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Abstract

The present study investigated the relationship between the milk protein content of a rehydration solution and fluid balance after exercise-

induced dehydration. On three occasions, eight healthy males were dehydrated to an identical degree of body mass loss (BML, approxi-

mately 1·8 %) by intermittent cycling in the heat, rehydrating with 150 % of their BML over 1 h with either a 60 g/l carbohydrate solution (C),

a 40 g/l carbohydrate, 20 g/l milk protein solution (CP20) or a 20 g/l carbohydrate, 40 g/l milk protein solution (CP40). Urine samples were

collected pre-exercise, post-exercise, post-rehydration and for a further 4 h. Subjects produced less urine after ingesting the CP20 or CP40

drink compared with the C drink (P,0·01), and at the end of the study, more of the CP20 (59 (SD 12) %) and CP40 (64 (SD 6) %) drinks had

been retained compared with the C drink (46 (SD 9) %) (P,0·01). At the end of the study, whole-body net fluid balance was more negative

for trial C (2470 (SD 154) ml) compared with both trials CP20 (2181 (SD 280) ml) and CP40 (2107 (SD 126) ml) (P,0·01). At 2 and 3 h after

drink ingestion, urine osmolality was greater for trials CP20 and CP40 compared with trial C (P,0·05). The present study further demon-

strates that after exercise-induced dehydration, a carbohydrate–milk protein solution is better retained than a carbohydrate solution. The

results also suggest that high concentrations of milk protein are not more beneficial in terms of fluid retention than low concentrations of

milk protein following exercise-induced dehydration.
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Exercise results in an increase in energy expenditure, heat

production and the initiation of the sweat response to help

dissipate some of the heat produced. It has been commonly

reported that during exercise, athletes lose more fluid through

sweat than they gain through drink ingestion, and thus they

finish exercise in a hypohydrated state(1). In situations where

two exercise bouts are completed in close proximity, effective

and rapid rehydration after the first bout of exercise will be

required if performance in the second bout is not to be

affected(2). As long as a sufficient volume of a rehydration

solution is consumed(3), the main factors that determine how

much of the solution is retained are the rate at which it is con-

sumed(4) and its composition(5–14). It is likely that these factors

exert their effects on rehydration via the inclusion of osmotic

substances that enhance water retention or by influencing the

rate of appearance in the peripheral circulation, thus attenua-

ting serum osmolality and arginine vasopressin responses.

It has been shown that increasing the Na(6,9,10) or carbo-

hydrate(7,11) concentration of a rehydration solution consumed

after exercise increases the fraction of the ingested solution

that is retained. It has also been shown that low-fat milk

is better retained than a carbohydrate–electrolyte sports

drink(12,13); however, the number of compositional differences

between low-fat milk and sports drinks (energy density,

carbohydrate content and type, protein content, Na content

and K content) makes it difficult to determine the compo-

sitional factor in low-fat milk that increases drink retention.

A number of recent studies have reported the specific effects

of intact milk protein(8) or the whey fraction of milk pro-

tein(14,15) on rehydration after exercise. Seifert et al.(14)

reported that the addition of 15 g/l whey protein to a 60 g/l

carbohydrate–electrolyte solution increased the amount of

solution retained compared with a 60 g/l carbohydrate

solution or flavoured water. In contrast, James et al.(15)
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reported that when matched for energy density, there was no

difference in the retention of a 65 g/l carbohydrate solution or

a 50 g/l carbohydrate, 15 g/l whey protein isolate solution. The

methodological differences between these two investigations

may account for the disparate results observed. Conversely,

James et al.(8) demonstrated that after exercise-induced dehy-

dration, a solution containing 40 g/l carbohydrate, 25 g/l milk

protein resulted in greater fluid retention than an isoenergetic

65 g/l carbohydrate solution.

It appears that at least some of the increased drink retention

observed with the ingestion of low-fat milk(12,13) compared

with sports drinks might be related to the protein present

in the milk. The study of James et al.(8) used a protein content

below that of low-fat bovine milk (approximately 36 g/l)(12,13),

and it is unknown whether increasing the protein content of

a rehydration solution above 25 g/l might further increase

drink retention. The purpose of the present study was there-

fore to compare solutions of systematically increasing milk

protein concentrations (0, 20 and 40 g/l milk protein) on

rehydration after exercise, with solutions matched for energy

density, as well as Na and K concentrations.

Methods

Subjects

The present study was conducted according to the guidelines

laid down in the Declaration of Helsinki, and all procedures

involving human subjects were approved by the Nottingham

Trent University School of Science and Technology Ethics

Committee. Written and verbal informed consent was

obtained from all subjects, and they completed a medical

screening questionnaire. A total of eight healthy males (age

21·9 (SD 2·0) years, height 1·76 (SD 0·08) m and body mass

76·96 (SD 8·73) kg) volunteered to participate in the present

investigation.

Experimental protocol

All subjects completed an initial familiarisation trial and

three experimental trials, which were administered in a ran-

domised, double-blind manner. All experimental trials were

carried out on the same day of the week and were separated

by at least 7 d.

In the 24 h preceding the first experimental trial, subjects

recorded their dietary intake and physical activity, and

then replicated these patterns of dietary intake and physical

activity for the 24 h before the second and third experi-

mental trials. Subjects also refrained from alcohol intake and

strenuous exercise in the 24 h preceding each experimental

trial.

During the familiarisation trial, subjects completed the

dehydration and rehydration protocols described in detail

below and remained in the laboratory for 1 h after rehydration.

For the main trials, subjects arrived in the morning following

an overnight fast, with the exception of 500 ml plain water,

consumed 2 h before arriving at the laboratory.

Dehydration phase

Upon arrival at the laboratory, subjects voided their bladder

(pre-exercise) and their body mass was measured (wearing

dry boxer shorts only) to the nearest 10 g (Adam CFW150;

Adam Equipment Co Limited). Subjects then exercised in a

temperature- (35·0 (SD 0·1)8C) and humidity (51·8 (SD 5·9) %

relative humidity)-controlled environmental chamber (Design

Environmental Limited) until they had lost 1·6 % of their initial

body mass. Due to continued sweating post-exercise and

before the final body mass measurement, target body mass

loss was approximately 2 % initial body mass. Exercise

began at an intensity of approximately 2 W/kg body mass

and was performed on a friction-braked cycle ergometer

(Monark Ergomedic E874, Cranlea), with subjects completing

10 min blocks of exercise, separated by 5 min rest in the

chamber. Body mass (wearing boxer shorts only) was

measured during the rest periods, and this pattern of exercise

and rest continued until subjects had achieved the desired

body mass reduction. Subjects were then given 15 min to

shower and after thoroughly towel drying, body mass was

again measured (wearing dry boxer shorts only) to deter-

mine the total body mass reduction (target body mass loss

approximately 2 %), before subjects provided a urine sample

(post-exercise).

Rehydration phase

Subjects then ingested a volume of drink (in litres) equivalent

to 150 % of the total body mass loss (in kg) over a period of 1 h.

The volume of drink was provided in four aliquots of equal

volume at 15 min intervals (0, 15, 30 and 45 min) over the

1 h rehydration period, and subjects consumed each aliquot

within 15 min. At the end of the rehydration period, subjects

provided a urine sample (0 h). Subjects consumed a different

drink during each trial and the drinks were administered in

a randomised, double-blind manner. Drinks (Table 1) were

matched for energy and electrolyte content, with the only

difference between the drinks being the carbohydrate and

protein content. The protein contained in the drinks was

in the form of a commercially available protein supple-

ment derived from the cold ultrafiltration of skimmed bovine

milk (Milk Protein Smooth; Myprotein.co.uk). The protein

Table 1. Energy density, osmolality, protein content, fat content, sodium
concentration and potassium concentration of the experimental drinks

(Mean values and standard deviations)

C CP20 CP40

Mean SD Mean SD Mean SD

Energy density (kJ/l) 1087 0 1087 0 1087 0
Osmolality (mosmol/kg) 280 2 264 3 252 3
Protein (g/l) 0 0 20 0 40 0
Carbohydrate (g/l) 60 0 40 0 20 0
Fat (g/l) 0·7 0 0·7 0 0·7 0
Na (mmol/l) 21 1 20 2 21 1
K (mmol/l) 5 1 5 1 4 1

C, carbohydrate (60 g/l) solution; CP20, carbohydrate (40 g/l), milk protein (20 g/l)
solution; CP40, carbohydrate (20 g/l), milk protein (40 g/l) solution.
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supplement contributed a small amount of fat (1·3 g/100 g),

so a small amount of olive oil was added to two of the

experimental drinks: carbohydrate (60 g/l) solution (C); and

carbohydrate (40 g/l), milk protein (20 g/l) solution (CP20).

The protein supplement also contributed a small amount of

lactose (6·3 g/100 g), so maltodextrin added to the C and

CP20 drinks was adjusted to match the drinks in terms of

energy content. The drinks had a small amount (100 ml/l)

of sugar-free squash added in an attempt to mask the drink

contents. Furthermore, small amounts of NaCl and KCl were

added to the drinks to give a final Na concentration of

20 mmol/l and a final K concentration of 5 mmol/l. The

drinks were made up approximately 1 h before consumption

and kept at room temperature. Each drink was mixed

thoroughly and its temperature was measured before serving.

The drink temperature at serving was 15·0 (SD 1·2)8C (C), 16·1

(SD 2·0)8C (CP20) and 16·2 (SD 1·9)8C (carbohydrate (20 g/l),

milk protein (40 g/l) solution; CP40), and was not different

between the trials (P¼0·433).

Monitoring phase

Subjects then rested in the laboratory (20·4 (SD 1·7)8C and 33·3

(SD 7·7) % relative humidity) for a further 4 h, during which

they provided a urine sample every hour (1, 2, 3 and 4 h).

At the end of the monitoring phase, a final body mass

measurement (wearing dry boxer shorts only) was made.

Subjects completed questionnaires related to their sub-

jective feelings immediately before each urine sample

(pre-exercise, 21, 0, 1, 2, 3 and 4 h). Subjects were asked to

rate their subjective feelings of stomach fullness, bloating

and hunger using a 100 mm visual analogue scale, with

0 mm representing ‘not at all’ and 100 mm representing

‘very’. Additional questions on sweetness, saltiness, bitterness

and pleasantness of the rehydration solutions were asked at 0 h.

Sample analysis

For each urine sample, subjects were instructed to completely

empty their bladder into the container provided. The volume

of each urine sample was measured and a small aliquot

(approximately 5 ml) retained for subsequent analysis.

A sample of each drink was also retained for subsequent

analysis. Urine and drink samples were stored at 48C, before

being analysed for osmolality by freezing point depression

(Gonotec Osmomat 030 Cryoscopic Osmometer; Gonotec),

as well as Na and K concentrations by flame photometry

(Corning Clinical Flame Photometer 410C; Corning Limited).

Statistical analysis

Data are presented as means and standard deviations. All data

were analysed using SPSS 18.0 (SPSS, Inc.). All data were

checked for the normality of distribution using a Shapiro–

Wilk test. All data containing two variables were then analysed

using a two-way repeated-measures ANOVA. Significant

differences were located using Bonferroni-adjusted paired

t tests for normally distributed data or Bonferroni-adjusted

Wilcoxon signed-rank tests for non-normally distributed

data. Variables containing one factor (e.g. drink perception)

were analysed using one-way repeated-measures ANOVA

followed by Bonferroni-adjusted paired t tests or Friedman’s

ANOVA followed by Bonferroni-adjusted Wilcoxon signed-

rank tests as appropriate. Differences were accepted as

being significant when P , 0·05.

Results

Pre-trial measurements

At the beginning of each experimental trial, there was no

difference in the subjects’ body mass (77·12 (SD 8·08) kg (C),

76·76 (SD 7·73) kg (CP20) and 77·23 (SD 8·16) kg (CP40);

P¼0·153) or urine osmolality (558 (SD 214) mosmol/kg (C),

399 (SD 202) mosmol/kg (CP20) and 484 (SD 201) mosmol/kg

(CP40); P¼0·195). This indicates that subjects started each

trial in a similar state of hydration.

Dehydration and rehydration phase

The exercise time required to reach the desired body mass

reduction (approximately 1·6 % of initial body mass) was not

different between the trials (P¼0·936) and amounted to 60

(SD 6) min (C), 60 (SD 12) min (CP20) and 59 (SD 12) min

(CP40), with a total time for heat exposure of 84 (SD 11) min

for overall trials. Similarly, workload during exercise was not
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Fig. 1. Total urine output after drinking (a) for each subject and (b) for the

whole group. C, carbohydrate (60 g/l) solution; CP20, carbohydrate (40 g/l),

milk protein (20 g/l) solution; CP40, carbohydrate (20 g/l), milk protein (40 g/l)

solution. Values are means, with standard deviations represented by vertical

bars. * Mean value was significantly different from that of trial C (P,0·01).
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different between the trials (P¼0·460) and over all trials was

127 (SD 22) W. The dehydration protocol resulted in similar

total reductions in body mass (P¼0·340), which amounted

to 1·41 (SD 0·13) kg over all trials, representing 1·85

(SD 0·10) % (C), 1·81 (SD 0·12) % (CP20) and 1·83 (SD 0·08) %

(CP40) of subjects’ pre-trial body mass. As body mass loss

was not different between the trials, the total volume of the

rehydration drink ingested was also similar between the

trials (P¼0·510), amounting to 2115 (SD 199) ml (C), 2085

(SD 174) ml (CP20) and 2118 (SD 207) ml (CP40).

Urine volume, drink retention and net fluid balance

The total cumulative urine volume produced after drink inges-

tion (Fig. 1) was reduced during the CP40 and CP20 trials

compared with the C trial (P,0·01), but was not different

between the CP20 and CP40 trials (P¼1). In line with this,

the fraction of the ingested drink that had been retained at

the end of the study (calculated from the volume of the

drink ingested during rehydration and the volume of urine

produced after/during drinking) was greater during trials

CP20 (58 (SD 12) %) and CP40 (64 (SD 6) %) compared with

trial C (46 (SD 9) %). Urine volume produced during each

hour of the study (data not shown) peaked at 1 h during all

trials, and compared with 21 h, urine volume was greater at

1, 2 and 3 h during trials C and CP20 (P,0·05), but was

only greater at 1 h during trial CP40 (P,0·001), although

urine volume tended to be greater at 2 h (P¼0·090) and 3 h

(P¼0·060). Furthermore, urine volume was greater during

trial C compared with trial CP40 at 1 h (P,0·01) and 2 h

(P,0·01) and with trial CP20 at 2 h (P,0·01).

The whole-body net fluid balance (Fig. 2) was calculated

from fluid losses through sweating during exercise (calculated

from changes in body mass) and urine production, and fluid

gain through drink ingestion. The whole-body net fluid

balance was negative for all trials (21461 (SD 150) ml (C),

21432 (SD 150) ml (CP20) and 21456 (SD 131) ml (CP40)) at

the end of exercise (21 h), and had become positive for

all trials (591 (SD 96) ml (C), 598 (105) ml (CP20) and 615

(SD 96) ml (CP40)) at the end of rehydration (0 h). From the

end of rehydration, continuing urine production meant that

the net fluid balance decreased during all trials. The net

fluid balance was greater from 2 h for both trials CP20 and

CP40 compared with trial C, and tended to be greater at 1 h

during trial CP40 compared with trial C (P¼0·072). There

were no differences in net fluid balance between trials

CP20 and CP40 (P.0·690). At the end of the study, the net

fluid balance was 2470 (SD 154), 2181 (SD 280) and 2107

(SD 126) ml for trials C, CP20 and CP40, respectively.

Urine osmolality and electrolyte excretion

The exercise-induced dehydration phase of the protocol

resulted in an increase in urine osmolality (Fig. 3) in all

trials (P,0·05) and over all trials was 480 (SD 207) mosmol/kg

pre-exercise and 709 (SD 107) mosmol/kg at 21 h. Compared

with pre-exercise, urine osmolality was significantly decreased

at 1 h during all trials (P,0·05) and remained significantly

decreased at 2 h during trial C (P,0·01). Additionally, at

4 h, urine osmolality increased compared with pre-exercise

during trial CP20 (P,0·05) and tended to be increased

during trial CP40 (P¼0·061). Furthermore, urine osmolality

was greater at 2 h (P,0·01) and 3 h (P,0·05) during both

trials CP20 and CP40 compared with trial C.

There were no differences between the trials (P . 0·345) for

the cumulative amount of Na and K (Table 2) excreted in the

urine after drink ingestion.

Subjective feelings

Subjective feelings of stomach fullness, bloating and hunger

demonstrated main effects for time (P,0·01), but there

were no main effects for trial (P.0·093) or any interaction
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Fig. 3. Urine osmolality during trials C (X), CP20 (W) and CP40 (O). C, carbo-

hydrate (60 g/l) solution; CP20, carbohydrate (40 g/l), milk protein (20 g/l)

solution; CP40, carbohydrate (20 g/l), milk protein (40 g/l) solution. Values are

means, with standard deviations represented by vertical bars. * Mean value

was significantly different for trial C from pre-exercise (P , 0·05). † Mean

value was significantly different for trial CP20 from pre-exercise (P , 0·05).

‡ Mean value was significantly different for trial CP40 from pre-exercise

(P , 0·05). § Mean value was significantly different for trial C from both trials

CP20 and trial CP40 (P , 0·05).
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C from both trials CP20 and CP40 (P , 0·01).
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(P.0·287). Subjects perceivednodifferencebetween thedrinks

in terms of sweetness (P¼0·077), saltiness (P¼0·262) and bitter-

ness (P¼0·124), but perceived drink C (74 (SD 14) mm) to

be more pleasant than drink CP20 (34 (SD 29) mm) (P,0·05)

and tended (P¼0·066) to perceive drink CP40 (62 (SD 19) mm)

as more pleasant than drink CP20.

Discussion

The results of the present experiment demonstrate that after

exercise in a hot environment, resulting in a 1·83 (SD 0·10) %

reduction in body mass, the net fluid balance at the end of

the study period was greater after the ingestion of a 20 g/l

milk protein, 40 g/l carbohydrate solution (2181 (SD

280) ml) or a 40 g/l milk protein, 20 g/l carbohydrate solution

(2107 (SD 126) ml) compared with after ingestion of a 60 g/l

carbohydrate solution (2470 (SD 154) ml). However, although

increasing the milk protein content from 20 to 40 g/l resulted

in a slightly greater net fluid balance at the end of the trial

period, there was no significant difference between the two

protein-containing solutions for any of the measured vari-

ables. While there was a statistically significant difference in

fluid balance between the C and the CP20 and CP40 trials,

this equates to a difference in body mass of approximately

0·3–0·5 %, which is unlikely to confer any enhancement in

exercise performance during trial CP20 or CP40 compared

with trial C(13).

It has previously been shown that after exercise in the

heat, resulting in a reduction in body water equivalent to

approximately 2 % of subjects’ initial body mass, low-fat

milk is better retained than a commercially available carbo-

hydrate–electrolyte drink(12,13). While there are numerous

compositional differences between low-fat milk and a

carbohydrate–electrolyte sports drink (energy density, carbo-

hydrate content and type, protein content and electrolyte

content), it has recently been demonstrated that the protein

contained in low-fat milk is responsible for at least some of

the increased fluid retention observed(8). The study of James

et al.(8) matched solutions in terms of energy density and

electrolyte content, making it possible to directly compare

the fluid-retaining properties of milk protein (25 g/l) with an

isoenergetic amount of carbohydrate. The results of the

present study agree with those of James et al.(8), and demon-

strate that the retention of a rehydration solution consumed

after exercise-induced dehydration is increased when some

of the carbohydrate in a carbohydrate–electrolyte solution

is replaced with an isoenergetic amount of milk protein.

The present study demonstrates that the inclusion of some

(20–40 g/l) milk protein in a rehydration solution can aug-

ment rehydration to a greater extent than an isoenergetic

amount of carbohydrate; however, there was no significant

difference in any of the measured variables between the rehy-

dration solutions containing either 20 or 40 g/l milk protein.

This suggests that in the concentrations of milk protein

measured in the present study, there does not appear to be

a dose–response relationship with fluid balance after exer-

cise-induced dehydration.

Low-fat milk has a protein content of approximately

36 g/l(12,13); however, the present study, as well as previous

research(8), suggests that any increases in drink retention

caused by the protein content of low-fat milk can be produced

by protein concentrations below that found in low-fat milk.

Similarly, Seifert et al.(14) observed an increased retention of

a commercially available carbohydrate–protein solution (con-

taining 60 g/l carbohydrate, 15 g/l whey protein) compared

with a commercially available carbohydrate solution (60 g/l

carbohydrate) and flavoured water. Although, James et al.(15)

demonstrated that this increase in drink retention observed

by Seifert et al.(14) might be related to the mismatched

energy density of rehydration solutions, as when matched

for energy density, no difference in drink retention was

observed between a 65 g/l carbohydrate solution and a

50 g/l carbohydrate, 15 g/l whey protein isolate solution(15).

Increasing the energy density of a solution reduces the rate

at which it empties from the stomach(16–18), thus reducing

the rate of water uptake into the circulation and offsetting

the decline in serum osmolality that occurs with the ingestion

of less energy-dense solutions(7,18).

While the results of the present study and those of James

et al.(8) suggest that the inclusion of milk protein in a rehydra-

tion solution consumed after exercise-induced dehydration

increases the fraction of the ingested solution that is retained,

Table 2. Urinary sodium (mmol) and potassium (mmol) excretion after drink ingestion during the experimental trials

(Mean values and standard deviations)

Time after rehydration (h)

0 1 2 3 4

Mean SD Mean SD Mean SD Mean SD Mean SD

Na excretion (mmol)
C 5 3 12 6 18 8 24 10 29 11
CP20 3 2 8 6 14 8 20 11 25 11
CP40 4 3 11 8 17 12 24 13 30 13

K excretion (mmol)
C 4 2 7 3 10 4 15 6 18 7
CP20 4 2 7 5 11 7 15 8 19 9
CP40 3 1 6 2 9 3 12 2 15 3

C, carbohydrate (60 g/l) solution; CP20, carbohydrate (40 g/l), milk protein (20 g/l) solution; CP40, carbohydrate (20 g/l), milk protein
(40 g/l) solution.
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the mechanism by which this effect occurs is currently

unknown. The rate at which a solution is emptied from the

stomach and the rate at which fluid is absorbed in the small

intestine are both affected by the addition of protein to a sol-

ution, suggesting that alterations in fluid absorption are likely

to be the main reason for the success of these solutions. Care-

ful consideration needs to be given to the interpretation of

these data in the hours immediately after drink ingestion, as

fluid in the stomach and intestines will not be contributing

to fluid balance. Future studies should seek to quantify the

volume of fluid contained in the gastrointestinal system to

take account of this volume in any fluid balance calculations.

The most important factor affecting rehydration after

exercise is the volume of fluid that is consumed, and it has

been shown that for effective rehydration, a volume equival-

ent to approximately 150 % of fluid lost must be ingested(3).

Failure to ingest sufficient fluid will make a return to euhydra-

tion impossible. In situations where drinks are consumed

ad libitum, palatability and drink perception play an import-

ant role in determining the volume of fluid that is ingested.

James et al.(8) observed no difference in drink pleasantness

or sweetness between a 65 g/l carbohydrate solution and a

40 g/l carbohydrate, 25 g/l milk protein solution. Interestingly,

in the present study, subjects perceived drink C to be more

pleasant than drink CP20, and there was a tendency for

subjects to perceive drink CP40 as more pleasant than drink

CP20 (P¼0·066), with no difference between the C and

CP40 drinks. This suggests that if ad libitum fluid intake had

been used during rehydration instead of the prescribed drink-

ing that was imposed, then subjects might have ingested

a greater amount of drink C or CP40 than drink CP20,

which is an important consideration for rehydration in an

applied setting.

In the present study, a prescribed volume of fluid of 150 %

of body mass loss during exercise was ingested during rehy-

dration. Therefore, although not measured, the observed

differences in drink retention must be related to the drinks’

effects on gastric emptying, intestinal absorption or fluid

retention, all of which might influence serum osmolality and

circulating agrinine vasopressin concentrations and thus

urine production. Future studies should aim to also quantify

these outcomes. Slowing the rate of gastric emptying and/or

intestinal absorption might reduce the rate of influx of water

into the circulation, offset the decline in serum osmolality

that occurs with the ingestion of a large volume of dilute

fluid and reduce urine production(18). In contrast, adding

ingredients to rehydration drinks that exert an osmotic effect

in the extracellular space (e.g. Na) might result in an increase

in serum osmolality and a reduction in urine production(9,19).

There is a rationale for milk protein, affecting all three of these

components of the rehydration process.

Milk protein is comprised of approximately 80 % casein

protein and approximately 20 % whey protein, and in the

presence of gastric acid, the casein fraction of milk protein

clots(20), which might affect the rate at which a casein or

milk protein-containing solution empties from the stomach.

It has previously been demonstrated that solutions containing

a high fraction of intact casein protein empty from the

stomach (measured using a radioactive tracer) slower than

solutions containing a low fraction of casein protein or con-

taining casein protein that had been denatured by acidifica-

tion(20). A reduction in the gastric emptying rate of solutions

containing casein or milk protein has also been demonstrated

in comparison with glucose and/or lactose(21,22). In contrast,

other studies(17,23) have demonstrated no effect of milk protein

or casein on gastric emptying, although these studies have

used a modification of the double-sampling gastric aspiration

technique of George(24) as described by Beckers et al.(25),

which involves repeated (at 5–20 min intervals) mixing of

the stomach, via an orogastric/nasogastric tube. This repeated

mixing is likely to disrupt any clot formation that might affect

the rate of gastric emptying.

Calbet & Holst(23) added 3H to solutions ingested and

reported that 3H appearance in the peripheral blood was

reduced following the ingestion of a casein protein-containing

solution compared with an isoenergetic whey protein-contain-

ing solution. As gastric emptying rate of the solutions was not

different, this reduced 3H appearance indicates that the rate of

intestinal water absorption was reduced in the casein protein-

containing solution. As with high-concentration glucose

solutions(18), the potential slower delivery of water to the peri-

pheral circulation with a solution containing casein protein

might offset the reduction in serum osmolality that occurs

with the ingestion of a large volume of a dilute solution(19).

Finally, the inclusion of milk protein in a rehydration

solution will result in an increase in plasma amino acid con-

centration(26), exerting an osmotic effect (oncotic pressure)(27)

that would be expected to increase water retention. In line

with this, Watson et al.(13) reported greater serum osmolality

after the ingestion of low-fat milk compared with a 60 g/l

carbohydrate solution ingested after exercise-induced dehy-

dration, although this might be accounted for by the greater

Na and K contents of low-fat milk. Similarly, Seifert et al.(14)

reported greater plasma osmolality after the ingestion of a

60 g/l carbohydrate, 15 g/l whey protein solution compared

with a 60 g/l carbohydrate solution after exercise-induced

dehydration. Taken together, these results have suggested

that the inclusion of milk-derived proteins in a post-exercise

rehydration solution might increase plasma osmolality, via

an increase in plasma amino acid concentration.

Similar to previous research(8,12), the osmolality of urine

produced after drinking in the present study (2 and 3 h) was

greater after the ingestion of milk protein-containing solutions

(CP20 and CP40) compared with a carbohydrate–electrolyte

solution (C). A change in plasma arginine vasopressin con-

centration of 1 pg/ml (resulting from a change in plasma

osmolality of approximately 3 mosmol/kg) has been shown

to lead to a change in urine osmolality of 250 mosmol/kg(28),

and although serum osmolality was not measured in the

present study, the increase in urine osmolality observed after

drinking during the CP20 and CP40 trials suggests that

serum osmolality and circulating arginine vasopressin con-

centrations would be expected to be greater after ingestion

of the protein-containing drinks.

In conclusion, the results of the present study confirm those

of James et al.(8) and suggest that after exercise in a hot

L. J. James et al.6
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environment, the substitution of some of the carbohydrate

contained in a carbohydrate–electrolyte rehydration solution

with an isoenergetic amount of milk protein can increase the

amount of the rehydration solution that is retained. Further-

more, these results demonstrate that there does not appear

to be any additional increase in rehydration of increasing

the milk protein concentration from 20 to 40 g/l.

Acknowledgements

The authors would like to thank Mr Terrance Campion for his

assistance in the data collection aspect of the present study.

The present study received no specific grant from any funding

agency in the public, commercial or not-for-profit sectors.

L. J. J., D. J. C., J. M., D. S., M. S., R. H. and R. S. conceived

the study design. All authors contributed to the data collection

and analysis. L. J. J. wrote the manuscript, with assistance from

G. H. E. and D. J. C. The authors had no conflicts of interest.

References

1. Shirreffs SM, Armstrong LE & Cheuvront SN (2004) Fluid and
electrolyte needs for preparation and recovery from training
and competition. J Sports Sci 22, 57–63.

2. Judelson DA, Maresh CM, Farrell MJ, et al. (2007) Effect of
hydration state on strength, power, and resistance exercise
performance. Med Sci Sports Exerc 39, 1817–1824.

3. Shirreffs SM, Taylor AJ, Leiper JB, et al. (1996) Post-exercise
rehydration in man: effects of volume consumed and drink
sodium content. Med Sci Sports Exerc 28, 1260–1271.

4. Jones EJ, Bishop PA, Green JM, et al. (2010) Effects of metered
versus bolus water consumption on urine production and
rehydration. Int J Sport Nutr Exerc Metab 20, 39–44.

5. Maughan RJ, Shirreffs SM & Leiper JB (1994) Post-exercise
rehydration in man: effects of electrolyte addition to ingested
fluids. Eur J Appl Physiol 69, 209–215.

6. Maughan RJ & Leiper JB (1995) Sodium intake and post-
exercise rehydration in man. J Appl Physiol 77, 311–319.

7. Evans GH, Shirreffs SM & Maughan RJ (2009) Postexercise
rehydration in man: the effects of osmolality and carbo-
hydrate content of ingested drinks. Nutrition 25, 905–913.

8. James LJ, Clayton D & Evans GE (2011) Effect of milk protein
addition to a carbohydrate-electrolyte rehydration solution
ingested after exercise in the heat. Br J Nutr 105, 393–399.

9. Shirreffs SM & Maughan RJ (1998) Volume repletion after
exercise-induced volume depletion in humans: replacement
of water and sodium losses. Am J Physiol 274, F868–F875.

10. Merson SJ, Maughan RJ & Shirreffs SM (2008) Rehydration
with drinks differing in sodium concentration and recovery
from moderate exercise-induced hypohydration in man.
Eur J Appl Physiol 103, 585–594.

11. Osterberg KL, Pallardy SE, Johnson RJ, et al. (2010) Carbo-
hydrate exerts a mild influence on fluid retention following
exercise-induced dehydration. J Appl Physiol 108, 245–250.

12. Shirreffs SM, Watson P & Maughan RJ (2007) Milk as
an effective post-exercise rehydration drink. Br J Nutr 98,
173–180.

13. Watson P, Love TD, Maughan RJ, et al. (2008) A com-
parison of the effects of milk and a carbohydrate-electrolyte
drink on the restoration of fluid balance and exercise
capacity in a hot, humid environment. Eur J Appl Physiol
104, 633–642.

14. Seifert J, Harmon J & DeClercq P (2006) Protein added to a
sports drink improves fluid retention. Int J Sport Nutr Exerc
Metab 16, 420–429.

15. James LJ, Gingell R & Evans GH (2012) Effect of whey protein
addition to a carbohydrate–electrolyte rehydration solution
ingested after exercise in the heat. J Athl Train 47, 61–66.

16. Vist GE & Maughan RJ (1994) Gastric emptying of ingested
solutions in man: effect of beverage glucose concentration.
Med Sci Sports Exerc 26, 1269–1273.

17. Calbert JAL & MacLean DA (1997) Role of caloric content on
gastric emptying in humans. J Physiol 498, 553–559.

18. Evans GH, Shirreffs SM & Maughan RJ (2011) The effects of
repeated ingestion of high and low glucose-electrolyte sol-
utions on gastric emptying and blood 2H2O concentration
after an overnight fast. Br J Nutr 27, 1–8.

19. Nose H, Mack GW, Shi X, et al. (1988) Role of osmolality and
plasma volume during rehydration in humans. J Appl Physiol
65, 325–331.

20. Billeaud C, Guillet J & Sandler B (1990) Gastric emptying in
infants with or without gastro-oesophageal reflux according
to the type of milk. Eur J Clin Nutr 44, 577–583.

21. Burn-Murdoch RA, Fisher MA & Hunt JN (1978) The slowing
of gastric emptying by protein in test meals. J Physiol 274,
477–485.

22. Bowen J, Noakes M, Trenerry C, et al. (2006) Energy intake,
ghrelin and cholecystokinin after different carbohydrate and
protein preloads in overweight men. J Clin Endocrinol
Metab 91, 1477–1483.

23. Calbet JA & Holst JJ (2005) Gastric emptying, gastric
secretion and enterogastrone response after administration
of milk proteins or their peptide hydrolysates in humans.
Eur J Nutr 43, 127–139.

24. George JD (1968) New clinical method for measuring the
rate of gastric emptying: the double sampling test meal.
Gut 9, 237–242.

25. Beckers EJ, Rehrer NJ, Brouns F, et al. (1988) Determination
of total gastric volume, gastric secretion and residual meal
using the double sampling technique of George. Gut 29,
1725–1729.

26. Hall WL, Millward DJ, Long SJ, et al. (2003) Casein and whey
exert different effects on plasma amino acid profiles, gastro-
intestinal hormone secretion and appetite. Br J Nutr 89,
239–248.

27. Okazaki K, Hayase H, Ichinose T, et al. (2009) Protein
and carbohydrate supplementation after exercise increases
plasma volume and albumin content in older and young
men. J Appl Physiol 107, 770–779.

28. Robertson GL (1974) Vasopressin in osmotic regulation in
man. Annu Rev Med 25, 315–322.

Milk protein contents and rehydration 7

B
ri
ti
sh

Jo
u
rn
al

o
f
N
u
tr
it
io
n


