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Abstract

In this note, we explore the rich information about inference that the Poisson distribution has. The source
of this information is mainly the fact that the mean and variance of this distribution are equal.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The Poisson probability distribution is believed to be one of the three most important distribu-
tions, the other two being the binomial and the normal distribution. The mean, µ, and variance,
σ 2, are usually the main features of a given distribution. The mean is a measure of central ten-
dency, while the variance is a measure of the dispersion, spread or variability of a distribution. If
X is binomial with parameters n, a positive integer, and p, 0 < p < 1, denoted by b(n, p), then
µ = np and σ 2

= np(1 − p); clearly, µ > σ 2. If X is geometric with parameter p, 0 < p < 1,
denoted by g(n, p), then µ =

1−p
p and σ 2

=
1−p

p2 ; clearly, µ < σ 2. Finally if X is a Poisson

random variable with parameter λ, denoted by P(λ), then µ = σ 2
= λ. The equality of the mean

and variance of the Poisson distribution make it a very rich example in inference. The Poisson
example, if used properly in classrooms, can give a deep intuitive understanding of some of the
ideas in statistical inference. In the next section, we discuss some of these interesting results.

2. The Poisson example

Assume that X ∼ P(λ). Then for x = 0, 1, 2, . . . ,

f (x; λ) =
λx e−λ

x !
(1)
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and

µ = E(X) = σ 2
= Var(X) = λ. (2)

Let X1, X2, . . . , Xn be an independent and identically distributed (iid) sample from P(λ).
The sample mean (X̄) and sample variance (S2) are given respectively by

X̄ =
1
n

n∑
i=1

X i & S2
=

1
n − 1

n∑
i=1

(X i − X̄)2. (3)

It is well known that X̄ and S2 are always unbiased estimators for µ and σ 2, respectively.
Hence in our case, E(X̄) = E(S2) = λ. Since P(λ) is a member of the regular exponential
family, it follows that T = X̄ is a complete sufficient statistic for λ. Since X̄ is also unbiased,
it follows by the Lehmann–Scheffe theorem that X̄ is the unique minimum variance unbiased
estimator (MVUE) of λ. Now, S2 is also an unbiased estimator of λ, and S2 is not a function of
T (we cannot obtain the value of S2 if we are given only the value of T ). Thus, S2 is not the
MVUE of λ. Therefore,

Var(S2) > Var(X̄) =
λ

n
. (4)

In accordance with the Rao–Blackwell theorem (see Hogg and Craig [1] or Casella and
Berger [2]), φ(X̄) = E(S2

|X̄) is also an unbiased estimator of λ. Therefore, by the uniqueness
of the MVUE,

E(S2
|X̄) = X̄ , (5)

which implies that S2 and X̄ are dependent.
Now, E(S2 X̄) = E(E(S2 X̄ |X̄)) = E(X̄ E(S2

|X̄)) = E(X̄2). Thus,
E(S2 X̄) =

λ
n + λ2, which implies that

Cov(S2, X̄) =
λ

n
, (6)

i.e. S2 and X̄ are positively correlated, their covariance is decreasing with n; and goes to zero as
n → ∞. Furthermore, the correlation between S2 and X̄ , ρ, is given by

ρ =
Cov(S2, X̄)√

Var(S2)Var(X̄)
=

√
Var(X̄)

Var(S2)
. (7)

It can be shown that Var(S2) =
λ
n +

2λ2

n−1 (Casella and Berger [2]). Thus,

ρ =

√√√√( 1

1 +
2λn
n−1

)

which is always positive and goes to
√

1
1+2λ as n → ∞.
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E( S2

X̄
) = E(E( S2

X̄
|X̄)) = E( 1

X̄
E(S2

|X̄)) = 1, i.e.

E

(
S2

X̄

)
=

E(S2)

E(X̄)
= 1. (8)

On the other hand, E( X̄
S2 ) = E(E( X̄

S2 |X̄)) = E(X̄ E( 1
S2 |X̄)) > E(X̄( 1

E(S2)
)) (by Jensen’s

inequality). Thus,

E

(
X̄

S2

)
> 1. (9)

Consider next ψ(S2) = E(X̄ |S2). This is again an unbiased function, i.e. E(ψ(S2)) =

E(X̄) = λ. Now,

Var(X̄) = Var(E(X̄ |S2))+ E(Var(X̄ |S2)) (10)

implies

Var(X̄) > Var(ψ(S2)). (11)

It seems at first glance that (11) is in contradiction with the fact that X̄ is the unique MVUE of
λ, since no unbiased estimator of λ can have a variance smaller than the variance of X̄ . It follows
that ψ(S2) = E(X̄ |S2) is not an estimator of λ. In other words, ψ(S2) is an unbiased function of
S2 and λ, i.e. ψ(S2) is not free of the parameter λ, so it is not an estimator. Note also that, since
S2 is not a complete statistic, E(•|S2) is not guaranteed to be free of λ.

Since E(X̄(X̄ − S2)) = E(E(X̄(X̄ − S2)|X̄)) = 0, it follows that Cov(X̄ , (X̄ − S2)) = 0.
Therefore, X̄ and (X̄ − S2) are uncorrelated. In a similar manner it can be easily deduced that S2

and (S2
− X̄) are correlated. So, (X̄ − S2) is uncorrelated with X̄ but correlated with S2. From

this, one may conclude that

Var(S2
− X̄) = Var(S2)− Var(X̄), (12)

and using (7), we have

Var(S2
− X̄)

Var(S2)
= 1 − ρ2

= 1 −
Var(X̄)

Var(S2)
(13)

= 1 −
1

eff(X̄; S2)
. (14)

Thus

eff(X̄; S2) =
1

ρ2 = 1 +
2λn

n − 1
. (15)

This quantity is called by some authors the relative saving of using X̄ instead of S2 as an
estimator of λ.
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Using the fact that E( S2

X̄
) = 1, which was shown above, one can deduce that

E


n∑

i=1
X2

i

n∑
i=1

X i

−
n − 1

n

 = λ, (16)

and hence
∑n

i=1 X2
i∑n

i=1 X i
−

n−1
n is another unbiased estimator of λ.

3. Concluding remarks

The Poisson distribution has some distinct properties that make it a rich learning example.
The main property is that of the equality of its mean and variance, which implies that both the
sample mean and variance are unbiased estimators of λ. Using the fact that the sample mean is
the unique MVUE, several results have been derived. These results, when put together, though
well known, give a unified example that can be given to students in a mathematical statistics
course. This example gives students a deep understanding of many important statistical concepts
such as sufficiency, completeness, MVUE, etc.
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