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Abstract 

The development of executive function (EF) in autism spectrum disorder (ASD) has only been 

investigated using “cool”-cognitive- EF tasks. Little is known about the development of “hot”-

affective- EF and whether it follows a similar developmental pathway. This study employed a 

cross-sectional developmental trajectories approach to examine the developmental changes in 

cool (working memory, inhibition, planning) and hot EF (delay discounting, affective decision 

making) of ASD participants (n=79) and controls (n=91) relative to age and IQ, shedding more 

light on the hot-cool EF organisation. The developmental trajectories of some aspects of cool 

EF (working memory, planning) differed significantly as a function of age in ASD participants 

relative to controls. For both hot EFs no significant age-related changes were found in either 

group. These findings extend our understanding regarding the maturation of EF from childhood 

through adolescence in ASD.   
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Introduction 

Impaired Executive Function (EF) has been identified as a salient characteristic across several 

Autism Spectrum Disorder (ASD) samples (Hill, 2004). EF refers to a set of future-oriented 

and goal-directed cognitive skills that are crucial for problem solving and social behaviour, as 

well as the ability to organise oneself (Anderson, 1998). The complex, multifaceted EF 

construct emerges in the early years of life, followed by critical changes throughout the 

preschool period. Maturation is reached in adolescence, protracted to the developmental course 

of the prefrontal cortex (underlying neural base) (Anderson, 1998). Despite the diversity of the 

EF construct, supported by imaging evidence showing that different EF tasks activate different 

areas of the prefrontal cortex (Gilbert & Burgess, 2008; Wagner et al., 2001), most studies in 

ASD and typical development have viewed EF mainly through a purely cognitive lens, 

considered to be elicited under relatively abstract, non-affective conditions. However, 

developmentalists suggest that EF should be conceptualized as a broader construct, as it 

includes affective control processes as well (“hot processes”; Zelazo & Müller, 2002). Metcalfe 

and Mischel (1999) were among the first to introduce the “hot–cool systems” distinction, 

proposing that hot processes are emotional influences on behaviour controlled by cool EF 

processes. Building on this initial model, Zelazo and Müller (2002) suggested a similar yet 

fundamentally different construct of EF that considers “hot” and “cool” processes as two 

distinct domains. Hot EF processes differ from cool EF processes but may coordinate with 

them, according to each task’s demands. Hot EF refers to top–down processes operating in 

emotional or motivationally significant situations (hot tasks), such as delay discounting (i.e., 

the tendency to choose more immediate, smaller rewards) and affective decision making (i.e., 

mental processing occurring in the selection of one or more possible options under risk where 
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one employs both rational and emotional processes). In contrast, cool EF aspects involve top–

down processes elicited in affectively neutral, nonaffective contexts (cool tasks), (Zelazo & 

Carlson, 2012), including inhibition, working memory, or planning. Relative to the abstract, 

decontextualized cool EF tasks, hot EF tasks have meaningful rewards and losses for the 

participants; this affective salience of the situation and the associated cognitive processes are 

what distinguish hot from cool EF tasks (i.e. gambling tasks, the Marshmallow Test, or delay 

discounting tasks) (Zelazo & Carlson, 2012). Hot and cool EF have been found to be 

dissociated in lesioned brains, but it is generally argued that they typically work together as 

part of a more general adaptive function (Zelazo & Müller, 2002). Zelazo and Müller’s (2002) 

hot and cool EF distinction model was employed in this study, as it has been proposed to shed 

more light on the roles of specific EF deficits in developmental disorders (Zelazo & Carlson, 

2012). Despite research supporting separate domains of cool and hot EF (Kim et al., 2014; 

Willoughby et al., 2011), traditionally, the development of EF has been investigated mainly 

using cool EF tasks which lack significant emotional components. Thus, little is known about 

the developmental trajectories of “hot”-affective- EF processes and whether cool and hot EF 

follow a similar developmental pathway in ASD and in typical development.  

 

In Best and Miller’s (2010) excellent review of the typical development of EF across childhood 

and adolescence, the developmental pattern of cool EF inhibition is suggested as showing rapid 

improvements between the 3rd and 5th year. By the age of 4 years, children are able to 

successfully perform tasks such as response inhibition (i.e. Go/No-Go), followed by less 

dramatic advances during middle childhood. Improvements are present between 5 and 8 years 

of life (Romine & Reynolds, 2005) as well as beyond 10 years (more subtle), especially on 

computerized tasks such as Go/No-Go tasks, with slower increases during adolescence. The 

performance improvements of later childhood seem to involve mainly quantitative gains in 
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accuracy, as they more likely reflect an increasing capacity of children to override prepotent 

responses (Best & Miller, 2010). Several, possibly overlapping areas of the prefrontal cortex, 

including the dorsal areas of the lateral prefrontal cortex and the anterior cingulate cortex and 

inferior frontal gyrus are suggested to interact in order to facilitate inhibition task performance 

(Duncan & Owen, 2000; Konishi, Jimura, Asari, & Miyashita, 2003). Despite age-related 

improvements in task performance often being subtle across middle childhood and 

adolescence, the underlying neural activity changes more dramatically (Johnstone et al., 2007), 

with greater brain localization and efficient activation in the aforementioned brain regions, 

pertinent to task completion (Best & Miller, 2010) 

 

Unlike inhibition that presents the most crucial improvements in preschool years and less 

dramatic changes throughout middle childhood/ adolescence, the developmental trajectory of 

working memory demonstrates linear increases from preschool age to adolescence. Most 

working memory tasks present performance improvements throughout the preschool period 

(Garon et al., 2008) while working memory ability is thought to have been sufficiently 

developed by the age of 6, in order to be used in more complex working memory tasks 

(Gathercole et al., 2004). Both simple and complex working memory tasks (i.e. tasks that 

require coordination of several working memory subcomponents) demonstrate similar 

developmental courses of performance gains between the 4th and 15th year of life. 

Neuroimaging evidence has shown that the neural basis underpinning working memory is the 

dorsolateral prefrontal cortex (Best & Miller, 2010; Funahashi, 2004), with the left temporo-

frontal cortex specifically found to be implicated in verbal working memory tasks (Thomason 

et al., 2009). The protracted neural developmental trajectory of working memory involves 

regressive and progressive alterations and leads to localized activity within the prefrontal 

cortex network of connectivity (Best & Miller, 2010). 



5 
HOT & COOL EF TRAJECTORIES IN ASD 

 

 

Finally, regarding the development of planning, evidence has demonstrated poor performance 

in early childhood with age-related improvements across middle childhood and adolescence 

(11-14 years); the age of 12 is suggested to be the age point of effective planning skills (De 

Luca, 2003). Studies which used different versions of the Tower of London task (Shallice, 

1982) to examine age-related improvements in planning, have mainly reported significant 

developmental changes through middle childhood and early adolescence (5-12 years) 

(Korkman et al., 2001) as well as fewer errors made until late adolescence (Albert & Steinberg, 

2011; Asato et al., 2006; Huizinga et al., 2006). Generally, the performance on planning 

measures is thought to reach a plateau between the ages of 15 and 30 years (Anderson et al., 

2001; De Luca et al., 2003). Evidence from imaging studies suggests that the activated brain 

areas during planning tasks are localized in the circumscribed neural assemblies of the mid-

dorsolateral part of the prefrontal cortex (Bechara et al., 2000; Manes et al., 2002; Unterrainer 

& Owen, 2006).  

 

Relative to cool EF tasks that  mainly rely on the dorsal and lateral prefrontal cortex, as 

described above, evidence from lesion studies and Krain et al.’s (2006) meta-analysis has 

shown that particular hot EF aspects (i.e. affective decision-making) may be underpinned by 

different areas such as the orbitofrontal and ventromedial regions of the prefrontal cortex 

(Bechara, 2004). These regions are also connected with the amygdala and limbic system that 

underlie emotional processing (Phan, Wager, Taylor, & Liberzon, 2004). Regarding the 

development of hot EF, there has been very little research to date; it is thought that hot EF 

follows a rapid development during the preschool years in typical development (Zelazo & 

Müller, 2002) and that age-related improvements are demonstrated during middle childhood 

and adolescence (Prencipe et al., 2011). Empirical findings (Kim et al., 2014; Willoughby et 
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al., 2011) and the afore-mentioned neuroimaging evidence posit that cool and hot EF are 

regulated by independent constructs, results about their developmental courses in typical 

development are mixed. Hongwanishkul et al. (2005) investigated the development of cool and 

hot EF in preschoolers (3-5 years) and reported no significant differences in the development 

of the two domains. Hot and cool EF measures were significantly correlated and presented 

performance gains after the third year. Willoughby et al. (2011) also found that cool and hot 

EF tasks were positively correlated in young children (3-5 years) providing evidence for non-

distinct cool and hot EF constructs. Beyond the preschool period, Hooper et al. (2004) used 

two measures of cool EF (Go/No-Go task, Digit Span) and one hot (Iowa Gambling Task) with 

children and young people aged 9-17 years and reported age-related improvements on all tasks. 

Building on Hooper et al.’s study (2004), Prencipe et al. (2011) assessed typically developing 

children and adolescents (8–15 years) and indicated that performance reached mature levels at 

an older age on the hot EF tasks relative to cool EF measures. In addition, for both studies, only 

weak correlations were reported among hot and cool EF measures. Taking these findings 

together, it seems that hot and cool EF are likely to develop independently into adolescence, 

with hot EF possibly following a differentiated developmental trajectory beyond 5 years of age.   

It is unclear whether the developmental trajectory of cool and hot EF in ASD is similar to that 

identified in typical development, prompting questions about the nature of the executive 

dysfunction in ASD. Evidence from previous neuroimaging studies in ASD in several brain 

areas, including the frontal cortex, have documented atypical patterns of white and grey matter 

volumes (Carper & Courchesne, 2005; Mak-Fan et al., 2012), functional connectivity (Just et 

al., 2004; Koshino et al., 2005) and brain lateralization (McPartland et al., 2004) relative to 

typical development. Despite the substantial evidence for abnormalities in the development of 

the frontal lobes within the autism spectrum, the associations of these circuits with cognitive 

performance/ behavioural phenomena are not clear (Griebling et al., 2010). It remains to be 
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investigated whether EF impairments in ASD arise from prefrontal cortex deficits (i.e. deficient 

connectivity) or other underlying system impairment such as maturation (i.e. myelination 

changes) across development. Although the present study did not include neuroimaging or 

electrophysiological data, we strongly believe that developmental studies with broad age 

ranges could provide a solid ground to clarify, theoretically first, whether there is a 

developmental delay, deviance, or the deficits are constant across development in ASD.  

 

The cross-sectional and few longitudinal studies investigating EF chronological age-related 

changes in school-aged children with ASD have focused only on cool aspects yielding 

inconsistent results. More specifically, some of these have reported age-related gains in ASD 

samples across middle childhood and adolescence (8-18 years) in aspects such as inhibition, 

and working memory (Happé et al., 2006a; Van Eylen et al., 2015) as well as planning (Happé 

et al., 2006a), suggesting that EF performance may improve with age in individuals with high 

functioning ASD. Inconsistent with the aforementioned studies, Luna et al.’s (2007) study, also 

using cross-sectional design with three age samples (8-12 years, 13-17 years, 18-33 years) 

reported deficits in cool EF inhibition for the ASD group across development. Furthermore, 

Ozonoff et al. (2004) in their broad age-range study (6-47 years) showed that there was no 

significant correlation between age and performance on EF planning. The afore-mentioned 

cross-sectional studies used traditional matched-group comparisons that do not allow for 

drawing conclusions regarding the continuous change of EF over the course of development. 

Ozonoff and McEvoy (1994) longitudinally assessed children and adolescents with ASD in 

cool EF measures of planning and cognitive flexibility first at 12 years and then at 15 years of 

age (3 year follow-up study) reporting a lack of age-related improvements. Results showed that 

the ASD participants demonstrated significantly poorer performance, which appeared to reach 

a developmental ceiling compared to the control group (peers without ASD but with learning 
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disabilities). A similar study in the preschool period (Pellicano, 2010) followed children with 

ASD (mean age 5.5 years) for 3 years measuring performance in the cool EF aspects of set 

shifting and planning. Results showed that planning in ASD improved significantly over the 3-

year period, surprisingly at an even faster rate relative to controls. Finally, the few studies that 

investigated the development of cool EF measured by rating scales (BRIEF; working memory, 

inhibition, shift, and planning) in ASD have also yielded inconsistent results. Rosenthal et al. 

(2013) showed that working memory performance was poorer in older participants with ASD 

(14-18 years) compared to the younger ones (6-7 years) implying that deficits in working 

memory increase in adolescents with ASD as reported by parents. No age-related 

improvements were found in the remaining subscales. In a similar developmental study with 

children and adolescents with ASD (6-18 years), using the same BRIEF subscales, Van den 

Bergh et al. (2014) found that inhibition presented age-related improvements while planning 

deficits were more evident in older participants relative to younger ones. No age-related 

improvements were found in working memory of children and adolescents with ASD.  

 

No study to date has investigated the development of hot EF in ASD and thus relatively little 

is known about its developmental trajectory within ASD. As already discussed, investigating 

developmental trends of EF in ASD is important to provide a better insight into the brain 

maturation mechanisms in ASD and may shed light on potential implications for treatment. 

Moreover, there is no study to date having explored whether cool and hot EF subcomponents 

are distinct in ASD. Making speculations about the distinction of hot and cool EF in ASD is 

hard as there is no empirical evidence. For example, brain activation/ localization during 

distinct EF tasks has not been examined in ASD (Hill & Frith 2003). Potential differences in 

the developmental trajectories of hot and cool EF within broad age ranges is a “hot”, open topic 

of debate that the present study aims to address. Such data would be crucial to identify the 
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organisation and developmental relationship of cool and hot EF skills that could aid in 

overcoming the limitations of current theories of EF development and lead to a better 

understanding of the heterogeneity in neurocognitive impairments in ASD.  

 

The main goal of this study was to investigate whether the developmental trajectories of hot 

and cool EF relative to chronological age and IQ differ between children and adolescents with 

autism and a typically developing group. IQ was included in analysis as previous studies have 

revealed a significant relation between cool EF and IQ, suggesting that higher IQ scores are 

associated with better performance in cool EF abilities on a variety of different measures 

(Arffa, 2007; Pellicano, 2007; Van Eylen et al., 2015).  Taken together, previous studies 

(described above) show there is no clear developmental framework of cool EF in ASD due to 

inconsistent results; with some reporting age-related improvements and others not. Moreover, 

to date no research has investigated the development of hot EF in ASD. Employing tasks to 

assess both cool and hot EF skills, the current study will shed more light on the developmental 

pathway of EF followed in ASD across childhood and adolescence. Instead of the traditional 

group comparison, we used a cross-sectional developmental trajectories approach (Thomas et 

al., 2009) that uses cross-sectional data to explore developmental relationships by focusing on 

changes in domains of interest. Contrary to testing differences in cross-sectional group means, 

which masks changes associated with age or other foundational cognitive abilities, the 

trajectories approach evaluates group differences with respect to two coefficients, the intercepts 

and slopes of development. This methodology could reveal important information about the 

nature of development as it identifies not only early onset but also slower or deviant rates of 

development. However, to date no research has used this as a method of understanding whether 

the development of EF in ASD, fractionated into hot and cool subcomponents, relative to 

crucial variables such as age and IQ, is similar to development within typically developing 
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groups. Measures of both hot (i.e. delay discounting, affective decision making) and cool EF 

(i.e. inhibition, working memory, planning) were the outcome variables. This may shed more 

light on the similarities and differences between hot and cool EF developmental pathways 

followed in ASD relative to neurotypical controls as well as provide a solid ground for 

longitudinal examinations of these trajectories. 

A secondary aim was to investigate the association and internal organisation of hot and cool 

EF in ASD. Based on evidence from typical development (Hooper et al., 2004; Prencipe et al., 

2011), it was hypothesised that cool and hot EF skills would be (even weakly) associated in 

the control group.We sought to determine whether the ASD group would present a similar 

pattern. 

 

Method 

Participants 

Seventy nine children and adolescents (79) with an official diagnosis of ASD (M=11.27 years, 

SD=2.56) (65 males)  and ninety one (91) controls (M=10.80 years, SD=2.49) (60 males) aged 

7-16 years old who were drawn from a larger longitudinal study were recruited from thirty 

mainstream and special education schools to participate in the present study. All ASD 

participants were high functioning, held an official clinical diagnosis by a qualified clinician 

using DSM-IV criteria (American Psychiatric Association, 1994) and qualified for a “broad 

ASD” on the Autism Diagnostic Interview/Autism Diagnostic Interview-Revised (ADI/ADI-

R; Le Couteur et al., 1989; Lord, Rutter, & Le Couteur, 1994”) and/or the Autism Diagnostic 

Observation Schedule (ADOS; Lord et al., 2000), in accordance to National Institute for Health 

and Clinical Excellence (NICE, 2011) guidelines. They were also in receipt of a Statement of 

Special Educational Needs (SEN), a legal document that details the child’s needs and services 

that the local authority has a duty to provide, which specified ASD as their primary need. All 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4747021/#R17
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4747021/#R20
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4747021/#R21


11 
HOT & COOL EF TRAJECTORIES IN ASD 

 

clinical records were inspected and any individual lacking detailed information about the 

official source of diagnosis was excluded from the study. Additional exclusion criteria for the 

ASD group included the presence of a diagnosed psychiatric illness, comorbid conditions (i.e. 

ADHD, seizures or colour blindness) and Full Scale Intelligence Quotient (FSIQ) below 70 as 

determined by the abbreviated version of the Wechsler Intelligence scales (two subtests: 

vocabulary and matrix reasoning; Wechsler, 1999). Ninety one (91) typically developing 

children and adolescents were recruited from mainstream primary (n=56; Year 2-Year 6) and 

secondary schools (n=35; Year 7-Year 11). Typically developing participants were required to 

have no diagnosis, and no family history of ASD, other mental health disorders, ADHD, 

dyslexia or learning disability. Participants were matched for chronological age (t (170) = -

1.21, p = .23) and IQ (t (170) = 1.79, p = .08). Ethical approval for the study was obtained and 

all participants’ parents/carers gave written informed consent. Table 1 shows descriptive 

characteristics (means and standard deviations) of participants of both groups. [Table 1 should 

be placed here] 

 

 

Measures 

Cool Executive Function Tasks 

 

Inhibition. The ‘R’ and ‘P’ version of the Go/No-Go paradigm (Mueller & Piper, 2014) was 

used to assess participants’ response inhibition. An image of either the letter P or letter R 

appeared in the centre of the screen (for 1500 milliseconds) on a black background. Participants 

were told to press the button only when the letter P was shown (Go trials) and to avoid pressing 

it for the letter R (No-Go trials).  The go / no-go ratio was 4:1 (80% go trials, 20% no-go trials). 

On the second block of trials, the pattern was reversed and the participants were asked to press 

the button when the letter R appeared (Go trials) and to avoid pressing it when P was presented 
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(No-Go trials) this time. Participants were not provided with feedback after a correct or 

incorrect response. On this block, the go / no-go ratio was 1:4 (20% go trials, 80% no-go trials). 

Before each block, participants first completed 10 practice trials followed by the actual 320 test 

trials. Participant response inhibition was noted, by recording the proportion of errors (incorrect 

No-Go trials). Lower scores indicated better performance. 

Planning. Planning ability was assessed by the Tower of London (ToL) task (Shallice, 1982). 

Participants were presented with three 3-move problems as a practice, followed by the 12 actual 

trials of the original problem set (two 2-move tasks; two 3-move tasks; four 4-move tasks; and 

four 5-move tasks). Successful performance required participants to solve each problem 

moving only one bead each time and in the number of moves required. Following the procedure 

of Monks et al. (2005) participants were given two minutes to complete each problem. The task 

was ceased when the participants completed all problems or failed two of them consecutively. 

In terms of scoring, the number of problems each participant completed successfully was 

recorded. One point was given to participants if they completed the problem successfully and 

0 points if they failed to complete the problem. Scores ranged from 0 to 12. 

Working Memory. The digit span forward and backwards subtests from the Wechsler 

Intelligence Scale for Children-3rd edition were used to measure participants’ verbal working 

memory (WISC-III; Wechsler, 1991). Participants were asked to repeat the sequence presented 

by the researcher (at a rate of one number per second) in the exact same order. In the backwards 

digit recall task, participants were asked to repeat the series of numbers in reverse order. If 

participants responded successfully to all trials (4) within a block, the researcher proceeded to 

the next block. At each span length each block included 2 trials. In terms of scoring, participants 

were awarded 1 point for each correct trial and the task was terminated when the participant 

failed both trials at any given span length. The sum of the points awarded for both the forward 

and backward subtest created a composite working memory score. 
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Hot Executive Function Tasks 

 

Affective Decision Making. A modified computerised version of the IOWA gambling task 

(IGT; Bechara et al., 1994) was used to measure participants’ affective decision making skills. 

Participants were presented with four decks of cards (A, B, C, and D) and were asked to pick 

a card from any of the four decks each time. Decks A and B were equivalent in terms of overall 

net loss, whereas decks C and D were equivalent in terms of overall net winning. For each card 

selection, the wins and losses were set in a way that in every block of 20 cards from Decks A 

or B there was a potential total gain of £1,000, interrupted by potential losses up to £1,250. 

Losses were less frequent but of a larger magnitude in deck B whereas in Deck A losses were 

more frequent but in smaller amounts. For Decks C and D, the wins for each block were £500 

totally while the potential net losses £250. In Deck D losses were less frequent and of higher 

magnitude relative to those in Deck C. Thus, Decks A and B were equally “disadvantageous” 

relative to Decks C and D that were equally “advantageous”. Following Verdejo-Garcia et al. 

(2006), scores were calculated by subtracting the number of disadvantageous choices (decks A 

and B) from the number of advantageous choices (decks C and D) divided then by the total 

number of trials.  

Delay Discounting. In line with previous research studying hot EF (Hongwanishkul et al., 

2005; Prencipe et al., 2011), the Delay Discounting task was used in the present study in a 

computerised version to assess participants’ ability to discount rewards (Richards et al., 1999). 

This task originally included the forced-choice between different amounts of money after 

different delays or with different chances as well. However, as the task was being given to a 

wide age range, including school aged children, it was modified to remove the probability 

questions. Participants were told that they had to select (hypothetically) between an immediate 

amount of money or £10 available after a delay. The test consisted of about 70 such questions 



14 
HOT & COOL EF TRAJECTORIES IN ASD 

 

(i.e. (a) Would you rather have £10 for sure in 30 days or (b) £2 for sure right now?). The 

amount of immediate money was adjusted until the participant was indifferent between the two 

choices (random adjusting procedure; Richards et al., 1999). For every participant, this 

indifference point signified the effective value of the delayed large reward relative to an 

immediate amount of money (Richards et al., 1999). Delay discounting was determined by five 

delays (0, 10, 30, 180, and 365 days later). In terms of scoring we followed the same procedure 

as Myerson et al.’s (2001), where the indifference points were used to estimate delay 

discounting. Thus, indifference points were established within participants and were plotted 

against time (delay). Indifference points and delays were normalised, by expressing 

indifference points as proportions of the amount of the maximum delayed reward (£10) and the 

delays as proportions of the maximum delay (365 days).These normalised values were used as 

the x (delay) and y (indifference points) axes in order to plot the discounting function. Separate 

trapezoids were then created by drawing vertical lines from each data point on the x axis. The 

formula (x2-x1) ・ [(y1 + y2) ⁄ 2] was used to calculate the area of each trapezoid. The areas 

under these discounting curves (AUC) were calculated by summing the resulting trapezoids. 

The area under the curve (AUC) can range from 1 (no discounting) to 0 (maximum 

discounting). Larger numbers thus represent less discounting by delay (less impulsivity/ more 

self-control). 

 

Statistical analysis 

Preliminary Analysis: Group differences were investigated by conducting ANOVAs for each 

hot and cool EF measure in order to assess the average group differences for EF measures. 

Pearson’s correlations were also performed between all EF measures, chronological age and 

IQ.  
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Main Analysis: Developmental cross-sectional trajectories were assessed employing the 

methods outlined by Thomas et al. (2009) for both hot and cool EF measures relative to 

chronological age and IQ. This procedure is very similar to ANOVA but differentiates by 

evaluating the differences between the slope and intercept of the lines depicting the 

developmental trajectory of each group instead of comparing the cross-sectional group means. 

A principal advantage of this analysis approach is the estimate of differences between groups 

in the continuous relationship between the dependent measure and other theoretically chosen 

constructs, allowing these conclusions to be drawn. The main effect of group (ASD or control), 

main effects of predictors (chronological age, IQ) and the interactions between group and slope 

were investigated.  

 

Results 

Preliminary analysis 

Before turning to the trajectory analyses, we assessed average group differences in each EF 

task to allow direct comparisons between our samples and the extant literature. Significant 

group differences were found between the two groups performances both on cool EF: Go/No-

Go (F (1, 163) = 23.08, p < .001, η2= .13), Digit Span (F (1, 169) = 28.21, p < .001, η2= .14), 

ToL (F (1, 168) = 19.73, p < .001, η2= .11) and hot EF tasks: IGT (F (1, 165) = 8.01, p = .005, 

η2= .05) and delay discounting (F (1, 147) = 6.98, p = .009, η2= .05). The ASD group showed 

significantly poorer performance in each hot and cool EF task relative to the control group (see 

Table 1 for Means and SDs). 

Results of the correlational analysis between hot and cool EF and developmental predictors 

(age and IQ) separately in both groups are included in table 2.  [Put table 2 here] 

 

Cross sectional developmental trajectories: cool executive function  
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Verbal working memory ability was assessed relative to chronological age using the digit 

span scores. The intercept of the trajectory was evaluated at the lowest age of overlap between 

the two groups (i.e. 7 years of age; 84 months) as well as the within-group trajectory slopes. 

The intercepts of digit span trajectory were not significantly different between the two groups, 

F (1, 169) = .25, p=.62, partial η2=.001 suggesting that at the lowest age of overlap, 

performance was similar for both groups (no delayed onset of development). In terms of rate 

of change across age, chronological age was a significant predictor of the digit span scores, F 

(1, 169) = 25.39, p<.001, partial η2
 = .13. Moreover, it was found that there was a significant 

Group x Chronological Age interaction, F (1, 169) = 11.28, p= .001, partial η2=.06. As 

indicated in table 3 and figure 1, for the control group, digit span scores improved with age 

while for the ASD group there were no significant age-related improvements. 

The developmental trajectory of digit span was also evaluated against IQ in terms both of 

intercept at the lowest point of overlap between the groups (Wechsler’s scale score of 70-the 

lowest score reported) and within-group slopes. The intercept of the digit span trajectory 

differed significantly between the two groups F (1, 169) = 4.63, p = .03, partial η2 = .03, 

indicating that at the lowest point for IQ there was an initial difference between the two groups 

on digital performance. IQ significantly predicted digit span scores F (1,169) = 6.53, p = .01, 

partial η2 = .04; but this relationship was not statistically different between the two groups (no 

significant IQ x group interaction found) F (1, 169) =.03, p = .86, partial η2 < .01. As seen in 

table 3 and figure 1, digit span scores improved when IQ scores were higher, for both groups. 

[Put Figure 1 here] 

Planning ability was assessed relative to chronological age using the ToL scores. The intercept 

of the trajectory was evaluated both at the lowest age of overlap between the two groups (i.e 

84 months) and within-group trajectory slopes. The intercepts of the two groups did not 

significantly differ, F (1, 168) = .29, p=.594, partial η2 =.002, suggesting that at the lowest 
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overlap between the two groups (84 months) performance was similar for the two groups (no 

delayed onset). However, in terms of rate of change, chronological age significantly predicted 

the ToL scores F (1, 168) = 8.46, p=.004, partial η2= .05. A significant Group x Chronological 

Age interaction was found as well F (1, 168) = 5.83, p = .017, partial η2=.034. As seen in table 

3 and figure 2, for the control group there was a significant developmental trend for ToL scores 

to improve with chronological age, but for the ASD group there was no significant age-related 

difference across children and adolescents.  

The developmental trajectory of ToL scores was also evaluated against IQ in terms of intercept 

both at the lowest point of overlap between the groups (Wechsler’s scale score of 70-the lowest 

score reported) and within-group slopes. The intercept of ToL trajectory differed significantly 

between the two groups F (1, 168) = 11.46, p = .001, partial η2 = .07 at the lowest point of 

overlap between the two groups. IQ significantly predicted ToL scores, F (1, 168) = 8.01, p = 

.005, partial η2 = .05, but the IQ x group interaction was not found significantly different, F (1, 

168) = 2.79, p = .096, partial η2 = .02. As seen in table 3 and figure 2, for both groups, ToL 

scores improved when IQ scores were higher. [Put Figure 2 here] 

Inhibition was assessed relative to chronological age using the go/no-go scores. The intercept 

of the trajectory was examined at the lowest age of overlap between the two groups (i.e. 84 

months) as well as within-group trajectory slopes. Results showed that the intercept of the 

control group was significantly lower F (1, 163) = 8.14, p =.005, partial η2=.048, indicating 

that performance of ASD participants was poorer at the lowest overlap between the two groups 

(delayed onset for the ASD group). For rate of change over development, chronological age 

was a significant predictor of the go/no-go scores F (1, 163) = 7.36, p =.007, partial η2 =.044. 

The Group X Chronological Age interaction was not significant F (1, 163) = .038, p = .85, 

partial η2 <.001. Figure 3 shows that for both groups, there was a trend for performance on 

go/no go measure to improve with chronological age. 
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The evaluation of the Go/No Go trajectory against IQ in terms of the intercept took place at the 

lowest point of overlap between the groups (Wechsler’s scale score of 70-the lowest score 

reported) as well as within-group slopes. In terms of groups intercepts we found no significant 

differences F (1, 163) = 2.65, p =.11, partial η2 =.016. Furthermore, concerning the rate of 

change across IQ, this was not a significant predictor of performance over all participants F (1, 

163) = .001, p = .97, partial η2 < .01 and no reliable interaction of Group x IQ, F (1, 163) = .42, 

p =.52, partial η2=.003 was found. As seen in figure 3 the two groups’ trajectories are almost 

parallel indicating no reliable IQ-related changes. [Put Figure 3 here] 

 

Cross sectional developmental trajectories: hot executive function 

Affective decision making ability was assessed relative to chronological age using the Iowa 

Gambling Task scores. The intercept of the trajectory was evaluated at the lowest age of overlap 

between the two groups (i.e. 84 months) as well as within-group trajectory slopes. The intercept 

of IGT trajectory did not differ significantly between the two groups F (1, 165) = 1.4, p = .24, 

partial η2 = .009, indicating no delayed onset in the ASD group relative to the control group. 

Chronological age was not a significant predictor of IGT scores F (1,165) = .87, p = .35, partial 

η2 = .005. Finally, there was no significant Group x Age interaction effect, F (1, 165) = .17, p 

= .68, partial η2 = .001. As shown in figure 4 for both groups, trajectories are almost parallel 

and performance did not present significant changes across younger and older participants. 

The evaluation of the IGT trajectory against IQ in terms of the intercept took place at the lowest 

point of overlap between the groups (Wechsler’s scale score of 70-the lowest score reported) 

as well as within-group slopes. There were no significant group differences F (1, 165) = .39, p 

=.53, partial η2 = .002 at the lowest point of overlap. Rate of change across IQ was not a 

significant predictor of performance, F (1, 165) = 1.73, p = .19, partial η2 =.01, nor was there 
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a significant interaction of Group x IQ, F (1, 165) = .44, p =.51, partial η2=.003. For both groups 

there were no significant IQ-related changes (see figure 4). [Put Figure 4 here] 

Delay discounting was assessed relative to chronological age using the delay discounting 

scores. The intercept of the trajectory was examined at the lowest age of overlap between the 

two groups (i.e. 84 months) as well as within-group trajectory slopes. The intercept of delay 

discounting trajectory differed significantly between the two groups, F (1, 147) = 5.19, p = 

.024, partial η2 = .04. Chronological age was not a significant predictor of the delay discounting 

scores F (1,147) = .26, p = .61, partial η2 = .002, and there was no significant Group x Age 

interaction effect, F (1, 147) = 1.10, p = .29, partial η2 = .008. As shown in figure 5, for both 

groups, performance did not present significant changes across younger and older participants.  

The evaluation of the delay discounting trajectory against IQ in terms of the intercept took 

place at the lowest point of overlap between the groups (Wechsler’s scale score of 70-the lowest 

score reported) as well as within-group slopes. There were no significant group differences F 

(1, 147) = .47, p=.49, partial η2 =.003 at the lowest point of overlap. For rate of change over IQ 

results showed that IQ was not a significant predictor of performance over all participants F 

(1, 147) = .15, p=.7, partial η2=.001, and no reliable interaction of Group x IQ, F (1, 147) = 

.37, p =.54, partial η2=.003 was found. For both groups there were no significant IQ- related 

changes (figure 5). [Put Figure 5 here] [Put Table 3 here] 

 

 

Associations between hot and cool tasks  

Correlational analyses performed separately in the two groups (see table 2) showed that cool 

and hot EF measures were significantly correlated only in the control group. More specifically, 

IGT scores were correlated to Digit Span and ToL scores. No significant associations were 

found between hot and cool EF in the ASD group. 
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Discussion 

The purpose of the present study was to characterize profiles of hot and cool EF development 

in school-aged children and adolescents with ASD using directly assessed typically developing 

children as a point of reference. To date, research on EF development in ASD has focused on 

cool EF aspects, failing to integrate the hot EF processes. Thus, the current study sought to 

extend the investigation of EF development between children and adolescents with and without 

ASD by employing a more extensive battery of both cool and hot EF tasks in comparison to 

previous studies (Geurts et al., 2014). In contrast to testing differences in cross-sectional group 

means, which masks changes associated with age or mental ability (IQ), the cross-sectional 

developmental trajectories approach was adopted to avoid the methodological limitations of 

previous studies on this topic. Only cool EF, inhibition presented age-related improvements in 

the ASD sample while planning and working memory lacked significant developmental gains. 

In terms of IQ, again only cool EF, working memory and planning, presented changes between 

lower and higher IQ functioning participants in ASD. No age or IQ-related differences were 

found for hot EF aspects in either group. Our results extend evidence for intact and impaired 

aspects of developmental progression of distinct EF across childhood and adolescence in ASD.  

 

Cool and hot EF developmental trajectories 

Working memory is suggested to continue to improve throughout childhood and well into 

adolescence (i.e. Best & Miller, 2010) as demonstrated by tasks tapping both visual and verbal 

working memory (Gathercole et al., 2004; Luciana & Nelson, 2002). Our results indeed 

documented a developmental pattern of increases and a linear age trend for the typically 

developing participants that differed however to the developmental trajectory of the ASD 
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group. Even though at the age of onset (7 years of age) there were no differences between the 

two groups, the ASD group exhibited a developmental ceiling and never reached the 

performance level of controls in adolescence. This lack of significant age-related 

improvements is in line with recent reports of developmental arrest in verbal working memory 

in ASD (Andersen et al., 2014; Van den Bergh et al., 2014), while limited research has 

demonstrated that working memory impairments might increase with age within ASD likely 

due to a higher load for manipulation of working memory information during adolescence 

(Travers et al., 2011; Rosenthal et al., 2013). Our data could not reveal whether these working 

memory deficits are present across adulthood or whether maturation occurs in later 

adolescence/early adulthood, as we only included participants between 7-16 years. This pattern 

of deviant development suggests that working memory may be intact in preschool period but 

reaches a performance ceiling during middle childhood with deficits persisting in adolescence 

in ASD. Luna et al. (2007) suggests that if deficient performance is present later in 

development, as in the present case (early adolescence), that could imply that the 

developmental transition and underlying brain maturation mechanisms regulating verbal 

working memory (e.g. dorsolateral prefrontal cortex/ left temporo-frontal cortex) might be 

deficient in ASD. Unlike the differences in the age-related changes, both groups’ performance 

was found to present improvements with higher IQ scores. The robust association between 

intelligence and working memory is well established in the literature, as high IQ scores are 

linked to more robust working memory capacity (Alloway et al., 2009). Working memory is 

argued to represent the “dynamic tradeoff” between the processing and storage of information, 

required in complex measures of intelligence and high-order cognition in general (Unsworth et 

al., 2014).  

 

With regards to planning, results of the control group were consistent with previous reports of 

significant developmental changes throughout middle childhood and adolescence (Huizinga et 
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al., 2006; Korkman et al., 2001). Despite the lack of deficits at the age of onset (7 years), we 

found no significant age-related improvements across development in ASD. Our results reveal 

a deviant developmental pattern and support the limited number of previous studies reporting 

no age related improvements in planning in ASD (Ozonoff & McEvoy, 1994; Ozonoff et al., 

2004; Van den Bergh et al., 2014). Planning deficits may emerge in school age, especially 

across the developmental transition from primary to secondary settings where demands of the 

environment are higher. These findings contradict Chen et al.’s recent study (2016) showing 

that planning deficits in ASD as measured by Cantab’s Stockings of Cambridge (SOC) were 

significant in childhood but would lessen with age. One possible explanation could be their 

participants exhibiting superior IQ scores (>10 points higher) relative to ours, while their 

significantly larger ASD sample size (n=114) could have also allowed-in terms of statistical 

power- for the detection of subtle developmental changes. Similar to the working memory 

context, planning deficits seem to appear later in the development and pertain across age 

suggesting that the developmental transition from childhood to adolescence might be impaired 

for the underlying brain regions (i.e. dorsolateral prefrontal cortex) of planning skills (Luna et 

al., 2007) in ASD. Finally, the demonstration of planning scores improving with higher IQ 

scores is in line with previous studies reporting such significant association between 

intelligence and planning in ASD (Kimhi et al., 2014; Pellicano, 2007, van Eylen et al., 2015) 

and typical development (Arffa, 2007), as they are both core cognitive constructs contributing 

mutually towards the development of self-regulation. 

 

Our results showed that inhibition improved with age but not with higher IQ scores in either 

group. The steady pattern of improvements from age 7 to 16 for controls corroborate reports 

of response inhibition tasks (i.e. Go/No-Go), following advances not only during early and 

middle childhood (Carlson et al., 2013; Carlson & Moses, 2001; Romine & Reynolds, 2005), 
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but beyond 10 years as well (even more subtle) (Best & Miller, 2010). Most importantly, the 

significant age-related improvements reported in the ASD group, in line with previous studies 

(Happé et al., 2006a; Luna et al., 2007; van Eylen et al., 2015), paint a more positive picture of 

autistic children’s particular cognitive developmental trends, indicating perhaps the likelihood 

of a window of plasticity in ASD as well.  It should be noted however that the ASD group 

indicated a lower performance at the age of onset (7 years) which remained present throughout 

development in ASD without reaching the levels of neurotypicals. This evidence partially 

supports Happé et al.’s (2006b) theory proposing that there may be a particular profile of 

“coexisting cognitive atypicalities” in ASD that are present throughout development. Our data 

failed to provide more evidence about the maturity peak of inhibition in ASD (if they ever 

develop up to the same level as controls) as it did not include older adolescents or young adults. 

Looking at these significant improvements in inhibition from the maturation processes 

perspective of Luna et al. (2007), it could imply that impairments in the underlying brain 

mechanisms (i.e. dorsal areas of the lateral prefrontal cortex) are not related to the brain 

developmental/ maturation processes (that may be intact for ASD participants). The age-related 

improvements of inhibition in our ASD sample highlight the importance of implementing 

interventions aimed at augmenting self-control (inhibitory control) within ASD. The lack of 

significant developmental relationship between IQ and inhibition is in line with previous 

research investigating such association in school age in Attention-Deficit/Hyperactivity 

Disorder (ADHD) (Bitsakou et al., 2008; Rubia et al., 1998) and typical development (Lee et 

al., 2015) suggesting that intelligence does not explain any inhibition variance in ASD either. 

To our knowledge, this was the first study to examine the development of hot EF in ASD across 

childhood and adolescence. Contrary to the findings for cool EF, hot EF demonstrated non-

significant age related changes in both typical development and ASD. The lack of change in 

both groups’ performance in hot EF across childhood and adolescence contradicted theories 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4462641/#B43
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from typical development suggesting that the development of hot EF measures would be 

protracted across childhood and early adolescence, following the  extended development of the 

ventromedial prefrontal cortex (Segalowitz & Davies, 2004). Indeed, selective studies in 

typical development addressing the Delay Discounting task (Scheres et al., 2006;) showed that 

younger participants (6-11 years) discounted rewards more steeply (lower performance) than 

older adolescents (12-17 years), while Hooper et al. (2004) reported that the oldest adolescents 

(14-17 years) performed better than younger participants (9-13 years) on the IGT task. 

However, Scheres et al. (2006) for example, used a temporal and probabilistic discounting task 

with a differentiated to ours design including smaller magnitudes of the immediate monetary 

reward (0, 2, 4, 6, 8, or 10 cents), shorter delays (0, 5, 10, 20, or 30 seconds) as well as 

probability levels of the large reward (more complex task) and a smaller number of trials. 

Moreover, the monetary awards used in their study were real rather than hypothetical and 

participants were paid a small amount of money after the practice trials (reinforcers). This could 

have perhaps made their older participants more motivated to wait for the larger rewards during 

task relative to participants in the current study. Moreover, in Hooper’s et al. (2004) study, 

participants who exhibited a positive net earning at the end were actually paid that real amount 

of money as well, while in the present study monetary rewards were hypothetical due to the 

impractical cost and ethical issues raised within the school contexts. Generally, as constructs 

of delay discounting are complex and multifaceted, different aspects or task designs may follow 

different developmental pathways and such a more differentiated operationalisation is needed 

(Steinberg et al., 2009). Different hot EF measures seem to vary in motivational and emotional 

significance due to different designs or requirements; thus participants may vary in their 

performance or subtle developmental changes may get masked. As several measures of hot EF 

have been criticised for lacking enough “heat” or not being ecologically valid (Welsh & 

Peterson 2014), one could argue that the hot EF tasks as used in this study (e.g. the Delay 



25 
HOT & COOL EF TRAJECTORIES IN ASD 

 

Discounting was modified to lack the probability questions) were not so hot for the age group 

used here. For example, the differing quantities of imaginary money is quite an abstract 

construct that failed to enhance younger children’s motivation or led the older ones to soon 

reach a performance ceiling.  

In addition to this, Xu et al. (2016) very recently found that participants would demonstrate 

reduced risk taking in gambling tasks (tapping affective decision making) after money loss 

when the monetary awards were real relative to those receiving hypothetical rewards, 

suggesting amplified loss aversion (focus on avoiding losses rather than receiving gains) with 

real monetary awards. Thus, one possible explanation for our older participants not making 

choices that are more advantageous over the younger ones on the IGT could be that the 

hypothetical awards did not increase their sensitivity to money loss or enhance their desire to 

win. Our results are in line with neuroimaging evidence having shown that different age groups 

(8-10, 12-14, 16-17 years) did not differ in the recruitment of the dorsolateral prefrontal cortex 

during gambling tasks (van Leijenhorst et al., 2010) despite the dorsolateral prefrontal cortex 

being one of the last brain regions to reach maturity (Bunge & Wright, 2007). Finally, as this 

is the first study to investigate the development of both hot and cool EF in ASD population, it 

could simply be the case of the hot EF trajectory not exhibiting any dramatic changes across 

middle childhood and adolescence. Our ASD sample included participants beyond early 

childhood (>7 years) and we could assume that hot EF might present rapid changes during the 

preschool period in ASD. Future longitudinal studies are needed to clarify this issue. 

 

Cool and Hot EF organisation 

Following the different developmental trends found in the ASD group, different patterns of 

relations were also found among the cool and hot EF measures in the two groups. 
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Developmental theories that suggest the distinction between hot and cool EF (Zelazo & Müller, 

2002), argue that cool cognitive EF is regulated by lateral inferior and dorsolateral 

frontoparietal mechanisms (Miller & Cummings, 2007) while hot affective EF is mainly 

mediated by the paralimbic orbitomedial and ventromedial frontolimbic structures (Fuster, 

1997). Distinct neural regulations could allow for distinct developmental pathways; however 

very little is known about their organisation in ASD.  

Interestingly, the association between hot and cool EF was significant only in the control group 

consistent with our hypothesis; affective decision making was significantly correlated to cool 

working memory and planning in line with previous studies investigating such a relationship 

in adulthood (Brand et al., 2005; Hinson et al., 2003). There is evidence though suggesting that 

performance in hot EF gambling tasks  are independent of performance on cool EF measures, 

including working memory, in adults (Fonseca et al., 2012) and young childhood (O’Toole et 

al., 2016). Our results add to this ongoing debate in typical development by suggesting that 

affective decision making and cool EF are associated across middle childhood to adolescence. 

Overall, this evidence shows that during middle childhood and adolescence within typical 

development, hot and cool EF may not necessarily be considered as separate constructs (Allan 

& Lonigan, 2014).  

No correlations between hot and cool EF were found in ASD, suggesting that hot and cool EF 

could be dissociable functions in ASD. Generally, it is suggested that cool and hot EF aspects 

could differentiate from each other across development, extending early childhood (Diamond 

2006). However, our results show that the internal EF organisation may represent a 

multidimensional model distinguishing between hot and cool only in the ASD group, but a 

unitary construct (Allan & Lonigan, 2014) in typical development. More research using factor 

analysis in ASD is needed though, in order to clarify whether cool and hot EF are truly 
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representing distinct domains or a unitary construct, simply used differently under abstract and 

emotionally/motivationally significant situations in problem solving. 

The findings of the present study need to be interpreted in the light of limitations. First, as we 

followed the convenience sampling approach, the relatively small number of children and 

adolescents that were recruited may not represent the broader ASD population. Although this 

study provided a more advanced insight into the development of the fractionated hot/cool EF 

model in ASD, it only included 7 to-16-year-old participants; it thus remains to be explored 

whether these findings can be attributed to younger children, or adults across the autism 

spectrum functioning levels. In addition, the present evidence needs to be interpreted cautiously 

as the statistical analysis used here (developmental trajectory approach) does not account for 

the correlation between age and IQ across the relationship of age to EF performance. Finally, 

the lack of a validated screening tool to support the provided clinical diagnostic reports of ASD 

was an important limitation.  

In conclusion, the evidence from the present study suggests that shedding more light on the 

predictors and the developmental trajectories of cool and hot EF as well as their internal 

organisation, could contribute to our theoretical understanding of the brain maturation 

processes of children and adolescents with ASD. However, as this research is quite limited yet, 

findings should be interpreted cautiously. Future longitudinal studies are needed in order to 

corroborate between- group differences in the developmental trajectories of EF in ASD as 

found using cross-sectional approaches. The factors that contribute to hot/cool EF development 

and its organisation in ASD are complex and this cross-sectional study provides a basis for 

exploring these in future longitudinal work. 
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Table 1a. Participants’ characteristics. 

                                       

Group 

  

    

   

 ASD  

(n=79) 

Control  

(n=91) 

F values 

Age (in years) 

M (SD)  

Range 

  

11.27 (2.56) 

7-16 

 

10.80 (2.49) 

7-16 

 

  

FSIQ  

M (SD) 

Range 

  

95.85 (15.09) 

70-127 

 

99.78 (13.54) 

72-135 

 

Digit Span 

M (SD) 

  

11.33 (3.09) 

 

13.97 (3.38) 

 

28.21 

(p <.001) 

ToL  

M (SD) 

  

7.05 (2.03) 

 

8.31 (1.65) 

 

19.73 

(p <. 001) 

Go/No-Go  

M (SD) 

  

48.86 (15.98) 

 

35.91 (18.11) 

 

23.08 

(p< .001) 

IGT 

M (SD) 

  

-.04 (.19) 

 

.05 (.22) 

 

8.01 

(p = .005) 

Delay 

Discounting 

M (SD) 

   

.33  (.12) 

 

.38 (.12) 

 

6.98 

(p = .009) 

Note. ToL= Tower of London task; IGT= Iowa Gambling Task. All EF scores are the raw test scores. 
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Table 1b. Distribution of the sample across the two groups. 

 Control 

(n=91) 

ASD 

(n=79) 

Age cohorts (in years)   

 

7-9 

 

 

   35 

 

   22 

10-12 

 

   32    34 

13-16    24    23 
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Table 2. Correlation matrix for separate groups (control subjects below the diagonal and ASD 

subjects above the diagonal). 

 

Note. *p <. 05, **p < .01; ToL: Tower of London, IGT: Iowa Gambling Task.  
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Table 3. Intercept and slope of linear developmental trajectories predicting EF measures 

based on putative developmental predictors. 

 

                    ASD            Controls  

         Age           IQ          Age         IQ 

Digit Span m=11.28  (SE= .34) 

b= 9.56   , r2 =.01 

m=11.42 (SE=.37) 

b= 7.22  , r2 =.04 

m= 14.19  (SE= .31) 

b= 5.65  , r2 =.32 

m=13.90  (SE=.34) 

b=9.05   , r2 =.04 

Go/No-Go m=49.2 (SE= 1.97) 

b= 66.47 , r2 =.06 

m=48.99  (SE=2.02) 

b= 44.14  , r2 
= .002 

m=35.67  (SE=1.79) 

b=47.76  , r2 =.03 

m=36.1  (SE=1.83) 

b=  42.00 , r2 = .002 

ToL m= 7.04  (SE= .20) 

b= 6.74  , r2 = .001 

m= 7.15   (SE=.20) 

b=2.75   , r2 = .11 

m= 8.38   (SE=.19) 

b=5.09   , r2 =.2 

m= 8.29   (SE=.19) 

b= 7.07  , r2 = .04 

     

IGT m= -.04  (SE=.024) 

b=-.08   , r2 =.002 

m=-.036   (SE=.024) 

b=-.12   , r2 =.005 

m= .06   (SE=.022) 

b= -.06  , r2 =.01 

m=.05   (SE=.022) 

b=-.18   , r2 =.01 

Delay Discount m= .32   (SE=.015) 

b= .3  , r2 =.002 

m=.32   (SE=.015) 

b= .38  , r2 =.006 

m= .38   (SE=.014) 

b=.45   , r2 = .01 

m= .38   (SE=.014) 

b=.37   , r2 <.001 

     

                           Note. ToL= Tower of London task; IGT= Iowa Gambling Task. 

IQ  -.51** .21 .34** -.05 .07 -.07 

Age -.32**  .13 .04 -.25* .05 -.05 

DigitSpan .19 .57**  .25* -.01 .28 .15 

ToL .11 .45** .45**  -.01 -.08 .07 

Go/No-Go -.05 -.18 -.23* -.09  -.02 .04 

IGT .14 .12 .26* .27* -.18  .13 

Discounting -.14 -.14 -.14 -.12 .03 -.06  
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Figure 1. 
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          *p < .05 

 

 

 

 

 

 

 

 

 

 

Figure 2. 
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*P< .05 

 

 

 

 

 

 

 

 

 

 

Figure 3. 

 

0

20

40

60

80

100

120

7 9 11 13 15 17

G
o

/N
o

-G
o

Age

Inhibition (Go/No-Go scores)

ASD

Control

Linear (ASD)*

Linear (Control)*



41 
HOT & COOL EF TRAJECTORIES IN ASD 

 

 

*p < .05 

 

 

 

 

 

 

 

 

 

Figure 4. 
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Figure 5. 
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