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Abstract 
 

We study an agency model, in which the principal has only incomplete information about the 
agent's preferences, in a dynamic setting. Through repeated interaction with the agent, the 
principal learns about the agent's preferences and can thus adjust the inventive system. In a 
dynamic computational model, we compare different learning strategies of the principal when 
facing different types of agents. The results indicate the importance of a correct specification of 
the agent's preferences. 
_____________________________________________________________________________ 

 

 

 

1 Introduction 

Innovative organizational forms like virtual organizations pose new questions to organization 
theory, which challenge traditional forms of analyzing organizations. Many of these new forms 
of organization rely on cooperation between partners, who are located at considerable distance 
and communicate with each other only via technical means. Yet it is important for the survival 
of such organizations that each partner is able to predict, and to a certain extent control, the 
behavior of the other partners. Prediction and control of the actions of another economic agent 
requires knowledge about the preferences of that agent. This necessity can clearly be 
demonstrated in classical models of agency theory (Mirrlees, 1976; Harris/Raviv , 1979; 
Spremann, 1987). In these models, the principal is assumed to have perfect knowledge of the 
agent's utility function. This makes it possible for the principal to design an incentive system 
controlling the agent's behavior in a way that is optimal for the principal. 

Even in a traditional hierarchical organization, the assumption that a superior has perfect 
knowledge of her subordinates' preferences can be considered as problematic and has been 
criticized in the literature. For example, (Rose/Willemain, 1996b, p.142) stated that „The 
principal does not know the agent’s utility function and may have only a vague articulation of 
her own“. In a setting where both partners are geographically dispersed and communicate only 
via electronic media, this assumption is even more unrealistic. In such a situation, one can only 
assume (highly) incomplete knowledge about a network partner's preferences. However, once 
we consider information to be incomplete, we also have to take into account another 
phenomenon: learning. In each interaction, a network partner will also reveal some information 
about his preferences, allowing the other partner to build a continuously improving 
representation of his preferences. 
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The relevance of learning for a principal – agent relationship has been pointed out for example 
by (Eisenhardt, 1989), but so far there is little literature which explicitly takes into account that 
a principal improves her model of an agent’s behavior by observing the agent’s reactions to 
various incentive systems. In the present paper, we study the continuous learning that takes 
place between two partners engaged in repeated cooperation. The paper is structured as follows: 
in section two, we give a brief exposition of the decision problems faced by the two partners 
and introduce a formal model describing this situation based on the work in (Vetschera, 2000). 
Considering the specific situation of partners in geographically dispersed networks, this model 
deviates from traditional agency models also by using ex-ante instead of ex-post incentives. 

Section three introduces the dynamic extension of this model. Since we are dealing with a 
situation of incomplete information about a remote network partner, we must also take into 
account the possibility that even the structure of the preference model about the partner might 
contain errors. Section four thus introduces a simulation model in which various levels of 
"misunderstandings" between the remote partners can be analyzed. Section five presents some 
results from experiments with this model. Section six concludes the paper by providing an 
outlook on ongoing and future research activities. 

2 The Ex ante Incentive Model 

Agency models usually consider an incentive system that can be describes as ex post incentive 
system. In an ex post incentive system, payments are made by the principal to the agent only 
after the agent has undertaken his effort and outcomes (or whatever information is used to 
determine the payment) are observed. 

In transactions with a remote partner, the situation might be different. It could be necessary for 
one partner to invest into the relationship before the other partner performs any activity or 
outcomes are obtained. In transaction cost theory, such investments might be considered under 
the category of costs of agreement. 

One might ask why such an ex ante investment should influence the transaction partner's 
behavior at all. If he already has received the reward, why should he then exert extra effort or in 
some other way adapt his behavior to the principal's wishes? Apart from ethical considerations, 
this argument is also not valid when the time of the investment does not coincide with the effect 
the investment has on the agent. Ex ante investment by the principal can lead to consequences 
for the agent which occur only after he has performed his activities and which are contingent on 
how these actions have been performed. Consider for example expenditures for publicizing a 
new strategic alliance. The more such an alliance is publicized, the larger would be the damage 
to reputation if one partner later defects. Thus ex ante expenditures might influence the 
subsequent behavior of the partner by altering consequences at a still later stage. 

Given that there is only incomplete information on the transaction partner's preferences, we 
model his decision as a random variable. In order to keep the model simple, we will only 
consider two possible actions of the transaction partner: cooperation and defection. Figure 1 
illustrates the decision problem from the point of view of the partner setting the ex ante 
incentive.  
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Partner cooperates

Partner defects

xc - m

xd - m

p(m)

1-p(m)
Investment m

defects

 
Figure 1: Decision problem of the investor 

We thus consider a situation in which a transaction with the partner definitely takes place, 
leaving the relationship is not an option. The only decision to be made thus concerns the level of 
ex ante investment m. The outcome of the transaction depends on the partner's decision to 
cooperate or defect. If the partner cooperates, the benefit from the transaction is xc, if he defects, 
the benefit is xd. The probability of cooperation depends (monotonically) on the ex ante 
investment m. 

From the point of view of the transaction partner, we have to consider two types of outcome, 
those which are affected by the investment and those which are not. The decision problem of the 
transaction partner is shown in figure 2. 

defect

cooperate

(vd(m), zd)

(vc (m), zc)  
Figure 2: Decision problem of the transaction partner 

We denote the consequences which are influenced by the investment by v(m), those which are 
not influenced by z. Both types of consequences also depend on the action taken. Furthermore, 
we assume that the agent evaluates these two types of consequences according to a linear utility 
function of the form  

zwmvwzmvu ⋅−+⋅= )1()()),((  (1) 

In utility function (1), parameter w (0 = w = 1) represents the weight which the agent assigns to 
the benefits from cooperation. This weight, however, is unknown to the principal. 

The transaction partner will cooperate whenever his utility from cooperation exceeds the utility 
obtained when defecting, i.e. when 

ddcc zwmvwzwmvw ⋅−+⋅≥⋅−+⋅ )1()()1()(  (2) 

To simplify the notation, we rewrite (2) as 

zmvzw >+ ))((  (3) 
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where z = zd – zc and v(m) = vc(m) - vd(m). We further assume that v is a linear function of m, 
i.e. that 

v(m) = a·m  (4) 

Linearity of (4) is not a crucial assumption for the following analysis, however, v(m) must be a 
concave function of m for a unique solution to the principal’s optimization problem to exist. 

Following the literature on decision making under incomplete information (Weber, 1987) , we 
assume that the only information the principal has on the transaction partner’s preferences is an 

interval ),( ww in which the true weight falls, and that weights are uniformly distributed within 
that interval. 

Under these assumptions, the probability that the transaction partner cooperates is given by 
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i.e. by the fraction of the total interval of the parameter space ),( ww  in which cooperation 
takes place. 

Focussing for the moment on the middle term of (5), we obtain the expected profit of the 
principal as 
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and the optimum investment m* of the principal as 
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However, m* will only be non-negative iff 

)()( wwzxx dc −>−α  (8) 

If this condition is not fulfilled, the optimum for the principal consists in not providing any 
incentives at all and accept the likely defection of the transaction partner. The same is true in the 
last row of equation (5), thus whenever m* falls below a lower threshold of 

w
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no investment should take place at all. Conversely, since it is not possible to increase the 
probability of cooperation beyond 1, the first row of equation (5) provides an upper bound for 
the meaningful range of m* as 

w
wz

m
⋅
−

=
α

)1(
 (10) 

Whenever m* according to (7) exceeds m , only the amount m  should be invested. 

3 A Dynamic Model 

Each completed interaction with the agent can reveal some information about the agent’s 
preferences to the principal. When the agent has cooperated, it follows from (3) that 

mz
z

w
⋅+

≥
α

 (11) 

and thus the principal can update her lower bound estimate of w accordingly. Similarly, 

whenever the agent defects, the upper bound estimate w  can be updated. 

To simplify the exposition, we introduce the following notation. The interval ),( ww  represents 
the principal’s current state of knowledge about the agent’s preferences. For a given decision 
problem, i.e. given payoffs xc, xd and z, as well as a given parameter α, both the optimal level of 
investment and the corresponding net profit depend only on the state of knowledge. We thus 

write them as ),(* wwm  and ),(* wwg . When we consider a multi-period problem, the 

values realized in period t are designated by ),(* wwmt  and ),(* wwg t . 

We first consider a two-period problem. In making her decision on the incentive for the first 
period, the principal has to take into account the effects on the second period. Thus the profit 
function for the first period must be extended to consider profit in the second period: 

1
*
2

*
21 )),()(1()),(()( mwwgxpwwgxmpg dddccccc −+−++⋅=  (12) 

where ),( cc ww  and ),( dd ww represent the updated state of knowledge after cooperation and 
defection, respectively. 

Equation (12) shows the typical recursive structure of a dynamical programming problem. Thus 
it is conceptually easy to extend it to more than two periods. However, since function (12) is 
already not convex in m1 and the complexity of the problem rapidly increases when additional 
periods are taken into account, we do not present analytical solutions for this problem. The 
simulations presented in the following section are based on a numerical solution procedure. 
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4 Simulation Experiments 

4.1 Simulation in Learning Models 
Simulation models have been used by many researchers to study phenomena of learning and 
strategic interaction in settings which are similar to our problem. Most widely known is 
probably the work of Axelrod (Axelrod, 1984) about the prisoner’s dilemma game. While in 
Axelrod’s original experiments, agents used the same strategies during the entire simulation, 
later studies, e.g. (Axelrod, 1987) , also considered the possibility that agents learn strategies 
over time. 

These simulation experiments, as well as other similar studies (Watanabe/Yamagishi, 1999; 
Hoffmann, 2001) , differ in several important aspects from the present study. Firstly, in these 
models, agents learn strategies and do not explicitly model their opponent’s preferences or 
behavior. Strategies are often represented as finite automata, following the approach developed 
by (Rubinstein, 1986), and are modified using genetic algorithms. The “genes” used in these 
algorithms can also be considered as representations of explicit knowledge or organizational 
routines, which are learned over time. While this interpretation was used in some studies of 
organizational learning (Bruderer/Singh, 1996) , those experiments lack the specific focus on 
interaction with other agents. 

Furthermore, agents in these models usually do not play against a fixed partner, but against a 
whole population (or a random sample of the population). Thus, strategies are not adapted to a 
specific partner but are evaluated in a more general framework. One exception is the paper by 
(Meng/Pakath, 2001), where agents learn strategies in an iterated prisoner’s dilemma game 
against a specific partner. However, the focus of that paper is on design issues of the classifier 
system used to represent the agents’ knowledge. 

The work which is probably most closely related to our problem is (Rose/Willemain, 1996b; 
Rose/Willemain, 1996a). In this model, a principal learns to use various types of incentive 
systems vis-a-vis a population of different agents. Our model differs from this model by 
allowing for the incentive level m to be varied continuously rather than to be set at prespecified 
levels. More importantly, in our model, one partner formulates and refines an explicit model of 
the preferences of the other partner, rather than learning which incentive strategy works best in a 
general environment. 

4.2 Agent Types 
An optimal learning strategy based on equation (12) rapidly becomes very hard to compute. 
This effort might not be worthwhile when explicit consideration of learning will improve the 
principal’s profit only slightly compared to the one-period model (7). Furthermore, it is based 
on two rather rigid assumptions: 

1. That the linear model (1) is a correct representation of the agent’s preferences 

2. That the agent does not anticipate the learning effect and modify his behavior accordingly. 

To check for the robustness of a dynamic model against mis-specification of the agent’s 
preferences or deliberate manipulation by the agent, we confront our agents with various types 
of opponents similar to the model of (Meng/Pakath, 2001). 

Four variants for the principal were used in the simulations. The first two variants were based 
on the dynamic optimization model of equation (12) (“Dynamic”) and on the single -period 
optimization of equation (7) (“One-Shot”). To study whether such optimization models have a 
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significant value at all, they were compared to two “naive” strategies, in which incentives were 
increased by a random amount after defection and decreased after cooperation. The two naive 
strategies differed in the reference value that was updated. In the first strategy (“Naive/f” for 
“fixed”), the absolute amount of compensation payments was adapted. In the second strategy 
(“Naive/r” for “relative”), incentives were set relatively to z, the defection payoff and the ratio 
of m to z was adapted to better relate compensation to the actual decision problem of the partner. 

To analyze the second research question, these four types of principals were tested against four 
types of transaction partner: The first type (“Honest”) based its decision strictly on the utility 
criterion (2). The second type (“Noisy”) also reacted according to equation (2), but its 
perception of the cooperation benefits v(m) was disturbed by a random term, thus it sometimes 
made a decision inconsistent with its true utility function. 

For the transaction partner, it is an advantage if the principal underestimates the true weight w, 
since the principal will then provide higher incentives for cooperation. Underestimation of w 
will be achieved when the transaction partner defects in situations in which, according to his 
true utility function, he should not defect. This behavior is modeled in the third type of partner 
(“Bias”). Similarly to “Noisy”, this partner deviates from the original utility function by 
introducing a random disturbance to the benefits of cooperation, but unlike “Noisy”, the benefit 
is only modified downwards, thus inducing additional defections. 

The fourth type of partner (“Random”) randomly chooses between cooperation and defection 
without considering the problem parameters at all.  

4.3 Experimental Setup and Parameter Values 
From the four types of models for the principal and four types of models for the transaction 
partner, 16 possible pairs can be formed. Experiments were performed using all these pairs. 

In a stable environment of repeated identical problems, many of those pairs, especially those 
with the optimizing principal and/or “Honest” transaction partners, would quickly reach a 
steady state in which nothing is learned, although the principal’s state of knowledge about the 
transaction partner might be far less than perfect. To introduce a certain level of environmental 
uncertainty necessary for learning, experiments used sequences of randomly generated decision 
situations. A decision situation in this context is characterized by values of the payoff levels xc 
and z. Each experiment consisted of 30 simulated interactions (time periods), and for each 
period values of xc and z were randomly generated from uniform distributions. The upper and 
lower bounds of the uniform distribution can be varied to analyze the impact of uncertainty of 
model outcomes. To simplify comparison of results between different types of principals and 
transaction partners, all pairs of principal and transaction partner went through the same 
sequence of decision situations in each experiment. In each sequence, the principal started with 
full uncertainty about w, i.e. the state of knowledge was initialized to the whole interval (0,1). 
To obtain adequate data for statistical analysis, 1000 such experiments were performed for each 
parameter setting. Table 1 summarizes the parameter values used. 
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Parameter Range Description/Remarks 
xc 0.1 – 1.0 Principal’s payoff in case of cooperation 
xd  0 Principal’s payoff in case of defection 
z 0.1 – 0.9 Partner’s payoff from defection 
α 1 Efficiency of incentive (constant for all experiments) 

wtrue 0.6 True weight (constant for all experiments) 

0w  0 Starting value for lower bound of w 

0w  1 Starting point for upper bound on w 

Table 1: Simulation parameters 

The simulation was implemented in Object Pascal using the Borland Delphi compiler. 

4.4 Hypotheses 
Our research questions lead to the formulation of several hypotheses, which can be statistically 
tested using the simulation results: 

Hypothesis H1: The dynamic model will perform better than the static model. 

This hypothesis is a direct result of the first research question, where we wanted to ask whether 
the considerably more complex dynamic model is worth the extra computational effort. 
Obviously, the dynamic model is designed to generate an optimal solution for a multi-period 
problem. However, since the model does not have perfect information about future decision 
situations, it might miscalculate the effect of learning. This hypothesis thus tests whether it 
indeed performs better than the static model in an uncertain environment. 

Hypothesis H2: Optimizing strategies perform better than naive strategies 

This hypothesis is based on the same argument as H1, but compares the two “optimal” 
strategies to the much simpler adaptive ones. 

Hypothesis H3: The dynamic strategy will gain more payoff from learning then the one-shot 
strategy. 

Since the dynamic strategy was designed to explicitly consider learning effects, it should also 
benefit more from learning. 

Hypothesis H4: The dynamic strategy will gain more knowledge from learning than the one-
shot strategy. 

The effect of learning can be measured in several ways. While hypothesis H3 is formulated in 
terms of payoff values, this hypothesis focuses on the information obtained, i.e. the size of the 

interval ),( ww . 

Hypothesis H5: The dynamic strategy will encounter more defections (in the early periods). 

Since the dynamic strategy tries to learn about the transaction partner’s preferences, we expect it 
to “experiment” more, especially in the early periods of interaction. Thus it will more likely 
encounter defections than the static strategy. 
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5 Results 

5.1 Statistical tests 
In this section, we present the results of the statistical analysis of data obtained from the 
simulation experiments. All hypotheses to be tested basically have the same structure: outcomes 
for one type of strategy are assumed to be significantly better than outcomes from another 
strategy. Therefore, we can perform tests independently for each of the four different types of 
opponents and discuss robustness of results with respect to different environmental conditions 
by comparing the results for the different opponents. 

Since all pairs of principal/partner were tested using the same sequence of decision situations, 
we can directly compare results between pairs in each experiment. To test whether one strategy 
outperforms another strategy, we therefore can test the hypothesis whether, on average, the 
difference in outcomes between the two strategies is significantly greater than zero. Since these 
differences were not always normally distributed, we not only performed a t-test but also a 
nonparametric sign test. 

5.2 Results for H1 
Hypothesis H1 stated that the dynamic strategy should perform better than the static strategy. 
To test this hypothesis, we analyzed the total profit obtained by these strategies in their 
interactions with the different types of opponents over all 30 periods. The following figures 
show box plots representing the distribution of total profits across all experiments. 

Opponent Honest

Dynamic Naive F Naive R Onesho t

 

Figure 1: Profit against "Honest" opponent 



10 

Opponent:  B ias

Dynamic Naive F Naive R Oneshot

 

Figure 2: Profit against "Bias" opponent 

Opponent Noisy

Dynamic Naive F Naive R Onesho t

 

Figure 3: Profit against "Noisy" opponent 
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Opponent  Random

Dynamic Naive F Naive R Onesho t

 

Figure 4: Profit against "Random" opponent 

The results of the statistical analysis comparing the performance of the two strategies 
experiment by experiment are shown in table 2 

 
Opponent Honest Noisy Bias Random 
Mean 
SD 
Median 

0.11147 
0.15899 
0.07789 

-0.03782 
0.47800 

-0.05146 

0.08997 
0.19899 
0.04877 

0.03969 
0.48873 
0.03373 

t-test 
p 

22.171 
<0.001 

-2.5020 
0.0125 

14.29718 
<.0001 

2.56787 
0.0104 

N > 0 
Sign test 
p 

747 
247 

<0.0001 

454 
–46 

0.0040 

659 
159 

<.0001 

535 
35 

0.0291 
Kolmogorov-
Smirnov 
p 

0.09070 
 

<0.01 

0.03117 
 

0.019 

0.10562 
 

<0.010 

0.03083 
 

0.021 

Table 2: Hypothesis H1, Experiment by Experiment Comparison 

Table 2 shows the difference between total profit from the dynamic strategy and the static 
strategy for the various types of transaction partners. The first block of rows provides 
descriptive data on the difference. The second blocks contains results of a t-test testing against 
the hypothesis that this difference is zero. The third block contains results of a nonparametric 
sign test for the same hypothesis and the last block provides the Kolmogorov-Smirnov statistic, 
which in this case indicates that the difference is not normally distributed in several instances. 

As could be expected, the dynamic strategy indeed performs better against the “Honest” 
transaction partner, who always reacts according to his true utility function. However, this 
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superior performance is not robust against random distortions in the reactions of the partner, as 
against the “Noisy” transaction partner, the static strategy performs better. However, this result 
is not significant at the 1% confidence level according to the t-test.  

Surprisingly, the dynamic strategy also performed better against the “Bias”ed transaction 
partner, who deliberately tries to influence learning. But the results also show that this partner is 
indeed able to exploit the principal to a certain extent and lower her profit. Against the 
“Random” partner, the difference is again not significant. 

5.3 Results for H2 
Hypothesis H2: optimizing strategies perform better than naive strategies 

For this hypothesis, we have to compare both optimizing strategies (dynamic and static) to both 
naive strategies (fixed and relative payments). The following tables present the results of these 
comparisons. 

5.3.1 Dynamic vs. Naive fixed strategies 

 
Opponent Honest Noisy Bias Random 
Mean 
SD 
Median 

1.36476 
0.23623 
1.38027 

0.47398 
0.38598 
0.51694 

1.42924 
0.24462 
1.42971 

-0.24254 
0.43106 

-0.20528 
t-test 
p 

182.696 
<0.0001 

38.833 
<0.0001 

184.762 
<0.0001 

-17.793 
<0.0001 

N > 0 
Sign test 
p 

1000 
500 

<0.0001 

879 
379 

<0.0001 

1000 
500 

<0.0001 

295 
–205 

<0.0001 
Kolmogorov-
Smirnov 
p 

0.03631 
 

<0.010 

0.04948 
 

<0.01 

0.02231 
 

>0.150 

0.04563 
 

<0.010 

Table 3: Dynamic vs. Naive fixed strategies, Experiment by Experiment Comparison  

Both tests clearly confirm the superiority of the optimizing strategy versus a rational transaction 
partner. However, when faced with an irrational partner, the simpler strategy performs 
significantly better. 



13 

5.3.2 Dynamic vs. Naive relative strategies 

 
Opponent Honest Noisy Bias Random 
Mean 
SD 
Median 

0.87148 
0.19133 
0.86543 

0.18324 
0.37618 
0.22122 

0.92134 
0.20533 
0.91337 

0.10884 
0.46545 
0.13245 

t-test 
p 

144.039 
<0.0001 

15.403 
<0.0001 

141.892 
 

7.394 
<.0001 

N > 0 
Sign test 
p 

1000 
500 

<0.0001 

712 
212 

<0.0001 

1000 
500 

604 
104 

<0.0001 
Kolmogorov-
Smirnov 
p 

0.02135 
 

>0.150 

0.05202 
 

<0.010 

0.02349 
 

>0.150 

0.02776 
 

0.061 

Table 4: Dynamic vs. Naive relative strategies, Experiment by experiment comparison 

Surprisingly, the naive strategy based on relative payoffs was outperformed by the dynamic 
strategy even in the case of the pure random transaction partner. It seems that its apparently 
higher level of rationality led it to fall into the same ‘trap’ as the optimizing strategies in trying 
to adapt to a pattern that in reality did not exist in the opponent’s behavior. 

5.3.3 Static vs. Naive fixed strategies 
 

Opponent Honest Noisy Bias Random 
Mean 
SD 
Median 

1.25328 
0.27347 
1.27026 

0.51180 
0.41311 
0.56137 

1.33928 
0.30074 
1.36176 

-0.28222 
0.45118 

-0.27591 
t-test 
p 

144.925 
<.0001 

39.178 
<.0001 

140.826 
<.0001 

-19.781 
<.0001 

N > 0 
Sign test 
p 

1000 
500 

<0.0001 

882 
382 

<0.0001 

1000 
500 

<0.0001 

289 
–211 

<0.0001 
Kolmogorov-
Smirnov 
p 

0.03056 
 

0.023 

0.05752 
 

<0.010 

0.03759 
 

<0.010 

0.03164 
 

0.016 

Table 5: Static vs. Naive fixed strategies, Experiment by experiment comparison 

The results for the static strategy are very similar to the results for the dynamic strategy. Again, 
the optimizing strategy is clearly superior to the naive heuristic against a rational opponent, 
even if that opponent purposefully tries to misrepresent his preferences. But when faced with a 
purely random opponent, the simple strategy performs better. Results against a rational agent 
with random noise are also almost identical to those obtained by the dynamic optimization 
strategy. 
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5.3.4 Static vs. Naive relative strategies 

 
Opponent Honest Noisy Bias Random 
Mean 
SD 
Median 

0.76001 
0.22800 
0.76049 

0.22106 
0.40205 
0.29930 

0.83137 
0.25856 
0.85182 

0.06915 
0.49118 
0.07078 

t-test 
p 

105.412 
<.0001 

17.38688 
<0.0001 

101.678 
<0.0001 

4.452 
<0.0001 

N > 0 
Sign test 
p 

1000 
500 

748 
248 

<0.0001 

997 
497 

<0.0001 

562 
62 

<0.0001 
Kolmogorov-
Smirnov 
p 

0.03189 
 

0.015 

0.09081 
 

<0.010 

0.041551 
 

<0.010 

0.02140 
 

>0.150 

Table 6: Static vs. Naive relative strategy, Experiment by experiment comparison 

These results again confirm those for the dynamic strategy. Here the optimizing strategy again 
performs better than the naive heuristic even in case of a purely random opponent, although the 
difference is smaller than for the dynamic strategy. 

Summarizing the results for hypothesis H2, we note that this hypothesis was confirmed for 
rational opponents. This is not very surprising, since the optimizing strategies were specifically 
designed to lead to optimal performance against such an opponent. The more interesting part of 
H2 concerns performance against an agent who violates the rationality assumptions made in 
formulating the optimizing strategies. Here the results are still encouraging. Against a 
moderately irrational opponent (the “Noisy” agent), the optimizing strategies still clearly 
outperformed the naive heuristics and even against a completely irrational opponent, the 
optimizing strategies still could do as well as the worse heuristic and were only marginally 
outperformed by the other one. This result is somewhat surprising, since one could argue that 
the “Naive relative” heuristic is a more elaborate approach than the “Naive fixed” heuristic. It 
seems that trying to be a bit smart is even worse than to be completely naive; one has to be very 
smart to reap the benefits of sophistication. 

5.4 Results for H3 
Hypothesis H3 compared the benefits from learning for the two optimizing strategies. We 
expect that the dynamic strategy will gain more from learning then the one-shot strategy. 

To test this hypothesis, we compare the average profit of the first ten rounds of each experiment 
to the average profit of rounds 21-30. The gain from learning is the difference between the two 
average profits. According to the hypothesis, this gain should be larger for the dynamic strategy 
than for the one-shot strategy. Figures 5 to 8 show the distribution of these gains for the 
different strategies. 
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Opponent  Hones t

Dynamic Naive F Naive ROneshot

 

Figure 5: Gain from learning, "Honest" opponent 

O p p o n e n t  N o i s y

Dynamic Naive F Naive ROneshot

 

Figure 6: Gain from learning, "Noisy" opponent 

 



16 

Opponent Bias

Dynamic Naive F Naive ROneshot

 

Figure 7: Gain from learning, "Biased" opponent 

Opponent  Random

Dynamic Naive F Naive ROneshot

 

Figure 8: Gain from learning, "Random" opponent 

Surprisingly, the "Random" opponent was the only one against which all strategies could gain 
from "learning", although this opponent did not have any preferences that could have been 
learned. 
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For the experiment-to-experiment comparison, we form the difference of the gains of the two 
strategies and test against the hypothesis that this difference is zero. These results are also 
shown in table 7: 

 
 Opponent Honest Noisy Bias Random 
Dynamic Mean 

SD 
Median 

0.37223 
0.58581 
0.35522 

0.04756 
0.71094 
0.08946 

0.41832 
0.57917 
0.41842 

0.19743 
0.65334 
0.19606 

 t-test 
p 

20.094 
<.0001 

2.115 
0.0347 

22.841 
<.0001 

9.556 
<.0001 

 N > 0 
Sign test 
p 

731 
231 

<.0001 

547 
47 

0.0033 

766 
266 

<.0001 

612 
112 

<.0001 
 Kolmogorov-

Smirnov 
p 

0.02437 
 

>0.150 

0.03538 
 

<0.010 

0.01918 
 

>0.150 

0.01623 
 

>0.150 
One shot Mean 

SD 
Median 

0.31853 
0.57847 
0.30744 

0.01107 
0.71869 
0.02802 

0.31299 
0.58187 
0.30213 

0.18727 
0.65036 
0.19091 

 t-test 
p 

17.413 
<.0001 

0.487 
0.6263 

17.010 
<.0001 

9.106 
<.0001 

 N > 0 
Sign test 
p 

707 
207 

<.0001 

517 
17 

0.2967 

696 
196 

<.0001 

610 
110 

<.0001 
 Kolmogorov-

Smirnov 
p 

0.01505 
 

>0.150 

0.02455 
 

0.148 

0.01697 
 

>0.150 

0.01458 
 

>0.150 
Difference Mean 

SD 
Median 

0.05370 
0.11556 
0.05707 

0.03649 
0.70202 
0.02767 

0.10534 
0.14548 
0.10264 

0.01015 
0.70476 
0.00786 

 t-test 
p 

14.696 
<.0001 

1.644 
0.1006 

22.897 
<.0001 

0.456 
 0.6488 

 N > 0 
Sign test 
p 

714 
214   

<.0001 

511 
11 

0.5067 

796 
296 

   <.0001 

505 
5   

0.7760 
 Kolmogorov-

Smirnov 
p 

0.04224 
 

<0.010 

0.05115 
 

<0.010 

0.04131 
 

 <0.010 

0.02398 
 

>0.150 

Table 7: Results for hypothesis H3 

Both strategies could indeed learn from the interaction with the opponent in a significant 
number of cases. The only setting in which we must reject the hypothesis that learning took 
place at all is the one-shot strategy facing a “Noisy” opponent.  

Surprisingly, even though the dynamic strategy could significantly improve its performance 
against the “Noisy” opponent and the one-shot strategy could not, the difference in learning 
between those two strategies is not significant. This can probably be attributed to the fact that 
the learning effect for the dynamic strategy against this opponent is also very small, and when 
the positive (but insignificant) learning of the one-shot strategy is subtracted, it becomes too 
small to remain significant. 
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The difference between the strategies is also not significant for the “Random” opponent. Here 
both strategies could significantly improve their performance over time, although that 
improvement was smaller than against the more rational opponents. 

Another unexpected result is that the dynamic strategy gained more from learning when faced 
with a “Biased” opponent than with an “Honest” opponent. However, this result might be due to 
the way learning is measured here. The larger difference between early and late periods for the 
“Biased” opponent results from the fact that during the first ten periods, the dynamic strategy 
obtained a much lower profit when facing a “Biased” opponent than with an “Honest” 
opponent. This could be an indicator that with the “Honest” opponent most learning took place 
already during the first few interactions. So when we measure learning by comparing average 
profits of the first and third set of ten interactions, a considerable amount of learning against the 
“Honest” opponent might be missed. 

But even when we do interpret the difference between the “Honest” and “Biased” opponents 
only with caution, it remains obvious from these results that a deceiving, but rational opponent 
is probably preferable to a completely irrational one. 

5.5 Results for H4 
Hypothesis H4 was similar to H3, but compared the knowledge gained from learning instead of 

the increase in profit. To measure knowledge, we look at the size of the weight interval ),( ww  
after learning. The more this interval can be reduced, the more has been learned about the 
opponent’s preferences.  

To compare the speed with which the two strategies learn, we look at the status after 10 and 
after all 30 periods. Table 8 shows the results after 10 periods. Since it is obvious that the 
weight interval will be reduced and not increased during the interactions, it is not necessary to 
test whether learning effects are positive at all. We thus present test results only for the 
difference between the two strategies. 

 
 Opponent Honest Noisy Bias Random 
Dynamic Mean 

SD 
Median 

0.88068 
0.06636 
0.88557 

0.93005 
0.09111 
0.99000 

0.88332 
0.05436 
0.88361 

0.96117 
0.07313 
0.99000 

One shot Mean 
SD 
Median 

0.65411 
0.13029 
0.65705 

0.74403 
0.20234 
0.71048 

0.68429 
0.14008 
0.70562 

0.95930 
0.10167 
0.99000 

Difference Mean 
SD 
Median 

0.22657 
0.13266 
0.22099 

0.18601 
0.20432 
0.20240 

0.19903 
0.14229 
0.18409 

0.00187 
0.12329 
0.00000 

 t-test 
p 

54.007 
<.0001 

28.789 
<.0001 

44.232 
<.0001 

0.478 
0.6325 

 N > 0 
Sign test 
p 

962 
462 

<.0001 

655 
262.5 

<.0001 

931 
431 

<.0001 

106 
-35 

<.0001 
 Kolmogorov-

Smirnov 
p 

0.04130 
 

<0.010 

0.16441 
 

<0.010 

0.05740 
 

<0.010 

0.40504 
 

<0.010 

Table 8: Results for Hypothesis H4, 10 periods 
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A peculiar result is the high median value of 0.99 against a random opponent. This was the 
terminal value for learning, so in most cases both strategies were convinced after 10 interactions 
that they “knew” that opponent’s true weight (which in fact does not exist at all). 

Apart from the “Random” opponent, the dynamic strategy could reduce its estimate of the 
weight interval significantly more than the one-shot strategy during the first ten periods. 

Table 9 makes the same comparison for the final situation after 30 periods.  

 
 Opponent Honest Noisy Bias Random 
Dynamic Mean 

SD 
Median 

0.92348 
 0.03706 
 0.91794 

0.97806 
 0.03150 

   0.99000 

0.92343        
0.03449 
 0.91784 

0.98985 
 0.00381 

   0.99000 
One shot Mean 

SD 
Median 

0.75571            
0.10274 
 0.74723 

0.90148 
 0.13961 
 0.99000 

0.77900 
 0.09881 
 0.76174 

0.98966 
 0.01114 
 0.99000 

Difference Mean 
SD 
Median 

0.16777 
0.10202 
0.17030 

0.07659 
0.13872 
0.00000 

0.14443 
0.10061 
0.15452 

0.00020 
0.01177 
0.00000 

 t-test 
p 

52.001 
<.0001 

17.459 
<.0001 

45.397 
<.0001 

0.527 
0.5981 

 N > 0 
Sign test 
p 

943 
443 

<.0001 

330 
123.5 

<.0001 

911 
411 

<.0001 

11 
1.5 

0.6476 
 Kolmogorov-

Smirnov 
p 

0.03054 
 

0.023 

0.38556 
 

<0.010 

0.05262 
 

 <0.010 

0.50465 
 

<0.010 

Table 9: Results for Hypothesis H4, all periods  

5.6 Results for H5 
Hypothesis H5 dealt with the number of defections. Especially early in the interaction, we 
suppose that the dynamic strategy is more likely to experiment and thus will encounter more 
defections than the one-shot strategy. 

Table 10 shows the number of cooperations in the first ten periods. 
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 Opponent Honest Noisy Bias Random 
Dynamic Mean 

SD 
Median 

8.40000 
0.78525 
9.00000 

7.77000 
1.34123 
8.00000 

8.10100 
0.92502 
8.00000 

8.01600 
1.27411 
8.00000 

One-shot Mean 
SD 
Median 

8.56200     
1.19314 
9.00000 

8.23900     
1.61508 
9.00000 

8.19100     
1.38001 
8.00000 

7.99700     
1.24922 
8.00000 

Difference Mean 
SD 
Median 

-0.16200 
0.86747 
0.00000 

-0.46900 
1.67208 

-1.00000 

-0.09000 
1.05878 
0.00000 

0.01900 
1.77589 
0.00000 

 t-test 
p 

-5.906 
<.0001 

-8.870 
<.0001 

-2.688 
0.0073 

0.338 
0.7352 

 N > 0 
Sign test 
p 

160 
-108.5 
<.0001 

229 
-141.5 
<.0001 

184 
-94.5 

<.0001 

398 
3 

0.8588 
 Kolmogorov-

Smirnov 
p 

0.2659285 
 

<0.010 

0.16055 
 

<0.010 

0.28213 
 

<0.010 

0.10895 
 

<0.010 

Table 10: Number of cooperations during the first 10 periods 

Except for the “Random” opponent, which was programmed to defect in 20% of all interactions, 
the dynamic strategy indeed encountered more defections and thus less cooperation than the 
one-shot strategy. It seems that the dynamic strategy is particularly likely to set the incentive 
level too low when faced with a “Noisy” opponent, while with the more rational opponents, the 
results of the two strategies are more similar. 

Table 11 shows the same statistics for the entire run of 30 periods. 
 

 Opponent Honest Noisy Bias Random 
Dynamic Mean 

SD 
Median 

27.02500 
1.33797 

27.00000 

22.34900 
4.18602 

23.00000 

26.35100 
1.56788 

27.00000 

24.01500 
2.12869 

24.00000 
One shot Mean 

SD 
Median 

26.60400 
1.95269 

27.00000 

23.25500 
4.93339 

25.00000 

25.81800 
2.37413 

26.00000 

23.88800 
2.25000 

24.00000 
Difference Mean 

SD 
Median 

0.42100 
1.52515 
0.00000 

-0.90600 
 5.85897 
-1.00000 

0.53300 
 1.89697 
0.00000 

0.12700 
3.10137 
0.00000 

 t-test 
p 

8.729 
<.0001 

-4.890 
<.0001 

8.885 
<.0001 

1.295 
0.1956 

 N > 0 
Sign test 
p 

354 
35.5 

0.0055 

365 
-94 

<.0001 

366 
40 

0.0020 

455 
18.5 

0.2230 
 Kolmogorov-

Smirnov 
p 

0.25474 
 

<0.010 

0.07355 
 

<0.010 

0.24463 
 

<0.010 

0.07317 
 

<0.010 

Table 11: Number of cooperations during all 30 periods 

In the long run, the better learning of the dynamic strategy pays off and it achieves a higher rate 
of cooperation than the one shot strategy, at least for the more rational opponents. Only for the 
“Noisy” opponent, the one shot strategy achieved a higher rate of cooperation. This is consistent 
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with table 2, which showed that for that opponent, the one shot strategy also achieved a higher 
profit. 

6 Conclusions and Topics for Future Research 

Two sets of conclusions can be drawn from our results. The first one is directly related to our 
initial research question concerning the efficiency of learning processes in repeated interactions. 
It is evident from our results concerning hypotheses H2 and H3 that more elaborate strategies in 
determining the level of incentives do lead to better results and that improving the information 
input to such strategies over time is indeed beneficial. This result can directly be translated into 
practical advice: incidents of defection, while possibly harmful at the moment, provide valuable 
information about the transaction partner's preferences that can be of use in later interactions. 
Thus testing (and thus, at a later stage, knowing) the limits of cooperation can indeed be 
beneficial and might even be worth taking the risk of short-run defections. As our analysis of 
H5 has shown, a higher level of defections might be only a temporary phenomenon and in the 
long run, better information can also lead to less defections. 

On the other hand, even though H1 was also confirmed and the dynamic strategy indeed 
performed better than the one-shot strategy, this difference was rather small in comparison to 
the difference between optimizing and naive strategies. This is also in contrast to the results of 
H4, which has shown that the difference in information gained by the dynamic and one-shot 
strategies is substantial. Taken together, these results seem to indicate a considerably decreasing 
marginal benefit of information about the transaction partner's preferences. Taking into account 
that the dynamic strategy involves a considerably higher complexity and a computational effort 
which is by several orders of magnitude larger than that of the one-shot strategy, there are 
obvious economical limits to the level of sophistication one should use in determining the 
incentive levels provided to transaction partners. 

These results can also be interpreted from the transaction partner's point of view. One must be 
aware that every decision one makes also "leaks" a certain amount of information about one's 
preferences to anyone who is affected by that decision or just able to observe it. This 
information can be exploited by the partner in future interactions. 

Apart from these conclusions, which directly relate to our initial research questions, our results 
also have more far reaching consequences for the application of formal models to decisions 
involving several actors. In a hierarchical or in any other way distributed decision environment, 
each agent needs a model of other agents to predict their reactions to its own actions 
(Schneeweiss, 1999). In a realistic setting, this model is necessarily an approximation of the 
other agent's true decision processes. A completely accurate representation of one agent's 
decision process by another agent's model is only possible in asymmetric situations in which the 
information processing capabilities of one agent are much greater than those of the other agent. 
Clearly, this is not possible in a symmetric setting, because then each agent would need to be 
much smarter than the other agents. 

Our results highlight the fact that the quality of this approximation can be of crucial importance 
for the success of any strategy that tries to anticipate other agents' behavior. As we have seen, 
adding just a moderate level of noise to the other agent's behavior can have a dramatic impact, 
and surprisingly, the impact of purely random disturbances might even be stronger than when 
the other agent deliberately tries to conceal his preferences. 

This result in a way revives the discussion about game theory initiated by (Kadane/Larkey, 
1982; Kadane/Larkey, 1983). They argued that the usual assumptions made in game theory 
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about the rationality of opponents are not realistic and instead of assuming that the opponent 
always maximizes his utility, one should use a (subjective) probability distribution over the 
opponent's strategies. Our results point into a similar direction. It seems to be important to have 
a correct model of the opponent's decision process,  whether is it a traditional, rational, utility-
maximizing or an entirely different one. Alternatively, one could conclude from our results that 
robustness of one's own decisions with regard to the model of the opponent's decision process 
could be an important factor.  

While our model has produced some interesting results, it still has a number of limitations. So 
far, it has been tested only for a limited number of parameter settings, and its validity for a 
wider range of parameters needs to be analyzed more thoroughly. It also deals with a rather 
asymmetric setting, one could also imagine a situation in which two partners provide certain 
incentives to each other. These questions will be addressed in future versions of the model. 



23 

References 

 

 

Axelrod, R. (1984): The Evolution of Cooperation. Basic Books, New York. 

Axelrod, R. (1987): The Evolution of Strategies in the Iterated Prisoner's Dilemma. In: L. Davis 
(Ed.): Genetic Algorithms and Simulated Annealing. Pitman, London: 32-41. 

Bruderer, E.; Singh, J.V. (1996): Organizational Evolution, Learning, and Selection: A Genetic-
Algorithm-Based Model. Academy of Management Journal 39: 1322-1349. 

Eisenhardt, K.M. (1989): Agency Theory: An Assessment and Review. Academy of Management 
Review 14: 57-74. 

Harris, M.; Raviv, A. (1979): Optimal Incentive Contracts with Imperfect Information. Journal 
of Economic Theory 20: 231-259. 

Hoffmann, R. (2001): The Ecology of Cooperation. Theory and Decision 50: 101-118. 

Kadane, J.B.; Larkey, P.D. (1982): Subjective Probability and the Theory of Games. 
Management Science 28: 113-120. 

Kadane, J.B.; Larkey, P.D. (1983): The Confusion of Is and Ought in Game Theoretic Contexts. 
Management Science 29: 1365-1379. 

Meng, C.-L.; Pakath, R. (2001): The Iterated Prisoner's Dilemma: Early Experiences with 
Learning Classifier System-based Simple Agents. Decision Support Systems 31: 379-403. 

Mirrlees, J.A. (1976): The optimal structure of incentives and authority within an organization. 
The Bell Journal of Economics 7: 105-131. 

Rose, D.; Willemain, T.R. (1996a): The Principal-Agent Problem with Adaptive Players. 
Computational & Mathematical Organization Theory 1: 157-182. 

Rose, D.; Willemain, T.R. (1996b): The Principal-Agent Problem with Evolutionary Learning. 
Computational and Mathematical Organization Theory 2: 139-162. 

Rubinstein, A. (1986): Finite Automata Play the Repeated Prisoner's Dilemma. Journal of 
Economic Theory 39: 83-96. 

Schneeweiss, C. (1999): Hierarchies in Distributed Decision Making. Springer, Berlin. 

Spremann, K. (1987): Agent and Principal. In: G. Bamberg and K. Spremann (Ed.): Agency 
Theory, Information and Incentives. Springer, Berlin: 3-37. 

Vetschera, R. (2000): Investing in Cooperative Relationships: A Simple Analytical Model. 
Working Paper, OP 2000-02, UNiversity of Vienna, Department of Business Studies, Vienna. 

Watanabe, Y.; Yamagishi, T. (1999): Emergence of strategies in a selective play environment 
with geographic mobility: A computer simulation. In: M. Foddy, M. Smithson, S. Schneider and 
M. Hogg (Ed.): Resolving social dilemmas. Psychology Press, 55-66. 

Weber, M. (1987): Decision making with incomplete information. European Journal of 
Operational Research 28: 44-57. 


