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Abstract. Recent studies point to the potential storage of a large number of patterns

in the celebrated Hopfield associative memory model, well beyond the limits obtained

previously. We investigate the properties of new fixed points to discover that they

exhibit instabilities for small perturbations and are therefore of limited value as

associative memories. Moreover, a large deviations approach also shows that errors

introduced to the original patterns induce additional errors and increased corruption

with respect to the stored patterns.

1. Introduction

Hopfield models [1, 2, 3] are recurrent neural networks where connections between units

form a fully connected symmetric network. They have been proposed as models of

content addressable memories, i.e. systems that are able to retrieve memory items

from partial information. Their introduction was inspired by the observation that

in large physical systems, interactions between the elementary degrees of freedom

generate collective phenomena, such low temperature magnetisation in Ising models.

Following this idea, the stability of memories in systems of interacting neurons has been
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successfully described as an emergent property, instigated by the dynamics of neural

network models [1, 2].

Any physical system whose dynamics is dominated by a number of locally stable

states can act as a content addressable memory as long as these states can be controlled.

The Hebbian rule [4] has played an important role in training the couplings between

neurons such that a prescribed set of memories (binary configurations of the Hopfield

model) become attractors of the dynamics. Hopfield pointed out [1] that the issue

of pattern retrieval is non trivial and that retrieval performance falls rapidly as more

patterns are introduced, and are incorporated in the couplings. This behaviour was

first found in numerical simulations and then analysed utilising statistical mechanics

methods and exploiting the analogy with spin glass models. For P is the number of

patterns, N the number of neurons and α = P/N , it has been found [5, 6] that the

critical value αc below which recovery is possible is approximately αc ≈ 0.14. Original

studies considered the case where diagonal terms are not present, i.e. neural network

models without auto-interactions. Subsequent studies [7, 8] considered also the problem

with auto-interactions, but only recently it has been pointed out [9] that in this case

an interesting regime can be found at α � 1. The probability that a given pattern

is not a fixed point of the dynamics was studied and it has been shown that this

probability is very small for very low α, as expected, but surprisingly that there is

another unexplored region at very large α where this probability is very small as well.

While the former and other intermediate regimes are well studied [6], the behaviour at

α � 1 was unexpected, since it implies that in this new regime the patterns are again

fixed points of the dynamical equations. Moreover, it has been pointed out [9] that this

new regime does not appear in the absence of diagonal interaction terms.

In this paper we study the stability of these fixed points. The relevance of this

analysis comes from the fact that associative memories are useful when (in the regime

where) they recover memories on the basis of similarity. In other words, the Hopfield

model can be used to retrieve memories when starting the dynamics from a configuration

s similar, but not exactly equal to, a given pattern, we converge to one of the original

patterns. Our analysis suggests that although training patterns are fixed points of

the dynamics in the newly discovered regime [9], they are unstable, contrarily to the

known regime of small α values. In Sec. 2 we introduce the model and its dynamics;

while in Sec. 3 we compute the probability of escaping the stored pattern when a small

perturbation is introduced. In Sec. 4 we complete the analysis by computing the typical

number of errors made after one dynamical step, where errors are measured in terms

of the Hamming distance between the initial configuration (one of the training vectors)

and the dynamical configuration.

2. Dynamics of a neural network

The neural network model that we will consider in this work is a system of N binary

variables (neurons) si ∈ {−1,+1}, i = 1 . . . N, interconnected by a symmetric network
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of synapses specified by the real coupling matrix Jij. We will focus on the non-linear

dynamical equations

si(t+ 1) = sign(x)

 N∑
j=1

Jijsj(t)

 , (1)

where the value si(t + 1) represents the state of the neuron i at time t + 1, which may

be active, si(t + 1) = +1, or inactive, si(t + 1) = −1. The value si(t + 1) depends

on the state of the neurons at the previous time step, {sj(t)}. These equations give

rise to a dynamical process in the space of configurations, depending on the properties

of the matrix Jij but, as pointed out by Hopfield [1], a careful choice of Jij may trap

the dynamics in basins of attraction that correspond to a given random set of patterns

(training vectors) {ξν}ν=1,...,P where ξνi ∈ [−1,+1], i = 1 . . . N and ν = 1 . . . P . These

patterns can be considered as memories that the system is able to retrieve and should

be fixed points of Eq. (1). In the following we will focus on the case where the matrix

Jij is specified by the Hebbian rule [4],

Jij =
1

P

P∑
ν=1

ξνi ξ
ν
j , (2)

introduced in order to explain associative learning. In fact, for P = O(N), Eq. (2) can be

obtained cumulatively from the successive application of the learning rule ∆Jij ∝ ξµi ξ
µ
j ,

specifying the change in the coupling between neurons when learning a given pattern

µ and describing the observation that the simultaneous activation of neurons i and j

increased the coupling strength between them.

Retrieval of patterns is known to be possible only for a number of patterns that

is a small fraction of that of the neurons [1, 2, 5, 6]. Diagonal interaction terms were

not considered in the early works about Hopfield model for a physical reason: in the

corresponding spin models the field of a variable is induced by the state of its neighbours,

but not on its own; thus self interactions do not exist and Jii = 0,∀i. Neural networks

with diagonal terms have been studied in [9] and a very interesting regime has been

found for α � 1. The probability pV that a given pattern ξµ is a not fixed point of

the dynamics has been computed and has been shown to be very small for very low

α = P/N , as expected, but surprisingly another region has been identified at the very

large α regime, where pV is also very small. In the intermediate regime, pV is large. The

first and the intermediate regime are well known but the behaviour of pV at α� 1 was

new and unexpected. The probability p̄V that a random vector, not in the training set

{ξνi }ν=1,...,P , is not a fixed point of the dynamics has also been studied. As expected, in

the low α regime, the probability p̄V is close to 1 but, and as α increases this probability

vanishes. Thus, in the new, large α regime, p̄V is also very small. In other words, in

this regime, both patterns ξν and random configurations are likely to be fixed point of

the dynamics. This has a trivial interpretation by noticing that for very large P � N ,

the interaction matrix Jij defined in Eq. (2) tends to the unit matrix. Even if this

result seems to invalidate the usefulness of this new regime, it was shown that the ratio

p̄V /pV tends to a finite number, e, in the large N limit and that real patterns have an
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higher probability of being fixed points of the model. In the next section we address the

stability question of these patterns, making use of the same strategy used in [9].

3. Stability of the fixed points

In order to study the stability of fixed points of the dynamical equations given in Eq. (1),

we consider the case where one of the patterns is randomly perturbed. Since the patterns

ξν are configurations of binary variables, a random perturbation is obtained by flipping

the value of K sites. We denote by P the set of perturbed sites and by L the set of

unperturbed variables and clearly, L = P . We can consider the equations

s′i = sign

 N∑
j=1

P∑
ν=1

ξνi ξ
ν
j sj

 (3)

and compute the probability to get back to ξµi when the starting configuration is given

by

sj = ξµj Ij,L − ξ
µ
j Ij,P , (4)

where Ij,P(L) is one if j ∈ P(L), and zero otherwise. As in [9] we focus on the one-step

dynamics.

Let us first consider the case when i /∈ P . After some elementary algebra, the

argument of the sign function in the r.h.s. of Eq. (3) becomes

(P +N − 1− 2K)ξµi +
∑
j 6=i

∑
ν 6=µ

ξνi ξ
ν
j

[
ξµj Ij,L − ξ

µ
j Ij,P

]
. (5)

The second term contains (N −1)(P −1) uncorrelated terms of unitary variance. Using

the central limit theorem we obtain for large N

s′i = sign

(P +N − 1− 2K)√
(N − 1)(P − 1)

ξµi + z

 , (6)

where z ∼ N (0, 1) is drawn from a normalised Gaussian distribution. Clearly, if z were

0, s′i = ξµi and we recover the correct sign. The variable z, induced by the arbitrary bit

flips, is thus a destabilising term, that impacts on the r.h.s. of Eq. (6). It is actually

harmless as long as it doesn’t change the sign of ξµi , thus we make a mistake on the

value s′i with a probability equal to

pL =
∫ − (P+N−1−2K)√

(N−1)(P−1)

−∞
P (z)dz =

1

2
erfc

(P +N − 1− 2K)√
2(N − 1)(P − 1)

 . (7)

Analogously, when i ∈ P , the r.h.s. of Eq. (3) becomes

(N − P + 1− 2K)ξµi +
∑
j 6=i

∑
ν 6=µ

ξνi ξ
ν
j

[
ξµj Ij,L − ξ

µ
j Ij,P

]
. (8)

Using a central limit argument one obtains

s′i = sign

(N − P + 1− 2K)√
(N − 1)(P − 1)

ξµi + z

 , (9)
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Figure 1. The probability of not recovering the stored pattern after one iteration after

K variables have been perturbed pKV for K = 1 (blue line) and K = 0 (red line). Dots

are obtained by numerical simulations, where probability pKV is estimated counting the

number of times that Eq. (1) does not give a given pattern when we perturbed K = 1

(blue dots) and K = 0 (red dots) neurons, repeating this process 104 times for different

patterns at any value of P . (a) For N = 100 and (b) For N = 500.

where z is again drawn from a normalised Gaussian distribution. As in Eq. (7) we obtain

the probability of making an error on one of the perturbed variables,

pP =
∫ − (N−P+1−2K)√

(N−1)(P−1)

−∞
P (z)dz =

1

2
erfc

(N − P + 1− 2K)√
2(N − 1)(P − 1)

 . (10)

Notice that pP and pL differ in the sign in front of P , indicating the contribution coming

from the diagonal interaction components. This contribution is always aligned with the

variable value and consequently decreases the error probability in unperturbed variables.

In the limit of large N and P = αN , and finite K we obtain

pL =
1

2
erfc

(
1√
2α
−
√
α

2

)
pP =

1

2
erfc

(
1√
2α

+

√
α

2

)
. (11)

While pL tends to zero as α → 0 and α → ∞, with a maximum at α = 1, the error

probability for perturbed spins pP is an increasing function of α, going from 0 to 1.
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This difference in stability between perturbed and unperturbed spins affects the overall

stability of the original pattern. Since there are K perturbed variables and N − K

unperturbed variables, the probability of failing to recover the original pattern ξµ after

a single step of parallel dynamics is

pKV = 1−
(
1− pP

)K (
1− pL

)N−K
(12)

that, for K = 0, becomes the probability pV [9]. This probability can be plotted for

different P values at a given N . In Fig. 1(a) we plot pKV for N = 100 and K = 1

(blue) and K = 0 (red), where the second case corresponds to the unperturbed case

studied in [9]. We also performed numerical simulations (dots) in systems of N = 100

variables for a different number of P , counting the number of times that taking one

of the training vectors and perturbing K = 1 of its values we did not recover the

original training vector, repeating this procedure 104 times. While at large P values the

probability pV (red line) decreases to zero, consistently with the observation made in [9],

this does not happen for the perturbed case (blue line). In other words, perturbing just

one variable in a system of 100 neurons is sufficient to not recover the correct patterns

in the regime P � N . Moreover, we notice that for small P values both lines are

close to zero, meaning that in this regime perturbing one neuron does not make a big

difference. This is in agreement with Eq. (11): for K = 0, pV follows the behaviour of

pL, where the stability of unperturbed spins at K > 0 is affected by perturbed spins

that are dominated by the diagonal interactions at large P values, which increase the

error probability. In Fig. 1(b) we plot the same quantity pKV in the case K = 0 (red line)

and K = 1 (blue line) for a system of N = 500, finding the same qualitative behaviour.

4. Large Deviations

In this section we compute the typical number of errors observed in s′ with respect to

the original patterns, produced by applying Eq. (3) to the vector of dynamical variables

s, which is specified by Eq. (4) for a given number K of perturbed spins. Let us denote

by MP the number of errors in the set of perturbed spins P and by ML the number of

errors in the set of unperturbed spins L in s. While the probability of MP is given by

PP(MP) =

(
K

MP

)(
pP
)MP (

1− pP
)K−MP

, (13)

the probability of ML is given by

PL(ML) =

(
N −K
ML

)(
pL
)ML (

1− pL
)N−K−ML

. (14)

Let us denote the total number of error by M = MP +ML. The probability of M , the

number of errors at the next time step, is given by

P (M) ∝
K∑

MP=0

N−K∑
ML=0

PP(MP)PL(ML)δM,MP+ML (15)
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and we readily obtain

P (M) ∝
min(K,M)∑

MP=max(0,M+K−N)

PP(MP)PL(M −MP) . (16)

Since we are mostly interested in the large N behaviour, we denote by K = Nρ,

M = Nm, MP = NmP and ML = NmL, and use the Sterling’s formula for

approximating the factorial of a large integer,

lim
N→∞

N ! =
√

2πN
(
N

e

)N
. (17)

Simple algebra leads to the expression

P (m) ∝
∫ min(ρ,m)

max(0,m+ρ−1)
dmPeNφ(mP ,m) ≈ eNφ(m

∗
P ,m) (18)

where m∗P is the maximum of φ(mP ,m) over mP ∈ [max(0,m + ρ − 1),min(ρ,m)]

at a given m. The large deviation function of the probability P (m) is given by

φ(m∗P ,m) ≡ ψ(m) and its expression is

ψ(m) = ρ log(ρ) + (1− ρ) log(1− ρ)

+m∗P log

(
pP

m∗P

)
+ (ρ−m∗P) log

(
1− pP

ρ−m∗P

)

+ (m−m∗P) log

(
pL

m−m∗P

)

+ (1− ρ−m+m∗P) log

(
1− pL

1− ρ−m+m∗P

)
. (19)

Let us first consider the case ρ = 0, the case where the selected pattern is not perturbed

at all. In Fig. 2(a) we plot

ω(m) = log(log(−ψ(m) + 1) + 1) (20)

for N = 100, K = 0 as a function of log(m+1) for different choices of P . The maximum

m∗ of ψ(m) corresponds to a minimum of ω(m), where the double logarithm is chosen

to emphasise the difference between different lines at large P values. While at small

P values we find m∗ = 0, i.e. the most likely value for m is zero, corresponding to

a non-increasing number of errors, as P increases the probability of observing m = 0

decreases and for P > 15 (which corresponds roughly to α = 0.15) we find a different

minimum at m > 0, as can be seen in Fig. 2(b) and Fig. 3(a). We also observe that the

probability of Nm is sharply peaked in 0 in the low P regime, while it is much broader in

the large P regime, even if it is clearly visible that the probability of observing Nm = 0

is negligible.

The behaviour of m∗ at K = 10 can be seen in Fig. 2(d) leading to a qualitatively

similar behaviour of ω(m) shown in Fig. 2(c), where we observe that small values of P are

dominated by m∗ = 0, while as P increases m∗ remains grater than zero. In other words,

while the low P regime leads to a recovery of the original pattern with probability 1

even in the case when we perturb K = 10 variables, the large P regime does not. Notice
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Figure 2. (a) Function ω(m), defined in Eq. (20), for different values of P at

N = 100, K = 0, plotted as a function of log(Nm+ 1). The minimum of this function

corresponds to the most likely values of Nm, i.e. the typical number of errors made

after one dynamical step. (b) The dominating parameter Nm∗ for N = 100, K = 0 for

different (logarithmic) values of P . We see that in the large P regime Nm∗ > 0 even

when no perturbations are introduced. In this regime, the typical number of mistakes

made is Nm∗ = 1. Notice the severe flattening of the large deviation function observed

in sub-figure (a) for values Nm > 0. (c) The same as (a) but for K = 10. (d) The blue

x-marks indicate the dominating parameter plotted in (b) Nm∗ for K = 10, while the

red circles indicate Nm∗P(m∗), i.e. the typical number of error made in the perturbed

set of variables. For small values of P the dominating value is m∗ = 0, implying that

we correctly reduce the number of errors just after one dynamical time step and recover

the original pattern with probability 1. However, in the large P regime, Nm∗ = 10

implying that the number of errors is not reduced at all.

in Fig. (2)(d) that the value of m∗ is mainly given by m∗P with fluctuations of order 1/N :

errors are mainly induced by the set of perturbed spins that remain blocked because of

the dominating diagonal terms.

Finally, to emphasise the sensitivity of fixed points to perturbations we plotted the

m∗ values for a single pattern error K = 1 shown in Fig. 3(b). We observe the same

qualitative behaviour of Fig. 2(b).
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Figure 3. (a) Function ω(m), defined in Eq. (20), for different values of P = 14, 15, 16

at N = 100, K = 0, plotted as a function of log(Nm + 1). We see that for P > 15

the minimum of ω(m) becomes non-zero. (b) The dominating parameter Nm∗ for

N = 100, K = 1 for different values of P . The x-axis is log(P ). We basically gain the

same information we got from Fig. 2(b): in the large P regime the typical number of

errors is greater than zero.

Conclusion

The discovery of fixed points in the Hopfield model at the large number of patterns

limit raised new hopes for a high-capacity properties of the Hopfield model, especially

in within the context of associative memories in neural networks. We examine the

usefulness of the newly discovered fixed points by focussing on their ability to recover

stored patterns on the basis of incomplete information. In other words, the ability to

converge to the original pattern when starting from a configuration that is similar to,

but not exactly equal to it. We study the stability properties of these fixed points and

show that these fixed points are unstable with respect to small perturbations. We also

investigate the typical number of errors made by the one time step dynamics given in

Eq. (1) and find that while this number is zero in the low storage regimes, it is not in

the new large storage regime.
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We notice that a simple statistical mechanical argument suggests that it is

unlikely that the phase diagrams of an Hopfield model with auto-interactions differs

from the phase diagram of an Hopfield model without auto-interactions. In fact,

the partition functions of an Hopfield model with auto-interactions and that of an

Hopfield model without auto-interactions differ from sub-leading terms in N and so

their thermodynamical properties have to be the same. Thus the presence of a new,

unexplored, thermodynamical phase comprising multiple stable fixed points with non-

vanishing basins of attraction at α � 1 has to be ruled out. On the other hand, the

non-equilibrium dynamics of the two systems may still be different and our analysis

shows that the presence of auto-interactions does not change the description of the

stability of patterns in the large α regime.

Finally, it has been drawn to our attention that among the previous attempts

to stabilise patterns, the presence of a reinforcement term in the dynamics improves

the retrieval performances [10], [11]. Acting as a sort of stabilizer, the effect of a

reinforcement term is similar to a diagonal coefficient in the interaction matrix. It

could be then potentially interesting to study the stability of the fixed points in the

high-storage regime under a dynamics where a reinforcement term is considered.
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