
Towards Code Generation from Design Models
Pengyi Li∗, Jing Sun†

∗Department of Electrical and Computer Engineering
†Department of Computer Science

The University of Auckland, New Zealand
Emails: ∗pli552@aucklanduni.ac.nz, †j.sun@cs.auckland.ac.nz

Hai Wang
School of Engineering and Applied Science

Aston University, Birmingham B47ET
United Kingdom

Email: h.wang10@aston.ac.uk

Abstract—With the growing in size and complexity of modern
computer systems, the need for improving the quality at all
stages of software development has become a critical issue.
The current software production has been largely depended
on manual code development. Despite the slow development
process, the errors introduced by the programmers contribute to
a substantial portion of defects in the final software product. This
paper explores the possibility of generating code and assertion
constraints from formal design models and use them to verify the
implementation. We translate Z formal models into their OCL
counter-parts and Java assertions. With the help of existing tools,
we demonstrate various checking at different levels to enhance
correctness.

I. INTRODUCTION

With the growing in size and complexity of modern com-
puter systems, the need for improving the quality at all stages
of software development has become a critical issue [1]. The
focus lies in how to effectively develop high quality software.
Looking at a topical software development life cycle, there
are two main types of potential errors to a software product,
i.e., design errors and programming errors [3], [4]. The former
refers to the defects introduced at the design stage where the
proposed product failed to capture the correct functionalities of
the system under construction. The latter refers to the defects
introduced at the implementation stage where the programmers
failed follow the correct design in producing the program
(code).

The key issue is how to effectively and efficiently develop
code from verified design models [7]. Automation reflects
an essential motive and aspect of future software engineer-
ing practice. The era of computing has revolutionised the
mathematical computation and data processing from human-
power into machine-power. However, the current software
construction is still largely depended on manual code develop-
ment, i.e., humans write programs manually from the design
solutions. Despite the slow development process, the errors
introduced by the programmers contribute to a substantial
portion of defects in the final software product. Ideally, the
executable program (code) should be automatically generated
from the design model [5], which has been known in other
engineering disciplines, e.g., mechanical and electrical, as
the production automation. This will not only dramatically

DOI reference number: 10.18293/SEKE2017-133

increase the productivity, but also overcome the human errors
at the implementation phase and hence improve the overall
quality of modern software development.

Currently, there are few theories being developed to imple-
ment the automatic code generation. Most related works are
based on diagrammatic notations and generating partial code
framework, such as UML to Java [2], [11]. Advantages of such
an approach is that UML is nowadays the most commonly
used notation for documenting design models and therefore
this approach could become a widely acceptable and practical
way in industry. However, this traditional model language is
contributing relatively little to productivity [4]. Despite the
informal description of the design notations, the generated
programs are skeleton code only, which are not executable.
Refinement [12] is another related field that aims at deriving
less abstract models from formal specifications. However, to
the best of our knowledge, there has been no work in refining
a formal model directly into executable programs.

Fig. 1. Overview of our approach

In this paper, we explore the possibility of generating
code and assertion constraints from formal design models
and use them to verify the implementation. We translate Z
formal models into their OCL [8] counter-parts and Java
assertions. With the help of existing tools, we demonstrate
various checking at different levels to enhance correctness.
Figure 1 illustrates a summary of our approach.

Firstly, the design models are documented using the Z
formal specification language [10]. Z is a first order logic and
set theory based notation, which has a number of tools in sup-
porting the verification and validation of on the design, such
as Z/EVES, CZT, ProB, etc. Due to the high level abstraction
of the Z language and its lacks of object oriented design, an

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/109909246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

intermediate process is necessary for code generation. On the
other hand, UML, a semi-formal diagrammatic notation, is a
widely used design language by the industry and could well
serve the purpose. In our project, Java is selected as the target
implementation, and there are a number of tools support the
generations of skeleton code from UML to java.

Secondly, to overcome the informal descriptions of UML,
the formal specification from the Z model can be translated
into OCL annotations. According to the steps shown, the
approach translates Z formal models to UML with OCL
constraints and then generate code with embedded assertions
from UML to Java. Thirdly, to further guarantee correctness,
OCL constraints are translated to Java assertions to validate
the implementation. Furthermore, OCL constraints can be used
in JUnit [6] test cases, which is easier for the developers to
debug their code.

Finally, in addition to code generation, there are tools
that could be used to support the rigorous verification at
different stages of the development. For example, Z/EVE
provides theorem proving to verify the desired properties at
the specification level. At the UML/OCL phase, Papyrus can
interpret UML models with OCL constraints and generate Java
code. OCLinEcore and USE both provide simulation facilities
for creating object models and validating OCL constraints. At
the code level, Java assertions can be used for validating the
implementation. And assertions can also be used together with
JUnit for testing purposes.

The rest of the paper is structured as follows. Section 2
introduces the model transformation from Z to UML/OCL.
Section 3 presents the translation from UML/OCL to Java
code. Section 4 describes the benefit of translations in terms
of verification, simulation, code generation and validation.
Section 5 concludes the paper and outlooks the future work.

II. TRANSLATING Z INTO UML/OCL

This section describes the translation from Z formal models
into UML/OCL specifications. The mapping consists of two
parts, i.e., structure translation and behaviour translation.

A. Structure Translation

1) Z Schema: A Z formal specification contains state
schemas and operation schemas. The state schemas can be
translated to classes in UML/OCL. The operation schemas
can be translated into methods belongs to specific classes.
Operation schemas that change the value of state variables are
indicated using the “∆” convention; operation schemas that
do not change state variables are indicated with the “Ξ”. The
state schema name that after the “∆”or “Ξ” symbol can be
used to identify the class that a method is belonging to.

2) Z Data Types: A Z schema consists of two parts, i.e.,
declarations and predicates. The declaration part of structure
translation can be summarise into data type mappings to their
counterparts in UML/OCL.

a) Given, basic and free types: Z uses [] to express an
new given type. For example, [MSG] in Z can be translated to
a class MSG with no attributes. Z only supports two primitive
data types, i.e., nature numbers and integers, which can be
mapped to integers in OCL with additional constraint, such as
‘n>0’. Free types in Z can be mapped into enumeration types
with values in OCL. For example, ‘Z: StockStatus::=InStock
| OutofStock’ would be mapped into ‘enum StockStatus {In-
Stock,OutofStock}’ in UML/OCL.

b) Sets: are expressed as {x:X | P(x)} in Z, which can
be directly mapped into the Set type in OCL. In Z formal lan-
guage, S⊆T means that S is a subset of T, which is equivalent
to T→includesAll(S); For example, ‘products:P SaleItem’ in Z
can be translated into ‘products: Set(SaleItem)’ in UML/OCL.
Cardinality #X in Z is a natural number denoting the size of
a set. In UML/OCL, there is a predefined operation →size()
that has same meaning with “#”.

c) Cartesian Product, Relations and Functions: : A×B
(A cross B) in Z can be translated in to an association
class between two participating classes in UML/OCL with
multiplicity constraint as many to many. A relation R from
A to B in Z represents a subset of the cartesian product
with special restrictions. This can be translated into invariant
definitions on the associate class to restrict the mapping. A
function R: A→B in Z differs from a relation in the number
of valid mappings through the relationship, i.e., for each a ∈ A
there is at most one b ∈ B. In UML/OCL functions be denoted
as an association class that connects class A with class B, and
this association has multiplicity of many to one.

d) Sequences: in Z represents a sequence of elements
from a set A, denoted as ‘s:seq A’. UML/OCL also has a
concept ‘Seq’ to express a sequence of instances. Therefore, a
direct mapping from ‘seq’ in Z to the ‘Seq’ type in UML/OCL.

B. Behavioural Translation

The syntax of standard OCL language uses contextual key-
word to introduce the scope of an OCL expression, followed
by the name of the type. The keyword inv, pre and post
denotes the invariants, pre-conditions and post-conditions of
the constraints. After structure translation, design specification
need to be mapped by behavior translation, which consists of
the following two parts:

• Translations from state schema’s predicates into OCL
invariants that is denoted by the prefix ‘inv’.

• Translations from operation schema’s predicates to OCL
pre/post-conditions, which is denoted by the prefix ‘pre’
and ‘post’.

Translation of predicates in the state schema is rather
straightforward mappings into class invariants. However, the
mappings of predicates in the operation schema requires the
identifications of pre- and post- conditions. In a post-condition,
the expression can refer to two sets of values for a state
variable, i.e., the value before and after the operation. If the
predicate contains variable followed by the Z prime symbol
‘x”, it will be a post-condition. In UML/OCL, pre-state of a
variable is expressed with suffix @pre, and the post-state of a

variable is expressed as itself. The “@pre” postfix is allowed
only in OCL expression that are part of a post-condition.

Operation schemas may have input and output variables,
input parameters are denoted with the postfix symbol of ‘?’;
and output parameters are denoted with the postfix symbol of
‘!’ in Z. These input and output variables can be translated
to input parameters and return type of the operation schema
(method) in UML/OCL.

Finally, in order to translate the entire predicate into its OCL
counterpart, we need to provide the mappings for various Z
operators.

a) Logic and relational operators: suc as ‘Not (¬),And
(
∧

),Or (
∨

),Implies (⇒) and Equivalence (⇔)’ can be trans-
lated into ‘not, and, or, implies and two direction implies
in UML/OCL. When we translate A ⇔ B, we should make
sure A implies B and B implies A. Relational operators such
as ‘≤,≥,=, 6=, and if then else’ can be directly mapped to
‘<=,>=, <>, and if-then-else-endif’ in UML/OCL.

b) Set operators: could be mapped into operations
in the UML/OCL set type, e.g., ‘s ∈ S’, can be
represented as S→includes(s) in UML/OCL. And
‘s/∈S’ means S→excludes(s). Set Union (∪), Set
Intersection (∩), Set Difference (\) maps into →union(),
→intersection(), and →reject() separately in UML/OCL.
For example, ‘products\{p}=products’\{p1}’ could be
mapped into ‘self.products@pre→reject(x|x.code=p.code)
=self.products→reject(x|x.code=p1.code)’.

c) Quantifiers: Universal Quantifier (∀) can be trans-
lated into the →forAll(...) operation in OCL; and the
Existential Quantifier (∃) can be translated into the
→exist(...) operation in OCL. For example, ‘∀p1, p2:
products •p1 6=p2 ⇔ p1.code 6= p2.code’ can be trans-
lated into UML/OCL as “self.products→forAll(p1,p2|(p1<>p2
implies p1.code<>p2.code) and (p1.code<>p2.code implies
p1<>p2))”. Because this predicate is in the state schema
OLShoppingSys, so it should be translated into invariants in
OCL with context of the class OLShoppingSys.

Let us exam another more complete example in Z shown in
Figure 2.

Fig. 2. Example for quantifies

Firstly, ‘∃p1:products’ maps to ‘products→exist(p1|...)’,
all the other lines after the first line of predicate is a set of
boolean expression for p1, which are translated into ‘exist()’.
The predicate ‘products\{p1}=products\{p?}’ is translated
into‘products→exist(p1|self.products@pre→reject(x|x.code=

p.code)=self.products→reject(x|x.code=p1.code))’, as shown
in Figure 3.

Fig. 3. Translation result for quantifies example

There are two things to be kept in mind, i.e., UML/OCL
has a ‘endif’ after one ‘if-else-then’ expression finished and
enumerations literals can not be invoked directly. It will be
write as “Enumerations::literal”.

d) Relation operators: Domain and range: dom R is a
limitation for domain(A) so in UML/OCL, just limits to A
class; ranR is a limitation for range(B) so in UML/OCL just
limits B class. Domain and range restriction: R is a relation
for A↔B and S ⊆ A and T ⊆ B; then SCR is the set
{(a,b):R|a∈S} RBT is the set {(a,b):R|b∈T}. In UML/OCL,
domain and range restrictions can be translated into invariant
constraints imposed onto the association class. Relational com-
position: R : A↔ B and S : B↔ C R ; S ={(a,c):A×C|∃b:B•a
R b ∧ b S c}, according to the translation, A, B and C should
be three classes and R ; S just means creating a new association
class from A to C.

e) Function overriding: f,g:A→B;then f ⊕g is the func-
tion (dom g 6f)

⋃
g. As the semantics show that restrictions on

the association classes f and g have to be combined. That is,
the class A’s value must be dom g→union(dom f), and class
B’s value must be ran f minus the part that dom g points to
then →union(ran g).

f) Sequence operators: such as concatenation “~”: <a, b>
~<b, a, c> = <a, b, b, a, c> in Z means <a,b>→append(<b,a,c>)
in UML/OCL. In Z, sequence also has two important func-
tions, i.e., ‘Head’ and ‘Tail’. Head is to obtain the first
element of a sequence return as an element. Tail is to
have the rest of sequence’s elements except the head. In
UML/OCL, for a sequence Q, ‘Q→first()’ equals to ‘Head’
and ‘Q→excluding(Q→last())’ equivalents to ‘Tail’.

Based on the above mapping rules, we can translate a Z
formal specification into its corresponding UML/OCL model.

III. TRANSLATING OCL INTO JAVA ASSERTIONS

The next step is to validate the code from UML/OCL model.
In order to do so we first generate code from the UML
model and then insert the assertions for validation purposes.
There are many different tools provide code generation from
UML model. In this project, we just explored two candidates:
Papyrus and OCLinEcore. They both support OCL and code
generation. Papyrus can create UML models and OCL con-
straints graphically, which makes the UML/OCL model visible
and easier to understand. It can also generate Java skeleton

code from models and create an basic type of UML model
file that can be reused in other tools such as OCLinEcore.

The reason for adding Java assertions and JUnit test cases to
code is that to provide extra checking for at the implementation
level. Whatever the implementation is, the assertions and
test cases can always verify the code correctness. This is a
novel contribution that is missing from other code generation
approaches.

1) Java Assertion: After generating Java skeleton code
using Papyrus, we translate OCL constraints to assertions to
ensure program’s correctness. A Java assert statement has two
expressions: assert <boolean expression> and assert <boolean
expression>:<error information>, if boolean expression is
true then program can be continue else program will throw
java.lang.AssertionError.

All of OCL constraints are boolean expressions, however,
some of them can not be represented in Java assertions directly.
For example, for a collection such as ‘Set’ in OCL, code
generation tools usually translate it into a list in Java code.
Thus methods in set can be expressed by list’s operations,
then use assertions to check this expressions (with keyword
“assert”). The following provides translation guidelines from
OCL to Java assertions.

a) Normal boolean expressions: Normal boolean expres-
sions that consist of relational/logical operators and operations
on collection types can be mapped into their Java assertions
counterparts.

• operators such as: <=,>=, <>,+ and -, are directly
supported by Java.

• “=”, “not”: In OCL constraints “=” translates to “==” in
Java and “not” translates to “!” in Java.

• →size(): is to calculate the number of elements in a
collection. We use Java List to represent a collection type
in OCL. List has a method “size()”to returns the number
of elements in the list.

• →includes(object o): checks whether an object is in the
collection or not. The “contains(Object o)” in List returns
true if this list contains the specified element.

• →excludes(object o): based on the previous rule, “!
contains(Object o)” means if the list does not contain
the specified element it returns true, which is same with
“→excludes(object o)”.

• →includesAll(c2:Collection): is to check whether this
collection contains all the elements in another collection
c2, which is similar to “containsAll(Collection c2)”in
Java.

• →excludesAll(c2:Collection): translates to “!contain-
sAll(Collection c2)” in Java.

• →isEmpty(): presents as “isEmpty()” in Java, which will
returns true if this list contains no elements.

• →union(c2:Collection): means the result will be a
union of the referred collection with c2. In Java, “ad-
dAll(Collection c2)” has same meaning as the union.

• →intersection(c2:Collection): is to find out a set of all
elements that are in both referred collection and c2. The
“retainAll(Collection c2)” does the same in Java.

• - (c2:Collection): equals to the “removeAll(Collection
c2)”, which takes away the elements in the referred
collection, which are in c2.

b) Loops: Apart from normal boolean expressions, there
are quantifier related operators which may not have direct
mappings into Java assertions expressions, such as:

• →exists(expr:OclExpression)
• →forAll(expr:OclExpression)
• →any(expr:OclExpression)
• →reject(expr:OclExpression)

These constructs above are working on collections that
require to examine each individual object against the OCL
expression. That is, the operations require to check every
object in collection, so a loop structure would be a natural
mapping for them. The actual OCL expressions are embedded
inside the loop for checking individual values one by one.

2) JUnit Test: OCL not only can be translated to java
assertion in java code, but also can generate Junit test case.
Junit test can test every method and class separately. It can also
simulate any situation for the system. The built-in assertion
mechanism of JUnit is provided by the class org.junit.Assert. It
provides more static methods than java assertion. The most im-
portant method in JUnit test is the “Assert.assertThat([reason,
]T actual, Matcher<super T> matcher)”, “reason” is a output
when this assert fails; “actual” is the real result at assertion;
matcher is an matcher for assertion, its logic determines the
actual objects whether satisfies assertion or not. Let us see a
simple example for creating Junit test case. For the invariant
of class OLShoppingSys, we assume a situation after load all
the products, every product’s code should be unique, the test
case is below at Figure 4.

Fig. 4. Invariants test case

The two invariants are ‘self.products→forAll(p1,p2|(p1<>p2
implies p1.code<>p2.code)’ and ‘(p1.code<>p2.code implies
p1<>p2))’. In this example, invariants want to check
any two variable in products. We create two for loops
to compare all the vaules in products’ list. For every
two values of products list, their code should not be the
same. The “Assert.assertThat(products.get(i).getCode(),
not(products.get(j).getCode()))” tests if two object references
not point to the same object. “assertTrue” has same meaning
with keyword “assert”, so this invariant can easily be
translated from Java assertions in code to test cases.

In summary, by mapping OCL annotations on the UML
model into corresponding Java assertions during the code
generation process, we are able to provide extra quality
assurance/checking on the derived program, as well as for the
guided unit testing.

IV. VERIFICATION, SIMULATION AND CHECKING

After the translations, we have two forms of the design
that was derived from the Z formal model. In addition to the
verification on the Z formal specification itself, e.g., theorem
proving with Z-EVES or model checking with ProB, we
can further simulate and validate the transformed UML/OCL
model with various tools. For the implementation level check-
ing, we can perform validation and debugging with assertions.
It is worth noting that the theorem proving and model checking
at the Z specification level are complimentary to the simula-
tion and validation at the UML/OCL level. In addition, the
assertions at the implementation level further guarantee the
code correctness.

A. Design level validation with OCL

Now we have a UML model with OCL constraints, we
can simulate it and dynamic validate the design by creating
object instants and checking the static properties, invariants
and pre/post-conditions. The UML Specification Environment
(USE) [9] is a simulation and validation tool for OCL specifi-
cations. After USE load the OCL model, it can display a view
of the class diagram of the system. USE provides simulation
facilities by creating objects and association instances of the
model.

After creating the system states, USE can check the OCL
invariants by class invariant view. In the example below, when
we set ‘products1’ and ‘product2’ codes both to ‘1001’, the
result of invariants checking is false due to the unique code
restriction. After we change ‘product2’ code to ‘1002’, the
checking result is true, as shown in Figure 5.

Fig. 5. Invariants checking result in USE

Pre/post-conditions can be validated in USE. It simulates the
process of invoking the operation for validating the pre/post-
conditions. Here is a example for the success and failure of
pre-conditions of the ‘DeleteItem’ operation. As shown in
Figure 6, if user want to delete an item from the shopping
cart, the item must be in the cart. For instant, after adding
‘product1’ to cart, the user can not delete ‘product2’ from
cart, the pre-condition will be false, due to the ’product2’ has
not been added to cart. However, the user can delete ‘product1’
from cart. USE also has a functionality to record a sequence of
operations by the sequence diagram view. This function serves
as a simulation traces for the real user operations.

Fig. 6. Success and failure example for deleteItem

B. Code level checking with assertions

The reason that we translate OCL constraints to Java
assertions and JUnit test is to validate and check the im-
plementations of classes and operations. Java assertions and
JUnit test cases have same meaning with Z predicate and OCL
constraints, and they can both check invariants and pre/post-
conditions of a design model.

1) Java Assertion: Assertion is a normal debug style, and
lots of languages support this function like C, C++, Eiffel
and so on. In syntax, Java provides a keyword ’assert’ to
insert assertion. Java uses ‘-enableassertions/disableassertions’
to open/close assertion function. When a programming closes
assertion function, assertion expression will lose their effects.
If assertion function is open, then java will calculate the
expression value. If the value is false, then this expression
will throw a AssertionError.

Here is an example for using Java assertion in the online
shopping system, which checks assertions in the addItem
operation. The error denotes that input ‘p’ may not in the
products list or currently out of stock, which was guaranteed
in the assertion definition. If the item code does not meet this
requirement, the system will not invoke the addItem method.
For instant, we add a product (code is 1018) to cart, which
is out of stock, the result will throw an AssertionError, as is
shown at Figure 7.

Fig. 7. AddItem operation assertions

2) JUnit Test: JUnit testing can be performed indepen-
dently of the the actual implementation. Eclipse supports JUnit
test cases generated from Java code by right-click choose

new JUnit test case. Users can also choose which classes and
methods they want to test in the set. JUnit test case can be run
by choosing to run as ‘JUnit Test’ in Eclipse. Several test be
created cases for checking online shopping system’s classes
and methods, as is shown at Figure 8.

Fig. 8. Test cases for online shopping system

Let us exam an example of simulating a situation of adding
items to the shopping cart, as is shown in Figure 9. This test
case is not just testing the addItem method, it also tests the
getChoice method. It prints out the choices and wait for the
user input. When the user inputs ‘1’, the system will know that
the user would like to add an item to cart, it will ask for input
of the product code. If the item code exists in the product list,
the result will be successful. In this test case, we can check
two parts: one for input product code, another is for the input
choice. If the product code is not valid or its stock status is
not ‘InStock’, the result will be failure. If the input choice is
not ‘1’, which means the user does not want to add an item,
the result will also be failure in this particular test case.

Fig. 9. JUnit testing for the AddItem method

The above case study of the online shopping system aims to
validate the feasibility of our approach. The associated tools,
such as Z/EVE, ProB, USE, Java assertions and JUnit test
cases also provide extra evaluations to the results of each steps
in our approach. We use the runnable case to demonstrate

all translations as well as verification results. Therefore, the
case study provides the evaluation for our approach, which is
feasible and effective.

V. CONCLUSIONS

In this paper, we explore the possibilities of automatically
derive implementation from formal design models. We trans-
late Z specifications into UML/OCL and then map them into
Java code. We use Java assertions to express OCL constraints
at the code level. Java assertions can be used to generate JUnit
test cases that are independent from the implementation and
can be run repeatedly. Java assertions act as extra checking
facilities to make sure the code correctness. At the each level
of translation, user can verify, simulate, validate and debugging
the model/code to ensure the quality of the final product.

Due to the limitation of time, some improvements for our
project can be made in the future. We defined the translation
guidelines from Z to UML/OCL, OCL to Java assertions.
However, the translation is still manual based. It would be
beneficial to develop a tool to provide the automated trans-
formations. Since OCLinEcore and JUnit have Eclipse plug-in
tools, and Z/EVE has an Eclipse plug-in version in CZT, there
is a possibility to create an Eclipse plug-in tool that integrates
the associated tools into one coherent interface. Thus, the
entire design modelling, transformation, code generation and
testing could all be achieved in Eclipse.

REFERENCES

[1] Monin, J. F. (2012). Understanding formal methods. Springer Science
& Business Media.

[2] Vogel-Heuser, B., Witsch, D., & Katzke, U. (2005, June). Automatic
code generation from a UML model to IEC 61131-3 and system config-
uration tools. In Control and Automation, 2005. ICCA’05. International
Conference on (Vol. 2, pp. 1034-1039). IEEE.

[3] Budinsky, F. J., Finnie, M. A., Vlissides, J. M., & Yu, P. S. (1996).
Automatic code generation from design patterns. IBM systems Journal,
35(2), 151-171.

[4] Gray, J., Tolvanen, J. P., Kelly, S., Gokhale, A., Neema, S., & Sprinkle,
J. (2007). Domain-specific modeling. Handbook of Dynamic System
Modeling, 7-1.

[5] Hinchey, M. G., Rash, J. L., & Rouff, C. A. (2005). Requirements to
design to code: Towards a fully formal approach to automatic code
generation. NASA tech. monograph TM-2005-212774, NASA Goddard
Space Flight Center.

[6] Massol, V., & Husted, T. (2003). Junit in action. Manning Publications
Co.

[7] Hui Liang, Jin Song Dong, Jing Sun and W. Eric Wong. “Software
Monitoring through Formal Specification Animation”. Innovations in
Systems and Software Engineering: A NASA Journal, Volume 5, Issue
4, pages 231-241, Springer, December 2009.

[8] Cabot, J., & Gogolla, M. (2012). Object constraint language (OCL): a
definitive guide. In Formal Methods for Model-Driven Engineering (pp.
58-90). Springer Berlin Heidelberg.

[9] Gogolla, M., Büttner, F., & Richters, M. (2007). USE: A UML-based
specification environment for validating UML and OCL. Science of
Computer Programming, 69(1), 27-34.

[10] Sun, J., Dong, J. S., Liu, J., & Wang, H. (2001, April). Object-Z
web environment and projections to UML. In Proceedings of the 10th
international conference on World Wide Web (pp. 725-734). ACM.

[11] Long, Q., Liu, Z., Li, X., & Jifeng, H. (2005, April). Consistent code
generation from UML models. In Software Engineering Conference,
2005. Proceedings. 2005 Australian (pp. 23-30). IEEE.

[12] H. Zhu, J. Sun, J. S. Dong, and S.-W. Lin, “From Verified Model to
Executable Program: the PAT Approach,” Innovations in Systems and
Software Engineering, pp. 1–26, 2015.

