

Article

Ferrocene-Based Nonphosphorus Copolymer: Synthesis, High-Charring Mechanism, and Its Application in Fire Retardant Epoxy Resin

Liao, Dui-Jun, Xu, Qi-Kui, McCabe, Richard W., Babu, Heeralal Vignesh, Hu, Xiao-Ping, Pan, Ning, Wang, De-Yi and Hull, T Richard

Available at http://clok.uclan.ac.uk/20506/

Liao, Dui-Jun, Xu, Qi-Kui, McCabe, Richard W., Babu, Heeralal Vignesh, Hu, Xiao-Ping, Pan, Ning, Wang, De-Yi and Hull, T Richard ORCID: 0000-0002-7970-4208 (2017) Ferrocene-Based Nonphosphorus Copolymer: Synthesis, High-Charring Mechanism, and Its Application in Fire Retardant Epoxy Resin. Industrial & Engineering Chemistry Research, 56 (44). pp. 12639-12643. ISSN 1520-5045

It is advisable to refer to the publisher's version if you intend to cite from the work. http://dx.doi.org/10.1021/acs.iecr.7b02980

For more information about UCLan's research in this area go to http://www.uclan.ac.uk/researchgroups/ and search for <name of research Group>.

For information about Research generally at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the <u>http://clok.uclan.ac.uk/policies/</u>

Ferrocene-Based Non-phosphorus Copolymer: Synthesis, High-charring Mechanism and Its Application in fire retardant Epoxy Resin

Dui-Jun Liao[†], Qi-Kui Xu[†], Richard W. McCabe[‡], Heeralal Vignesh Babu[¶], Xiao-Ping Hu^{†‡*}, Ning Pan^ξ, De-Yi Wang[¶], T. Richard Hull^{‡*}

[†]School of materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P.R. China

[‡]Centre for Fire and Hazards Science, University of Central Lancashire, Preston PR1 2HE, UK.

[¶]IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain
^ξFundamental Science on Nuclear Wastes and Environmental Safety Laboratory,
Southwest University of Science and Technology, Mianyang 621010, P. R. China

* Corresponding authors: Prof. Xiao Ping Hu; Prof. T. Richard Hull

E-mail addresses: huxiaoping@swut.edu.cn (Xiao Ping Hu); trhull@uclan.ac.uk

Additional Supporting Data

Table caption

Table S1. Chemical structures of pyrolysis compounds for PDPFDE at 700 °C under

 N_2

Figure captions

Figure S1. FTIR spectrum of DAF

Figure S2. ¹H NMR spectrum of DAF.

Figure S3. ¹³C NMR spectrum of DAF.

Figure S4. ¹H NMR spectrum of DCF.

Figure S5. GPC curve of PDPFDE.

Figure S6. DSC curve of PDPFDE in N₂ atmosphere.

Figure S7. The SEM image of the char residue of PDPFDE under nitrogen at 700 °C

in muffle furnace for 30 min.

Peak	t _R (min)	Name of compounds	molecular formula	M.W
				(g/mol)
1	1.52	carbon dioxide	CO2	44
2	1.89	cyclopentadiene	\bigcirc	66
3	2.51	1-methyl-cyclopentadiene		80
4	2.74	benzene		78
5	4.46	toluene		92
6	5.41	2-ethylacridine		207
7	6.32	ethylbenzene		106
8	6.94	benzenemethanimine	NH	105
9	8.47	1-actylcyclopentadiene		108
10	9.48	indane		118
11	9.79	indene		116
12	11.68	1-methylindene		130
13	12.11	naphthalene		128
14	13.66	2,6-dimethylnaphthalene		156
15	14.07	ferrrocene	□) - <mark>-e</mark> €	186
16	14.89	biphenyl		154

Table S1. Chemical structures of pyrolysis compounds for PDPFDE at 700 $^{o}\mathrm{C}$ under N_{2}

_

_

17	15.17	diphenylmethane		168
18	15.30	1-naphthalene-carbonitrile	Ň	153
19	16.66	bibenzyl		182
20	17.49	1H-phenalene		166
21	18.72	1-acetyl ferrocene		228
			Fe	
22	18.90	(E)-stilbene		180
23	19.28	1.4-dimethyl-7-(1-methylethyl)		198
	17.20	azulene		170
		uzurene		
24	20.02	1 1' 1" (1 otherw ? ylidena)	L.	250
24	20.03			238
		tris-benzene	NHa	
				10.6
25	20.60	2,2°-diphenylethylamne	o	196
26	22.00	1 12 1 1 0	Q Fe	270
26	22.09	1,1 [°] -diacetyl-ferrocene	н₃с−с	270
27	22.39	Iron	Fe	56
28	23.99	3-methyl terphenyl		244

Figure S1. FTIR spectrum of DAF

Figure S2. ¹H NMR spectrum of DAF

Figure S3. ¹³C NMR spectrum of DAF

Figure S4. ¹H NMR spectrum of DCF

Figure S5. GPC curve of PDPFDE.

Figure S6. DSC curve of PDPFDE in N₂ atmosphere.

Figure S7. The SEM image of the char residue of PDPFDE under nitrogen at 700°C in muffle furnace for 30 min.

The Figure S7 represents the SEM image of the char residue of PDPFDE under nitrogen at 700°C in muffle furnace for 30 min. Based on the SEM image, we can clearly see the many nanowires existing in the char residue. However, the investigation of the detailed component and structure of the nanowires needs further study in the future.