alsose
tion 2). If the distribution has a mode m 6= 0 use the points xi + m (andshift the domain of the density fun
tion by �m). For xi 
lose to 0 a point isapproximately the arithmeti
 mean of its neighbors; for very large points a pointis approximately the harmoni
 mean of its neighbors. Numeri
al simulations withseveral density fun
tions have shown that this is an a

eptable good 
hoi
e for
onstru
tion points for several distributions where the ratio of length and width ofthe minimal bounding re
tangle is not too far from one.To get an idea about the relationship between %n and the number of 
onstru
tionpoints n, we look at the following spe
ial 
ase: Assume 0 is the mode of a T -
on
ave monotoni
ally de
reasing density f with domain [0;1). Let (a; b) be theright upper vertex of its minimal bounding re
tangle R, i.e., a = supx�0 xpf(x)and b = f(0) = maxx�0 f(x). Furthermore assume that x0 = 0 and that the slopeof the tangent line at the mode is 0 (su
h a tangent always exists). The regionbetween enveloping polygon and squeeze 
onsists of n triangles, ea
h of whi
h withbase line 
i (
onsisting of an edge of the squeezing polygon) and base angles �iand �i, respe
tively. Due to the 
onvexity of the region A we �nd P 
i � 2a + b,P(�i + �i) � � and �i + �i < �. Moreover there is at most one triangle not
ompletely inside R. For the areas of these triangles we �ndAi = 
2i2 � tan�i tan�itan�i + tan�i ; for �i; �i 62 f0; �=2g: (9)The total sum of areas will be
ome as large as possible, when the base angles inall but one triangles be
ome zero, i.e., the areas be
ome zero. Figure 4 shows thelimit 
ase. Using (9) we �nd�n < a2 + b2a b tan(�n )1 + ab tan(�n ) � a2 + b2a b ��n � ab ��n�2 +O(n�3)� (10)
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(0; 0)
(a; b)

�n
Fig. 4. Worst 
ase for ratio %n for given nAdaptive reje
tion samplingGilks and Wild [1992℄ introdu
es the ingenious 
on
ept of adaptive reje
tion sam-pling for the problem of �nding appropriate 
onstru
tion points for the tangentsfor the transformed density reje
tion method. Adopted to our situation it works inthe following way: Start with (at least) two points on both sides of the mode andsample points from the enveloping polygon P e. Add a new 
onstru
tion point atx = v=u whenever a point (v; u) falls into P e n P s until a 
ertain stopping 
rite-rion is ful�lled, e.g. the maximal number of 
onstru
tion points or the aimed ratiojP sj=jP ej is rea
hed. To ensure that the starting polygon P e is bounded, a 
on-stru
tion point at (or at least 
lose to) the mode should be used as a third startingpoint.Sampling a point in the domain P e n P s is mu
h more expensive than samplingfrom the squeeze region. Firstly the generation of a random point requires morerandom numbers and multipli
ations; se
ondly we have to evaluate the densityand 
he
k the a

eptan
e 
ondition. Thus we have to minimize the ratio % =jP e n P sj=jP ej whi
h is done perfe
tly well by adaptive reje
tion sample, sin
e bythis method the region A is automati
ally approximated by envelope and squeezepolygon. The probability for adding a new point in a segment Si depends onthe ratio jSoi j=jP ej, i.e. from the probability to fall into Soi . Hen
e the adaptivealgorithm tends to insert a new 
onstru
tion point where it is \more ne
essary".Obviously the ratio %n is a random variable that 
onverges to 0 almost surelywhen the number 
onstru
tion points n tends to in�nity. A simple 
onsiderationgives %n = O(n�2) [Leydold and H�ormann 1998℄. Figure 5 shows the result of asimulation for the standard normal distribution with (non optimal) starting pointsat x = �0:4 (50 000 samples). %n is plotted against the number n of 
onstru
tionpoints. The range of %n is given by the light shaded area, 90%- and 50%-per
entilesare given by dark shaded areas, median by the solid line.We have run simulations with other distributions and starting values and havemade the observation that 
onvergen
e is even faster for other (non-normal) distri-
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Fig. 5. Convergen
e of the ratio %n = jP e n P sj=jP ej for the standard normal distribution withstarting points at x = �0:4. (50 000 samples)butions. However analyti
al investigations are interesting. Upper bounds for theexpe
ted value of %n are an open problem.Optimal 
onstru
tion pointsBy theorem 2 the area between hat and squeeze of the transformed density reje
tionmethod is mapped one-to-one and onto the region P enP s. Thus we 
an use methodsfor 
omputing optimal 
onstru
tion points for transformed density reje
tion for�nding optimal envelopes for the new algorithm. If only three 
onstru
tion pointsare used, see H�ormann [1995℄. If more points are required, Der
inger and H�ormann[1998℄ des
ribe a very eÆ
ient method. However some modi�
ation are ne
essary.Improvements over adaptive reje
tion sampling are rather small and 
an be seenin �gure 5 (The lower boundary of the range gives a good estimate for the optimal
hoi
e of 
onstru
tion points.).5. THE ALGORITHMAlgorithm arou 
onsists of three main parts:(1) Constru
t the starting enveloping polygon P e and squeeze polygon P s in rou-tine arou start. Here we have to take 
are about a possibly bounded domainand the two 
ases des
ribed in se
tion 2. The starting points must be provided(e.g. by using equidistributed points as des
ribes in se
tion 4).(2) Sample from the given distribution in routine arou sample.(3) Add a new 
onstru
tion point with routine arou add whenever we fall intoP e n P s.We store the envelope into a list of segments (table 2). When using this algorithmwe �rst have to initialize the generator by 
alling arou start. Then sampling 
anbe done by 
alling arou sample.



12 � Josef Leydoldparameter variable definition / remarkleft 
onstru
tion point 
iright 
onstru
tion point 
i+1 pointer, stored in next segmenttangent at left point ai (av ; au; a
), see (4)tangent at right point ai+1 pointer, stored in next segmentinterse
tion point miarea inside/outside squeeze Aini , Aouti jSsi j, jSoi ja

umulated area A
umi Pj�i jSj j, for fast inversionTable 2. obje
t segmentAlgorithm arou startRequire: density f(x), derivative f 0(x);domain (x0; xk), 
onstru
tion points x1; : : : ; xk�1.1: 
0  (0; 0); 
k+1  (0; 0); =� origin �=2: a0  (
os(ar
tan(x0));� sin(ar
tan(x0)); 0). =� tangent line for So �=3: ak+1  (
os(ar
tan(xk));� sin(ar
tan(xk)); 0). =� tangent line for Sk �=4: for i = 1; : : : ; k do =� all 
onstru
tion points xi �=5: if f(xi) > 0 and 9f 0(xi) then6: 
i;2  pf(xi); 
i;1  xi 
i;2.7: ai;v  �f 0(xi)=
i;2; ai;u  2 
i;2 + xi f 0(xi)=
i;2; ai;
  
i;1 ai;v + 
i;2 ai;u.8: add Si to list of segments.=� else xi 
annot be used as 
onstru
tion point �=9: for all segments Si do10: insert 
i+1 and ai+1. =� already stored in next segment in list �=11: 
ompute mi.12: 
ompute Aini , Aouti and A
umi .13: 
he
k if polygon P e is bounded.14: return list of segments.Algorithm arou sampleRequire: density f(x), list of segments Si.1: loop2: generate R � U(0; 1).3: �nd smallest i su
h that A
umi � jP ejR. =� use guide table �=4: R A
umi � jP ejR.5: if R � Aini then =� inside squeeze, Ssi �=6: return (Aini 
i;1+R (
i+1;1� 
i;1))=(Aini 
i;2+R (
i+1;2� 
i;2)). =� eq. (3) �=7: else =� outside squeeze, Soi �=8: R1  (R�Aini )=Aouti .9: generate R2 � U(0; 1).10: if R1 > R2 then swap R1, R2.11: R3  1�R2, R2  R2 �R1.12: U  
i;2R1 + 
i+1;2R2 +mi;2R3.13: X  (
i;1R1 + 
i+1;1R2 +mi;1R3)=U .14: if number of segments < maximum then15: 
all arou add with X , Si.
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 Sampling with the ratio-of-uniforms method � 1316: if U2 � f(X) then17: return X .Algorithm arou addRequire: density f(x), derivative f 0(x); new 
onstru
tion point xn; segment Sr.1: if f(xn) = 0 or 6 9f 0(xn) then =� 
annot add this point �=2: return3: 
n;2  pf(xn); 
n;1  xn 
n;2.4: an;v  �f 0(xn)=
n;2; an;u  2�
n;2+xn f 0(xn)=
n;2; an;
  
n;1 an;v+
n;2 an;u.5: insert Sn into list of segments. =� Take 
are about 
i+1 and ai+1 �=6: remove old segment Sr from list.7: 
ompute mn.8: 
ompute Ainn and Aoutn .9: for all segments Si do10: 
ompute A
umi .11: return new list of segments.To implement this algorithm, a linked list of segments is ne
essary. WheneverA
umi are (re-)
al
ulated, a guide table has to be made. Using linear sear
h mightbe a good method for �nding Si when only a few random variates are sampled.Spe
ial 
are is ne
essary when mi is 
omputed in arou start and arou add.There are three possible 
ases for numeri
al problems when solving the 
orrespond-ing linear equation:(1) The verti
es 
i and 
i+1 are very 
lose and (
onsequently) jSij is very small.Here we simply reje
t 
i+1 as new 
onstru
tion point.(2) 
i and 
i+1 are very 
lose to 
0 = (0; 0). Again jSij is very small.(3) The boundary of A between 
i and 
i+1 is almost a straight line and Aouti is(almost) 0. In this 
ase we set mi = 1=2 (
i + 
i+1).A possible way to de�ne \very small" is to 
ompare su
h numbers with the smallestpositive " with (M + ") 6= M in the used programming language. M denotes themagnitude of the maximum of the density fun
tion. (In ANSI C for M = 1, " isde�ned by the ma
ro DBL EPSILON.)It is important to 
he
k whether mi is on the outer side of the se
ant through
i and 
i+1. This 
ondition is violated in arou start when the polygon P e isunbounded. It may be violated in arou start and arou add when A is not 
onvex.6. COMPUTATIONAL EXPERIENCESA version of algorithm arou is 
oded in C and available by email request fromthe author. We have 
ompared it to two other universal methods: transformeddensity reje
tion with T (x) = �1=px (tdr) and the table method (tabl) by Ahrens[1993℄ (However we have modi�ed split B by repla
ing the re
ursive sear
h by�x = tan((ar
tan(x1) + ar
tan(x2))=2), a mean value similar to eq. (8).) Noti
ethat this method is only appli
able for densities with bounded support. Thus wehave to 
ut unbounded domains (we used �1050 and 1050, respe
tively). The maingoal for the implementations of all three algorithms is to get a 
exible and robust



14 � Josef Leydoldprogram. Moreover, for small �, generation should be 
lose to inversion. Thuslinked lists of stru
tures have been used. Constru
tions like storing all data in asingle array and using sophisti
ated indi
es to �nd these again (as des
ribed inAhrens [1993℄) have been avoided. For the underlying uniform random numbergenerator we have used the library prng-2.2 [Lendl 1997℄. We used generator CMRGby L'E
uyer [1996℄, a 
ombined multiple re
ursive random number generator witha long period (generation time 0:31 �s).The timings have been performed on a PC (AMD K2 400 MHz, Linux 2.0.36, g

version 2.95.1). We started with 30 
onstru
tion points, using the \equidistributionrule" for arou and tdr, and \equiarea rule with splitting" for tabl (see Ahrens[1993℄ for details). Tables 3 and 4 show the result for some distributions. Wethen 
ontinued with adaptive reje
tion sampling to get more 
onstru
tion pointsuntil % � 0:01 (Zaman [1996℄ has suggested this pro
edure for the table method).Table 5 shows the number of the resulting segments and intervals, respe
tively, andthe marginal generation times for the generator, when no more 
onstru
tion pointsare added. arou tdr tabl% #urn % #urn % #urnNormal 0.021 1.029 0.021 2.014 0.192 1.334Student(2) 0.022 1.028 0.022 2.013 0.561 2.475Cau
hy 0.067 1.068 0.067 2.002 0.788 5.231Gamma(10) 0.094 1.137 0.094 2.079 0.207 1.362Beta(10,20) 0.022 1.029 0.022 2.016 0.160 1.265Table 3. % and average number of uniform random numbers for 30 �xed 
onstru
tion points using\equidistribution rule" (arou, tdr) and \equiarea rule with splitting" (tabl), respe
tively.arou tdr tablts (�s) tg (�s) ts (�s) tg (�s) ts (�s) tg (�s)Normal 182 0.77 261 1.53 110 1.03Student(2) 230 0.79 303 1.55 124 2.52Cau
hy 178 0.81 251 1.55 91 3.74Gamma(10) 220 0.92 295 1.68 127 1.16Beta(10,20) 235 0.78 312 1.54 130 1.10Table 4. Setup time (ts) and average marginal generation time (tg) (sample size 106) for 30
onstru
tion points (see table 3).As expe
ted, tables 3 and 4 show that method arou is superior to tdr. It requiresfewer uniform random numbers. Moreover sin
e it requires less 
omputations itssetup time is shorter and the marginal generation is mu
h faster. Table 4 demon-strates the advantage of the better �tting hat of method arou 
ompared to tabl.A 
onsiderably lower number of segments is required. This results in a faster set-upstep for a �xed small %. This observation is supported by the theoreti
al result that
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 Sampling with the ratio-of-uniforms method � 15arou tdr tabltg (�s) segments tg (�s) intervals tg (�s) intervalsNormal 0.75 (40,46) 1.51 (41,48) 0.78 ( 573, 598)Student(2) 0.76 (37,44) 1.52 (38,46) 0.80 (1057,1093)Cau
hy 0.75 (34,40) 1.52 (35,43) 0.81 (1559,1601)Gamma(10) 0.76 (49,56) 1.50 (49,57) 0.79 ( 562, 587)Beta(10,20) 0.76 (44,50) 1.50 (45,52) 0.79 ( 540, 564)Table 5. Adding 
onstru
tion points by adaptive reje
tion sampling until � � 0:01. Averagemarginal generation time (when � = 0:01) and 90%-per
entile for respe
tive number of segmentsand intervals (sample size 105).% is O(1=n2) for arou and tdr but O(1=n) for tabl. The average generation timesthat in
lude setup time and rebuilding the guide tables for sample size 105 havebeen found about the same as the marginal generation time for arou and tdr, butare 
onsiderable larger for tabl (more than 100% larger for Cau
hy distribution).7. A NOTE ON THE QUALITY OF RANDOM NUMBERSThe new algorithm is a 
omposition method, similar to the a

eptan
e-
omplementmethod (see Devroye [1986, x II.5℄). We have f(x) = (1 � %) gs(x) + % go(x),where gs(x) is the distribution de�ned by the squeeze region and go(x) = f(x) �gs(x). By theorem 1 the algorithm is exa
t, i.e. the generated random variates havethe required distribution. However defe
ts in underlying uniform random numbergenerators may result in poor quality of the non-uniform random variate. Moreoverthe transformation into the non-uniform random variate itself may 
ause furtherde�
ien
ies.Although there is only little literature on this topi
, the ratio-of-uniforms methodin 
ombination with any linear 
ongruental generator (LCG) was reported to havedefe
ts [H�ormann 1994a; H�ormann 1994b℄. Due to the latti
e stru
ture of randompairs generated by an LCG there is always a hole without a point with probabilityof order 1=pM , where M is the modulus of the LCG.Random variates generated by the inversion inherit the stru
ture of the underly-ing uniform random numbers and 
onsequently their quality. We 
onsider this as agreat advantage of this method, sin
e generators whose stru
tural properties are wellunderstood and pre
isely des
ribed may look less random, but those that are more
ompli
ated and less understood are not ne
essarily better. They may hide strong
orrelations or other important defe
ts. . . .One should avoid generators without
onvin
ing theoreti
al support. This statement by L'E
uyer [1998℄ on building uni-form random number generator is also valid for non-uniform distributions. Othermethods may have some hidden inferen
es, whi
h make a predi
tion of the qualityof the resulting non-uniform random numbers impossible [Leydold et al. 2000℄.Noti
e that a random variate with density gs(x) is generated by inversion. Thusas ratio % tends to 0, most of the random variates are generated by inversion by thenew algorithm. As an immediate 
onsequen
e for small % the new generator avoidsthe defe
ts of the basi
 ratio-of-uniforms method. Figure 6 shows s
atter plotsof all overlapping tuples (u0; u1); (u1; u2); (u2; u3); : : : using the \baby" generatorun+1 = 869un + 1 mod 1024. (a) shows the underlying generator. (b){(f) show
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(e) %29 = 0:022 (f) %75 = 0:003Fig. 6. S
atter plots of \baby" generator un+1 = 869un+1 mod 1024 (a) and of normal variatesusing algorithm arou with 2, 4, 6, 29 and 75 equidistributed 
onstru
tion points (b{f).
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 Sampling with the ratio-of-uniforms method � 17the tuples (�(u0);�(u1)), (�(u1);�(u2)), (�(u2);�(u3)), . . . for di�erent numberof 
onstru
tion points using the equidistribution method (� denotes the 
umulativedistribution fun
tion of the standard normal distribution).We have made an empiri
al investigation using M-tuple tests [Good 1953; Marsaglia1985℄ in the setup of Leydold, Leeb, and H�ormann [2000℄ with the standard normaldistribution and various numbers of 
onstru
tion points. We have used a linear
ongruential generator fish by Fishman and Moore [1986℄, an expli
it inversive
ongruential generator [Ei
henauer-Herrmann 1993℄, and a twisted GFSR genera-tor (tt800 by Matsumoto and Kurita [1994℄); at last the infamous randu (againan LCG) as an example of a generator with bad latti
e stru
ture (see Park andMiller [1988℄). These tests have demonstrated that for small ratio %, the qualityof the normal generators are strongly 
orrelated with the quality of the underly-ing uniform random number generator. Espe
ially, using randu results in normalgenerator of bad quality. Noti
e however that this 
orrelation does not exist, if %is not 
lose to 0. Indeed, using only 2 or 4 
onstru
tion points results in a normalgenerator whi
h might be better (e.g. fish in our tests) or worse (e.g. randu) thanthe underlying generator.8. POSSIBLE VARIANTSNon-
onvex regionThe algorithm 
an be modi�ed to work with non-
onvex region Af . Adapting theidea of Evans and Swartz [1998℄ we have to partition Af into segments using thein
e
tion points of the transformed density with transformation T (x) = �1=px.In ea
h segment of Af where T (f(x)) is not 
on
ave but 
onvex, we have to usese
ants for the boundary of the enveloping polygon P e and tangents for the squeezeP s (see �gure 7). Noti
e that the squeeze region in su
h a segment is a quadrangle
0
imi
i+1 and has to be triangulated. The 
hanges of algorithm arou are straightforward: (1) In
lude Ain;li and Ain;ri into obje
t 2; (2) 
ompute Ain;li and Ain;riinstead of Aini for all non-
onvex segments of A; (3) in arou sample, when wegenerate a point inside the squeeze polygon of a non-
onvex segment, we �rst haveto de
ide by means of Ain;li and Ain;ri whi
h triangle (left of right) has to be used.Multivariate distributionsWake�eld, Gelfand, and Smith [1991℄ and Stef�anes
u and V�aduva [1987℄ have gener-alized the ratio-of-uniformsmethod to multivariate distributions. Both use reje
tionfrom an en
losing multidimensional re
tangle. However the a

eptan
e probabil-ity de
reases very fast for higher dimension. For multivariate normal distributionin four dimension it is below 1%. Using polyhedral envelopes similar to Leydoldand H�ormann [1998℄ or Leydold [1998℄ is possible and in
reases the a

eptan
eprobability. However this requires some additional resear
h.ACKNOWLEDGMENTSThe author wishes to thank Hannes Leeb for helpful dis
ussions on the quality ofrandom number generators.
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