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ABSTRACT 

The reinforcement steel bars and other metal or wooden sections used in the 
construction industry are usually available in standard lengths and are cut in large 
numbers of specified lengths (pieces) according to the needs of the structures. 
The choice of how to cut these lengths is important to minimize the unused part 
of the standard length. If the size of the project is big, the losses may be large 
causing an increase in the total cost of the project. The engineers responsible for 
cutting the sections may use trial and error procedure to minimize the losses. 
The present paper demonstrates a simple algorithm for selecting the optimal 
cutting method to minimize the unused lengths. The solution of the problem is 
obtained through a two step procedure, where the first step generates possible 
feasible combinations made of several pieces, while the second uses a linear 
programming model to minimize the unused lengths, while satisfying the 
amounts requested from each piece. The paper demonstrates the developed 
algorithm through a series of examples ranging from simple to real life examples 
showing its ability to find an optimal solution to the problem. The concept has 
many applications and can produce significant savings in construction material. 

INTRODUCTION 

Construction materials are shipped to the construction site in huge amounts. 
Some of these materials are in the form of sections of different sizes produced in 
standard lengths. Project requirements are usually made through the request of 
great numbers of different specified lengths or pieces from each size. The problem 
of choosing the method of dividing the standard sections, like reinforcement bars, 
aluminum, steel and wooden sections, is important since it can have a considerable 
effect on the total cost of the project. The aim of this work is find an optimal 
solution to the problem, through a two step algorithm, by which the waste length 
is minimized. The scope of application of such an algorithm and its simplicity 
should be very appealing to companies in the construction business. Similar 
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concepts for optimal floor-planning in integrated circuit design are used by other 
researchers (1), to minimize the wastage areas. 

DESCRIPTION OF THE PROBLEM 

Assume that the project requirement from a certain diameter of reinforcement 
bars are given in the form of a table containing the length of each piece and the 
number requested. The solution of the problem can be tackled by answering two 
questions: how to cut a single standard length into smaller pieces to form a 
'combination' of different lengths?, and how many combinations should be used 
to satisfy the different numbers requested from each piece?. In other words, what 
is required is to choose the feasible combinations, and the number of each 
combination to satisfy the list of requirements. 

The first step of choosing a combination can not be handled as a typical 
permutations or combinations problem. The permutations are defined as follows: 
Given N distinct objects and a number M < = N, the number of configurations 
formed by placing M objects in line is denoted by pN M and is called permutations 
of N objects taken M at a time. In the latter definition two permutations are 
different if the order of placement is not the same. The number of permutations 
are computed as follows: 

N 

P N(N-l) .... (N-M+l) 
M 

On the other hand, combinations are denoted by CN M• and are formed by selecting 
the objects in all possible ways where the order of selection is immaterial. The 
number of combinations is computed as follows: 

N 

c N! 
M M! (N-M)! 

The use of combinations to find the number of ways the standard length can be 
divided into pieces is not helpful since the objects to choose from are not distinct, 
and the number M is not constant. More than one piece of the same length can be 
included in the combination, and the number of objects in a combination is 
conditional by the fact that the summation of the individual lengths should be less 
than the standard length. An exhaustive search to determine all possible feasible 
combinations could be used or combinations can be chosen at random since the 
number of feasible combinations can be very large. It will be shown later, 
however, that this effort is not justified since a solution can be found with a limited 
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number of feasible combinations. A simple heuristic approach is developed to 
generate such combinations. 

The Suggested Solution 

The solution to the problem is composed of two steps. The first is the search for 
a set of feasible combinations to be used in the second step which is the optimal 
choice of the number of these combinations needed to satisfy the requested number 
of pieces. The solution is applicable only for sections of a particular size. Several 
solutions will be needed if requests are made for several sizes. 

Combination step 
I 

A heuristic approach is developed to generate a sufficient number of feasible 
combinations. The idea is simply to compile a large array of piece lengths in a 
certain order, and use this array to choose feasible combinations. This choice is 
carried out by using the array to add one length to the next until the accumulated 
length exceeds the maximum standard length. Then, the number of pieces in the 
combination will be obtained by excluding the last piece. This concept is 
presented in a flowchart-like diagram shown in figure (1). The following describes 
how the large array is compiled: 

inner 

loop 

No 

operate on the series 

in sequence 

outer loop 

decrement series by one and print 
feasible combination 

Fig. 1: Combination generating algorithm 
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• the first elements of the array contain the vector of requested piece lengths 
repeated four times, two times in ascending order, and two times in 
descending order. The idea behind this is to generate possible 
combinations from the set of pieces without repetition. The number of 
generated combinations will be limited. 

• given the number of pieces and length of each piece, calculate the 
maximum number of similar pieces to make up a feasible combination 

• complement the array with the series of similar lengths of pieces 
determined in the previous step, arranged in many different ways. Here, 
the number of generated combinations will be large. 

The above method of compiling the array and the way it is compiled is very 
arbitrary, and the function of which is to generate sufficient number of feasible 
combinations. The method permits the generation of combinations from 
unrepeated and repeated pieces. 

Theoretically speaking, the method can generate as much combinations as the 
elements in the array. However, the method can generate many similar 
combinations that have the same pieces and same accumulated length, arranged in 
different sequences. This extended list can then be processed by sorting the 
different combinations and using the query function of any database programs to 
extract the unique combinations. The resulting reduced list can then be inspected 
to exclude combinations with large waste lengths. 

Optimal choice step 

To find the optimal number of repeated combinations to satisfy the 
requirements list, a linear programming model is developed. The system variables 
are the number of times each combination has to be repeated. The objective 
function is the summation of the waste lengths resulting from repeating each 
combination. The system constraints are all in the form of equality constraints, 
where each equation calculates the number requested from a specified piece using 
the chosen combinations. The number of variables and the sequence of pieces in 
each combination required to formulate the linear program are the output of the 
previous step. 

The linear programming model is expressed mathematically in the following 
form: 
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Minimize 

where ci is the waste length from combination and xi is the number of times 
combination i is repeated 

subject to the set of constraints: 

where aij = number of similar pieces i in combination j 
bi = number requested from piece j 
n = the number of feasible combinations 
m = the number of different pieces requested 

The model can be expressed in condensed form as 

Minimize 

n 

subject to the set of constraints, 

I A x=b 

ILLUSTRATIVE EXAMPLES 

Three different examples are cited here to demonstrate the developed algorithm. 
The first example is a simple two-dimensional problem chosen to illustrate the 
solution of the LP model in a graphical form. The second example is a four 
variable example to enable the search for all possible feasible combinations and to 
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study the merit of the exhaustive search for combinations. The third example is 
an actual request forming for a part of a large construction project to illustrate the 
application of the developed algorithm to real problems. 

Example One 

It is assumed that a simple project needs two different lengths of a certain section, 
15 pieces of length 4.3 m and 30 pieces of length 2.5 m. The standard length of 
the section is 12m. Two combinations, i.e. two design variables, are chosen. The 
first combination is 3 x 2.5 + 4.3 with a waste of 0.2 m, the second is 2.5 + 2 
x 4.3 with a waste of 0.9 m. The linear programming model can be set as 
follows: 

Minimize 
Z = 0.2 X1 + 0.9 X2 

subject to the constraints: 
3 X1 + X2 = 30 

X1 + 2 X2 = 15 

The graphical representation of the feasible region and the cost surface is shown 
in figure (2). The optimal solution is x1 • = 9 and x2 * = 3, and the total waste is 
z• = 4.5 m. This means that the minimum waste is realized by dividing the 
standard lengths 9 times with the first combination, and 3 times with the second. 

Example Two 

In this example four pieces are requested with different lengths as follows: 

Table 1: Requirements List for Example 2 

No of length 
pieces (m) 

50 8.2 

20 5.3 

30 4.2 

60 2.1 
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30 

25 

N 20 
c 
0 

:;::::; 
111 c 

~ 15 
0 
0 Optimal Solution x={9,3} , Z=4.5 -0 

~ 10 

Z=10 

5 

0 

0 10 20 30 40 50 
No of combination 1 

Fia. 2: Graphical solution for example 1 

The number of combinations are found by arranging the array used for compiling 
the combinations, using the method described above, in all possible ways of similar 
pieces, in addition to the combination composed of the last three pieces. Using the 
equation for calculating the permutations p41_, the number of permutations will be 
= 4x3x2x1 = 24. The order of placing the vectors of similar pieces affects the 
choice of combinations. Table (2) shows the list of the permutations for arranging 
the series of similar pieces in a line. 

This list was used to generate feasible combinations of repeated pieces. The 
generated combinations were more that 200, that were then screened to exclude 
similar and wasteful combinations. The resulting combinations were 8 in number 
as follows: 
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Table 2: List of Permutations for Example 2 

8.20 5.30 4.20 2.10 
8.20 5.30 2.10 4.20 
8.20 4.20 5.30 2.10 
8.20 4.20 2.10 5.30 
8.20 2.10 4.20 5.30 
8.20 2.10 5.30 4.20 
5.30 8.20 4.20 2.10 
5.30 8.20 2.10 4.20 
5.30 4.20 8.20 2.10 
5.30 4.20 2.10 8.20 
5.30 2.10 4.20 8.20 
5.30 2.10 8.20 4.20 
4.20 8.20 5.30 2.10 
4.20 8.20 2.10 5.30 
4.20 5.30 8.20 2.10 
4.20 5.30 2.10 8.20 
4.20 2.10 5.30 8.20 
4.20 2.10 8.20 5.30 
2.10 8.20 5.30 4.20 
2.10 8.20 4.20 5.30 
2.10 5.30 8.20 4.20 
2.10 5.30 4.20 8.20 
2.10 4.20 5.30 8.20 
2.10 4.20 8.20 5.30 

Table 3: Feasible Combinations for Example 2 

Serial Combination Waste 
leJ:!g_th _(mj 

1 8.2 3.8 

2 8.2 + 2.1 1.7 

3 5.3*2 1.4 

4 5.3 + 2.1*3 0.4 

5 4.2 + 2.1 *3 1.5 

6 4.2*2 + 2.1 1.5 

7 2.1 *5 1.5 

8 5.3 + 4.2 + 2.1 0.4 

The objective function and the associated constraint matrix are give as follows: 
Minimize 
Z = 0.4x, +0.4x2 +1.4x3 +1.5x4 +1.5x5 +1.5x6 +1.7x7 +3.8x8 
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The equality constraints are: 

x7 +x8 = 50 
x, +x2 +2x3 = 20 
x, +x5 +2x6 = 30 
x, +3x2 +5x4 +3x5 +x6 +x7 = 60 

The solution to the LP problem resulted in the following: 

x'= {0,0, 10,0,0, 15,45,5}, and z• =132m. It can be shown here that only four 
out of eight combinations were selected to satisfy the requirements. 

Example Three 

This example is an actual requirements list for a huge construction project. 
At certain stage of execution, the request from three different diameters are as 
follows: 

Table 4: Requirements List of Example 3 

Length Number Length Number Length Number 
(m) D=20 (m) D=16 (m) D=14 

mm mm mm 

8.27 1425D 10.8 _fi]_]_fl _2.00 ...2.2.4.3..6. 
7.31 _148D <LDO __21_lD .2n J..3..3..Q2 

'i 71 4210 R f17 6770 L47 l.4<216. 

'i fl4 1?.70 _2_1Ll ...1.3.3.10 l."B L1635 

5.62 __42_10 __O__R2 ....4.2910. ... 1...21. IT~02 

s no 3270 
I 

1.22 26411 I 

5.4fi ?0?.10 ....82 22160 

'i.OO 421D :n ...63.6.22 
4 92 3270 .51 ...1221..5. 
4 RR 74RO .36 1M22 

4 79 104RO 

3.12 .1495..0. 

.2.93 .1.4950 

l.RR R410 

1 R?. fl'i40 

1 f)'; 74RO 

1.39 270 
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The algorithm will be applied only on the third diameter for illustration. The 
same steps used for the previous example were used here. Only 16 combinations 
(variables) are used, and the number of constraints is 10. The combinations used 
are shown in the following table: 

Table 5: Combinations for Example 3 

Serial Combination Waste (m) 

1 9.00+0.77*2+0.51 *2 0.44 

2 2.72*4 1.12 

3 2. 72*3 + 1.47*2 0.90 

4 2.72*2+ 1.47*4 0.68 

5 2.72+1.47*6 0.46 

6 1.47*4+ 1.43*4 0.40 

7 1.47*3+ 1.43*5 0.44 

8 1.27*5 + 1.22*4 0.77 

9 1.27*4+ 1.22*5 0.82 

10 0.82*14 0.52 

11 0.77*9+0.51*9 0.48 

12 0.77*8+0.51*11 0.23 

13 0.36*32 0.48 

14 0.51 *2+0.36*30 0.18 

15 1.22 *6 + 0. 82*5 0.58 

16 1.22*5 +0.82*7 0.16 

The result of the linear programming model is z.= 18062, and the number of 
repeated combinations is x.={22436, 3186, 0, 0, 557, 2909, 0, 2660, 0, 0, 0, 
1386, 0, 574, 0, 3166}. The solution obtained were rounded to the nearest 
integer. Very slight violation to the equality constraints resulted from the rounding 
of optimal values. However, the optimal waste length remained almost the same. 

DISCUSSION 

The choice of the number of feasible combinations to be used in the optimal 
choice step has been arbitrarily selected in the third example. The extensive search 
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for all possible combinations in the second example showed that the exhaustive 
search for feasible combinations is not justified. 

In the first two examples, the solution of the linear programming problem 
produced integer optimal values of variables. However, the third example optimal 
values were fractional, and had been rounded to the nearest integer. 

Two practical considerations are important here. The first is the choice of the 
combinations to form the terms in the equality constraints. Theoretically speaking, 
the greater the number of sucll combinations the greater the possibility of finding 
a feasible solution. However, some judgement should be exercised in the choice 
of the reduced set of combinations guided mainly by the requested number of 
pieces. The reduced number of combinations used in the constraint matrix has an 
implicit advantage of facilitating the process of cutting in the workshop. Some 
problems with regard to the feasibility of the solution may result from the choice 
of the reduced set of combinations. This can be simply investigated by changing 
the equality constraints into greater than or equal constraints temporarily, and use 
the values of slack variables to add or delete combinations to improve the choice 
made before. 

The second consideration is the fractional solution obtained. In order to 
obtain an integer solution to the problem, integer programming techniques should 
be used. However, it was stated in (2) that: 'Solutions of integer programming 
problems are generally difficult, too time consuming nd expensive,Hence a 
practical approach is to treat all integer variable as continuous and solve the 
associated linear program by the simplex method. We may be fortunate to get 
some of the values of the variables as integers automatically, but when the simples 
method produces fractional solutions for some integer variable, they are generally 
rounded off to the nearest integer such that the constraints are not violated. This 
is very often used in practice, and generally produce a good integer solution close 
to the optimal integer solution, especially when the values of integer variables are 
large'. The rounded solution obtained for example No 3 proved the soundness of 
the quoted point of view. 

CONCLUSIONS 

The present paper suggests a useful algorithm for the optimal cutting of steel 
bars and sections used in construction to minimize the waste lengths. The 
algorithm is composed of two steps; the combination step is capable of generating 
sufficient feasible combinations, and the optimal choice step is an efficient linear 
programming model capable of producing the optimal numbers of repeated 
combinations to satisfy the requirements. The two step algorithm proposed show 

195 



Aly N. El-Bahrawy 

that the essence of the problem is to find to number of repeated combinations and 
not to search for all possibilities of feasible combinations. The series of examples 
presented helped in clarifying the use and benefit of the algorithm and making it 
available to practicing engineers. 
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