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Automatic Sampling with the Ratio-of-Uniforms
Method

Josef Leydold
University of Economics and Business Administration, Department for Applied Statistics
and Data Processing

Applying the ratio-of-uniforms method for generating random variates results in very efficient, fast
and easy to implement algorithms. However parameters for every particular type of density must
be precalculated analytically. In this paper we show, that the ratio-of-uniforms method is also
useful for the design of a black-box algorithm suitable for a large class of distributions, including
all with log-concave densities. Using polygonal envelopes and squeezes results in an algorithm that
is extremely fast. In opposition to any other ratio-of-uniforms algorithm the expected number
of uniform random numbers is less than two. Furthermore we show that this method is in some
sense equivalent to transformed density rejection.

Categories and Subject Descriptors: .3 [Probability and Statistics]: Random number gener-
ation

General Terms: Algorithms

Additional Key Words and Phrases: random number generation, non-uniform, rejection method,
ratio of uniforms, log-concave, T-concave, adaptive method, universal method

1. INTRODUCTION

There exists a large literature on generation methods for standard continuous dis-
tributions; see, for example, Devroye [1986]. These algorithms are often especially
designed for a particular distribution and tailored to the features of each density.
However in many situations the application of standard distributions is not ade-
quate for a Monte-Carlo simulation. Besides sheer brute force inversion (that is,
tabulate the distribution function at many points), several universal methods for
large classes of distributions have been developed to avoid the design of special al-
gorithms for these cases. Some of these methods are either very slow (e.g. Devroye
[1984]) or need a slow set-up step and large tables (e.g. Ahrens and Kohrt [1981],
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Marsaglia and Tsang [1984], and Devroye [1986, chap. VII]).

Recently two more efficient methods have been proposed. The transformed den-
sity rejection by Gilks and Wild [1992] and Hormann [1995] is an acceptance/rejection
technique that uses the concavity of the transformed density to generate a hat func-
tion automatically. The user only needs to provide the probability density function
and perhaps the (approximate) location of the mode. A table method by Ahrens
[1993] also is an acceptance/rejection method, but uses a piecewise constant hat.
A region of immediate acceptance makes the algorithm fast when a large number
of constant pieces is used. The tail region of the distribution is treated separately.
In Ahrens [1995] the algorithm is modified to use a piecewise constant hat such
that the area below each piece is the same. Thus generation is simplified but the
algorithm requires more adjustments for the setup for each distribution.

The ratio-of-uniforms method introduced by Kinderman and Monahan [1977] is
another flexible method that can be adjusted to a large variety of distributions.
It has become a popular transformation method to generate non-uniform random
variates, since it results in exact, efficient, fast and easy to implement algorithms.
Typically these algorithms have only a few lines of code (e.g. Barabesi [1993] gives
a survey and examples of FORTRAN codes for several standard distributions). It
is based on the following theorem.

THEOREM 1 (KINDERMAN AND MONAHAN 1977). Let X be a random variable
with density function f(z) = g(z)/ [ g(x)dz, where g(x) is a positive integrable
function with support (xq,x1) not necessarily finite. If (V,U) is uniformly dis-
tributed in

A=A, ={(v,u):0 <u<gw/u), zg <vju<z1}, (1)
then X = V/U has probabilily densily function f(x).

For sampling random points uniformly distributed in A, rejection from a conve-
nient. enveloping region R, is used. The basic form of the ratio-of-uniforms method
is given by algorithm rou.

Algorithm rou

Require: function g(z) (prop. to density f(z)); enveloping region R
1: repeat

2:  Generate random point (V,U) uniformly distributed in R.

32 X« V/U.

4: until U? < g(X).

5: return X.

Usually the input in rou is prepared by the designer of the algorithm for each
particular distribution. To reduce the number of evaluations of the density func-
tion in step 4, squeezes are used. It is obvious that the performance of this simple
algorithm depends on the rejection constant, i.e. on the ratio |R|/|A|, where |R]
denotes the area of region R. Kinderman and Monahan [1977] and others use re-
jection from the minimal bounding rectangle, i.e. the smallest possible rectangle
{(v,u):0 < u < u*, v. <v <wv*}. This basic algorithm has been improved in sev-
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eral ways': A tighter fitting enclosing region decreases the rejection constant. Pos-
sible choices are parallelograms (e.g. Cheng and Feast [1979]) or quadratic bounding
curves (e.g. Leva [1992]). Often it is convenient to decompose A into a countable
set of non-overlapping subregions ( “composite ratio-of-uniforms method”, Robert-
son and Walls [1980] give a simple example). Dagpunar [1988, p. 65] considers the
possibility of an enclosing polygon.

In this paper we develop a new algorithm that uses polygonal envelopes and
squeezes. Random variates inside the squeeze are generated by mere inversion
and therefore in opposition to any other ratio-of-uniforms method the expected
number of uniform random numbers is less than two. For a large class of distri-
butions, including all log-concave distributions, it is possible to construct envelope
and squeeze automatically. Moreover we show that the new algorithm is in some
sense equivalent to transformed density rejection.

The new method has several advantages:

Envelopes and squeezes are constructed automatically. Only the probability den-
sity function is necessary.

The expected number of uniform random numbers is 1 + g, where ¢ > 0 can be
made arbitrarily small.

For small p the method is close to inversion and thus the resulting random variates
can be used for variance reduction techniques. Moreover the structure of the
resulting random variates is similar to that of the underlying uniform random
number generator. Hence the non-uniform random variates inherit its quality
properties.

—It avoids some possible defects in the quality of the resulting pseudo-random
variates that have been reported for the ratio-of-uniforms method [Hérmann
1994a; Hormann 1994b].

It is the first ratio-of-uniforms method and the first implementation of trans-
formed density rejection where the expected number of uniform random numbers
is less than two.

In section 2 we give an outline of this new approach and in section 4 we discuss
the problem of getting a proper envelope for the region R. Section 5 describes the
algorithm in detail and section 6 reports the computational experiences we have had
with the new algorithm and compare these with other algorithms. Section 3 shows
that this algorithm is applicable for all T-concave densities, with T'(z) = —1//x.
Remarks on the quality of random numbers generated with the new algorithm are
given in section 7.

IMoreover the method has been extended: Wakefield, Gelfand, and Smith [1991] replaces the
function ¢(u) = u? by a more general strictly increasing differentiable function g(u).

Stadlober [1989, 1990] gives a modification for discrete distributions.

Jones and Tunn [1996] embeds this method into a “general random variate generation framework”.
Wakefield et al. [1991] and Stefinescu and Viduva [1987] apply this method to the generation of
multivariate distributions.



4 : Josef Leydold

2. THE METHOD
Enveloping polygons

We are given a distribution with probability density function f(z) = g(z)/ [ g(x)d=
with convex set A,. Notice that g must be continuous and bounded since otherwise
A, would not be convex. To simplify the development of our method we first assume
unbounded support for g. (This restriction will be dropped later.)

For such a distribution it is easy to make an enveloping polygon: Select a couple
of points ¢;, i = 0,...,n, on the boundary of 4 and use the tangents at these points
as edges of the enclosing polygon P¢ (see figure 1). We denote the vertices of P* by

Fig. 1. Polygonal envelope and squeeze for convex set Ag.

m;. These are simply the intersection points of the tangents. Obviously our choice
of the construction points of the tangents has to result in a bounded polygon P¢.
The procedure even works if the tangents are not unique for a point (v,u), i.e. if
g(z) is not differentiable in z = v/u. Furthermore it is very simple to construct
squeezes: Take the inside of the polygon P*® with vertices c;.

Sampling from the enveloping polygon

Notice that the origin (0,0) is always contained in the polygon P¢. Moreover
every straight line through the origin corresponds to an = v/u and thus its
intersection with A is always connected. Therefore we use ¢g = (0, 0) for the first
construction point and the w-axis as its tangent. To sample uniformly from the
enclosing polygon we triangulate P¢ and P? by making segments S;, 4 = 0,...,n,
at vertex ¢g. Figure 2 illustrates the situation. Segment S; has the vertices ¢,
c;, m; and c;;1, where ¢, 11 = ¢g for the last segment. Each segment is divided
into the triangle S} inside the squeeze (dark shaded) and a triangle S? outside
(light shaded). Notice that the segments Sy and S,, have only three vertices and
no triangles S§ and S;.

To generate a random point uniformly distributed in P¢, we first have to sample
from the discrete distribution with probability vector proportional to (|Sg|, |S11,- - -, Sn|),
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Fig. 2. Triangulation of enveloping polygon

to select a segment and further a triangle S or S7. This can be done by inversion:

Algorithm get_segment

Require: list of segments
1: Generate R ~ U(0,1).
2: Find the smallest k, such that }". . [S;| > |P¢| R.
3. if 30, [Si| — |P¢| R < [S}| then
4:  return triangle S;.
5: else
6: return triangle S7.

For step 2 indexed search (or guide tables) is an appropriate method (Chen and
Asau [1974], see also Devroye [1986, §II1.2.4]).

Uniformly distributed points in a triangle (vg,vi,vs) can be generated by the
following simple algorithm [Devroye 1986, p. 570]:

Algorithm triangle
Require: triangle (vo,vi,vs)
1: Generate Ry, Ry ~ U(0,1).
2: if Ry < R> then swap R, and R».
3: return (1 — Rl)Vo + (R1 — RQ)Vl + Rovs.

For sampling from S} this algorithm can be much improved. Every point in such
a triangle can immediately be accepted without evaluating the probability density
function and thus we are only interested in the ratio of the components. Since the
triangle S} has vertex ¢y = (0,0), we arrive at

R (Bh — R2)¢in + Racigan _ Cia + R(ciy110 —¢cin) )
u (R —Ra)eia+ Racit1a  Cia+ R(Cit12 — ¢Ci2)
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where ¢; ; is the j-th component of vertex ¢;, and R = Ry/R; again is a (0, 1)-
uniform random variate by the ratio-of-uniforms theorem, since 0 < Ry < Ry <1
[Kinderman and Monahan 1977]. Notice that we save one uniform random number
in the domain P?® by this method. Furthermore we can reuse the random number
R from routine get_segment by R' = (3_. . |Si| — |P¢| R)/|S}| without risk. We
find

v ISilein + (2<p 1Sil — 1P B)(cip1,n — cin) 3)
u|Silein + (Q0,<x 1Si] — [PEI R)(citr,2 — cip2)

Sampling from P? can then be seen as inversion from the cumulative distribution
function defined by the boundary of the squeeze polygon. Thus for a ratio |P?*|/|P¢|
close to 1 we have almost inversion for generating random variates. The inversion
method has two advantages and is thus favored by the simulation community (see
Bratley, Fox, and Schrage [1983]): (1) The structure of the generator is simple and
can easily be investigated (see section 7). (2) These random variates can be used
for variance reduction techniques.

T =

Expected number of uniform random numbers

Let o = |P¢\ P?|/|P¢| = 1 — |P?|/|P¢|. Then the expected number of uniform
random numbers for generating one ratio v/u is given by (1—p)+2g = 14 p. Since
we have to reject this ratio if (v,u) € A and A D P?® we find for the expected number
of uniform random numbers per generated non-uniform variate E < (14 9)/(1— 9).
Notice that by a proper choice of the construction points, ¢ can be made arbitrarily
small.

Bounded domain for g

If zg > —oo or 1 < oo than the situation is nearly the same. We have to distinguish
between two cases:

(1) f(z;) > 0and f'(x;) exists for the limit point x;. We then use z; as construction
point and the respective triangular segment Sy or S, is not necessary.

(2) Otherwise we can restrict the triangular segment Sy or S,, i.e. we use the
tangent line v — z;u = 0 at vertex ¢g = (0,0), instead of the v-axis. Notice
that we then have different tangent lines at ¢g for Sy and S,,.

Adding a construction point

To add a new point for a given ratio x = v/u we need (¢,,¢,) on the “outer
boundary” of A and the tangent line of A4 at this point. These are given by the
positive root of u? = g(x) and the total differential of u?> — g(v/u), hence

boundary: ¢, = \/g(z), ¢, =z cy;
tangent: G, v + Gy U = Qe = Gy Cy + Gy Cyy, (4)
where a, =2u+g¢'(z)z/u and a, =—g'(z)/u
3. RATIO-OF-UNIFORMS AND TRANSFORMED DENSITY REJECTION
Transformed density rejection

One of the most efficient universal methods is transformed density rejection, in-
troduced in Devroye [1986] and under a different name in Gilks and Wild [1992],
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and generalized in Hérmann [1995]. This acceptance/rejection technique uses the
concavity of the transformed density to generate a hat function and squeezes au-
tomatically by means of tangents and secants. The user only needs to provide the
density function and perhaps the (approximate) location of the mode. It can be
utilized for any density f where a strictly increasing, differentiable transformation
T exists, such that T'(f(x)) is concave (see Hormann [1995] for details). Such a den-
sity is called T'-concave; log-concave densities are an example with T'(z) = log(z).
Figure 3 illustrates the situation for the standard normal distribution and the trans-
formation T'(z) = log(z). The left hand side shows the transformed density with
three tangents. The right hand side shows the density function with the resulting
hat. Squeezes are drawn as dashed lines. Evans and Swartz [1998] have shown that
this technique is even suitable for arbitrary densities provided that the inflection
points of the transformed density are known.

Fig. 3. Construction of a hat function for the normal density utilizing transformed density re-
jection.

Densities with convex region A4

Stadlober [1989] and Dieter [1989] have clarified the relationship of the ratio-of-
uniforms method to the ordinary acceptance/rejection method. But there is also
a deeper connection to the transformed density rejection, that gives us a useful
characterization for densities with convex region 4,. We first provide a proof of
theorem 1.

PROOF OF THEOREM 1. Consider the transformation

R x (0,00) = R x (0,00), (V,U)~ (X,Y)=(V/UU?. (5)

Since the Jacobian of this transformation is 2, the joint density probability function
of X and Y is given by w(z,y) = 1/(2|A4]), if 0 < y < g(z), and w(z,y) = 0
otherwise. Thus X has marginal density wy(z) = fog(m) 1/21A) dy = g(x) /(2] A)]).

Consequently |A| = 1/2 [g(z)dz and wy(xz) = f(z). Therefore X = V/U has
probability density function f(x). O

Transformation (5) maps A, one-to-one onto B, = {(z,y):0 < y < g(x), xo <
x < 1}, i.e. the set of points between the graph of g(z) and the z-axis. Moreover
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the “outer boundary” of A,, {(v,u):u? = gv/u),u > 0,20 < v/u < z1}, is
mapped onto the graph of g(x).

THEOREM 2. A, is convez if and only if g(z) is T-concave with transformation
T(z)=—-1/\/=.

PROOF. Since T'(z) = —1/+/x is strictly monotonically increasing, the transfor-
mation (X,Y) — (X, T(Y)) maps B, one-to-one onto C;, = {(z,y):y < T(g(x)), o <
T < 1}, i.e. the region below the transformed density. Hence by T'(u?) = —1/u,

R x (0,00) = R x (—00,0), (V,U)w (X,Y) = (V/U,~1/U). (6)

maps A, one-to-one onto C,. Notice that g is T-concave if and only if C, is con-
vex. Thus it remains to show that A, is convex if and only if C, is convex, and
consequently that straight lines remain straight lines under transformation (6).

Let az+by = d be a straight line in C,. Then a (v/u)—b/u =dand av—du = b,
i.e. a straight line in A4,. Analogously we find for a straight line av+bu = din A,
the line az +dy = —bin C,. O

Remark 1. By theorem 2 the new universal ratio-of-uniforms method is in some
sense equivalent to transformed density rejection. It is a different method to gen-
erate points uniformly distributed in the region below the hat function. But in
opposition to the new method transformed density rejection always needs at least
two uniform random numbers. A similar approach for the transform density re-
jection, i.e. decomposing the hat function into the squeeze (region of immediate
acceptance) and the region between squeeze and hat, does not work well. Sampling

from the second part is very awkward and prone to numerical errors [Hérmann
1999].

Since every log-concave density is T-concave with T(z) = —1/4/z [Hérmann
1995], our algorithm can be applied to a large class of distributions. Examples are
given in table 1. The given conditions on the parameters imply T-concavity on the
support of the densities. However the densities are T-concave for a wider range
of their parameters on a subset of their support. E.g. the density of the gamma

distribution with b =1 is T-concave for alla > 0 and z > -1+ /2 —2a+a < 1/2.

4. CONSTRUCTION POINTS

The performance of the new algorithm depends on a small ratio of ¢ = [P\
P#|/|P¢|, and thus on the choice of the constructions points for the tangents of
the enveloping polygon. There are three possible solutions: (1) simply choose
equidistributed points, (2) use an adaptive method, or (3) use optimal points. Tt
is obvious that setup time is increasing and marginal generation time is decreasing
from (1) to (3) for a given number of construction points.

Equidistributed points

The simplest method is to choose points x1, ..., z, with equidistributed angles:
z; =tan(—7/2+ix/(n+ 1)) i=1,...,n. (7)
If the density function has bounded domain, (7) has to be modified to
x; =tan(0; +i (6, — 6;)/(n+ 1)) i=1,....n (8)
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Distribution Density Support  T-concave for
Normal o712 R

Log-normal 1/z exp(—In(z — p)?/(26%)) [0, ) g <V2
Exponential Ae H? [0, oc) A>0
Gamma 20 e7b® [0, o) a>1,b>0
Beta 227 (1 =)t [0, 1] a,b>1
Weibull 27" exp(—z%) [0, oc) a>1

Perks 1/(e®" +e " +a) R a> -2

Gen. inv. Gaussian 2% ! exp(—bz — b*/z) [0, oc) a>1,bb">0
Student’s ¢ (14 (22 /a)) " @+1)/2 R a>1
Pearson VI 227/ (1 4 g)ot? R a,b>1
Cauchy 1/(1 + z°) R

Planck /(e — 1) [0, oc) a>1

Burr 77/ (1 4 2%)° [0, oc) a>1,b>2
Snedecor’s F 2271+ m/ne) ™20, 00) m,n > 2

Table 1. T-concave densities (normalization constants omitted)

where tan(f;) and tan(f,.) are the left and right boundary of the domain (see also
section 2). If the distribution has a mode m # 0 use the points x; + m (and
shift the domain of the density function by —m). For z; close to 0 a point is
approximately the arithmetic mean of its neighbors; for very large points a point
is approximately the harmonic mean of its neighbors. Numerical simulations with
several density functions have shown that this is an acceptable good choice for
construction points for several distributions where the ratio of length and width of
the minimal bounding rectangle is not too far from one.

To get an idea about the relationship between g,, and the number of construction
points n, we look at the following special case: Assume 0 is the mode of a 7T-
concave monotonically decreasing density f with domain [0,0c). Let (a,b) be the
right upper vertex of its minimal bounding rectangle R, i.e., a = sup,sgz+/f(z)
and b = f(0) = max,>o f(z). Furthermore assume that zo = 0 and that the slope
of the tangent line at the mode is 0 (such a tangent always exists). The region
between enveloping polygon and squeeze consists of n triangles, each of which with
base line ¢; (consisting of an edge of the squeezing polygon) and base angles «;
and f3;, respectively. Due to the convexity of the region 4 we find > ¢; < 2a + b,
> (a; + Bi) < mand a; + B; < w. Moreover there is at most one triangle not
completely inside R. For the areas of these triangles we find

2
¢; tanq; tanf;

Ay =4 —2 for oy, B; & {0,7/2}. 9

' 2 tana; +tanp;’ iPi €40, 7/2} ©)

The total sum of areas will become as large as possible, when the base angles in

all but one triangles become zero, i.e., the areas become zero. Figure 4 shows the

limit case. Using (9) we find

a®> + b  tan(Z) a?+b (7 a/m\2
n n A ——— (= O(n? 10
P < ab 1+ ¢tan(X) ab ( b ( ) +0 )> (10)
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(a,0)

3l

(0,0)

Fig. 4. Worst case for ratio g, for given n

Adaptive rejection sampling

Gilks and Wild [1992] introduces the ingenious concept of adaptive rejection samn-
pling for the problem of finding appropriate construction points for the tangents
for the transformed density rejection method. Adopted to our situation it works in
the following way: Start with (at least) two points on both sides of the mode and
sample points from the enveloping polygon P¢. Add a new construction point at
x = v/u whenever a point (v,u) falls into P®\ P* until a certain stopping crite-
rion is fulfilled, e.g. the maximal number of construction points or the aimed ratio
|P#|/|P¢| is reached. To ensure that the starting polygon P¢ is bounded, a con-
struction point at (or at least close to) the mode should be used as a third starting
point.

Sampling a point in the domain P?¢\ P* is much more expensive than sampling
from the squeeze region. Firstly the generation of a random point requires more
random numbers and multiplications; secondly we have to evaluate the density
and check the acceptance condition. Thus we have to minimize the ratio p =
|P€\ P#|/|P¢| which is done perfectly well by adaptive rejection sample, since by
this method the region A is automatically approximated by envelope and squeeze
polygon. The probability for adding a new point in a segment S; depends on
the ratio |S?|/|P¢|, i.e. from the probability to fall into S?. Hence the adaptive
algorithm tends to insert a new construction point where it is “more necessary”.

Obviously the ratio g, is a random variable that converges to 0 almost surely
when the number construction points n tends to infinity. A simple consideration
gives 0, = O(n™?) [Leydold and Hérmann 1998]. Figure 5 shows the result of a
simulation for the standard normal distribution with (non optimal) starting points
at z = £0.4 (50000 samples). g, is plotted against the number n of construction
points. The range of g, is given by the light shaded area, 90%- and 50%-percentiles
are given by dark shaded areas, median by the solid line.

We have run simulations with other distributions and starting values and have
made the observation that convergence is even faster for other (non-normal) distri-
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1.0 +

Fig. 5. Convergence of the ratio g, = |P¢\ P$%|/|P¢| for the standard normal distribution with
starting points at x = £0.4. (50 000 samples)

butions. However analytical investigations are interesting. Upper bounds for the
expected value of g, are an open problem.

Optimal construction points

By theorem 2 the area between hat and squeeze of the transformed density rejection
method is mapped one-to-one and onto the region P¢\ P?. Thus we can use methods
for computing optimal construction points for transformed density rejection for
finding optimal envelopes for the new algorithm. If only three construction points
are used, see Hormann [1995]. If more points are required, Derflinger and Hérmann
[1998] describe a very efficient method. However some modification are necessary.
Improvements over adaptive rejection sampling are rather small and can be seen
in figure 5 (The lower boundary of the range gives a good estimate for the optimal
choice of construction points.).

5. THE ALGORITHM

Algorithm arou consists of three main parts:

(1) Construct the starting enveloping polygon P¢ and squeeze polygon P* in rou-
tine arou_start. Here we have to take care about a possibly bounded domain
and the two cases described in section 2. The starting points must be provided
(e.g. by using equidistributed points as describes in section 4).

(2) Sample from the given distribution in routine arou_sample.
(3) Add a new construction point with routine arou_add whenever we fall into
Pe\ P

We store the envelope into a list of segments (table 2). When using this algorithm
we first have to initialize the generator by calling arou_start. Then sampling can
be done by calling arou_sample.
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PARAMETER VARIABLE ~ DEFINITION / REMARK

left construction point c;

right construction point Cit1 pointer, stored in next segment
tangent at left point a; (av,au,ac), see (4)

tangent at right point a1 pointer, stored in next segment
intersection point m;

area inside/outside squeeze A", AUt |S5|, |S?|

accumulated area Agum 22 i< 1951, for fast inversion

Table 2. object segment

Algorithm arou_start

Require: density f(z), derivative f'(xz);

B oW N —

I

9:
10:
11:
12:
13:
14:

domain (zq,zg), construction points x1, ..., Tx_1.
co < (0,0); crp1 + (0,0); /* origin =/
ap « (cos(arctan(xq)), — sin(arctan(zg)), 0). /x tangent line for S, */
ap.1 < (cos(arctan(xy)), — sin(arctan(zy)),0). /+ tangent line for Sy, */
for i =1,...,k do /« all construction points x; */
if f(x;) > 0 and 3f'(x;) then
Ci,2 < 4/ f(zs); Ci1 < TiCip.
Qio < —f(@5)/Ci2i Qi = 2¢i2 + 35 f1(23)]Ci2; Qe < Cit Gy + Ci2 Qi
add S; to list of segments.
/= else x; cannot be used as construction point =/
for all segments S; do
insert €;11 and a;y1. /# already stored in next segment in list %/
compute m;.
compute A", A%Ut and ASu™.
check if polygon P° is bounded.
return list of segments.

Algorithm arou_sample

Require: density f(z), list of segments S;.

1:

10:
11:
12:
13:
14:
15:

loop

generate R ~ U(0,1).
find smallest 7 such that A{"™ > |P¢| R. / use guide table /
R« A$"™ — |P¢|R.
if R< Aiin then /« inside squeeze, S5 */

return (A;n Ci + R (Ci+111 - 071))/(A17n Ci2 + R (CH_LQ - Ci_yg)). /* eq. (3) */
else /x outside squeeze, S? */

Ry + (R — AiM)/Aout,

generate Ry ~ U(0,1).

if Ry > Rs then swap R, R».

Rg (—I*RQ,RQ(—RQ*RL

U< cioRi+ cip1,0 Ro +my o Rs.

X < (¢i1 R1+¢it11 Ro+m;1 R3)/U.

if number of segments < maximum then

call arou_add with X, §;.
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16: if U? < f(X) then
17: return X.

Algorithm arou_add

Require: density f(z), derivative f'(z); new construction point x,; segment S,.
1: if f(z,) =0 or Af'(x,) then /+ cannot add this point */
2 return
3: Cn,2 < f(Tn) Cn,1 < Tp Cp,2.
4: Ap,y 7fl('7:n)/cn,2:, Apu 2*(371,,2""7:71, fl(Tn)/FnQ; Qn,c < Cn an,7)+cn,,2 An -
5: insert S, into list of segments. /x Take care about ¢; 1 and a; ;1 */
6: remove old segment S, from list.
7: compute m,,.
8: compute AN and A"t
9: for all segments S; do
10:  compute A§'™.
11: return new list of segments.

To implement this algorithm, a linked list of segments is necessary. Whenever
ASU™ are (re-)calculated, a guide table has to be made. Using linear search might
be a good method for finding S; when only a few random variates are sampled.

Special care is necessary when m; is computed in arou_start and arou_add.
There are three possible cases for numerical problems when solving the correspond-
ing linear equation:

(1) The vertices c; and ¢;;1 are very close and (consequently) |S;| is very small.
Here we simply reject ¢;4+1 as new construction point.

(2) c¢; and ¢;4; are very close to ¢g = (0,0). Again |S;| is very small.
(3) The boundary of A between ¢; and ¢;1; is almost a straight line and A" is
(almost) 0. In this case we set m; = 1/2(¢; + €;41).

A possible way to define “very small” is to compare such numbers with the smallest
positive & with (M + &) # M in the used programming language. M denotes the
magnitude of the maximum of the density function. (In ANSI C for M =1, € is
defined by the macro DBL_EPSILON.)

It is important to check whether m; is on the outer side of the secant through
c; and c;4q. This condition is violated in arou_start when the polygon P€ is
unbounded. It may be violated in arou_start and arou_add when A is not convex.

6. COMPUTATIONAL EXPERIENCES

A version of algorithm arou is coded in C' and available by email request from
the author. We have compared it to two other universal methods: transformed
density rejection with T'(z) = —1/+/z (tdr) and the table method (tabl) by Ahrens
[1993] (However we have modified split B by replacing the recursive search by
7 = tan((arctan(z1) + arctan(zs))/2), a mean value similar to eq. (8).) Notice
that this method is only applicable for densities with bounded support. Thus we
have to cut unbounded domains (we used —10°° and 10°°, respectively). The main

goal for the implementations of all three algorithms is to get a flexible and robust
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program. Moreover, for small p, generation should be close to inversion. Thus
linked lists of structures have been used. Constructions like storing all data in a
single array and using sophisticated indices to find these again (as described in
Ahrens [1993]) have been avoided. For the underlying uniform random number
generator we have used the library prng-2.2 [Lendl 1997]. We used generator CMRG
by L’Ecuyer [1996], a combined multiple recursive random number generator with
a long period (generation time 0.31 us).

The timings have been performed on a PC (AMD K2 400 MHz, Linux 2.0.36, gcc
version 2.95.1). We started with 30 construction points, using the “equidistribution
rule” for arou and tdr, and “equiarea rule with splitting” for tabl (see Ahrens
[1993] for details). Tables 3 and 4 show the result for some distributions. We
then continued with adaptive rejection sampling to get more construction points
until o < 0.01 (Zaman [1996] has suggested this procedure for the table method).
Table 5 shows the number of the resulting segments and intervals, respectively, and
the marginal generation times for the generator, when no more construction points

are added.

aroun tdr tabl

0 #urn 0 #urn 0 #urn

Normal 0.021 1.029 | 0.021 2.014 | 0.192 1.334
Student(2) 0.022  1.028 | 0.022 2.013 | 0.561 2.475
Cauchy 0.067 1.068 | 0.067 2.002 | 0.788  5.231

Gamma(10) | 0.094  1.137 | 0.094 2.079 | 0.207 1.362
Beta(10,20) 0.022 1.029 | 0.022 2.016 | 0.160 1.265

Table 3. p and average number of uniform random numbers for 30 fixed construction points using
“equidistribution rule” (arou, tdr) and “equiarea rule with splitting” (tabl), respectively.

arou tdr tabl

ts (us) tg (us) | ts (us) tg (us) | ts (us) fg (us)

Normal 182 0.77 261 1.53 110 1.03
Student(2) 230 0.79 303 1.55 124 2.52
Cauchy 178 0.81 251 1.55 91 3.74
Gamma(10) | 220 0.92 205 1.68 127 1.16
Beta(10,20) 235 0.78 312 1.54 130 1.10

Table 4. Setup time (ts) and average marginal generation time (¢4) (sample size 109) for 30
construction points (see table 3).

As expected, tables 3 and 4 show that method arou is superior to tdr. It requires
fewer uniform random numbers. Moreover since it requires less computations its
setup time is shorter and the marginal generation is much faster. Table 4 demon-
strates the advantage of the better fitting hat of method arou compared to tabl.
A considerably lower number of segments is required. This results in a faster set-up
step for a fixed small p. This observation is supported by the theoretical result that
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arou tdr tabl
ty (us) segments | tg (us) intervals | tg (us) intervals
Normal 0.75 (40,46) 151 (41,48) 078 (573, 598)
Student(2) 0.76 (37,44) 1.52 (38,46) 0.80  (1057,1093)
Cauchy 0.75 (34,40) 1.52 (35,43) 0.81  (1559,1601)
Gamma(10) | 0.76 (49,56) 1.50 (49,57) 0.79 (562, 587)
Beta(10,20) | 0.76 (44,50) 1.50 (45,52) 079 ( 540, 564)

Table 5. Adding construction points by adaptive rejection sampling until p < 0.01. Average
marginal generation time (when p = 0.01) and 90%-percentile for respective number of segments
and intervals (sample size 105).

0 is O(1/n?) for arou and tdr but O(1/n) for tabl. The average generation times
that include setup time and rebuilding the guide tables for sample size 10° have
been found about the same as the marginal generation time for arou and tdr, but
are considerable larger for tabl (more than 100% larger for Cauchy distribution).

7. ANOTE ON THE QUALITY OF RANDOM NUMBERS

The new algorithm is a composition method, similar to the acceptance-complement
method (see Devroye [1986, § T1.5]). We have f(z) = (1 — ) gs(z) + 09.(2),
where g;(x) is the distribution defined by the squeeze region and g,(z) = f(z) —
gs(x). By theorem 1 the algorithm is exact, i.e. the generated random variates have
the required distribution. However defects in underlying uniform random number
generators may result in poor quality of the non-uniform random variate. Moreover
the transformation into the non-uniform random variate itself may cause further
deficiencies.

Although there is only little literature on this topic, the ratio-of-uniforms method
in combination with any linear congruental generator (LCG) was reported to have
defects [Hormann 1994a; Hormann 1994b]. Due to the lattice structure of random
pairs generated by an LCG there is always a hole without a point with probability
of order 1/v/M, where M is the modulus of the LCG.

Random variates generated by the inversion inherit the structure of the underly-
ing uniform random numbers and consequently their quality. We consider this as a
great advantage of this method, since generators whose structural properties are well
understood and precisely described may look less random, but those that are more
complicated and less understood are not necessarily better. They may hide strong
correlations or other important defects. ...One should avoid generators without
convincing theoretical support. This statement by L'Ecuyer [1998] on building uni-
form random number generator is also valid for non-uniform distributions. Other
methods may have some hidden inferences, which make a prediction of the quality
of the resulting non-uniform random numbers impossible [Leydold et al. 2000].

Notice that a random variate with density gs(x) is generated by inversion. Thus
as ratio g tends to 0, most of the random variates are generated by inversion by the
new algorithm. As an immediate consequence for small g the new generator avoids
the defects of the basic ratio-of-uniforms method. Figure 6 shows scatter plots
of all overlapping tuples (ug,u1), (u1,u2), (us,uz),... using the “baby” generator
Upt1 = 869 u, + 1 mod 1024. (a) shows the underlying generator. (b)—(f) show



16 : Josef Leydold

1 1
0.8 0.8
A
0.6 0.6 *
- -
0.4 0.4
: M .
0.2 0.2
-
0 0 :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(a) uniform (b) 02 = 0.861
1 1
..
. .
0.8 .« ot St 0.8
.... o
0.6 c ’ 0.6
;. - R
. . e
0.4 . : 0.4
..... . ".. n
. .
0.20 . . 0.2
. . .
. -
0 . . - 0 . : U L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(¢) 04 =0.431
0.
0.
0.
0.

(e) 020 = 0.022 (f) o075 = 0.003

Fig. 6. Scatter plots of “baby” generator un4+1 = 869 un +1 mod 1024 (a) and of normal variates
using algorithm arou with 2, 4, 6, 29 and 75 equidistributed construction points (b f).
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the tuples (®(ug), ®(u1)), (®(u1), P(uz2)), (®(u2), ®(ug)), ... for different number
of construction points using the equidistribution method (® denotes the cumulative
distribution function of the standard normal distribution).

We have made an empirical investigation using M-tuple tests [Good 1953; Marsaglia
1985] in the setup of Leydold, Leeb, and Hérmann [2000] with the standard normal
distribution and various numbers of construction points. We have used a linear
congruential generator fish by Fishman and Moore [1986], an explicit inversive
congruential generator [Eichenauer-Herrmann 1993], and a twisted GFSR genera-
tor (tt800 by Matsumoto and Kurita [1994]); at last the infamous randu (again
an LCG) as an example of a generator with bad lattice structure (see Park and
Miller [1988]). These tests have demonstrated that for small ratio p, the quality
of the normal generators are strongly correlated with the quality of the underly-
ing uniform random number generator. Especially, using randu results in normal
generator of bad quality. Notice however that this correlation does not exist, if o
is not close to 0. Indeed, using only 2 or 4 construction points results in a normal
generator which might be better (e.g. fish in our tests) or worse (e.g. randu) than
the underlying generator.

8. POSSIBLE VARIANTS
Non-convex region

The algorithm can be modified to work with non-convex region Ay. Adapting the
idea of Evans and Swartz [1998] we have to partition A; into segments using the
inflection points of the transformed density with transformation T'(x) = —1//x.
In each segment of A; where T'(f(z)) is not concave but convex, we have to use
secants for the boundary of the enveloping polygon P¢ and tangents for the squeeze
P# (see figure 7). Notice that the squeeze region in such a segment is a quadrangle
€oC;m;c; g and has to be triangulated. The changes of algorithm arou are straight
forward: (1) Include A™ and A™" into object 2; (2) compute A" and A™"
instead of A" for all non-convex segments of A; (3) in arou_sample, when we
generate a point inside the squeeze polygon of a non-convex segment, we first have
to decide by means of A" and A™™" which triangle (left of right) has to be used.

Multivariate distributions

Wakefield, Gelfand, and Smith [1991] and Stefanescu and Vaduva [1987] have gener-
alized the ratio-of-uniforms method to multivariate distributions. Both use rejection
from an enclosing multidimensional rectangle. However the acceptance probabil-
ity decreases very fast for higher dimension. For multivariate normal distribution
in four dimension it is below 1%. Using polyhedral envelopes similar to Leydold
and Hormann [1998] or Leydold [1998] is possible and increases the acceptance
probability. However this requires some additional research.

ACKNOWLEDGMENTS

The author wishes to thank Hannes Leeb for helpful discussions on the quality of
random number generators.



18 : Josef Leydold

C;

(/secant

Cit+1

Co

Fig. 7. Non-convex set Ag. The squeeze polygon (dark shaded area) has to be divided into two
triangles.

REFERENCES

AHRENS, J. H. 1993. Sampling from general distributions by suboptimal division of domains.
Grazer Math. Berichte 319, 20 pp.

AHRENS, J. H. 1995. An one-table method for sampling from continuous and discrete dis-
tributions. Computing 54, 2, 127-146.

AHRENs, J. H. aAND KosrT, K. D. 1981. Computer methods for efficient sampling from
largely arbitrary statistical distributions. Computing 26, 19-31.

BaraBesi, L. 1993. Random variate generation by using the ratio-of-uniforms method.
Technical Report 1-1993, Universita degli Studi die Siena, Dipartimento di Metodi Quati-
tativi.

BrATLEY, P., Fox, B. I.., AND SCHRAGE, E. I.. 1983. A Guide to Simulation. Springer-
Verlag, New York.

Curn, H. C. AND AsAu, Y. 1974.  On generating random variates from an empirical distri-
bution. AIIE Trans. 6, 163 166.

CHENG, R. C. H. AnD FrEAST, G. M. 1979. Some simple gamma variate generators. Appl.
Statist. 28, 3, 290 295.

DAGPUNAR, J. 1988.  Principles of Random Variate Generation. Clarendon Oxford Science
Publications, Oxford, U.K.

DERFLINGER, G. AND HORMANN, W. 1998. The optimal selection of hat functions for rejec-
tion algorithms. in preparation, private communication.

DEVROYE, I.. 1984. A simple algorithm for generating random variates with a log-concave
density. Computing 33, 247 257.

DEVROYE, I..  1986.  Non-Uniform Random Variate Generation. Springer-Verlag, New-York.

DieTER, U. 1989. Mathematical aspects of various methods for sampling from classical
distributions. In E. A. Mc NaIr, K. J. MussELMAN, AND P. HEIDELBERGER Kds., Proc.
1989 Winter Simulation Conf., pp. 477 483.

EICHENAUER-HERRMANN, J. 1993.  Statistical independence of a new class of inversive con-
gruential pseudorandom numbers. Math. Comp. 60, 375 384.

FEvans, M. AND SwaARTz, T. 1998. Random variable generation using concavity properties
of transformed densities. Journal of Computational and Graphical Statistics 7, 4, 514 528.

FISHMAN, G. S. AND MOORE, I.. R. I. 1986. An exhaustive analysis of multiplicative con-
gruential random number generators with modulus 23" — 1. SIAM J. Sci. Stat. Comput. 7,
24—-45. see erratum, ibid. p. 1058.



Automatic Sampling with the ratio-of-uniforms method : 19

GrLks, W. R. aND WILp, P.  1992.  Adaptive rejection sampling for Gibbs sampling. Applied
Statistics 41, 337-348.

Goob, 1. J. 1953. The serial test for sampling numbers and other tests for randomness.
Proc. Cambridge Philosophical Society 49, 276-284.

HORMANN, W. 1994a. A note on the quality of random variates generated by the ratio of
uniforms method. ACM TOMACS 4, 1, 96 106.

HORMANN, W. 1994b. The quality of non-uniform random numbers. In H. DYCKHOFF,
U. DERINGS, M. Sarn.oMON, AND H. C. Tuwms Eds., Operations Research Proceedings 1993
(Berlin, 1994), pp. 329 335. Springer Verlag.

HORMANN, W. 1995. A rejection technique for sampling from T-concave distributions. ACM
Trans. Math. Software 21, 2, 182—193.

HORMANN, W. 1999. private communication.

Jonrs, M. C. anp LunN, A. D. 1996. Transformations and random variate generation:
Generalised ratio-of-uniforms methods. J. Stat. Comput. Simulation 55, 1 2, 49 55.

KINDERMAN, A. J. AND MONAHAN, F. J. 1977. Computer generation of random variables
using the ratio of uniform deviates. ACM Trans. Math. Software 3, 3, 257-260.

L’EcuYEr, P. 1996. Combined multiple recursive random number generators. Operations
Research 44,5, 816 822.

I’ECUuYER, P.  1998. Random number generation. In J. BANks Ed., Handbook of Simulation,
Chapter 4, pp. 93 137. Wiley.

LENDL, O. 1997. prng 2.2 A library for the generation of pseudorandom numbers. Hell-
brunnerstr. 34, A-5020 Salzburg, Austria: Institute of Mathematics, Paris-T.odron Univer-
sity Salzburg. available at http://random.mat.sbg.ac.at/ftp/pub/software/gen/.

LeEva, J. L. 1992. A fast normal random number generator. ACM Trans. Math. Soft-
ware 18, 4, 449-453.

LeEYDOLD, J. 1998. A rejection technique for sampling from log-concave multivariate distri-
butions. ACM TOMACS 8, 3, 254 280.

LEYDOLD, J. AND HORMANN, W. 1998. A sweep-plane algorithm for generating random
tuples in simple polytopes. Mathematics of Computation 67, 224, 1617-1635.

Lryporn, J., LEER, H., AND HORMANN, W. 2000. Higher dimensional properties of non-
uniform pseudo-random variates. In H. NIEDERREITER AND J. SPANIER Eds., Monte Carlo
and Quasi-Monte Carlo Methods 1998 (Berlin, Heidelberg, 2000), pp. 341-355. Springer-
Verlag.

MARSAGLIA, G. 1985. A current view of random number generators. In L. BILLARD Ed.,
Computer Science and Statistics: The Interface, pp. 3—-10. Amsterdam: FElsevier Science
Publishers B.V.

MARSAGLIA, G. AND TsaNG, W. W. 1984. A fast, easily implemented method for sampling
from decreasing or symmetric unimodal density functions. STAM J. Sci. Statist. Comput. 5,
349 359.

MaTrsuMoTO, M. AND KURITA, Y. 1994, Twisted GFSR generators II. ACM TOMACS 4, 3,
254 266.

PARK, S. K. AND MILLER, K. W. 1988. Random number generators: good ones are hard to
find. Commun. ACM 31, 1192-1201.

ROBERTSON, 1. AND WarLLs, I.. A. 1980. Random number generation for the normal and
gamma distributions using the ratio of uniforms method. Tech. Rep. AERE-R 10032, United
Kingdom Atomic Energy Authority, Harwell, Oxfordshire.

STADLOBER, E. 1989. Sampling from Poisson, binomial and hypergeometric distribu-
tions: Ratio of uniforms as a simple and fast alternative. Number 303 in Bericht der
Mathematisch-Statistischen Sektion in der Forschungsgesellschaft Joanneum-Graz.

STADLOBER, E. 1990. The ratio of uniforms approach for generating discrete random vari-
ates. J. Comput. Appl. Math. 31, 1, 181 189.

STEFANESCU, S. AND VADUVA, I.  1987. On computer generation of random vectors by trans-
formations of uniformly distributed vectors. Computing 39, 141-153.



20 : Josef Leydold

WAKEFIELD, J. C., GELFAND, A. E., AND SmiTH, A. F. M. 1991. Efficient generation of
random variates via the ratio-of-uniforms method. Statist. Comput. 1, 129-133.

ZAMAN, A. 1996. Generation of random numbers from an arbitrary unimodal density by cut-
ting corners. unpublished manuskript, available at http://chenab.lums.edu.pk/ arifz/.



