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Abstract: This paper investigates the behavior of impact loading on a Baja vehicle chassis with frontal and rear 

shock absorbers, using transient dynamic analysis under different assumptions of contact conditions. Using a Baja 

car, a transient dynamic impact is performed in ANSYS Workbench 14.0, where the maximum deformation, stress, 

and strains are calculated over duration of the particular impact. The mathematical model of the chassis is derived 

based on Kelvin model in order to design the best parameters of stiffness and damping coefficient in shock 

absorbers to minimize the deformation of the frame with the same impact. To study the effects of shock absorber 

under loading on a vehicle chassis, multiple finite element simulations are performed with different methodologies. 

Each methodology uses a different assumption on loading and boundary conditions, which leads to different results. 
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1. INTRODUCTION 
 

Road traffic injuries are a global public health problem, with an estimated 1.2 million deaths and 50 million non-

fatal injuries per year (Peden et al. [1]). The most direct way to observe how a car behaves during a collision and to 

assess its crashworthiness is to perform a crash test.  Vehicle users’ safety is one of the great concerns of everyone 

who is involved in the automotive industry. Therefore, it is advisable to establish a vehicle crash model and use its 

results instead of full-scale experiment measurements to predict car’s behaviour during a collision.  Crashworthiness 

is the ability of a vehicle to withstand a collision and to prevent the occupants from injuries in the event of a 

vehicular accident.   It is one of the most important criteria employed in designing and evaluating a vehicle or a 

vehicle component. In the modern automotive industry, vehicle manufacturers make vast use of computer modelling 

and simulation to test crashworthiness and safety features in new designs.  

 

1.1. Crash Modelling and Simulation  

 

By building a finite element model (FEM) of a vehicle/component and run simulation on the computer, vehicle 

manufacturers can save lots of time, effort, and cost that would otherwise be required to build a unique prototype 

and test it. Important crashworthiness characteristics and safety features of their designs can be estimated and 

reflected from the computer analysis results.  By developing both software and hardware, it is possible to use more 

analytical facilities, making several tools, for analytical designing of modern structure of a vehicle. Therefore, 

engineers are able to meet their growing needs and better performance of crashworthiness and safe driving. These 

tools include lumped parameters models (LPMs), beam element models (BEMs), hybrid models, and finite elements 

models (FEMs).  Although these tools differ in complexity, each is based on the principles of structural mechanics 

that satisfy conservation of mass, momentum, and energy. The selection of a particular analysis tool depends on the 

task and on the particular design phase according to considered performance. 
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In the 1970s, a relatively simple mass-spring-damper nonlinear system, known as the LMS (Lumped Mass Spring) 

model, was used to simulate a frontal impact test of a vehicle (Kamal [2]). Cheng et al. [3] presented an overview of 

the first computer simulations in vehicle collision and occupant kinematic analysis. Spethmann et al. [4] analysed 

the influence of virtual crash simulation tools in the last 35 years on automotive research and product development.  

Cho et al. [5] investigated ways to maximise the crash energy absorption by crash trigger in the frontal impact of a 

vehicle front frame.  

 

Finite-element analysis has been widely applied to the simulation of vehicle crash. Several research studies 

investigated how to develop a full vehicle model for crashworthiness analysis by FEA (Cheng et al. [6]; Gursel and 

Nane [7]; Atahan [8]). Borovinsek et al. [9] provided a brief overview of different types of vehicle collisions. Crash 

FEMs are often the first detailed models developed in the design process of road cars (Donders et al. [10]). Usually, 

the crash models are first validated by the corresponding impact tests at the component level (Kirkpatrick [11]) and 

material plasticity parameters are the major focus. The discrepancies between FEM and actual vehicle structure 

usually come from, on the hardware side, missing parts, initial parts penetration, geometric variation, welding 

characteristics; on the FEM side, material properties, element quality, concentrated mass distribution, etc. (Cheng et 

al. [6]).   

 

Cosme et al. [12] performed specific case studies in the design and analysis of heavy-duty frames. Karaoglu and 

Kuralay [13] performed stress analysis of a truck chassis by using FEM. LS-DYNA is an explicit code highly 

capable of solving high-speed impact problems that requires small time steps, which is commonly used by 

researchers in vehicle modelling, analysis and crashworthiness evaluation (Mei and Thole [14]). Argyris et al. [15] 

and Argyris et al. [16] presented the theoretical background for implicit finite element (FE) formulation and 

proposed a crash test analysis using simplified shell elements. The first published simulation of a vehicle frontal 

impact dates back to 1986, when Haug et al. [17] simulated a frontal crash of a Volkswagen Polo. Jenefeldt and 

Thomson [18] investigated the methodology to match frontal stiffness levels for vehicles in frontal impacts with 

different mass ratios. As for Thomson et al. [19], their study focused on car-to-car frontal crash compatibility.  

 

 

1.2. Car Modelling  

 

FEMs of vehicles and vehicle components have been increasingly applied in preliminary design analysis, vehicle 

crashworthiness evaluation, and component design.  The first successful lumped parameter model for the frontal 

crash of an automobile was developed by Kamal [2]. Pawlus et al. [20] proposed a basic mathematical model to 

represent a collision together with its analysis. The first collision simulation model was developed to run on a digital 

computer in the mid-seventies (York and Day [21]). Finite element analysis was then introduced to calculate the 

complicated deforming process in crashes (Happian-Smith [22]). Current approach to car crash simulation is usually 

based on finite element analysis with an emphasis on better performance and safety, and thus, reducing the risk of 

fatal injuries during an accident (Genta [23]). Number of researchers have created high fidelity vehicle models for 

crash simulation and analysis: for a Chevrolet Silverado pick-up truck (Soltani et al. [24]), for a Honda Accord DX 

Sedan (Cheng et al. [6]), for both Toyota Yaris passenger car and Ford Explorer SUV (Mongiardini et al. [25]), and 

for Ford Crown Victoria (Kirkpatrick [11]) to study the effect on the overall crash safety of lightweight passenger 

cars. 

  

This paper investigates the usability of springs, which exhibit nonlinear force-deflection characteristic, in the area of 

mathematical modelling of vehicle crash. We present a method, which allows obtaining parameters of the spring-

mass model basing on the full scale experimental data analysis for a Baja car chassis. Since vehicle collision is a 

dynamic event, it involves such phenomena as rebound and energy dissipation. Three different spring unloading 

scenarios (elastic, plastic, and elasto-plastic) are covered and their suitability for vehicle collision simulation is 

evaluated. Subsequently, we assess which of those models fits the best to the real car’s behaviour not only in terms 

of kinematic responses but also in terms of energy distribution.  This paper is organised in 4 different sections. 

Section I gives a short description of the objective and the problem. In section II, the mathematic model was chosen 

and the method of impact force calculation was displayed along with all the settings related to modelling and 

dynamic analysis procedure. Results of the dynamic analysis are shown in section III. Finally, section IV contains 

the conclusion of this project.   

 

 



2. CHASSIS MODELLING  
 

There are several software packages that are equipped to handle the crash-testing of vehicles but one of the most 

popular is from ANSYS Software Inc. called ANSYS Workbench. With Explicit dynamics application, automotive 

companies and their suppliers can test car designs without having to tool or experimentally test a prototype, thus 

saving time and expense (Ohashi [26]). But the explicit dynamic solver doesn’t support spring and damper 

connection (Hallquist [27]), considering the shock absorbers in our project, transient structural solver is chosen to 

simulate the collision. Unlike in explicit solver, in transient structural solver all solid has to be set as flexible, 

including chassis, bumper and wall. So the problem is when the real collision happens, the wall is supposed to be 

rigid. To solve this problem, the initial velocity on the bumper is set instead of using the rigid wall to hit the chassis. 

 

2.1. SOLIDWORKS Modelling 

 

The commonly followed steps for modelling a vehicle assembly can be defined as follows: dimension definition, 

sketching, chassis and bumper modelling, and connection modelling and assembly. Using SOLIDWORKS, a full 

scale Baja vehicle is created as shown in Fig. 1. The entire components of the Baja vehicle are chassis frame, the 

engine, transmission, steering, tire assembly, and the driver. First of all is the chassis frame or roll cage (Fig. 1(b)). 

The roll cage must be a space frame of tubular structural steel with 25 mm outer diameter and 21 mm inner 

diameter. The mechanical properties of the structural steel employed in developing the vehicle’s frame are listed in 

Table 1. Other design of the roll cage is heavily influenced by the safety rules set out by the SAE Baja competition 

organizers. The roll cage is modelled as 1800 mm long, 1000 mm high, and 600 mm wide. To simplify the model, 

several components of the vehicle are not modelled, but rather are represented as point masses and rigid bodies, such 

as transmission, steering and engine. This study is dealing with a linear direct impact, where model geometry is less 

important – rather component properties and meshing are crucial. But some components are all interconnected to 

each other, which won’t be simplified like suspension and bumper. The bumper is 15 mm thick, 300 mm high, and 

600 mm wide. 

 

 
 

(a) Full scale vehicle (b) Roll cage frame 

Fig. 1 SOLIDWORKS model for the Baja vehicle 

 
Table 1: Mechanical properties of structural steel employed in designing the Baja vehicle’s frame 

Mechanical property Value Unit 

Density (ρ) 7850 kg/m3 

Modulus of Elasticity (E) 2.0 x 1011  Pa 

Shear Modulus (G) 7.6923 x 1010 Pa 

Poisson’s ratio (v) 0.3 - 



Tensile Yield Strength (σT (yield))  2.5 x 108 Pa 

Compressive Yield Strength (σC (yield)) 2.5 x 108 Pa 

Tensile Ultimate Strength (σT (ult)) 4.6 x 108 Pa 

 

2.2. Kelvin Model  

 

Kelvin model is an element in which mass is attached to spring and damper which are connected in parallel. This 

model can be utilized to simulate the vehicle to vehicle collision, vehicle-to-barrier collision as well as for 

component impact modelling. Fig. 2 presents a kelvin model of a vehicle-to-barrier impact where (k) is spring 

stiffness, (c) is damping coefficient, (m) is the vehicle’s mass, and (vinital) is the initial impact velocity. 

 

 

Fig. 2 Kelvin model of a vehicle-to-barrier impact 

 

Pawlus et al. [20] illustrated the analytical method to obtain the structural parameters k and c in terms of damping 

factor (ζ) and the structure’s natural frequency (f) in the following set of equations: 

 

mfk 224                                                      (1) 

 

mfc 4                                              (2) 

 

 

2.3. Frontal / Rear Impact Transient Dynamic Analysis 

 

In this study, three scenarios will be considered in the transient dynamic approach: frontal impact only (Fig. 3(a)), 

rear impact only (Fig. 3(b)), and both frontal and rear impacts (Fig. 3(c)). For the first two scenarios, an initial 

velocity is applied to the mass of the vehicle. As shown in Fig. 3(a) and Fig. 3(b), the vehicle moves forwards or 

backwards at a constant speed until it strikes the rigid wall. As for the third scenario, combined frontal and rear 

impacts, two vehicles with the same initial speed from both sides collide with the middle vehicle. In this study, it is 

assumed that the shock absorber in the collision side is capable of absorbing the energy during the impact. 

 

  
(a) Dynamic analysis with front impact (b) Dynamic analysis with rear impact 

vinital 

    



 
(c) Dynamic analysis with both frontal and rear impacts 

Fig. 3 Frontal/rear impact transient dynamic analysis 

 

2.4. Impact Force Evaluation 

 

The impact force, for a perfectly inelastic collision, can be estimated using the below equations (Nagurbabu [28]): 
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Eq. 3 states that the variation in kinetic energy is equal to the net work done )( NETW , and the work needed to stop 

the car (Eq. 4) is equal to the impact force )(F times the distance )(d . Combining these two equations, and given 

the fact that the final impact velocity )( finalv  is zero, leads to the following:  
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Since tvd initial , substituting this in Eq. 5 leads to: 
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With the information of the vehicle’s total mass )(m , initial impact velocity )( initialv , and considering that the 

vehicle comes to rest 0.1 seconds after the impact sec)1.0( t , the impact force )(F can be calculated.  

 

The weights of all the components of the Baja vehicle are evaluated as shown in Table 2 and equivalent weights are 

modelled in the form of solid rigid blocks. Considering the vehicle’s initial speed is 70 km/hr (19.4 m/s), and with 

the total weight of all components, the impact force (F) can be calculated using Eq. 6: 
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At this stage of the research, with a design factor of safety of (1.2), the current frame design is aimed at withstanding 

an impact load of 31,752 N in minimum. 

 

Targeted vehicle 



Table 2: Weight of components of the Baja vehicle (Nagurbabu [28]) 

Component 
Weight 

(kg) 

Equivalent mass of chassis (including body sheet and gussets) 54.4 

Equivalent mass of engine (Briggs & Stratton 10 hp) 27.2 

Equivalent mass of tire assembly (includes suspension) 45.4 

Equivalent mass of transmission 27.2 

Equivalent mass of steering, brakes, and auxiliary 27.2 

Equivalent mass of driver 90.7 

Total mass  272.1 

 

 

2.5.  Finite Element Modelling and Contact Setting  

 

After developing the SOLIDWORKS model for the Baja vehicle, the model has been transferred to ANSYS 

Workbench transient solver where the finite element model has been created as can be seen in Fig. 4. Mesh 

sensitivity has been examined and with approximately 37729 mesh elements, simulation results insignificantly 

changes with decreasing element size and gives good results without increasing both CPU time and memory 

requirements.    

 

 
Fig. 4 Finite element model of the Baja vehicle in ANSYS Workbench 

 

Moving to contact settings and in ANSYS Workbench transient solver, the two surfaces between the chassis and the 

bumper are linked as the longitude of the shock absorber. In this study, the shock absorber’s longitude is set to 0.05 

m. 

 

The absorber’s critical material properties, spring stiffness (k) and damping coefficient (c), need to be manually 

inserted into the software from a series of data calculated prior performing simulations. By setting the ratio between 

stiffness and damping ration to be 0.1 ( 1.0
c

k ), a series of k and c values  is generated in order to figure out the 

best possible values. Initially, for the first stage, the stiffness values are incremented by 20. Then, and by focusing 



on the maximum deformation drop in the deformation-stiffness plot, the step size in the stiffness values is decreased 

till obtaining the optimal values. Table 3 provides an example of the process of seeking the best parameters. 

 
Table 3: Example process of seeking the best parameters by varying stiffness values  

Stage 1 Stage 2 Stage 3 Stage 4 

20 N/mm 100 N/mm 120 N/mm 124 N/mm 

40 N/mm 105 N/mm 122 N/mm 124.5 N/mm 

… … … … 

200 N/mm 140 N/mm 130 N/mm 128 N/mm 

 

The function of the boundary conditions is to create and define constraints and loads on finite element models. To 

define the loading process, the vehicle’s velocity is transferred to the reverse velocity of the bumper when the 

impact occurs (Fig. 5). As previously mentioned, the initial speed is set to 70 km/hr (19.4 m/s) and it decreases to 0 

in 0.1 seconds linearly. 

 

  

(a) Front bumper (b) Rear bumper 

Fig. 5 Velocity setting of the bumper 

 

 

2.6. Deformation, Stress, and Strain of the Chassis  

 

For the three collision scenarios: frontal impact only, rear impact only, and both frontal and rear impacts, particular 

geometrical parts are considered in the analysis, as demonstrated in Fig (6), due to their impact on the occupant’s 

safety: 

 In frontal only collision, the highlighted beam of the front chassis (Fig. 6(a)) is the closet to the occupant. The 

deformation of this beam may endanger the occupant’s head if he is not properly fixed to the seat. 

 In rear only collision, the highlighted columns of the rear chassis (Fig. 6(b)) are just behind the occupant seat. 

The deformation of these columns may endanger the occupant’s back if the seat cannot absorb all the collision 

energy. 

 In frontal and rear collision, both highlighted features should be considered. 



  
(a) Highlighted beam of  front chassis (b) Highlighted columns of  rear chassis 

Fig. 6 Crucial chassis parts considered in the analysis  

 

3. RESULTS AND DISCUSSSION  
 

3.1. Frontal Collision Only 

 

Fig. 7 illustrates the Baja chassis’ front beam deformation for the scenario where the vehicle moves forwards at a 

constant speed (70 km/hr) until it strikes a rigid wall.  For multiple stiffness values for the front shock absorber 

ranged between k1 = 20 N/mm and k1 = 200 N/mm (Fig. 7 (a)), the maximum deformation drop occurred in the 

stiffness range of 80-120 N/mm. Focusing on the located zone and with a step size of  5 N/mm (Fig. 7 (b)), the front 

beam’s maximum deformation drop occurred in the zone between k1 = 105 N/mm and k1 = 115 N/mm. Repeating 

the previous step again by magnifying the targeted range and considering a 1 N/mm increment in the stiffness 

values, it can be observed from Fig. 7 (c) that the minimum deformation took place at k1 =  113.5 N/mm. For this 

scenario, it can be concluded that the suitable stiffness value for the front shock absorber is approximately k1 = 113.5 

N/mm.     

 

 

(a) Stiffness range (20 N/mm < k1 < 200 N/mm), Step size (20 N/mm) 



 

(b) Stiffness range (80 N/mm < k1 < 120 N/mm), Step size (5 N/mm) 

 

(c) Stiffness range (106 N/mm < k1 < 114 N/mm), Step size (1 N/mm) 

Fig. 7 Front beam deformation under frontal collision only  

 

3.2. Rear Collision Only  

 

For the case where the Baja car moves backwards at a constant speed (70 km/hr) until it strikes a rigid wall, Fig. 8 

demonstrates the vehicle chassis’ rear columns deformation. For multiple stiffness values for the rear shock absorber 

in the range of k2 = 20 N/mm and k2 = 200 N/mm (Fig. 8 (a)), the minimum deformation was located in the zone 

between k2 = 102 N/mm and k2 = 112 N/mm. Magnifying the specified range with a 2 N/mm increment in the 

stiffness values (Fig. 8 (b)), the maximum deformation drop occurred in the stiffness range of 106-109.5 N/mm. 

Again, by repeating the same procedure but with a step size of 0.5 N/mm (Fig. 8 (c)), the minimum deformation 

occurred at k2 = 108 N/mm. Therefore, for this scenario, the best stiffness value for the rear shock absorber is around 

k2 = 108 N/mm. 

 



 
(a) Stiffness range (20 N/mm < k2 < 200 N/mm), Step size (20 N/mm) 

 

(b) Stiffness range (102 N/mm < k2 < 112 N/mm), Step size (2 N/mm) 

 

(c) Stiffness range (106 N/mm < k2 < 109.5 N/mm), Step size (0.5 N/mm) 

Fig. 8 Rear columns deformation under rear collision only 

 

3.3. Frontal and Rear Collision  

 

For this scenario, where the Baja vehicle collides with two vehicles with the same initial speed from both front and 

rear sides, two cases were investigated. The first case assumes that both front and rear shock absorbers have the 



same stiffness value (k1=k2=k). As for the other case, it considers that the stiffness is different for the two shock 

absorbers (k1 ≠ k2).   

 

3.3.1. Case 1 (k1=k2=k) 

 

For this case, the stiffness of both front and rear shock absorbers is considered to be the same (k1=k2=k). Fig. 9 (a) 

shows the front beam and rear columns deformation under frontal and rear impact for multiple stiffness values for 

both front and rear shock absorbers varying between k = 60 N/mm and k = 180 N/mm. Based on the previous results, 

the maximum deformation drop occurred between k = 100 N/mm and k = 140 N/mm. Concentrating on the specified 

zone and setting a 5 N/mm increment in the stiffness values (Fig. 9 (b)), the front beam and rear columns maximum 

deformation drop was located in the stiffness range of 125-132 N/mm. Focusing on the located segment and with a 

step size of 1 N/mm (Fig. 9 (c)), the minimum deformation in both the front beam and the rear columns occurred 

when the stiffness value was at k = 131 N/mm. Based on the defined conditions, the suitable stiffness value for both 

front and rear shock absorbers is 131 N/mm. 

 

 

 
(a) Stiffness range (60 N/mm < k < 180 N/mm), Step size (20 N/mm) 

 

(b) Stiffness range (100 N/mm < k < 140 N/mm), Step size (5 N/mm) 



 
(c) Stiffness range (125 N/mm < k < 132 N/mm), Step size (1 N/mm) 

Fig. 9 Front beam and rear columns deformation under frontal and rear collision (k1=k2=k) 

 

 

3.3.2. Case 2 (k1 ≠ k2) 

 

The stiffness of both front and rear shock absorbers is considered to be different for this case (k1 ≠ k2). It has been 

observed in the previous scenarios, frontal collision only and rear collision only, that the the stiffness of the front 

shock absorber is always greater than that of the rear shock absorber (k1 > k2). Therefore, and based on this 

observation, the rear shock absorber’s stiffness (k2) was configured first and the obtained value was employed to 

seek the front shock absorber’s stiffness (k1). Fig. 10 (a) demonstrates the front beam and rear columns deformation 

under frontal and rear collision for multiple stiffness values for the rear shock absorber varying between k2 = 40 

N/mm and k2 = 200 N/mm. The maximum deformation drop occurred in the range of k2 = 130 N/mm and k2 = 150 

N/mm. Focusing on the selected area and setting a 5 N/mm increment in the stiffness values (Fig. 10 (b)), the 

minimum deformation in both front beam and rear columns took place at k2 = 145 N/mm. Using the obtained value 

of k2, Fig. 10 (c) shows the front beam and rear columns deformation under frontal and rear collision for multiple 

stiffness values for the front shock absorber changing between k1 = 40 N/mm and k1 = 200 N/mm. As can be seen, 

the range where the deformation reaches its minimum is within 150-180 N/mm. Zooming in the specified range 

(Fig. 10 (d)), the maximum deformation drop was located at k1 = 160 N/mm. Therefore, and according to the 

obtained results, the suitable stiffness values for both front and rear shock absorbers are k1 = 160 N/mm and k2 = 145 

N/mm.  

 

Fig. 11 represents ANSYS Workbench simulation results for both front beam and rear columns in terms of 

directional deformation, equivalent elastic strain, and equivalent stress after applying the obtained stiffness values of 

both front and rear shock absorbers. Based on the results, minimum deformation of the Baja chassis’ front beam and 

rear columns were achieved, 0.14387 mm and 0.058255 mm respectively.   

 



 
(a) Stiffness range (40 N/mm < k2 < 200 N/mm), Step size (20 N/mm) 

 

 
 

(b) Stiffness range (130 N/mm < k2 < 150 N/mm), Step size (5 N/mm) 

 

 

(c) Stiffness range (40 N/mm < k1 < 200 N/mm), Step size (20 N/mm) 

 



 

(d) Stiffness range (150 N/mm < k1 < 180 N/mm), Step size (5 N/mm) 

Fig. 10 Front beam and rear columns deformation under frontal and rear collision (k1 ≠ k2) 

 

 

  

(a) Directional deformation 

 
 

 

(b) Equivalent elastic strain 



  

(c) Equivalent stress 

Fig. 11 ANSYS Workbench results for k1 = 160 N/mm, k2 = 145 N/mm 
 

 

 

4. CONCLUSION and FUTURE WORK 
 

The overall objective of the work was to seek the suitable parameters of stiffness and damping coefficient in shock 

absorbers employed to a Baja vehicle chassis. By utilizing ANSYS Workbench software package, simulations were 

performed. Due to the difficulty in transferring the actual Baja car model into ANSYS Workbench, a simplified 

model of the test vehicle was created and simulations were carried out for three scenarios: frontal impact only, rear 

impact only, and both frontal and rear impacts. According to simulation results, and based on the obtained values of 

stiffness for both frontal and rear shock absorbers, minimum deformation of the chassis’ front beam and rear 

columns were achieved and therefore, it can be concluded that the Baja car’s occupant would not be harmed by the 

deformation of the chassis’ crucial parts. Future considerations of this work will consider increasing the model’s 

complexity, investigating the effect of varying the impact speed on the vehicle’s chassis, and validating the achieved 

simulation results with experimental ones.  

 

 

 

REFERENCES 

[1] Peden, M., Scurfield, R., Sleet, D., Mohan, D., Jyder, A. A., Jarawan, E., Mathers, C., (2004). World report on road traffic 

injury prevention. Geneva: WHO. Available at: <http://apps.who.int/iris/bitstream/10665/42871/1/9241562609.pdf>. 

[2] Kamal, M. M., (1970). Analysis and simulation of vehicle to barrier impact. SAE Technical Papers, Technical Paper No. 

700414. 

[3] Cheng, P., Sens, M., Wiechel, J., Guenther, D., (1987). An overview of the evolution of computer assisted motor vehicle 

accident reconstruction, SAE Technical Paper No. 871991. 

[4] Spethmann, P., Thomke, S.H., Herstatt, C., (2006). The impact of crash simulation on productivity and problem-solving in 

automotive R&D, Working Paper No. 43, Technologie- und Innovations management, Technische Universit¨at Hamburg- 

Harburg, Hamburg. 

[5] Cho, Y. B., Bae, C. H., Suh, M. W., Sin, H. C., (2008). Maximisation of crash energy absorption by crash trigger for vehicle 

front frame using the homogenisation method, International Journal of Vehicle Design, 46, pp. 23–50. 

[6] Cheng, Z. Q., Thacker, J. G., Pilkey, W. D., Hollowell, W. T., Reagan, S. W., Sieveka, E. M., (2001). Experiences in reverse 

engineering of a finite element automobile crash model, Finite Elements in Analysis and Design, 37, pp. 843–860. 

[7] Gursel, K. T., Nane, S. N., (2010). Non-linear finite element analyses of automobiles and their elements in crashes, 

International Journal of Crashworthiness, 15, pp. 667–692. 

[8] Atahan, A. O., (2016). Crashworthiness analysis of a bridge rail-to-guardrail transition, International Journal of 

Crashworthiness, pp. 1–12. 

http://apps.who.int/iris/bitstream/10665/42871/1/9241562609.pdf


[9] Borovinsek, M., Vesenjak, M., Ulbin, M., Ren, Z., (2007). Simulation of crash tests for high containment levels of road 

safety barriers, Engineering Failure Analysis, 14(8), pp. 1711–1718. 

[10] Donders, S., Takahashi, Y., Hadjit, R., VanLangenhove, T., Brughmans, M., Van Genechten, B., Desmet, W., (2009). A 

reduced beam and joint concept modelling approach to optimize global vehicle body dynamics, Finite Elements in Analysis 

and Design, 45, pp. 439–455. 

[11] Kirkpatrick, S.W., (2000). Development and validation of high fidelity vehicle crash simulation models, SAE Technical 

Papers. 

[12] Cosme, C., Ghasemi, A., Gandevia, J., (1999). Application of computer aided engineering in the design of heavy-duty truck 

frames, SAE Transactions, Detroit, MI, USA, 1999-01-3760. 

[13] Karaoglu, C., Kuralay, N. S., (2002). Stress analysis of a truck chassis with riveted joints, Finite Elements in Analysis and 

Design, 38, pp. 1115–1130. 

[14] Mei, L. Thole, C. A., (2008). Data analysis for parallel car-crash simulation results and model optimization, Simulation 

Modelling Practice and Theory, 16, pp. 329–337. 

[15] Argyris, J., Balmer, H. A., Doltsinis, J. St., Kruz, A., (1986). Computer simulation of crash phenomena, International 

Journal for Numerical Methods in Engineering, 22, pp. 497–519. 

[16] Argyris, J., Balmer, H., Doltsinis I. St., (1988). Some thoughts on shell modelling for crash analysis, Computer Methods in 

Applied Mechanics and Engineering, 71, pp. 341–365. 

[17] Haug, E., Scharnhorst, T., and DuBois, P., (1986). FEM-crash Berechnung eines Fahrzeug frontalaufpralls, VDI-Tagung: 

Berechnung im Automobilbau, 613, pp. 479–505. 

[18] Jenefeldt, F., Thomson, R., (2004). A methodology to assess frontal stiffness to improve crash compatibility, International 

Journal of Crashworthiness, 9, pp. 475–482. 

[19] Thomson, R., Edwards, M., Martin, T., van der Zweep, C., Damm, R., della Valle, G., (2007). Car–car crash compatibility: 

Development of crash test procedures in the VC-Compat project, International Journal of Crashworthiness, 12, pp. 137–151. 

[20] Pawlus, W., Nielsen, J. E., Karimi, H. R., Robbersmyr, K. G., (2010). Mathematical modeling and analysis of a vehicle 

crash, Proceedings of the 4th European Computing Conference, pp. 194–199. 

[21] York, R., Day, T. R., (1999). The DyMESH method for three-dimensional multi-vehicle collision simulation. SAE 

Technical Papers. 

[22] Happian-Smith, J., (2002). An introduction to modern vehicle design, Reed Educational and Professional Publishing Ltd., 

Oxford. 

[23] Genta, G., (1997). Motor vehicle dynamics: modelling and simulation, World Scientific, London.  

[24] Soltani, M., Topa, A., Karim, M. R., Sulong, N. R., (2016). Crashworthiness of G4 (2W) guardrail system: a finite element 

parametric study, International Journal of Crashworthiness, pp. 1–21.  

[25] Mongiardini, M., Grzebieta, R. H., Mattos, G. A., & Bambach, M. R., (2015). Computer modelling of vehicle rollover crash 

tests conducted with the UNSW Jordan Rollover System, International Journal of Crashworthiness, pp. 1–18.  

[26] Ohashi, M., (1982). Future trend of automobile and the high strength sheet steel, Tetsu-to-Hagané, 68(9), pp. 1136–1146. 

[27] Hallquist, J. O., (2007). LS-DYNA keyword user’s manual, Livermore Software Technology Corporation, 970. 

[28] Nagurbabu, N., (2010). Computational analysis for improved design of an SAE BAJA frame structure, Master thesis, 

University of Nevada, Las Vegas. 

 


