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Automati Sampling with the Ratio-of-UniformsMethodJosef LeydoldUniversity of Eonomis and Business Administration, Department for Applied Statistisand Data ProessingApplying the ratio-of-uniforms method for generating random variates results in very eÆient, fastand easy to implement algorithms. However parameters for every partiular type of density mustbe prealulated analytially. In this paper we show, that the ratio-of-uniforms method is alsouseful for the design of a blak-box algorithm suitable for a large lass of distributions, inludingall with log-onave densities. Using polygonal envelopes and squeezes results in an algorithm thatis extremely fast. In opposition to any other ratio-of-uniforms algorithm the expeted numberof uniform random numbers is less than two. Furthermore we show that this method is in somesense equivalent to transformed density rejetion.Categories and Subjet Desriptors: G.3 [Probability and Statistis℄: Random number gener-ationGeneral Terms: AlgorithmsAdditional Key Words and Phrases: random number generation, non-uniform, rejetion method,ratio of uniforms, log-onave, T-onave, adaptive method, universal method1. INTRODUCTIONThere exists a large literature on generation methods for standard ontinuous dis-tributions; see, for example, Devroye [1986℄. These algorithms are often espeiallydesigned for a partiular distribution and tailored to the features of eah density.However in many situations the appliation of standard distributions is not ade-quate for a Monte-Carlo simulation. Besides sheer brute fore inversion (that is,tabulate the distribution funtion at many points), several universal methods forlarge lasses of distributions have been developed to avoid the design of speial al-gorithms for these ases. Some of these methods are either very slow (e.g. Devroye[1984℄) or need a slow set-up step and large tables (e.g. Ahrens and Kohrt [1981℄,This work was partially supported by the Austrian Siene Foundation (FWF), projet no. P12805-MATAddress: Augasse 2-6, A-1090 Vienna, Austria. email: Josef.Leydold�statistik.wu-wien.a.atPermission to make digital or hard opies of part or all of this work for personal or lassroom use isgranted without fee provided that opies are not made or distributed for pro�t or diret ommerialadvantage and that opies show this notie on the �rst page or initial sreen of a display alongwith the full itation. Copyrights for omponents of this work owned by others than ACM mustbe honored. Abstrating with redit is permitted. To opy otherwise, to republish, to post onservers, to redistribute to lists, or to use any omponent of this work in other works, requires priorspei� permission and/or a fee. Permissions may be requested from Publiations Dept, ACMIn., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions�am.org.



2 � Josef LeydoldMarsaglia and Tsang [1984℄, and Devroye [1986, hap. VII℄).Reently two more eÆient methods have been proposed. The transformed den-sity rejetion by Gilks andWild [1992℄ and H�ormann [1995℄ is an aeptane/rejetiontehnique that uses the onavity of the transformed density to generate a hat fun-tion automatially. The user only needs to provide the probability density funtionand perhaps the (approximate) loation of the mode. A table method by Ahrens[1993℄ also is an aeptane/rejetion method, but uses a pieewise onstant hat.A region of immediate aeptane makes the algorithm fast when a large numberof onstant piees is used. The tail region of the distribution is treated separately.In Ahrens [1995℄ the algorithm is modi�ed to use a pieewise onstant hat suhthat the area below eah piee is the same. Thus generation is simpli�ed but thealgorithm requires more adjustments for the setup for eah distribution.The ratio-of-uniforms method introdued by Kinderman and Monahan [1977℄ isanother exible method that an be adjusted to a large variety of distributions.It has beome a popular transformation method to generate non-uniform randomvariates, sine it results in exat, eÆient, fast and easy to implement algorithms.Typially these algorithms have only a few lines of ode (e.g. Barabesi [1993℄ givesa survey and examples of FORTRAN odes for several standard distributions). Itis based on the following theorem.Theorem 1 (Kinderman and Monahan 1977). Let X be a random variablewith density funtion f(x) = g(x)= R g(x)dx, where g(x) is a positive integrablefuntion with support (x0; x1) not neessarily �nite. If (V; U) is uniformly dis-tributed in A = Ag = f(v; u): 0 < u �pg(v=u); x0 < v=u < x1g; (1)then X = V=U has probability density funtion f(x).For sampling random points uniformly distributed in Ag rejetion from a onve-nient enveloping region Rg is used. The basi form of the ratio-of-uniforms methodis given by algorithm rou.Algorithm rouRequire: funtion g(x) (prop. to density f(x)); enveloping region R1: repeat2: Generate random point (V; U) uniformly distributed in R.3: X  V=U .4: until U2 � g(X).5: return X .Usually the input in rou is prepared by the designer of the algorithm for eahpartiular distribution. To redue the number of evaluations of the density fun-tion in step 4, squeezes are used. It is obvious that the performane of this simplealgorithm depends on the rejetion onstant, i.e. on the ratio jRj=jAj, where jRjdenotes the area of region R. Kinderman and Monahan [1977℄ and others use re-jetion from the minimal bounding retangle, i.e. the smallest possible retanglef(v; u): 0 � u � u�; v� � v � v�g. This basi algorithm has been improved in sev-



Automati Sampling with the ratio-of-uniforms method � 3eral ways1: A tighter �tting enlosing region dereases the rejetion onstant. Pos-sible hoies are parallelograms (e.g. Cheng and Feast [1979℄) or quadrati boundingurves (e.g. Leva [1992℄). Often it is onvenient to deompose A into a ountableset of non-overlapping subregions (\omposite ratio-of-uniforms method", Robert-son and Walls [1980℄ give a simple example). Dagpunar [1988, p. 65℄ onsiders thepossibility of an enlosing polygon.In this paper we develop a new algorithm that uses polygonal envelopes andsqueezes. Random variates inside the squeeze are generated by mere inversionand therefore in opposition to any other ratio-of-uniforms method the expetednumber of uniform random numbers is less than two. For a large lass of distri-butions, inluding all log-onave distributions, it is possible to onstrut envelopeand squeeze automatially. Moreover we show that the new algorithm is in somesense equivalent to transformed density rejetion.The new method has several advantages:|Envelopes and squeezes are onstruted automatially. Only the probability den-sity funtion is neessary.|The expeted number of uniform random numbers is 1 + %, where % > 0 an bemade arbitrarily small.|For small % the method is lose to inversion and thus the resulting random variatesan be used for variane redution tehniques. Moreover the struture of theresulting random variates is similar to that of the underlying uniform randomnumber generator. Hene the non-uniform random variates inherit its qualityproperties.|It avoids some possible defets in the quality of the resulting pseudo-randomvariates that have been reported for the ratio-of-uniforms method [H�ormann1994a; H�ormann 1994b℄.|It is the �rst ratio-of-uniforms method and the �rst implementation of trans-formed density rejetion where the expeted number of uniform random numbersis less than two.In setion 2 we give an outline of this new approah and in setion 4 we disussthe problem of getting a proper envelope for the region R. Setion 5 desribes thealgorithm in detail and setion 6 reports the omputational experienes we have hadwith the new algorithm and ompare these with other algorithms. Setion 3 showsthat this algorithm is appliable for all T -onave densities, with T (x) = �1=px.Remarks on the quality of random numbers generated with the new algorithm aregiven in setion 7.1Moreover the method has been extended: Wake�eld, Gelfand, and Smith [1991℄ replaes thefuntion q(u) = u2 by a more general stritly inreasing di�erentiable funtion q(u).Stadlober [1989, 1990℄ gives a modi�ation for disrete distributions.Jones and Lunn [1996℄ embeds this method into a \general random variate generation framework".Wake�eld et al. [1991℄ and Stef�anesu and V�aduva [1987℄ apply this method to the generation ofmultivariate distributions.



4 � Josef Leydold2. THE METHODEnveloping polygonsWe are given a distribution with probability density funtion f(x) = g(x)= R g(x)dxwith onvex set Ag . Notie that g must be ontinuous and bounded sine otherwiseAg would not be onvex. To simplify the development of our method we �rst assumeunbounded support for g. (This restrition will be dropped later.)For suh a distribution it is easy to make an enveloping polygon: Selet a oupleof points i, i = 0; : : : ; n, on the boundary of A and use the tangents at these pointsas edges of the enlosing polygon P e (see �gure 1). We denote the verties of P e by

vu onstrution points i+1
i mi

tangentFig. 1. Polygonal envelope and squeeze for onvex set Ag.mi. These are simply the intersetion points of the tangents. Obviously our hoieof the onstrution points of the tangents has to result in a bounded polygon P e.The proedure even works if the tangents are not unique for a point (v; u), i.e. ifg(x) is not di�erentiable in x = v=u. Furthermore it is very simple to onstrutsqueezes: Take the inside of the polygon P s with verties i.Sampling from the enveloping polygonNotie that the origin (0; 0) is always ontained in the polygon P e. Moreoverevery straight line through the origin orresponds to an x = v=u and thus itsintersetion with A is always onneted. Therefore we use 0 = (0; 0) for the �rstonstrution point and the v-axis as its tangent. To sample uniformly from theenlosing polygon we triangulate P e and P s by making segments Si, i = 0; : : : ; n,at vertex 0. Figure 2 illustrates the situation. Segment Si has the verties 0,i, mi and i+1, where n+1 = 0 for the last segment. Eah segment is dividedinto the triangle Ssi inside the squeeze (dark shaded) and a triangle Soi outside(light shaded). Notie that the segments S0 and Sn have only three verties andno triangles Ss0 and Ssn.To generate a random point uniformly distributed in P e, we �rst have to samplefrom the disrete distribution with probability vetor proportional to (jS0j; jS1j;. . . ,jSnj),



Automati Sampling with the ratio-of-uniforms method � 5

0 i+1
i mi

SnSiS3S2S1 S0Fig. 2. Triangulation of enveloping polygonto selet a segment and further a triangle Soi or Ssi . This an be done by inversion:Algorithm get segmentRequire: list of segments1: Generate R � U(0; 1).2: Find the smallest k, suh that Pi�k jSij � jP ejR.3: if Pi�k jSij � jP ejR � jSskj then4: return triangle Ssk.5: else6: return triangle Sok .For step 2 indexed searh (or guide tables) is an appropriate method (Chen andAsau [1974℄, see also Devroye [1986, xIII.2.4℄).Uniformly distributed points in a triangle (v0; v1; v2) an be generated by thefollowing simple algorithm [Devroye 1986, p. 570℄:Algorithm triangleRequire: triangle (v0; v1; v2)1: Generate R1; R2 � U(0; 1).2: if R1 < R2 then swap R1 and R2.3: return (1�R1)v0 + (R1 �R2)v1 +R2v2.For sampling from Ssi this algorithm an be muh improved. Every point in suha triangle an immediately be aepted without evaluating the probability densityfuntion and thus we are only interested in the ratio of the omponents. Sine thetriangle Ssi has vertex 0 = (0; 0), we arrive atx = vu = (R1 �R2) i;1 +R2 i+1;1(R1 �R2) i;2 +R2 i+1;2 = i;1 +R (i+1;1 � i;1)i;2 +R (i+1;2 � i;2) (2)



6 � Josef Leydoldwhere i;j is the j-th omponent of vertex i, and R = R2=R1 again is a (0; 1)-uniform random variate by the ratio-of-uniforms theorem, sine 0 � R2 � R1 � 1[Kinderman and Monahan 1977℄. Notie that we save one uniform random numberin the domain P s by this method. Furthermore we an reuse the random numberR from routine get segment by R0 = (Pi�k jSij � jP ejR)=jSskj without risk. We�nd x = vu = jSskj i;1 + (Pi�k jSij � jP ejR)(i+1;1 � i;1)jSskj i;2 + (Pi�k jSij � jP ejR)(i+1;2 � i;2) (3)Sampling from P s an then be seen as inversion from the umulative distributionfuntion de�ned by the boundary of the squeeze polygon. Thus for a ratio jP sj=jP ejlose to 1 we have almost inversion for generating random variates. The inversionmethod has two advantages and is thus favored by the simulation ommunity (seeBratley, Fox, and Shrage [1983℄): (1) The struture of the generator is simple andan easily be investigated (see setion 7). (2) These random variates an be usedfor variane redution tehniques.Expeted number of uniform random numbersLet % = jP e n P sj=jP ej = 1 � jP sj=jP ej. Then the expeted number of uniformrandom numbers for generating one ratio v=u is given by (1�%)+2% = 1+%. Sinewe have to rejet this ratio if (v; u) 62 A andA � P s we �nd for the expeted numberof uniform random numbers per generated non-uniform variate E � (1+%)=(1�%).Notie that by a proper hoie of the onstrution points, % an be made arbitrarilysmall.Bounded domain for gIf x0 > �1 or x1 <1 than the situation is nearly the same. We have to distinguishbetween two ases:(1) f(xi) > 0 and f 0(xi) exists for the limit point xi. We then use xi as onstrutionpoint and the respetive triangular segment S0 or Sn is not neessary.(2) Otherwise we an restrit the triangular segment S0 or Sn, i.e. we use thetangent line v � xi u = 0 at vertex 0 = (0; 0), instead of the v-axis. Notiethat we then have di�erent tangent lines at 0 for S0 and Sn.Adding a onstrution pointTo add a new point for a given ratio x = v=u we need (v ; u) on the \outerboundary" of A and the tangent line of A at this point. These are given by thepositive root of u2 = g(x) and the total di�erential of u2 � g(v=u), heneboundary: u =pg(x); v = x u;tangent: av v + au u = a = av v + au u;where au = 2u+ g0(x)x=u and av = �g0(x)=u (4)3. RATIO-OF-UNIFORMS AND TRANSFORMED DENSITY REJECTIONTransformed density rejetionOne of the most eÆient universal methods is transformed density rejetion, in-trodued in Devroye [1986℄ and under a di�erent name in Gilks and Wild [1992℄,



Automati Sampling with the ratio-of-uniforms method � 7and generalized in H�ormann [1995℄. This aeptane/rejetion tehnique uses theonavity of the transformed density to generate a hat funtion and squeezes au-tomatially by means of tangents and seants. The user only needs to provide thedensity funtion and perhaps the (approximate) loation of the mode. It an beutilized for any density f where a stritly inreasing, di�erentiable transformationT exists, suh that T (f(x)) is onave (see H�ormann [1995℄ for details). Suh a den-sity is alled T -onave; log-onave densities are an example with T (x) = log(x).Figure 3 illustrates the situation for the standard normal distribution and the trans-formation T (x) = log(x). The left hand side shows the transformed density withthree tangents. The right hand side shows the density funtion with the resultinghat. Squeezes are drawn as dashed lines. Evans and Swartz [1998℄ have shown thatthis tehnique is even suitable for arbitrary densities provided that the inetionpoints of the transformed density are known.

Fig. 3. Constrution of a hat funtion for the normal density utilizing transformed density re-jetion.Densities with onvex region AStadlober [1989℄ and Dieter [1989℄ have lari�ed the relationship of the ratio-of-uniforms method to the ordinary aeptane/rejetion method. But there is alsoa deeper onnetion to the transformed density rejetion, that gives us a usefulharaterization for densities with onvex region Ag . We �rst provide a proof oftheorem 1.Proof of theorem 1. Consider the transformationR � (0;1)! R � (0;1); (V; U) 7! (X;Y ) = (V=U;U2): (5)Sine the Jaobian of this transformation is 2, the joint density probability funtionof X and Y is given by w(x; y) = 1=(2 jAj), if 0 < y � g(x), and w(x; y) = 0otherwise. Thus X has marginal density w1(x) = R g(x)0 1=(2 jAj) dy = g(x)=(2 jAj).Consequently jAj = 1=2 R g(x)dx and w1(x) = f(x). Therefore X = V=U hasprobability density funtion f(x).Transformation (5) maps Ag one-to-one onto Bg = f(x; y): 0 < y � g(x); x0 <x < x1g, i.e. the set of points between the graph of g(x) and the x-axis. Moreover



8 � Josef Leydoldthe \outer boundary" of Ag , f(v; u):u2 = g(v=u); u > 0; x0 < v=u < x1g, ismapped onto the graph of g(x).Theorem 2. Ag is onvex if and only if g(x) is T -onave with transformationT (x) = �1=px.Proof. Sine T (x) = �1=px is stritly monotonially inreasing, the transfor-mation (X;Y ) 7! (X;T (Y )) maps Bg one-to-one onto Cg = f(x; y): y � T (g(x)); x0 <x < x1g, i.e. the region below the transformed density. Hene by T (u2) = �1=u,R � (0;1)! R � (�1; 0); (V; U) 7! (X;Y ) = (V=U;�1=U): (6)maps Ag one-to-one onto Cg. Notie that g is T -onave if and only if Cg is on-vex. Thus it remains to show that Ag is onvex if and only if Cg is onvex, andonsequently that straight lines remain straight lines under transformation (6).Let a x+b y = d be a straight line in Cg. Then a (v=u)�b=u = d and a v�d u = b,i.e. a straight line in Ag . Analogously we �nd for a straight line a v+ b u = d in Agthe line a x+ d y = �b in Cg.Remark 1. By theorem 2 the new universal ratio-of-uniforms method is in somesense equivalent to transformed density rejetion. It is a di�erent method to gen-erate points uniformly distributed in the region below the hat funtion. But inopposition to the new method transformed density rejetion always needs at leasttwo uniform random numbers. A similar approah for the transform density re-jetion, i.e. deomposing the hat funtion into the squeeze (region of immediateaeptane) and the region between squeeze and hat, does not work well. Samplingfrom the seond part is very awkward and prone to numerial errors [H�ormann1999℄.Sine every log-onave density is T -onave with T (x) = �1=px [H�ormann1995℄, our algorithm an be applied to a large lass of distributions. Examples aregiven in table 1. The given onditions on the parameters imply T -onavity on thesupport of the densities. However the densities are T -onave for a wider rangeof their parameters on a subset of their support. E.g. the density of the gammadistribution with b = 1 is T -onave for all a > 0 and x � �1+p2� 2a+ a � 1=2.4. CONSTRUCTION POINTSThe performane of the new algorithm depends on a small ratio of % = jP e nP sj=jP ej, and thus on the hoie of the onstrutions points for the tangents ofthe enveloping polygon. There are three possible solutions: (1) simply hooseequidistributed points, (2) use an adaptive method, or (3) use optimal points. Itis obvious that setup time is inreasing and marginal generation time is dereasingfrom (1) to (3) for a given number of onstrution points.Equidistributed pointsThe simplest method is to hoose points x1; : : : ; xn with equidistributed angles:xi = tan(��=2 + i �=(n+ 1)) i = 1; : : : ; n: (7)If the density funtion has bounded domain, (7) has to be modi�ed toxi = tan(�l + i (�r � �l)=(n+ 1)) i = 1; : : : ; n (8)



Automati Sampling with the ratio-of-uniforms method � 9Distribution Density Support T -onave forNormal e�x2=2 RLog-normal 1=x exp(� ln(x� �)2=(2�2)) [0;1) � � p2Exponential � e��x [0;1) � > 0Gamma xa�1 e�b x [0;1) a � 1, b > 0Beta xa�1 (1� x)b�1 [0; 1℄ a; b � 1Weibull xa�1 exp(�xa) [0;1) a � 1Perks 1=(ex + e�x + a) R a � �2Gen. inv. Gaussian xa�1 exp(�bx� b�=x) [0;1) a � 1, b; b� > 0Student's t (1 + (x2=a))�(a+1)=2 R a � 1Pearson VI xa�1=(1 + x)a+b R a; b � 1Cauhy 1=(1 + x2) RPlank xa=(ex � 1) [0;1) a � 1Burr xa�1=(1 + xa)b [0;1) a � 1, b � 2Snedeor's F xm=2�1=(1 +m=nx)(m+n)=2 [0;1) m;n � 2Table 1. T -onave densities (normalization onstants omitted)where tan(�l) and tan(�r) are the left and right boundary of the domain (see alsosetion 2). If the distribution has a mode m 6= 0 use the points xi + m (andshift the domain of the density funtion by �m). For xi lose to 0 a point isapproximately the arithmeti mean of its neighbors; for very large points a pointis approximately the harmoni mean of its neighbors. Numerial simulations withseveral density funtions have shown that this is an aeptable good hoie foronstrution points for several distributions where the ratio of length and width ofthe minimal bounding retangle is not too far from one.To get an idea about the relationship between %n and the number of onstrutionpoints n, we look at the following speial ase: Assume 0 is the mode of a T -onave monotonially dereasing density f with domain [0;1). Let (a; b) be theright upper vertex of its minimal bounding retangle R, i.e., a = supx�0 xpf(x)and b = f(0) = maxx�0 f(x). Furthermore assume that x0 = 0 and that the slopeof the tangent line at the mode is 0 (suh a tangent always exists). The regionbetween enveloping polygon and squeeze onsists of n triangles, eah of whih withbase line i (onsisting of an edge of the squeezing polygon) and base angles �iand �i, respetively. Due to the onvexity of the region A we �nd P i � 2a + b,P(�i + �i) � � and �i + �i < �. Moreover there is at most one triangle notompletely inside R. For the areas of these triangles we �ndAi = 2i2 � tan�i tan�itan�i + tan�i ; for �i; �i 62 f0; �=2g: (9)The total sum of areas will beome as large as possible, when the base angles inall but one triangles beome zero, i.e., the areas beome zero. Figure 4 shows thelimit ase. Using (9) we �nd�n < a2 + b2a b tan(�n )1 + ab tan(�n ) � a2 + b2a b ��n � ab ��n�2 +O(n�3)� (10)
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(0; 0)
(a; b)

�n
Fig. 4. Worst ase for ratio %n for given nAdaptive rejetion samplingGilks and Wild [1992℄ introdues the ingenious onept of adaptive rejetion sam-pling for the problem of �nding appropriate onstrution points for the tangentsfor the transformed density rejetion method. Adopted to our situation it works inthe following way: Start with (at least) two points on both sides of the mode andsample points from the enveloping polygon P e. Add a new onstrution point atx = v=u whenever a point (v; u) falls into P e n P s until a ertain stopping rite-rion is ful�lled, e.g. the maximal number of onstrution points or the aimed ratiojP sj=jP ej is reahed. To ensure that the starting polygon P e is bounded, a on-strution point at (or at least lose to) the mode should be used as a third startingpoint.Sampling a point in the domain P e n P s is muh more expensive than samplingfrom the squeeze region. Firstly the generation of a random point requires morerandom numbers and multipliations; seondly we have to evaluate the densityand hek the aeptane ondition. Thus we have to minimize the ratio % =jP e n P sj=jP ej whih is done perfetly well by adaptive rejetion sample, sine bythis method the region A is automatially approximated by envelope and squeezepolygon. The probability for adding a new point in a segment Si depends onthe ratio jSoi j=jP ej, i.e. from the probability to fall into Soi . Hene the adaptivealgorithm tends to insert a new onstrution point where it is \more neessary".Obviously the ratio %n is a random variable that onverges to 0 almost surelywhen the number onstrution points n tends to in�nity. A simple onsiderationgives %n = O(n�2) [Leydold and H�ormann 1998℄. Figure 5 shows the result of asimulation for the standard normal distribution with (non optimal) starting pointsat x = �0:4 (50 000 samples). %n is plotted against the number n of onstrutionpoints. The range of %n is given by the light shaded area, 90%- and 50%-perentilesare given by dark shaded areas, median by the solid line.We have run simulations with other distributions and starting values and havemade the observation that onvergene is even faster for other (non-normal) distri-



Automati Sampling with the ratio-of-uniforms method � 11

0 5 10 15 20 25 300
0:5
1:0

Fig. 5. Convergene of the ratio %n = jP e n P sj=jP ej for the standard normal distribution withstarting points at x = �0:4. (50 000 samples)butions. However analytial investigations are interesting. Upper bounds for theexpeted value of %n are an open problem.Optimal onstrution pointsBy theorem 2 the area between hat and squeeze of the transformed density rejetionmethod is mapped one-to-one and onto the region P enP s. Thus we an use methodsfor omputing optimal onstrution points for transformed density rejetion for�nding optimal envelopes for the new algorithm. If only three onstrution pointsare used, see H�ormann [1995℄. If more points are required, Deringer and H�ormann[1998℄ desribe a very eÆient method. However some modi�ation are neessary.Improvements over adaptive rejetion sampling are rather small and an be seenin �gure 5 (The lower boundary of the range gives a good estimate for the optimalhoie of onstrution points.).5. THE ALGORITHMAlgorithm arou onsists of three main parts:(1) Construt the starting enveloping polygon P e and squeeze polygon P s in rou-tine arou start. Here we have to take are about a possibly bounded domainand the two ases desribed in setion 2. The starting points must be provided(e.g. by using equidistributed points as desribes in setion 4).(2) Sample from the given distribution in routine arou sample.(3) Add a new onstrution point with routine arou add whenever we fall intoP e n P s.We store the envelope into a list of segments (table 2). When using this algorithmwe �rst have to initialize the generator by alling arou start. Then sampling anbe done by alling arou sample.



12 � Josef Leydoldparameter variable definition / remarkleft onstrution point iright onstrution point i+1 pointer, stored in next segmenttangent at left point ai (av ; au; a), see (4)tangent at right point ai+1 pointer, stored in next segmentintersetion point miarea inside/outside squeeze Aini , Aouti jSsi j, jSoi jaumulated area Aumi Pj�i jSj j, for fast inversionTable 2. objet segmentAlgorithm arou startRequire: density f(x), derivative f 0(x);domain (x0; xk), onstrution points x1; : : : ; xk�1.1: 0  (0; 0); k+1  (0; 0); =� origin �=2: a0  (os(artan(x0));� sin(artan(x0)); 0). =� tangent line for So �=3: ak+1  (os(artan(xk));� sin(artan(xk)); 0). =� tangent line for Sk �=4: for i = 1; : : : ; k do =� all onstrution points xi �=5: if f(xi) > 0 and 9f 0(xi) then6: i;2  pf(xi); i;1  xi i;2.7: ai;v  �f 0(xi)=i;2; ai;u  2 i;2 + xi f 0(xi)=i;2; ai;  i;1 ai;v + i;2 ai;u.8: add Si to list of segments.=� else xi annot be used as onstrution point �=9: for all segments Si do10: insert i+1 and ai+1. =� already stored in next segment in list �=11: ompute mi.12: ompute Aini , Aouti and Aumi .13: hek if polygon P e is bounded.14: return list of segments.Algorithm arou sampleRequire: density f(x), list of segments Si.1: loop2: generate R � U(0; 1).3: �nd smallest i suh that Aumi � jP ejR. =� use guide table �=4: R Aumi � jP ejR.5: if R � Aini then =� inside squeeze, Ssi �=6: return (Aini i;1+R (i+1;1� i;1))=(Aini i;2+R (i+1;2� i;2)). =� eq. (3) �=7: else =� outside squeeze, Soi �=8: R1  (R�Aini )=Aouti .9: generate R2 � U(0; 1).10: if R1 > R2 then swap R1, R2.11: R3  1�R2, R2  R2 �R1.12: U  i;2R1 + i+1;2R2 +mi;2R3.13: X  (i;1R1 + i+1;1R2 +mi;1R3)=U .14: if number of segments < maximum then15: all arou add with X , Si.



Automati Sampling with the ratio-of-uniforms method � 1316: if U2 � f(X) then17: return X .Algorithm arou addRequire: density f(x), derivative f 0(x); new onstrution point xn; segment Sr.1: if f(xn) = 0 or 6 9f 0(xn) then =� annot add this point �=2: return3: n;2  pf(xn); n;1  xn n;2.4: an;v  �f 0(xn)=n;2; an;u  2�n;2+xn f 0(xn)=n;2; an;  n;1 an;v+n;2 an;u.5: insert Sn into list of segments. =� Take are about i+1 and ai+1 �=6: remove old segment Sr from list.7: ompute mn.8: ompute Ainn and Aoutn .9: for all segments Si do10: ompute Aumi .11: return new list of segments.To implement this algorithm, a linked list of segments is neessary. WheneverAumi are (re-)alulated, a guide table has to be made. Using linear searh mightbe a good method for �nding Si when only a few random variates are sampled.Speial are is neessary when mi is omputed in arou start and arou add.There are three possible ases for numerial problems when solving the orrespond-ing linear equation:(1) The verties i and i+1 are very lose and (onsequently) jSij is very small.Here we simply rejet i+1 as new onstrution point.(2) i and i+1 are very lose to 0 = (0; 0). Again jSij is very small.(3) The boundary of A between i and i+1 is almost a straight line and Aouti is(almost) 0. In this ase we set mi = 1=2 (i + i+1).A possible way to de�ne \very small" is to ompare suh numbers with the smallestpositive " with (M + ") 6= M in the used programming language. M denotes themagnitude of the maximum of the density funtion. (In ANSI C for M = 1, " isde�ned by the maro DBL EPSILON.)It is important to hek whether mi is on the outer side of the seant throughi and i+1. This ondition is violated in arou start when the polygon P e isunbounded. It may be violated in arou start and arou add when A is not onvex.6. COMPUTATIONAL EXPERIENCESA version of algorithm arou is oded in C and available by email request fromthe author. We have ompared it to two other universal methods: transformeddensity rejetion with T (x) = �1=px (tdr) and the table method (tabl) by Ahrens[1993℄ (However we have modi�ed split B by replaing the reursive searh by�x = tan((artan(x1) + artan(x2))=2), a mean value similar to eq. (8).) Notiethat this method is only appliable for densities with bounded support. Thus wehave to ut unbounded domains (we used �1050 and 1050, respetively). The maingoal for the implementations of all three algorithms is to get a exible and robust



14 � Josef Leydoldprogram. Moreover, for small �, generation should be lose to inversion. Thuslinked lists of strutures have been used. Construtions like storing all data in asingle array and using sophistiated indies to �nd these again (as desribed inAhrens [1993℄) have been avoided. For the underlying uniform random numbergenerator we have used the library prng-2.2 [Lendl 1997℄. We used generator CMRGby L'Euyer [1996℄, a ombined multiple reursive random number generator witha long period (generation time 0:31 �s).The timings have been performed on a PC (AMD K2 400 MHz, Linux 2.0.36, gversion 2.95.1). We started with 30 onstrution points, using the \equidistributionrule" for arou and tdr, and \equiarea rule with splitting" for tabl (see Ahrens[1993℄ for details). Tables 3 and 4 show the result for some distributions. Wethen ontinued with adaptive rejetion sampling to get more onstrution pointsuntil % � 0:01 (Zaman [1996℄ has suggested this proedure for the table method).Table 5 shows the number of the resulting segments and intervals, respetively, andthe marginal generation times for the generator, when no more onstrution pointsare added. arou tdr tabl% #urn % #urn % #urnNormal 0.021 1.029 0.021 2.014 0.192 1.334Student(2) 0.022 1.028 0.022 2.013 0.561 2.475Cauhy 0.067 1.068 0.067 2.002 0.788 5.231Gamma(10) 0.094 1.137 0.094 2.079 0.207 1.362Beta(10,20) 0.022 1.029 0.022 2.016 0.160 1.265Table 3. % and average number of uniform random numbers for 30 �xed onstrution points using\equidistribution rule" (arou, tdr) and \equiarea rule with splitting" (tabl), respetively.arou tdr tablts (�s) tg (�s) ts (�s) tg (�s) ts (�s) tg (�s)Normal 182 0.77 261 1.53 110 1.03Student(2) 230 0.79 303 1.55 124 2.52Cauhy 178 0.81 251 1.55 91 3.74Gamma(10) 220 0.92 295 1.68 127 1.16Beta(10,20) 235 0.78 312 1.54 130 1.10Table 4. Setup time (ts) and average marginal generation time (tg) (sample size 106) for 30onstrution points (see table 3).As expeted, tables 3 and 4 show that method arou is superior to tdr. It requiresfewer uniform random numbers. Moreover sine it requires less omputations itssetup time is shorter and the marginal generation is muh faster. Table 4 demon-strates the advantage of the better �tting hat of method arou ompared to tabl.A onsiderably lower number of segments is required. This results in a faster set-upstep for a �xed small %. This observation is supported by the theoretial result that



Automati Sampling with the ratio-of-uniforms method � 15arou tdr tabltg (�s) segments tg (�s) intervals tg (�s) intervalsNormal 0.75 (40,46) 1.51 (41,48) 0.78 ( 573, 598)Student(2) 0.76 (37,44) 1.52 (38,46) 0.80 (1057,1093)Cauhy 0.75 (34,40) 1.52 (35,43) 0.81 (1559,1601)Gamma(10) 0.76 (49,56) 1.50 (49,57) 0.79 ( 562, 587)Beta(10,20) 0.76 (44,50) 1.50 (45,52) 0.79 ( 540, 564)Table 5. Adding onstrution points by adaptive rejetion sampling until � � 0:01. Averagemarginal generation time (when � = 0:01) and 90%-perentile for respetive number of segmentsand intervals (sample size 105).% is O(1=n2) for arou and tdr but O(1=n) for tabl. The average generation timesthat inlude setup time and rebuilding the guide tables for sample size 105 havebeen found about the same as the marginal generation time for arou and tdr, butare onsiderable larger for tabl (more than 100% larger for Cauhy distribution).7. A NOTE ON THE QUALITY OF RANDOM NUMBERSThe new algorithm is a omposition method, similar to the aeptane-omplementmethod (see Devroye [1986, x II.5℄). We have f(x) = (1 � %) gs(x) + % go(x),where gs(x) is the distribution de�ned by the squeeze region and go(x) = f(x) �gs(x). By theorem 1 the algorithm is exat, i.e. the generated random variates havethe required distribution. However defets in underlying uniform random numbergenerators may result in poor quality of the non-uniform random variate. Moreoverthe transformation into the non-uniform random variate itself may ause furtherde�ienies.Although there is only little literature on this topi, the ratio-of-uniforms methodin ombination with any linear ongruental generator (LCG) was reported to havedefets [H�ormann 1994a; H�ormann 1994b℄. Due to the lattie struture of randompairs generated by an LCG there is always a hole without a point with probabilityof order 1=pM , where M is the modulus of the LCG.Random variates generated by the inversion inherit the struture of the underly-ing uniform random numbers and onsequently their quality. We onsider this as agreat advantage of this method, sine generators whose strutural properties are wellunderstood and preisely desribed may look less random, but those that are moreompliated and less understood are not neessarily better. They may hide strongorrelations or other important defets. . . .One should avoid generators withoutonvining theoretial support. This statement by L'Euyer [1998℄ on building uni-form random number generator is also valid for non-uniform distributions. Othermethods may have some hidden inferenes, whih make a predition of the qualityof the resulting non-uniform random numbers impossible [Leydold et al. 2000℄.Notie that a random variate with density gs(x) is generated by inversion. Thusas ratio % tends to 0, most of the random variates are generated by inversion by thenew algorithm. As an immediate onsequene for small % the new generator avoidsthe defets of the basi ratio-of-uniforms method. Figure 6 shows satter plotsof all overlapping tuples (u0; u1); (u1; u2); (u2; u3); : : : using the \baby" generatorun+1 = 869un + 1 mod 1024. (a) shows the underlying generator. (b){(f) show
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(e) %29 = 0:022 (f) %75 = 0:003Fig. 6. Satter plots of \baby" generator un+1 = 869un+1 mod 1024 (a) and of normal variatesusing algorithm arou with 2, 4, 6, 29 and 75 equidistributed onstrution points (b{f).



Automati Sampling with the ratio-of-uniforms method � 17the tuples (�(u0);�(u1)), (�(u1);�(u2)), (�(u2);�(u3)), . . . for di�erent numberof onstrution points using the equidistribution method (� denotes the umulativedistribution funtion of the standard normal distribution).We have made an empirial investigation using M-tuple tests [Good 1953; Marsaglia1985℄ in the setup of Leydold, Leeb, and H�ormann [2000℄ with the standard normaldistribution and various numbers of onstrution points. We have used a linearongruential generator fish by Fishman and Moore [1986℄, an expliit inversiveongruential generator [Eihenauer-Herrmann 1993℄, and a twisted GFSR genera-tor (tt800 by Matsumoto and Kurita [1994℄); at last the infamous randu (againan LCG) as an example of a generator with bad lattie struture (see Park andMiller [1988℄). These tests have demonstrated that for small ratio %, the qualityof the normal generators are strongly orrelated with the quality of the underly-ing uniform random number generator. Espeially, using randu results in normalgenerator of bad quality. Notie however that this orrelation does not exist, if %is not lose to 0. Indeed, using only 2 or 4 onstrution points results in a normalgenerator whih might be better (e.g. fish in our tests) or worse (e.g. randu) thanthe underlying generator.8. POSSIBLE VARIANTSNon-onvex regionThe algorithm an be modi�ed to work with non-onvex region Af . Adapting theidea of Evans and Swartz [1998℄ we have to partition Af into segments using theinetion points of the transformed density with transformation T (x) = �1=px.In eah segment of Af where T (f(x)) is not onave but onvex, we have to useseants for the boundary of the enveloping polygon P e and tangents for the squeezeP s (see �gure 7). Notie that the squeeze region in suh a segment is a quadrangle0imii+1 and has to be triangulated. The hanges of algorithm arou are straightforward: (1) Inlude Ain;li and Ain;ri into objet 2; (2) ompute Ain;li and Ain;riinstead of Aini for all non-onvex segments of A; (3) in arou sample, when wegenerate a point inside the squeeze polygon of a non-onvex segment, we �rst haveto deide by means of Ain;li and Ain;ri whih triangle (left of right) has to be used.Multivariate distributionsWake�eld, Gelfand, and Smith [1991℄ and Stef�anesu and V�aduva [1987℄ have gener-alized the ratio-of-uniformsmethod to multivariate distributions. Both use rejetionfrom an enlosing multidimensional retangle. However the aeptane probabil-ity dereases very fast for higher dimension. For multivariate normal distributionin four dimension it is below 1%. Using polyhedral envelopes similar to Leydoldand H�ormann [1998℄ or Leydold [1998℄ is possible and inreases the aeptaneprobability. However this requires some additional researh.ACKNOWLEDGMENTSThe author wishes to thank Hannes Leeb for helpful disussions on the quality ofrandom number generators.
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