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ABSTRACT
In this note we consider the point-wise summability of Fourier series in the Norlund sense
by extending a theorem of Lebesgue [6 ] . We also consider analogous theorems of our
extension to derived Fourier series, and conjugate Fourier series. We finally prove some
general theorem on the above topic.

INTRODUCTION

.00
1. Let Z uy be a given series, and let { S, } denote the sequence of its partial

=0 ]
sums. Let {q,} be a sequence of real numbers suﬁh that Q,=qo+q+.-.... +q,# 0

(n = 0), Q,=q, = 0 (n < 0). Define t, =Q’1“Z Gn—x Sk

kz0

00
Ifl lim t, = S we say that 3 u is summable in the Norlund sense or S(N, qa)- We note
—> 0
k=0

that whenq, =1forn=0,1,2, ..... , then Norlund’s method of summability reduces
to Cesaro’s method of summability or (C, 1) summability.

The necessary and sufficient conditions for the regularity of the S(N,q,) method are
[2]:
(1)%1=0(1)asn—>oo , and

> &=0(|Qf)asn—
R=z0
If go > 0, and { q,, } is non-negative for n = 1, 2, ...., then clearly condition (1) above
only is necessary and sufficient for the regularity of the S(N,q,) method; furthermore
if in addition {q,} in non-increasing then the S(N,q,) method is automatically regular

. Qn  _
since o 0 ( x| ) .

2. Let f be a periodic function with period 2 7, integrable in the sense of Lebesgue
over ( — @, m). Let the Fourier series S { f ] of f at t=x be given by:
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o0
s [f] = -%—- a9 + > a; cos jx + bj sin jx.
i=1
Then the derived Fourier series of f S [f] is given by:

0 [o.¢]
S [f]=2"jbjcosjz— asinjx = jB; (),
J=1 ji=1
and the cojugate Fourier series of f S [f] is given by:

S (1] =ibj cos jx —a sinjx.
j=1
Let ¢ (t) = f(x+t) + f(x—t) — 2f(x),
v (1) = f(x+t) — f(x—t),
r (t) = f(x+t) — f(x—t) — 2 t £(x),

Q(t)=0/|¢(u)! du, and
R(t) = / I r(u)| du.

In [6] we have:

Theorem 2.1 (Lebesgue): S [f] is summable (C, 1) to f(x) at each point x where
g (1) = o).

3 We consider the following lemmas:

Lemma 3.1 (Tamarkin and Hille [3] ): Let { q, } be non-increasing sequence of
non-negative real numbers. Then for any asuchthat0 < as<b < » 0<t <rmand
any n,

b
| Z Q« ®(n-k)' |<KQy ,where
k=a

K is an absolute constant, © = [ +] the integral p;rt of —1— ,and Q, =qo + Qi
+.... qn-

Lemma3.2 (Pati [ 5] ):Let{q,} beasequence of non-negative real numbers, and
let Q, = qo + q + ... +q,, - Then for 0 < t < % we have :
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n . L
1 sin(2n—2k+2) 5"
77 O, Z 1

= 0(n) asn— .
k=o sin —2-

Lemma 3.3 (Dikshit [ 1] ) : Let { q, } be a sequence of non negative real numbers,

and let Q, = qo + q1 + ...... + Qn. Then for 0 < t < 7 we have :
t
cos & — 08 (n—k+ )t
> Q E Ak 2 = (0(n) asn— .
sin %

4. Let g be a positive function defined for x > X,. Then g is said to be slowly

varying [ 6 ] if for o< > 0, g(x). x is an increasing, and —gxié)- is a decreasing function
g(n)

(n+1) <

where g is slowly varying, and % > 0 is non-negative, and non-increasing (for n large

of x for x sufficiently large. Accordingly the sequence q, =

n 1_m
enough); furthermore if « < 1 then by [6] Q, = > qu%—" - g(n)
—c

asn— «©,

In the first part of our note we consider the following :

n
Let g, = __;g(_)__ , where 0 < « < 1, and g is slowly varying.
(n+1)=

Then we have the following theorems:

Theorem 1: S [f] is summable S(N, (gfr 1)) ) to £ (X)
at each point x where & (t) = o (t) .
Analogously we have:

g(n)

Theorem 2: S [f]is summable S(N, ———— ) to f(x)
(n+1)e
at each x where R(t) = o(t).

Theorem 3: S [f] is summable S(N, ot g(li
1 T e ,
r ——————— dt at each point x where ¥ (1) = o(t).
0 t
2 tan —2-
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The proof of the above theorem is contained with some slight modifications (see
remarks on p. 5) in the proof of theorems 4, 5 and 6 below, and hence is omitted. We
note further that the choice o« = 0 with g(x) = 1 for all x reduces to Lebesgue’s
theorem [6].

In the second part of our note we consider the following :

Let g, be a non-negative, non-increasing sequence of real numbers (90>0) and let Q,,
=Q + q + ... + g, be such that Q, » © as n — . Similarly let a, be a
non-negative, nn-increasing sequence of real numbers with a; < 0, and let A,=a,+a,

+ ... +a, be such that A, - © as n —» oo .
: n
1 akan
Assume now that Z =0(1) asn— o,
Q =1 X

Then we have the following theorems:

Theorem 4 : S [f] is summable S(N,q,) to f(x) at each point x

where & (1) = o (;1)

Analogously we have :

Theorem 5: S [f‘] is summable S(N, qn) to f(x) at each point x

where R(t) = o ( Z'c ) .
2"
~ T w1
Therome 6: S [ f] is summable S(N,q,) to n dt
(0] t —_
2 tan >
at each point x where ¢ (1) = o ( e ) .
e At
#Proof of theorem 4: Let S,,(x) denote the sequence of partial sums of S [f ] at t=x.
Then
. t
1 7 Sin (n+ 3 )
Su(x) — f(x) = ——— / o(t) dt.
27 4 sin L
2
Hence
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sin(n —k+%)t

i n
- f(x) = ) - E s
ta(x) ) 0./ ¢ (1) 27 Q, e sin —;

i
= / o) Ky(t) dt ,  say.
o)

In order to prove the theorem we show
w

0/ ¢ (1) Ky(t) dt = o(1) asn-— o,

Now for a suitable choice of s such that ¢ < <8 < 7 we have:

(®) Kq(t) dt

1
(o/'ll/ﬂ;/") s QK0 dt
n

=Il+Iz+I3,Say.

First by lemma 3.2 above we have:
1
I = / T e (1) K () dt

o
=0 1111 )] dt) =0 (—™ )=o) asn—
= (g/‘u) =0 (— :

since n.a, < A,.
Second, clearly the method S(N,q,) is regular. Hence by the Riemann-Lebesgue
theorem and the regularity of the method S(N.,q.)

T
we have : I, = /.» () K, (t) dt = o(1) asn— w
8

Third by lemma 3.1 we have:

Q

L Sle0] —2—w,

/8«>(t)K,,(t)dt=0(—Ql—nl
n n
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Now we can easily show (see [1], [4], [5]) that:

8 Q 1 Q s 1 & dQ
1/|«:>(t)|—;‘dt=[Q (1) t"] Q_l_fi(t)—;‘
T n 1 ""q Q
! = dt
= 12’1+12’2 + 12 3, Say. t ’
Iy = 0 (——) + 0 (2D Bny _ o1)40(1) = ofl) as n — ®
251 Qn Qn , A .
1
L, = Qn 1 / 3 (_s_) dQqsy)
1 n . ag (Q-Qx—1)
= + o(1) ,
o (—5 E% ™ ) + o(1)
n n
B 1 a . k. g _ 1 ae . Qg
of 1<Z=1 A ) +oll) = o—5- 2 ) o)

o(l) asn - o .

Q
L3 = / Ais3 153
#3 = ol QALY

n

1 - Qx

=o( Z ) + o(1) as n —» o,
& k= g

Hence I, = o(1) as n — « . This completes the proof of theorem 4.

Proof of theorem 5: Let S,(x) denote the sequence of partial sums of the derived series
of a Fourier series. Then

sin(n+ )t
1 " d
Sa (¥) = - ARG ( ) dt , and
271' ['s) dt Sin t
2
hence by integration by parts and simplifying we have :
1 7 sin (n+ > )t
Sa(x) - P(x) = o / : r’ (t) dt. Therefore
0 sin >
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n sin (n—k+—;——)t

ta(x) = PX) = 5—— r(t) qu —— dt

o sin —2‘

s
= / r'(t) K,(t) dt = 0(1) as in theorem 4 above.

0
Proof of theorem 6: Let S, (x) denote the sequence of partial sums of the conjugate
series of Fourier series. Then it is easily seen that:

t,(%) 11r / A O / ﬂ(t) K, (t) dt , where
0o o

t

2 tan >
. h cos(n—k+ ) )t
K, () = ———
O = —6— 2% it
k=0

2
Now the proof follows as in theorem 4 above.

REMARKS
1. Ifa, = .9¢ = 1, then A, = n, and Q, = n+1~ A,. We have:
a n A Qk

- = , 1
3O = 0(—F-) =0 amdg 2. —
T

=0(1) asn— o .

Clearly this case represents Lebesgue’s theorem [6] .

gk k'
2.Ifa = 1,and g = ———0 <-< <1 . Then A, =k, and Q ~ g (k)
(K+1) = 1=

as k —» o ; furthermore g (t) = o(t) and

n
1 a, - Qy

Z k K =
Q i=o Ay o= o g(n) Z “ gk) =0(1) as n > o,

Clearly this case represents theorems 1, 2, and 3.

gm) . . : .
3. Assume that(ﬁ:f)?c non-increasing for n > n,. Then it is easily seen that application
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of lemma 3.1 is possible in the proofs of theorems 1, 2, and 3.

REFERENCES

Dikshit, H.R. 1962. The Norlund summability of conjugate series of a Fourier series.
Rendconti Del Circolo mathematico Di Palermo 11: 227-234.

Hardy G.H. 1949. Divergent series, Oxford at the Clarendon press, 60-70.
McFadden L., 1942. Absolute Norlund summability, Duke Math. J., 9: 168-207.

Rafat Nabi Siddigi 1977. On determination of the jump of a function of Wiener's class,
J. of Science of Kuwait Univ. 4: 16-23.

T. Pati, 1958-1961. A generalization of a theorem of Iyengar on the harmonic
summability of Fourier series. Indian J. of Math. Allahabad 1-3: 85-90.

Zygmund, 1969. Trigonometric series, V. 1, Cambridge at the University press, 90-92.

40




