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ABSTRACT 
Background 
Influenza outbreaks affect millions of people every year and its surveillance is usually 
carried out in developed countries through a network of sentinel doctors who report the 
weekly number of Influenza-like Illness cases observed among the visited patients. 
Monitoring and forecasting the evolution of these outbreaks supports decision makers in 
designing effective interventions and allocating resources to mitigate their impact. 
 
Objectives 
Describe the existing participatory surveillance approaches that have been used for 
modeling and forecasting of the seasonal influenza epidemic, and how they can help 
strengthen real-time epidemic science and provide a more rigorous understanding of 
epidemic conditions. 
 
Methods 
We describe three different participatory surveillance systems, WISDM (Widely Internet 
Sourced Distributed Monitoring), InfluenzaNet and Flu Near You (FNY), and show how 
modeling and simulation can be or has been combined with participatory disease 
surveillance to: i) measure the non-response bias in a participatory surveillance sample 
using WISDM; and ii) nowcast and forecast influenza activity in different parts of the 
world (using InfluenzaNet and Flu Near You). 
 
Results 
WISDM based results measure the participatory and sample bias for three epidemic metrics i.e. 
attack rate, peak infection rate, and time-to-peak, and find the participatory bias to be the largest 
component of the total bias. InfluenzaNet platform shows that digital participatory surveillance 
data combined with a realistic data-driven epidemiological model can provide both short-term 
and long-term forecasts of epidemic intensities; and the ground truth data lie within the 95 
percent confidence intervals for most weeks. The statistical accuracy of the ensemble forecasts 
increase as the season progresses.  The Flu Near You platform shows that participatory 
surveillance data provide accurate short-term flu activity forecasts and influenza activity 
predictions. The correlation of the HealthMap Flu Trends estimates with the observed 
CDC ILI rates is 0.99 for 2013-2015. Additional data sources lead to an error reduction 
of about 40% when compared to the estimates of the model that only incorporates CDC 
historical information. 
 
Conclusions 
While the advantages of participatory surveillance, compared to traditional surveillance, 
include its timeliness, lower costs, and broader reach, it is limited by a lack of control 
over the characteristics of the population sample. Modeling and simulation can help 



overcome this limitation as well as provide real-time and long term forecasting of 
Influenza activity in data poor parts of the world.  
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INTRODUCTION 
Epidemiological surveillance is an important facet in the detection and prevention of the 
spread of an epidemic [1]. Knowing which diseases and variations of these diseases are 
present can help medical researchers identify appropriate interventions, as well as 
strategies for treatment to reduce overall impact of the disease, including mortality.  
Because of the utility of such data, a number of agencies collect and distribute 
surveillance reports on prevailing epidemics or other diseases of interest. In the United 
States, the Centers for Disease Control and Prevention (CDC) produces surveillance 
counts for influenza and other diseases based on reports from state and local 
laboratories and medical health centers (https://www.cdc.gov/flu/weekly/summary.htm). 
Internationally, the World Health Organization and other agencies produce surveillance 
data for a number of emerging diseases, such as Zika and Ebola 
(http://www.who.int/emergencies/zika-virus/situation-report/25-august-2016/en/). 
  
While these clinically-based disease surveillance systems are necessary to keep track 
of disease prevalence and contain their spread, they have practical limitations [2]. Given 
the time required to collate surveillance numbers, the reports are usually several weeks 
old, resulting in a mismatch between the public health response and conditions on the 
ground [3]. Depending upon the transmissibility of the epidemic, there can be a big 
difference in prevalence from week to week. Additionally, even when collecting data 
from local medical centers, coverage is not always uniform. As a result, the CDC 
weights the public health response based on state population, as well as a region’s past 
history of influenza-like illness (ILI) cases [1].  Finally, the level of detail afforded by the 
medical laboratories and centers reporting to these clinically-based systems may not be 
sufficient for examining the type of regional demographics that help to identify 
interventions that are likely to be effective [3].   
  
A number of algorithms and technical approaches have been developed in recent years 
to attempt to mitigate the shortcomings in clinically collected surveillance data. To 
address the time delay between when surveillance data become available and the 
current date, approaches have been developed for ILI that use mechanistic modeling 
based on epidemiological knowledge of the pathways of flu transmission to estimate 
near real-time and future estimates of flu activity [4, 5]. Other approaches have 
attempted to leverage information from constantly-changing Internet-based data 
sources to identify patterns that may signal a change in the incidence of ILI cases in a 



population. These data sources include Internet search engines [6-12], Twitter and its 
microblogs [13-17], clinicians’ Internet search engines [18], and participatory disease 
surveillance systems where responders on the ground report on disease propagation 
[19]. Authors in [20] conduct a comparative study to analyze whether Google, Twitter or 
Wikipedia based surveillance performs the best when compared to CDC ILI data.  
 
In addition to helping address the time delay problem, participatory disease surveillance 
can also offer valuable insight into the characteristics of a disease and the 
demographics of the affected population [19, 21-24]. It can help to augment coverage in 
areas where there are fewer medical centers or where infected people are less likely to 
go for clinical evaluation. Finally, participatory surveillance also offers a good 
opportunity to promote awareness of an epidemic [25].  
 
Participatory surveillance has its limitations as well, especially participatory bias 
resulting from non-uniform coverage and from waning interest and participation over the 
duration of an epidemic [22]. Additionally, although not addressed with the examples in 
this paper, training and trust issues may lead to under- or incorrect reporting [23]. 
Combining participatory surveillance with modeling and simulation can not only help to 
reduce participatory bias, but can also improve real-time forecasting, and thus help 
identify which interventions are most likely to be effective over time in a given area.  
 
In this article, we investigate how an understanding of the results from three 
participatory disease surveillance systems, WISDM (Widely Internet Sourced 
Distributed Monitoring), InfluenzaNet, and Flu Near You (FNY), can be or has been 
extended through the use of modeling, simulation and forecasting.  
 
METHODS  
 

1. WISDM AND SYNTHETIC INFORMATION  

 
WISDM (Widely Internet Sourced Distributed Monitoring) is a web-based tool developed 
at Virginia Tech that supports crowdsourced behavioral data collection, inspection, and 
forecasting of social dynamics in a population. When Integrated with online 
crowdsourcing services such as Amazon’s Mechanical Turk (MTurk), WISDM provides 
a cost-effective approach to real-time surveillance of potentially evolving disease 
outbreaks [26]. So far, WISDM has been used primarily to collect demographic and 
health behavior data for epidemiological research. Here, we describe how modeling can 
be used in combination with WISDM to measure participatory (non-response) bias.  
   



Using Modeling to Measure Participatory Bias 
 
Crowdsourcing platforms like MTurk can be used to recruit responders for a low fee. 
MTurk allows “requesters” to recruit human intelligence to conduct tasks that computers 
cannot do; individuals who browse among existing jobs are called “workers.” However, 
there is some concern that users recruited on crowdsourcing platforms may not be 
representative of the population at large [27, 28]. MTurk workers tend to be young, 
educated and digitally savvy, so their responses may systematically differ from the 
responses of those who did not participate in the survey. Given this potential for non-
response or participatory bias, understanding how to use data from such surveys for 
epidemic surveillance is a challenge.  
  
To address this issue, we developed a simulation-based approach. Specifically, we 
combined results of a survey of Delhi, India, residents conducted on WISDM through 
MTurk with agent-based simulations of the Delhi population to understand the MTurk 
sample bias. First, we constructed a synthetic population that was statistically 
indistinguishable from the Delhi census (“V” in Figure 1), thus providing the best extant 
at-scale representation of the population.  
 
The synthetic population is generated by combining marginal distributions of age, 
household income, and household size for each Census block group with the 
corresponding Public Use Microdata Sample. This is done using the Iterated 
Proportional Fitting procedure [29]. Validation is done by comparing distributions of 
variables not included in the “iterative proportional fitting” step with the corresponding 
distributions in the generated synthetic population. The procedure is guaranteed to 
converge [30] and the inferred joint distribution is the best in the maximum entropy 
sense [31]. 
 
The synthetic population is generated for each block group, which is the highest 
resolution at which US Census data are available publicly. We generate social contact 
networks ("contact matrices") for the synthetic population through a detailed data-driven 
model where after the agents with demographics are generated, as explained above, 
agents are assigned home locations using road network data (from HERE, formerly 
known as NAVTEQ), daily activity patterns are assigned using the National Household 
Travel Survey data, and activity locations are assigned using Dun & Bradstreet data. 
This allows social contact networks to be extracted based on agents being 
simultaneously present at locations for overlapping durations. For a detailed description 
of the construction of synthetic populations, see [32-35] and for their applications, see 
[36-41]. 
 



From this synthetic population, we selected individuals whose demographics most 
closely matched the demographics of the MTurk respondents of the WISDM survey (“S’ 
” in Figure). Then, epidemic characteristics of this selected subsample were studied and 
compared to the epidemic characteristics of the entire synthetic population. These latter 
two steps are described in more detail below. 

 
Figure 1: Mapping of MTurk sample to synthetic individuals 

Process for Finding the “MTurk-Matched Delhi Synthetic Population”  
 
First, we used WISDM to collect demographics and health behaviors of about 600 
MTurk workers; the health behaviors included preventative and treatment behaviors 
related to Influenza. Then we calculated the Euclidean distance between each of these 
approximately 600 responders and every person in the synthetic population of the same 
age, gender and household size.  Next, we selected the closest synthetic matches to 
each survey respondent. If more than one match was identified, all of the matches were 
retained. We repeated this procedure for each responder in the survey, which provided 
us with a subpopulation of the synthetic population that most closely matched the 
WISDM-based survey respondents. This subpopulation is denoted by S in Figure 1, and 
V denotes the total synthetic population of Delhi. 
 
However, the synthetic subpopulation (S) was not statistically representative of the 
MTurk sample given that survey respondents could be matched with multiple 
individuals. Thus, we used stratified sampling to construct a finer sample of the 
synthetic population that was equivalent to those who took the MTurk survey.  
 
Specifically, we divided both the survey and synthetic subpopulation (S) data into H 
mutually exclusive strata, where each stratum corresponded to a unique combination of 
three demographic variables, specifically age, gender and household size. Only these 3 
demographic factors were used for stratification since India Census did not have 
information on other common socio-economic variables like income, education, 
employment and access to internet. Variables such as income and access to internet 
could be especially important in matching MTurks with individuals in the synthetic 



population but due to lack of data this could not be done. This is a significant limitation 
of the current analysis which we expect to improve upon as more data becomes 
available in the future.  
 
We discretized age into A distinct intervals and household size into B intervals. Gender 
was split into two groups. This resulted in H=2AB strata. Because all matched synthetic 
people had been retained, the number of observations (N1) in the synthetic 
subpopulation (i.e., first stratum of subpopulation S) was much larger than the number 
of observations (n1) in the first stratum in the MTurk survey (i.e., first stratum of the 
actual survey sample). Thus, to obtain a representative sample of this first stratum, n1 
observations were randomly sampled from the synthetic subpopulation without 
replacement. The same procedure was performed for all the remaining strata. This 
provided us with the final “MTurk Matched Delhi Synthetic Population” sample set S' in 
Figure 1, which demographically matched the MTurk survey data. 
 

Comparing Epidemic Outcomes Using WISDM  
 
Our goal was to understand the differences in influenza epidemic outcomes across the 
three populations (V, S, and S’). We considered three different metrics for measuring 
epidemics: (1) the size of the epidemic (i.e., the attack rate), (2) the peak number of 
infections, and (3) the time it takes for the epidemic to peak. A difference in these 
metrics between S and S' would be equivalent to the sample bias if we assume S 
captures the entire MTurk population. This may not be true unless the sample size is 
very large which is not the case in this study. However, for very large samples, it would 
give the sample bias since S' is the sample and S is the entire synthetic subpopulation 
that matches the attributes of the sample. Differences between V and S metrics would 
be equivalent to the non-response bias because individuals outside S did not participate 
in the survey. 
 
In order to compare the epidemic outcomes, we simulated an influenza outbreak using 
an SEIR (susceptible, exposed, infected and recovered) disease model [34, 35] in the 
synthetic Delhi population. Each node in the network represents an individual, and each 
edge represents a contact on which the disease can spread. Each node is in one of four 
states at any given time: S, E, I, or R. An infectious person spreads the disease to each 
susceptible neighbor independently with a probability referred to as the transmission 
probability, given by 
 

p = λ (1 – (1 –τ) Δt), 
 



where λ is a scaling factor to lower the probability (e.g., in the case of vaccination), τ is 
the transmissibility and Δt is the duration of interaction in minutes. Durations of contact 
are labels on the network edges. A susceptible person undergoes independent trials 
from all of its neighbors that are infectious. If an infectious person infects a susceptible 
person, the susceptible person transitions to the exposed (or incubating) state. The 
exposed person has contracted Influenza but cannot yet spread it to others. The 
incubation period is assigned per person, according to the following distribution: 1 day 
(30%); 2 days (50%); 3 days (20%). At the end of the exposed or incubation period, the 
person switches to an infected state. The duration of infectiousness is assigned per 
person, according to the distribution: 3 days (30%); 4 days (40%); 5 days (20%); 6 days 
(10%). After the infectious period, the person recovers and stays healthy for the 
simulation period. This sequence of state transitions is irreversible and is the only 
possible disease progression. We seed the epidemic in a susceptible population with 10 
infections that are randomly chosen every day. Twenty-five replicates were run to 
account for the stochastic randomness arising from the selection of initial infectors.  
 
2. INFLUENZANET 
 
In 2008, a large research project funded by the European Commission and coordinated 
by ISI Foundation in Turin, Italy, led to the creation of InfluenzaNet, a network of web-
based platforms for participatory surveillance of ILI (Influenza-like Illness) in ten 
European countries [42]. The ambition was to collect real-time information on population 
health through the activity of volunteers who provide self-reports about their health 
status and, by combining this real-time data feed with a dynamical model for spatial 
epidemic spreading, to build a computational platform for epidemic research and data 
sharing. The results of this multiannual activity have been used to create a novel, 
modular framework (the “FluOutlook” framework) capable of capturing the disease 
transmission dynamics across country boundaries, estimating key epidemiological 
parameters, and forecasting the long-term trend of seasonal influenza [43].  
The framework consists of three main components: (1) input, (2) simulation and 
forecast, and (3) output (Figure 3).  

(1) The input component estimates initial infections for a given week in any census 
area from collected self-reported information from volunteers on InfluenzaNet 
platforms or from other data proxies like Twitter. InfluenzaNet data collection has 
been described in several previous papers [44]. The number of users reporting a 
case of ILI each week is used to calculate the weekly incidence of ILI among 
active users. Active users are those who completed at least one InfluenzaNet 
symptoms questionnaire during the influenza season. Since users report their 
place of residence at the level of postal codes, the ILI weekly incidence can be 
calculated at the resolution level of postal codes.  



(2) The simulation and forecast component is a computational modeling and 
simulation engine named GLEAM (GLobal Epidemic And Mobility model) [45, 
46]. The GLEAM dynamical model is based on geographical census areas 
defined around transportation hubs and connected by long and short-range 
mobility networks. The resulting meta-population network model can be used to 
simulate infectious disease spreading in a fully stochastic fashion. The 
simulations, given proper initial conditions and disease model, generate an 
ensemble of possible epidemic evolution for epidemic parameters, such as newly 
generated cases. In the application to seasonal influenza, GLEAM is limited to 
the level of a single country, with only the population and mobility of the country 
of interest taken into account. The number of ILI cases extracted from the 
InfluenzaNet platforms are mapped onto the corresponding GLEAM geographical 
census areas and used as seeds to initialize the simulations. The unique 
advantage provided by using the data collected by the Influenzanet platform as 
initial conditions consist in the high resolution, in time (daily) and space (postal 
code level), with which data are available. This geographical and temporal 
resolution for the initial conditions cannot be achieved with any other signal. 
Moreover, these are not proxy data for the ILI activity among the population but 
indeed represent a high-specificity ground truth for the initial conditions that 
cannot be obtained with any other source of information. Given these high quality 
and highly reliable initial conditions, the GLEAM simulations perform a Latin 
hypercube sampling of a parameter space covering possible ranges of 
transmissibility, infection periods, immunization rates, and a tuning parameter 
regulating the number of generated infected individuals. In the prediction 
component of the framework, the large-scale simulations generate a statistical 
ensemble of the epidemic profiles for each sampled point in the parameter 
space. From each statistical ensemble, the prediction component measures its 
likelihood function with respect to up-to-date ILI surveillance data and selects a 
set of models by considering a relative likelihood region [47].  

(3) The set of selected models represents the output component and provides both 
long-term (i.e., four weeks in advance) and short-term predictions for epidemic 
peak time and intensity. Results are disseminated at [48]. 

 
 



 
Figure 2: The FluOutlook framework 

To quantify the simulation’s forecast performance, the Pearson correlation between 
each predicted time series and sentinel doctors surveillance time series can be used. 
Moreover, the Mean Absolute Percent Error can be used to evaluate the magnitude 
estimation and the peak week accuracy defined as percentage of the selected 
ensemble of simulations providing predictions within one week for peak time. 
 
 
3. FLU NEAR YOU 
 
Flu Near You (FNY) is a participatory disease surveillance system launched in October 
2011 by HealthMap of Boston Children’s Hospital, the American Public Health 
Association, and the Skoll Global Threats Fund [17]. FNY maintains a website and 
mobile application that allows volunteers in the United States and Canada to report their 
health information using a brief weekly survey. Every Monday, FNY sends users a 
weekly email asking them to report whether or not they experienced any of the following 
symptoms during the previous week: fever, cough, sore throat, shortness of breath, 
chills, fatigue, nausea, diarrhea, headache, or body aches. Users are also asked to 
provide the date of symptom onset for any reported symptoms. Users experiencing 
fever plus cough and/or sore throat are considered by FNY to be experiencing an ILI. 
FNY’s definition of ILI differs slightly from the CDC US Outpatient Influenza-like Illness 
Surveillance Network (ILINet) definition, which defines ILI as fever plus cough and/or 
sore throat without a known cause other than influenza.  
  



FNY was conceived to capture flu activity in a population group that may not necessarily 
seek medical attention, while CDC’s ILINet was designed to monitor the percentage of 
the population seeking medical attention with ILI symptoms. Recent estimates confirm 
that only approximately 35% of FNY participant that report experiencing ILI symptoms 
seek medical attention. Despite this design (and observed) difference and because 
these two distinct groups (those seeking medical attention versus those not doing so) 
interact, large changes in ILI in CDC’s ILINet are also generally observed in the FNY 
signal as shown in Figure 5 for the 2013-2014 and 2014-2015 flu seasons and as 
previously shown in [19]. To produce Figure 5, spikes of unrealistic increased FNY ILI 
rates (calculated as the weekly number of users who experienced ILI divided by the 
total number of reports received during the same week) were first removed. These 
unrealistic spikes (defined as a weekly change in the FNY ILI rates larger than 10 
standard deviations from the mean change of the last four weeks) are often associated 
with media attention on FNY that causes a temporary surge of interest in the system 
among people sick with the flu, as described in [17]. Flu estimates were then produced 
one week ahead of the publication of CDC reports by combining historical CDC-
reported flu activity (via a lag-2 autoregressive model) with the smoothed weekly FNY 
rates. These flu estimates are displayed in blue and labeled AR(2)+FNY on Figure 5.  
 
The reason why we used CDC-reported ILI rates as our reference for traditional flu 
surveillance is because these ILI rates have been recorded for multiple years, and 
public health officials have used them as proxies of influenza levels in the population. 
This is consistent with multiple flu activity prediction studies in the USA [7-9, 49-50]. 
With the intent of providing more timely, yet still familiar, information to public health 
officials, we use the smoothed FNY ILI rates as one of multiple data inputs into the 
HealthMap Flu Trends influenza surveillance and forecasting system [51]. 
 
The HealthMap Flu Trends system relies on a machine-learning modeling approach to 
predict flu activity using disparate data sources [49], including Google searches [8-9], 
Twitter [15], near real-time electronic health records [50], and data from participatory 
surveillance systems such as FNY [19]. The HealthMap Flu Trends system provides 
accurate real-time and forecast estimates of ILI rates at the national as well as regional 
levels in the United States up to two weeks ahead of CDC’s ILINet flu reports.  
  
The multiple data sources entered into the HealthMap Flu Trends system are each 
individually processed using machine-learning algorithms to obtain a predictor of ILI 
activity. These individual predictions of ILI rates are then fed into an ensemble machine-
learning algorithm that combines the individual predictions to produce robust and 
accurate ILI estimates, as described in [49]. The estimates produced by this ensemble 
machine-learning approach outperform all of the predictions made using each of the 
data sources independently.  



RESULTS 
 
1. WISDM Based Results 
 
The results based on WISDM are illustrated as time series of daily infections (also 
called epidemic curves) in Figure 2. Figures 2a and 2b correspond to low transmission 
(.00003 per minute of contact time and R0=1.4), and high transmission (.00006 per 
minute of contact time and R0=2.7) rates respectively. The red epidemic curve in each 
represents the entire Delhi synthetic population (V). The black and blue epidemic curves 
show results for the MTurk Matched Delhi Synthetic Population (S') and the entire 
MTurk Matched Delhi synthetic population (S), respectively. Under high transmission 
rate, the attack rate and the peak infection rate are higher but the time-to-peak is lower. 
This is expected since a higher transmission rate spreads the disease quickly and to 
more individuals in the population. 
 
If surveillance is restricted to only the MTurk sample (S'), the level of bias would equal 
the difference between the red and black curves. This difference represents a 
combination of the non-response bias (difference between the red curve and blue 
curve) and the sample-size bias (difference between the blue curve and black curve).  
 

 
Figure 3: (a) Epidemic curves under low transmission rate; (b) Epidemic curves under 
high transmission rate. 

In order to measure the significance of the total bias, the non-response bias, and the 
sample-size bias of the simulation illustrated in Figure 2, we tested the differences in 
attack rate, peak infection rate, and time-to-peak by using the two-sample t-test. The 
mean difference, 95% confidence intervals, as well as p-values are summarized in 
Tables 1 and 2 for low and high transmission rates respectively. 
 
As shown in Table 1, with a low transmission rate (.00003), the attack rate for S' is 
about 10% lower than that for V, while the peak infection rate for S' is 1.36% lower and 
the epidemic curve peaks 1 day later. Total biases for all three metrics are statistically 



significant. Also for all three metrics, the non-response bias is larger than the sample 
bias and dominates the total bias. This is consistent with the fact that MTurk survey 
responders tend to be younger, educated males, among whom the incidence of disease 
is typically lower than much of the rest of the population.  
 
Results for the higher transmission rate (.00006) are similar (Table 2). Note, however, 
that the difference between the red and black curves (in Figure 2) shrinks as the 
transmission rate becomes higher.  
 
Table 1: Bias in epidemic metrics under low transmission rate 

 Non-response 
bias (V-S) 

Sample-size 
bias (S-S') Total bias (V-S') 

Attack rate Mean 
difference 7.90% 2.13% 10.03% 

 95% CI (7.88%, 7.91%) (1.58%, 2.68%) (9.47%, 10.58%) 

 p-value < .001 < .001 < .001 
Peak 
infection 
rate 

Mean 
difference 1.22% 0.14% 1.36% 

 95% CI (1.22%, 1.22%) (0.05%, 0.23%) (1.27%, 1.45%) 

 p-value < .001 .003 < .001 
Time to 
peak 

Mean 
difference -1.76 days 0.76 day -1 day 

 95% CI (-1.96, -1.56) (0.16, 1.36) (-1.58, -0.42) 
 p-value < .001 .02 .002 

 
 
Table 2: Bias in epidemic metrics under high transmission rate 

 Non-response 
bias (V-S) 

Sample-size 
bias (S-S') Total bias (V-S') 

Attack rate Mean 
difference 6.31% 3.58% 9.90% 

 95% CI (6.30%, 6.32%) (3.06%, 4.10%) (9.38%,10.42%) 

 p-value < .001 < .001 < .001 
Peak 
infection 
rate 

Mean 
difference 

2.51% 0.63% 3.14% 

 95% CI (2.50%, 2.53%) (0.49%, 0.77%) (3.01%, 3.28%) 

 p-value < .001 < .001 < .001 



Time to 
peak 

Mean 
difference -1.44 days 0.12 day -1.32 days 

 95% CI (-1.69, -1.20) (-0.10, 0.34) (-1.59, -1.05) 
 p-value < .001 .28 < .001 

 
 
2. INFLUENZANET Based Results 

 
In this section, we show results for simulations and forecasts performed for the 2015-
2016 influenza season. The input component of the framework has been initialized with 
ILI cases from a number of selected countries which are part of the Influenzanet 
network: Belgium, Denmark, Italy, the Netherlands, Spain, and the United Kingdom. In 
the simulation component, weekly surveillance data of sentinel doctors, also called 
traditional surveillance, in each of the selected countries have been used as ground 
truth to select the set of models with maximum likelihood. 
 
Figure 4 illustrates the results of 1-week, 2-week, 3-week, and 4-week predictions.  
We include results for 1-week, also called now-casting, predictions for the following 
reason. The now-casting predictions, i.e. inferring the incidence value that the traditional 
influenza surveillance will report in the following week, are usually used to evaluate the 
performance of the predictions based on the model described in this work with respect 
to predictions based on linear regression models applied to traditional surveillance data 
only. In a recent work by Perrotta et al [52], it has been shown how real-time forecasts 
of seasonal influenza activity in Italy can be improved by integrating traditional 
surveillance data, with data from the participatory surveillance platform called Influweb 
and the now-casting predictions have been used as a benchmark test to compare the 
two approaches. 

 



Figure 4: Epidemic profiles for Belgium, Denmark, Italy, the Netherlands, Spain, and the United Kingdom considering 
4-week, 3-week, 2-week and 1-week lead predictions. The best estimation (solid line) and the 95% confidence 
interval (colored area) are shown together with sentinel doctors surveillance data (black dots) which represent the 
ground truth, i.e. the target signals.  

 
Figure 4 shows that for all countries under study, the empirical observations, i.e. the 
ground truth of the traditional surveillance reference data represented as black dots in 
the Figure, lie within the 95 percent confidence intervals for most weeks. This gives a 
qualitative indication of the goodness of the predictions. 



In Table 3 we show results for the Pearson correlation between each predicted time 
series and sentinel doctors surveillance time series and also results for the Mean 
Absolute Percent Error. 
 
Table3: Person correlations, mean absolute percentage errors (MAPE) and Peak week 
accuracy obtained by comparing the forecast results and the sentinel doctors ILI 
surveillance data along the entire season in each country. *  p<0.01, ** p<0.001 *** 
p<0.0001.

 
 
Pearson correlation: as expected, the statistical accuracy of the ensemble forecasts 
increase as the season progresses. In the case of a 1-week lead prediction, the 
correlation is close to 1 for Italy and Belgium. The correlations are around 0.8 for 2-
week predictions for the United Kingdom, around 0.7 for the Netherlands and above 0.8 
for 4-week lead predictions for United Kingdom and Italy.  
 
MAPE: The peak magnitude is one of the free parameters we fit in the model. As the 
correlation increases with the progressing of the season, the MAPE, i.e. the percentage 
error on the peak magnitude estimated by the model decreases or remains quite stable 
for countries, like the United Kingdom, in which the correlation is consistently high. For 
other countries, the performance is not as good and the peak magnitude is not so well 
estimated. Belgium and Spain are the two countries in which the performance is worse. 
This might be due to the fact that on one hand the ILI incidence curve from Influenzanet 
in Spain is very noisy, mainly due to low participation, and this has affected the 
goodness of the predictions in terms of amplitude and correlation. In Belgium, the ILI 
incidence data from traditional surveillance have been very noisy due to an unusually 
mild influenza season in this country. More information about the Influenzanet ILI 
incidence curves in the various countries can be found at the page: 
https://www.influenzanet.eu/en/flu-activity/. 
 
Peak accuracy: The peak week accuracy also increases as the season progresses and, 
notably, it is already above 60% up to four weeks of lead in the case of Italy, 
Netherlands and Spain. 
 



Overall, even for a peculiar influenza season such as 2015-2016, with an unusually late 
peak, the results show that our framework is capable of providing accurate short-range 
(1-week, 2-week) forecasts and reasonably accurate longer-range (3-weeks, 4-weeks) 
predictions of seasonal influenza intensities temporal trend and intensities. 
 
3. FLU NEAR YOU Based Results 

 
We quantitatively confirmed that incorporating data from our participatory surveillance 
system improved real-time flu predictions by comparing the aforementioned flu 
estimates with flu estimates produced using a model based only on historical CDC-
reported flu activity (a lag-2 autoregressive model), labeled AR(2) on Figure 5. The 
correlation between the observed flu activity and the estimates obtained using a model 
based only on historical ILI information, for the 2013-2015 time window, was 0.95, 
whereas the correlation with the model that incorporates FNY information was 0.96. 
While this represents a mild improvement in the correlation values, a more statistically 
robust test, as introduced in [9], showed that the incorporation of FNY information led to 
a 10% mean error reduction, with a 90% confidence interval of (4%, 24%), when 
compared to the baseline autoregressive model. The bottom panel of Figure 5 shows 
visually the errors from each model. 
  
HealthMap Flu Trends national-level real-time predictions that were available one week 
ahead of the publication of the weekly CDC reports for the 2013-14 and the 2014-2015 
influenza seasons are shown in red on Figure 5. For comparison purposes, the 
correlation of the HealthMap Flu Trends estimates with the observed CDC ILI rates is 
0.99, for the 2013-2015 time window, and the addition of multiple data sources leads to 
a mean error reduction of about 83% with a 90% confidence interval of (69%, 85%) 
when compared to the estimates of the model that only uses CDC historical information 
(AR(2)). In Figure 6, the historical contributions of the different individual predictors (and 
their tendencies) in the HealthMap flu estimates are displayed. As illustrated in Figure 6, 
FNY inputs do contribute to the ensemble-based flu prediction estimates.  



 
Figure 5: (Top panel) The USA CDC's ILI (black) percent value (y-axis) is displayed as a 
function of time (x-axis). Predictions produced one week ahead of the publication of 
CDC ILI reports using: (1) only historical CDC information via an autoregressive model 
(AR(2), green), (2) an autoregressive model that combines historical CDC information 
with FNY information (AR(2)+FNY, blue), and (3) an ensemble method that combines 
multiple data sources, including FNY, Google search frequencies, Electronic Health 
Records and historical CDC information (All sources, red) are shown. (Bottom panel) 
The errors between the predictions and the CDC reported ILI for each prediction model 
are displayed. 

 



 
Figure 6: Heatmap showing the relevance of each of the input data sources on the flu 
prediction during the 7/2013-4/2015 time window (x-axis).  These values change from 
week to week due to a dynamic model recalibration process. The multiple data sources 
entered into the HealthMap Flu Trends system are on the left y-axis (e.g., “FNY” = Flu 
Near You surveillance data, “GT” = Google search frequencies, “ATH” = Electronic 
Health records from Athenahealth) and their tendencies, or derivatives (der).  The bar 
on the right is a color code of the magnitude of the regression coefficients of the multiple 
data sources used as inputs. 

 
DISCUSSION  
We have described three different participatory surveillance systems, WISDM (Widely 
Internet Sourced Distributed Monitoring), Influenzanet, and Flu Near You, and we have 
shown how modeling and simulation can be or has been combined with participatory 
disease surveillance to (i) measure the non-response bias present in a participatory 
surveillance sample using Widely Internet Sourced Distributed Monitoring, and (ii) to 
nowcast and forecast influenza activity in different parts of the world, using InfluenzaNet 
and Flu Near You. 
 
While the advantages of participatory surveillance, compared to traditional surveillance, 
include its timeliness, lower costs, and broader reach, it is limited by a lack of control 
over the characteristics of the population sample. Modeling and simulation can help 
overcome this limitation in various ways discussed below: 
 

- Use of MTurks and WISDM combined with synthetic population modeling, as 
shown here, is one way to measure non-response and sample bias. The results 
measure the non-response and sample bias for three epidemic outcomes i.e. 



epidemic size, peak infection rate and time-to-peak. As shown in Table 1, a lower 
transmission rate results in a higher non-response bias and higher total bias. 
Total biases for all three metrics are statistically significant. Also for all three 
metrics, the non-response bias is larger than the sample bias and dominates the 
total bias. This is consistent with the fact that MTurk survey responders tend to 
be younger, educated males, among whom the incidence of disease is typically 
lower than much of the rest of the population. Results for the higher transmission 
rate are similar. In summary, WISDM based results show that the bias that 
occurs in a skewed survey sample can be measured through modeling and 
simulation to infer more dependable observations than what can be derived from 
the survey data alone.  

 
- Our results confirmed that combining participatory surveillance information from 

FNY with modeling approaches improve short-term flu activity predictions. In 
addition, we described how combining participatory surveillance information with 
other data sources, by means of a robust machine-learning modeling approach, 
has led to substantial improvements in short-term influenza activity predictions 
[49]. Information from participatory surveillance may also help improve flu 
forecasting approaches such as [53-56] 

 
- Moreover, we have shown how by combining digital participatory surveillance 

data with a realistic data-driven epidemiological model we can provide both 
short-term nowcasts (one or two weeks in advance) of epidemic intensities and 
long-term (three or four weeks in advance) forecasts of significant indicators of 
an influenza season. It is indeed the participatory surveillance data component 
that allows for real-time forecasts of seasonal influenza activity. ILI incidence 
estimates produced by traditional surveillance systems undergo weekly revisions, 
are usually released with at least one-week lag and lack the geographical 
resolution needed to inform high resolution dynamical models such as GLEAM. 
Participatory surveillance data are available as soon as participants report their 
health status. This real-time component allows for accurate now-casting (1-week) 
and forecasting (2-3-4 weeks) as soon as the influenza activity among the 
population begins, even before the epidemic curve surpasses the threshold. Data 
from traditional surveillance up until a specific week are used to fit the selected 
ensembles which then provide predictions for the upcoming weeks but these 
ensembles need to be generated by using the high resolution real-time data from 
participatory surveillance. 

 



For future work aimed at harmonizing these three approaches, results from the WISDM 
platform about non-response bias could be used to assess similar biases in groups of 
self-selected individuals participating in InfluenzaNet and Flu Near You [24]. 
 
The projects described here not only strengthen the case for modeling and simulation 
becoming an integral component of the epidemic surveillance process, but they also 
open up several new directions for research. Important questions include: How do we 
optimally integrate other sources of data with data obtained through participatory 
surveillance? How do we do incorporate participatory surveillance data that are 
reweighted at each point in time based on active learning techniques to maximize 
forecast accuracy? How can hypotheses be generated and tested in an abductive 
setting? An abductive setting is where the models and experiments can be run 
iteratively to test data-driven hypotheses that evolve as new data arrives in real time.  
  
With the increasing reach of the Internet and cellular communication, participatory 
surveillance offers the possibility of early detection of and response to infectious 
disease epidemics. Continued integration of participatory surveillance with modeling 
and simulation techniques will help to strengthen real-time epidemic science and 
provide a more rigorous understanding of epidemic conditions. 
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