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We investigate the effect of both strong and weak potential scattering caused by local impurities
and extended (line) defects in the array of Luttinger liquid wires. We find that in both cases a finite
range inter-wire interaction stabilises metallic state. Based on calculation of the scaling dimensions
of one-particle scattering operators, we construct the phase diagram for low-temperature transport
along the array. We find that unlike local impurity case where only conducting and insulating states
are realised (metal-insulator transition driven by interactions), the extended line defects may bring
the system into a mixed state where conducting or insulating behavior can be observed depending
on bare strength of the scatterer (metal-insulator transition driven by disorder).

PACS numbers: 71.10.Pm, 05.60.Gg, 73.63.Nm

INTRODUCTION

Since the prediction of the Anderson metal-insulator
transition [1, 2], the effects of interactions on this quan-
tum phase transition remain a puzzling problem, despite
a huge body of theoretical and experimental investiga-
tions. For the weak localization, in the diffusive regime,
inter-particle interactions are known to favour further lo-
calization of the system [3]. At the same time, experi-
ments on very clean two-dimensional systems show ev-
idence of a metal-insulator transition driven by change
of interaction strength (for a review, see Ref. [4]). An-
other important theoretical break-through in the under-
standing of the role of interaction is the discovery of the
many-body delocalization, which occurs due to interac-
tions in the isolated system at temperatures above the
critical one [5]. The theoretical description of interaction
for the generic disordered electron system requires to go
beyond the perturbation theory, thus posing a great the-
oretical challenge. At the same time, the interactions can
be taken into account nonperturbatively and to great ex-
tent exactly in one-dimensional electron systems in frame
of the Luttinger liquid (LL) theory. It is therefore tempt-
ing to attack the problem of the effect of interactions for
Anderson localization by making use of the Luttinger liq-
uid technique.

Recent advances in study of strongly correlated sys-
tems have led to wider search for exotic non-Fermi-
liquid states in condensed matter systems. In particular,
the quest for edge states protected against disorder has
started. These states are protected by a symmetry that
forbids perturbations potentially dangerous for the phase
stability. Another option is the renormalisation of dan-
gerous perturbations such that they become suppressed

at low temperatures and vanish in zero-temperature
regime leading to a metallic zero-temperature state pro-
tected by interactions. One of the promising models pro-
viding rich non-Fermi-liquid physics is an anisotropic sys-
tem consisting of array of coupled one-dimensional wires
[6–8]. This model was used for construction of integer [9]
and fractional quantum Hall states [10]. Sliding phases in
classical XY models [11], smectic metals [12] and many
other exotic states are all described by the sliding Lut-
tinger liquid (sLL) model [13–16]. The sLL is a model of
an array of parallel LL wires with charge-density inter-
actions between the different LL wires but without the
single-particle hopping between them. Interwire interac-
tions may provide the charge density fluctuations that
destroy the pinning of the charge density wave by the
disorder scattering, thus suppressing the Anderson local-
ization in the array [12–15].

Infinite arrays of wires and few-channel liquids have
been investigated for decades. It was established that to
stay quasi-one-dimensional at zero temperature requires
very special form of inter-wire interactions [14]. For a
smooth generic interaction the system falls into either
pinned charge density wave or two-dimensional supercon-
ducting state. The stability of sLL phase against disorder
is another wide area of research [6, 10–16]. In particu-
lar, the effect of scattering by local impurities in sLL was
investigated in Ref. [15]. As it is shown below, our re-
sults on scattering by local impurities agree with those
of Ref. [15]. A single impurity embedded into a LL and
a continuous disorder in LL [17] are known to crucially
affect single channel LL transport. The renormalisation
group (RG) analysis shows that strictly 1D transport of
repulsive electrons is completely blocked by a single im-
purity at zero temperature [18]. The generalisation of
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the RG-analysis to multichannel problem was initiated
by the series of papers [6, 9–15] and further advanced in
Refs. [16, 19–21].

In this paper, we perform the analysis of one-particle
back-scattering by the potential impurities in the two-
dimensional (2D) array of parallel quantum wires. Non-
perturbative treatment of interactions allows exact eval-
uation of scaling dimensions of the scattering operators
facilitating conclusions on the relevance/irrelevance of a
given scattering channel. Based on the analysis of scaling
dimensions, we show, that a line of defects going through
the whole array brings the system into a mixed state,
where the back-scattering may be relevant of irrelevant
depending on its strength. The low temperature phase
diagram of an array with a line defect is shown in Fig. 1.
In the case of point defects, the phase diagram exhibits
a localized state, where the back-scattering is relevant,
and a metallic state with back-scattering is irrelevant.
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FIG. 1: Upper panel: a) Array of quantum wires with
a line defect. b) Effective low-energy picture for the
back-scattering relevant, (insulating state, V > Vc in the
mixed state); c) Effective low-energy picture for the back-
scattering irrelevant (metallic state, V < Vc in the mixed
state). Lower panel: Phase diagram for a linear de-
fect model for an infinite radius of inter-wire interaction
(inter-wire radius of interaction parameter β = 1). The
state is specified by the inter-wire interaction strength
α (horizontal axis), and the intra-wire Luttinger param-
eter K (vertical axis). The existence of a mixed state
(yellow, labeled mix) signals dependence on the initial
(bare) strength of scattering, leading to a disorder driven
metal (blue) - insulator (red) transition.

Since our phase diagrams are based on the analysis of
scaling dimensions of single impurity scattering opera-
tors, the results obtained describe an array of wires with
low density of multiple impurities at moderate tempera-
tures when thermal length is smaller than the mean free
path, l = vFτ , and, therefore, each impurity renormalises
individually in this high-temperature regime, Tτ � 1.
We also assume that the temperatures T∗, when various
inter-channel hybridisations, such as single-particle hop-
ping, charge density wave (CDW) and Josephson cou-
plings, may become relevant, are low enough and are
not reached. This temperatures are known to be de-
fined by the bare couplings, J∗, the bandwidth D, and
the scaling dimension, ∆∗, of the most dangerous hy-
bridization term: T∗ ∼ D (J∗/D)α with the exponent
α = (2 − ∆∗)

−1. In materials where overlap between
electron wave functions that belong to the adjacent wires
is small, the bare values of single-particle and correlated-
pair inter-wire (Josephson) hopping are also small. The
CDW-coupling is proportional to the Fourier transform
of the Coulomb potential at 2kF and its bare value is
small for a smooth (on the scale of the Fermi wave length)
potentials. Under the assumption that coupling J∗ is
much smaller that the bare impurity strength, there is
a wide temperature range T � T∗, τ

−1, where we may
safely use model of interacting but not hybridised wires
(channels) with disorder modelled by individual impuri-
ties.

THE MODEL

We consider an array of identical parallel LL wires.
The bosonised action of the system with density-density
interactions reads

H0 =
v

8π

[
∂xθ

T (1 + ĝ) ∂xθ + ∂xφ
T ∂xφ

]
, (1)

where fields θT = (θ1 , ... , θN ), and φT = (φ1 , ... , φN )
parameterise the density, ρi = ∂xθi/2π, and the current,
ji = ∂xφi/2π, in the i-th wire. The density-density in-
teractions are represented by the matrix ĝ with elements
gij = g|i−j| describing interaction between wires arranged
into an array of 1D LLs. The technique for calculation
of the scaling dimension of an operator describing multi-
particle backscattering by a single impurity was devel-
oped in the series of papers [6, 9–15] and recently for-
malised in [16, 19–21] and we refer the readers interested
in the technical details to the latter. The following ex-
pression for the scaling dimension can be derived:

∆ =
1

2
(jin − jout)

T K̂ (jin − jout) (2)

+
1

2
(nin − nout)

T K̂−1 (nin − nout) .
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Here the integer-valued vectors of in- and out-going par-
ticles numbers, nµ, and currents, jµ,

nµ = nR
µ + nL

µ , jµ = nR
µ − nL

µ , µ = in , out ,

describe multiplicity of the scattering: nηin i are the num-
bers of right- or left moving (η = R,L) particles anni-
hilated in the i-th channel and nηout j are the numbers
of particles created in the j-th channel (see Fig. 2 for
an example). These integer numbers are constrained by
current and particle number conservations:

Nin = Nout ,
Jin = Jout ,

Nµ =
∑
i nµ i ,

Jµ =
∑
i jµ i .

(3)

1R	

1L	

2R	

2L	

Wire	1	

Wire	2	

FIG. 2: Interwire backscattering operator described by
the vectors nin = (1, 1)T , nout = (1, 1)T , jin = (1, 1)T ,
jout = (−1,−1)T .

In the absence of inter-particle current-current interac-
tion, the case considered in this paper, the Luttinger K̂-
matrix in Eq. 2 is given by (for details see Refs. [20, 21]):

K̂ = [1 + ĝ]
−1/2

. (4)

Since the matrix ĝ is defined on a one-dimensional lattice
and translation invariant, the explicit expression for ma-
trix elements, Kij = Kn with n = |i−j|, of the Luttinger

K̂-matrix can be written as

Kn =

∫ π

0

dq

π

cos qn√
1 + gq

, gq =

∞∑
n=−∞

gn cos qn . (5)

We assume that the Coulomb interaction in 2D array is
screened by surrounding metallic gates, which leads to
exponential decay of interaction with distance. There-
fore the interaction can be described by the following
expression

gn=0 = g0 , gn 6=0 = g′ |n|−1 e−κ|n| , (6)

where we introduced the transverse (inter-wire) screen-
ing parameter β = exp (−κ) with κ−1 being the screening
length measured in units of the inter-wire distance. Then

the discrete Fourier transform of the transverse interac-
tion is given by

gq = g0 − g′ ln
[
1 + β2 − 2β cos q

]
. (7)

Finally, restoring standard Luttinger parameterK = (1+
g0)−1/2 describing single wire without surrounding (i.e.
g′ = 0), the Luttinger matrix can be parameterised as

Kn = K

∫ π

0

dq

π

cos qn

rq
, (8)

rq =
√

1− α ln [1 + β2 − 2β cos q] ,

where the parameter α = g′/(1 + g0) > 0 describes the
relative strength of inter-channel repulsion.

LOCAL IMPURITIES

For a moderate inter-wire interaction the most dan-
gerous perturbation is a single-particle back-scattering
within the same wire (for details, see [20, 21]). The
operator of such perturbation is described by the vec-
tors nin = nout = (0, 0, ..., 1i, 0, ...)

T , and jin = −jout =
(0, 0, ...,±1i, 0, ...)

T with i labeling the wire, where the
scattering takes place. The sign ± stands for a backscat-
tering of a right- or left-moving particle. The general
expression for the scaling dimension ∆1 of this process is
obtained from Eq. (2)

∆1 =
K

Kws
, K−1

ws =

∫ π

0

dq

π

1

rq
. (9)

The critical value Kws(α, β) defines the boundary be-
tween metallic and insulating behaviour in the plane in-
teraction parameters α and β defined after Eq. (6). At
K > Kws the scaling dimension of impurity backscat-
tering is greater than one, ∆1 > 1, the impurity is ir-
relevant at low temperatures, and corrections to conduc-
tance of ideal ballistic system vanish as ∼ (T/D)2(∆1−1).
At weaker intra-channel repulsion, when K < Kws, the
scattering is relevant, ∆1 < 1, and system behaves as
insulator at low temperatures. It is instructive to note
here that Kws < 1 and, therefore, bosons and attractive
fermions (K > 1) are always ideal conductors.

It is important to stress that if a single impurity be-
comes relevant in some wire, one has to cut this wire
and and test the stability of the resulting disjoint con-
figuration against tunneling perturbation connecting two
detached semi-infinite wires. In the situation when all
but one wires preserve their states (conducting in this
case), one can use the duality result derived in [21] to
conclude that the scaling dimension of the tunneling is
inversely proportional to ∆1 and, therefore, only one of
the configurations is stable. This is true for a single im-
purity as well as for a set of impurities separated by a
distance greater than the mean free path. In the lat-
ter case, all those impurities behave similarly: either all
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FIG. 3: (a) Scaling dimensions ∆1 as functions of an inter-wire interaction strength α and an inter-wire screening
parameter β for for three different values of an intra-wire Luttinger parameter K and the transition plane ∆1 = 1.
(b-d) Phase diagrams as cross-sections of Fig. 1a at ∆1 = 1 for K = 0.95, K = 0.75 and K = 0.55 correspondingly,

exhibiting metal (blue) - insulator (red) transitions.

of them will be relevant or irrelevant depending on the
interaction strength. Since the impurities are randomly
scattered over the whole sample, all wires will be either
conducting or insulating. This means that we have a
sharp boundary between bulk conducting and insulating
states. This situation is very different from what we ob-
tain below for an extended defect.

Our expression Eq. (6) is applicable for any finite-range
inter-channel interaction, from the ideal screening (β =
0) to the pure (unscreened) Coulomb one (β = 1). All the
phase diagrams contain a metallic state (coloured blue),
an insulating state (red), and the void region, where our
description fails ( the Wentzel-Bardeen instability [22]
corresponds to the range of parameters where expression
under the square root in Eq. (8) is turning negative).

In Fig. 3a we show scaling dimensions as functions of
the inter-channel parameters α and β for three differ-
ent values of K. Fig. 3b presents the phase diagram
for the case when each wire has a fermionic Luttinger
parameter K = 0.95. When either the inter-wire inter-
action strength or the screening radius are small (α� 1
or β � 1 ), any weak back-scattering grows due to the
renormalization by interactions, leading to the insulat-
ing array, in the complete agreement with Refs. [15, 18].
On the other hand, when both strength and radius of
the inter-wire interactions increase, the back-scattering
in each wire is completely suppressed, and the conduct-
ing state is robust. In Figs. 3(c, d) phase diagrams for
K = 0.75 and K = 0.55 are presented. It is easy to no-
tice how the boundary between the insulating and con-
ducting states changes with parameter K. The smaller
K becomes, the more prevailing the insulating state is,
once again in the complete agreement with Refs. [15, 18].

In Fig. 4a we present scaling dimensions as functions
of α and K for three different values of β. In Fig. 4b a
phase diagram is shown for an infinite inter-wire radius
of interactions (parameter β = 1), providing the largest
possible phase-space for a conducting state. In Fig. 4c
(β = 0.5 ) one can observe the shift of the metal-insulator
transition boundary as the transverse screening increases
(screening parameter β decreases), which reduces the re-
gion of the metallic state. Finally, in Fig. 4d β = 0.1,
corresponding to a screening radius of order of half of

the inter-wire distance (the inter-wire interaction is al-
most completely suppressed), the metal state does not
exist, as in a single wire.

LINE DEFECT

In what follows we analyze the stability of the sLL
phase with respect to an intra-channel back-scattering
off a line defect. A line defect is assumed, for simplic-
ity, to be perpendicular to the wires forming sLL (see
Fig. 1). It can be treated as the multiple backscatter-
ing terms present in all wires at the same longitudinal
coordinate, x = 0. All these terms are alike and are
renormalised in a similar fashion. To calculate the scal-
ing dimension of the back-scattering from the weak ex-
tended defect, one has to assume that all wires are in
the same configuration. In the first approximation with
respect to the weakness of the defect, the scattering op-
erators in different wires are renormalised independently
and, therefore, the scaling dimension of each scattering
operator is given again by Eq.(9). The complementary
operator of the local weak link (strong defect scattering)
has a scaling dimension found from the inverse of the
K̂-matrix, as it was derived in [20, 21]. Perturbing insu-
lating configuration means that all wires at x = 0 are cut
by the line defect and we insert weak links (tunneling)
between the half-wires. The insulating configuration is,
therefore, macroscopically different from the conducting
one. To analyse the relevance of weak links we have to
use the technique developed in [20, 21]. To this end, we
need the inverse of the Luttinger matrix which can be
found from Eq. (8):[

K̂−1
]
ij

=
1

K

∫ π

0

dq

π
rq cos qn , n = i− j . (10)

The scaling dimension of the weak link operators now
should be extracted from the Eq. (10) since each tunnel-
ing is surrounded by the cuts in all other wires. As it
was shown in [20, 21] the corresponding scaling dimen-
sion is equal to the diagonal element of the inverse of the
K̂-matrix, i.e. Eq. (10), with n = 0. Combining all the
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FIG. 4: (a) Scaling dimensions ∆1 as functions of an inter-wire interaction strength α and an intra-wire Luttinger
parameter K for for three different values of β and the transition plane ∆1 = 1. (b-d) Phase diagrams as

cross-sections of Fig. 2a at ∆1 = 1 for β = 1, β = 0.5 and β = 0.1 correspondingly, exhibiting metal (blue) -
insulator (red) transitions.

results together, we find that two configurations (con-
ducting and insulating) are defined by the two scaling
dimensions

∆ws ≡ ∆1 =
K

Kws
, ∆wl =

Kwl

K
, (11)

where

K−1
ws =

∫ π

0

dq

π

1

rq
, Kwl =

∫ π

0

dq

π
rq . (12)

As one can see, the line defect analysis is very differ-
ent from the local impurity one. In the perturbative RG
approach, one has to test perturbations around the two
possible configurations corresponding to the weak back-
scattering and the weak-link. Unlike the local scatterer
case, where the two configurations were different by the
state of only one wire embedding the scatterer, and the
duality relation [21] guaranteed a single stable fixed point
with a sharp boundary between the phases, an extended
defect requires comparison of the configurations where
all wires are either conducting or insulating. The dual-
ity is not applicable any longer, which may lead to the
existence of two stable and one unstable fixed points and
to a ’split’ of the boundary between the pure states with
the appearance of the mixed state region.

Generically, one would expect four different states
since either of two scaling dimensions could be above or
below unity. Two states where one of the scaling di-
mensions is above unity and the other one is below are
the well known conducting and insulating states. Two
states where both scaling dimensions are above or be-
low unity would correspond to the unstable or stable RG
fixed points accordingly. In contrast to those expecta-
tions, we found that the inequality Kws ≤ Kwl is valid
for all values of inter-wire interaction parameters, which
rules out the existence of a new state described by a sta-
ble RG fixed points. As the result, the phase diagram
consists of the three states only, as shown in Fig. 1)

K < Kws, insulating state;

K > Kwl, conducting state;

Kws < K < Kwl, mixed state.

While the scattering is completely suppressed (enhanced)
by interactions in the conducting (insulating) state, the
physical picture of the mixed state is more complicated.
That state is characterized by both back-scattering and
weak tunneling being suppressed by interaction. We
conclude, that the behavior of the system depends on
the initial (bare) strength of the scattering. At strong
bare back-scattering (the weak link condition), the sys-
tem ends up in the insulating state at zero temperature.
In the contrary, at weak bare back-scattering (the weak
scattering condition), the resulting behavior of the sys-
tem is metallic. This result has a very non-trivial impli-
cation for experimental observations. A linear defect in a
2-D array can be created by applying the voltage to the
perpendicular gate placed underneath the array. If the
distance between the gate wire and the array is constant,
the linear defect will generate almost equal backscatter-
ing in all wires, which will lead to either ideally conduct-
ing or insulating states controlled by the gate voltage.
If the distance between the gate and the array varies,
the scattering strength in some wires may be below a
threshold and in others above it. Such an inhomoge-
neous scattering should lead to a partial suppression of
the conductance with few conducting channels. The ex-
act configuration of conducting and insulating wires re-
quires separate study. The conductance observed should
become function of the gate voltage distribution.

SUMMARY AND CONCLUSION

In the absence of the inter-wire interaction, any small
back-scattering grows due to the renormalization by in-
teractions, leading to the insulating array, in complete
agreement with Refs. [15, 18]. A finite inter-wire inter-
action changes this picture though, producing a region
of conducting state at small intra-wire interaction (Lut-
tinger parameter K is close to unity), as well as a region
of the mixed state at intermediate intra-wire interactions.
The existence of the conducting state signals the phe-
nomenon of delocalization by interactions in the array.
We note, that the complete analysis of the delocalization



6

requires consistent treatment of multiple impurity scat-
tering, which lies out of the scope of this work. However,
the irrelevance of the single-particle back-scattering op-
erator indicates metallic character of transport through
the array at low but finite temperatures. In the mixed
state, the character of transport can be metallic or in-
sulating, depending on the initial strength of the scat-
tering, since both the weak back-scattering as well as
the weak tunneling operators are irrelevant. Therefore,
within the state diagram in Fig. 1, one can observe the
metal-insulator transition driven by interactions, as well
as driven by disorder. Analogous interplay of interac-
tions and disorder has been observed experimentally and
confirmed by theoretical RG-calculations [23]. It should
be stressed that the metal-insulator transition driven by
a change in either interaction or disorder strength occurs
also in 1D disordered LLs. The main difference between
the single- and multi-channel situations is that the for-
mer transition takes place in the low-temperature region
(Tτ � 1, where the renormalisation of the interaction
by disorder should be taken into account, i.e. Kosterlitz-
Thouless (KT) phase transition), and in a small vicinity
of the Luttinger parameter K = 3/2 corresponding to
attractive fermions. In the latter case, the phase transi-
tion can be observed in a finite region of parameters for
repulsive fermions in the high-temperature limit, where
the renormalisation of interaction can be neglected. The
high-temperature states in the mixed state would have
been separated by a boundary if we chose to draw a phase
diagram with the disorder strength on an extra axis. The
RG flows would still be given by straight lines, unlike the
KT RG flows in a single-channel problem.

In conclusion, we analyzed the relevance of the single
particle back-scattering in the array of LL wires as a func-
tion of intra- and inter-wire interactions. Based on that
analysis, we constructed a phase diagram (presented in
Figs. 3 and 4) for the low-temperature transport through
the array. Depending on the strength of interactions, the
system exhibits metallic or insulating behavior. There-
fore, the transition between the metallic and insulating
states in the array can be driven by interactions. We
have also analyzed this system in the presence of a lin-
ear defect. In this case the array exhibits metallic, in-
sulating and mixed states (presented in Fig. 1). The
metal-insulator transition in this case can be driven by
both interactions and disorder. This behavior is qualita-
tively similar to the one observed in the experiment on
the interaction-driven metal-insulator transition in clean
two-dimensional systems [4, 23].
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