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Abstract

We explore the e↵ects of asymmetries in capacity constraints on collusion where market

demand is uncertain and where firms must monitor the agreement through their privately

observed sales and prices. In this private monitoring setting, we show that all firms can

infer when at least one firm’s sales are below some firm-specific “trigger level”. This pub-

lic information ensures that firms can detect deviations perfectly if fluctuations in market

demand are su�ciently small. Otherwise, there can be collusion under imperfect public

monitoring where punishment phases occur on the equilibrium path. We find that symme-

try facilitates collusion. Yet, we also show that if the fluctuations in market demand are

su�ciently large, then the optimal collusive prices of symmetric capacity distributions are

actually lower on average than the competitive prices of asymmetric capacity distributions.

We draw conclusions for merger policy.
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1 Introduction

The recent collusion theory literature has developed a clear consensus that asymmetries hinder

collusion. For example, this result is robust to whether asymmetries are in terms of firms’

capacity constraints (see Compte et al., 2002; Vasconcelos, 2005; and Bos and Harrington, 2010

and 2015) or the number of di↵erentiated products that each firm sells (see Kühn, 2004). These

papers in particular have been important for merger policy as they have highlighted which types

of mergers can cause coordinated e↵ects, that is, an increased likelihood of tacit collusion post-

merger. More specifically, with respect to capacity constraints, Compte et al. (2002) show that

collusion can be more di�cult as the capacity of the largest firm is increased through a merger,

and Vasconcelos (2005) finds that collusion is hindered when the largest firm is larger or when

the smallest firm is smaller. Bos and Harrington (2010) show that increasing the capacity of

medium-sized firms can facilitate collusion, if only a subset of firms in the market are involved

in the collusion.1

In practice, the degree to which firms can monitor each other’s actions plays an important

part in determining whether a merger causes coordinated e↵ects. Yet, all of the papers above

assume there is perfect observability of rivals’ actions, so deviations from the collusive strategies

will be detected immediately. In contrast, many mergers occur in markets in which there is

the potential for secret price cuts. This may be the case, for example, in upstream business-

to-business markets where transaction prices can be unrelated to posted prices. Consequently,

it is inappropriate to consider the e↵ects of such mergers in terms of collusion under perfect

observability. Instead, they should be considered in the context of imperfect monitoring, where

firms are uncertain over whether their rivals have followed their collusive strategies or not (see

Green and Porter, 1984; and Harrington and Skrzypacz, 2007 and 2011). However, while the

models in this literature provide many interesting insights into the sustainability of collusion, it

is di�cult to draw implications for merger policy from them, because they analyse collusion with

symmetric firms.

In this paper, we begin to fill this gap in the literature by exploring the e↵ects of asymmetries

in capacity constraints on collusion under imperfect monitoring. We achieve this by extending

Compte et al. (2002) to a setting where there is demand uncertainty and where firms never

directly observe their rivals’ prices or sales. Thus, similar to the imperfect monitoring setting

1Fonseca and Normann (2008) also find that asymmetries in capacity constraints hinder collusion in laboratory

experiments.
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first discussed by Stigler (1964), each firm must monitor the collusive agreement using their

own privately observed sales. In this regard, our model is related to Tirole’s (1988, p.262-264)

model of private monitoring that captures the results of Green and Porter (1984) in a Bertrand

framework (see also Amelio and Biancini, 2010). Yet, unlike Tirole (1988), where there is a chance

in each period that market demand will be zero, in our model market demand is drawn from

an interval, where all possible states of demand are positive. We use this model to investigate

whether collusion is facilitated or hindered as capacity is reallocated among the firms to draw

implications for merger policy.

Using information from their privately observed sales, we show that all firms can always infer

when at least one firm’s sales are below some firm-specific “trigger level”. The optimal trigger

level for each firm is determined by the largest possible sales consistent with them or a rival being

undercut on price. Thus, if all firms set a common price, then all firms’ sales will exceed their

respective trigger levels when the realisation of market demand is high, otherwise they can all

fall below the trigger levels. Yet, if all firms do not set a common price, then the highest-priced

firms will receive sales below their trigger levels and the lower-priced firm(s) can infer this.2

Consequently, we restrict attention to equilibria in public strategies, known as perfect public

equilibria, where firms condition their play upon this public information (i.e. whether all firms’

sales are greater than their trigger levels or not). We show that if fluctuations in market demand

are small, then such strategies ensure monitoring is perfect, because firms will only ever receive

sales below their trigger levels if they are undercut. However, if fluctuations in market demand

are large, then collusive sales will also fall below the trigger levels when the realisation of market

demand is low. This implies, in contrast to Compte et al. (2002), that there is uncertainty as to

whether rivals have followed the collusive strategies or not, so punishment phases must occur on

the equilibrium path to provide firms with the correct incentives to collude.

We solve for an optimal perfect public equilibrium.3 We find that asymmetries hinder col-

lusion whether monitoring is perfect or imperfect. For instance, the critical discount factor is

2Note that this information is common knowledge in our framework, because a deviation by a firm a↵ects the

sales of all of its rivals. In contrast, this information may not be common knowledge in a framework where firms’

products are spatially di↵erentiated, as in the Salop circle, for example, because then firms located next to a

deviator would experience lower sales but other firms may not.
3In the main paper, we use a simple strategy profile, similar to Tirole (1988), where firms revert to the static

Nash equilibrium for a number of periods when they receive a bad signal. In an online appendix, we use the

techniques of Abreu et al. (1986, 1990) to show that this simple approach generates the maximal equilibrium

profits.

3



higher when the largest firm is larger and it can be higher when the smallest firm is smaller. The

reason for the former is that the punishment is weaker when the largest firm has more capacity.

The latter is due to the fact that deviations by the smallest firm are most di�cult for rivals to

detect, because each rival’s resultant sales are most similar to its collusive sales. Thus, decreasing

the size of the smallest firm can make monitoring more di�cult. Another implication of this is

that punishment phases occur more often on the equilibrium path when the smallest firm has

less capacity, and the optimal equilibrium profits are lower as a result. The size of the other

firms’ capacities do not a↵ect the the equilibrium profits or the critical discount factor.

After solving the model, we then use it to draw implications for merger policy. In particu-

lar, we analyse both the coordinated and unilateral e↵ects of mergers in a unified framework.

Unilateral e↵ects arise if a firm has an individual incentive to raise prices post-merger. It is well

understood that unilateral e↵ects are associated with asymmetric post-merger market structures

and coordinated e↵ects are associated with symmetric post-merger market structures (see Ivaldi

et al., 2003a and 2003b). As discussed by Kühn (2001) and Motta et al. (2003), this implies

that there is a tradeo↵ between such e↵ects when the degree of asymmetry in a market is altered

by a merger or divestiture remedy: increasing asymmetries reduces the likelihood of coordinated

e↵ects but raises the likelihood of unilateral e↵ects, and vice versa. However, in the previous

theoretical literature, these e↵ects have been modelled independently of each other. For example,

in the framework of Compte et al. (2002), either the monopoly price is sustainable in every pe-

riod, in which case only coordinated e↵ects matter, or collusion is never sustainable at any price,

so only unilateral e↵ects matter. Consequently, their focus is solely on the coordinated e↵ects

of mergers on the critical discount factor. In contrast, our model allows for a more continuous

treatment of unilateral and coordinated e↵ects, because play can alternate between phases of

collusion and competition on the equilibrium path. As a result, our model is ideal to analyse the

tradeo↵ between coordinated and unilateral e↵ects.

In the framework of Compte et al. (2002), a merger that causes coordinated e↵ects is more

harmful to consumer welfare than compared with an alternative that causes unilateral e↵ects.

The reason is that firms will optimally share the monopoly profits in every future period if collu-

sion is sustainable, so only a merger to monopoly would be equally as bad in terms of unilateral

e↵ects. A similar point is made more generally by Röller and Mano (2006). They argue that a

merger that disrupts pre-merger collusion, by enhancing the market power of a single firm, should

be pro-competitive because “it is preferable that any coordination is by only a subset of firms

(i.e. the merging parties) rather than all firms (tacitly)” (p.22). However, in contrast to this,
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we show that unilateral e↵ects can be more harmful than coordinated e↵ects. This is due to the

fact that firms are not able to share the monopoly profits under imperfect monitoring, because

punishment phases occur on the equilibrium path. Consequently, a merger that facilitates col-

lusion by distributing capacity symmetrically can be less harmful to consumer welfare than one

that creates a near monopoly.4 We demonstrate that if the fluctuations in market demand are

su�ciently large, then the optimal collusive prices of symmetric capacity distributions are lower

on average than the competitive prices of asymmetric capacity distributions. An implication of

this is that it can be appropriate to remedy a merger that causes unilateral e↵ects by imposing

a divestment that creates a symmetric market structure, even if this facilitates collusion under

imperfect monitoring.

Finally, our model is distinct from the previous literature that analyses collusion with capacity

constraints and fluctuations in market demand. The main di↵erence is that our focus is on

mergers, which necessarily requires us to model asymmetries in markets with more than two

firms. In contrast, the focus of this other literature is on pricing over the business cycle. For

instance, Staiger and Wolak (1992) and Knittel and Lepore (2010) endogenise the choice of

capacities in an infinitely repeated game. Despite analysing asymmetric games following the

capacity choice stage, they restrict attention to duopoly. Other di↵erences are that there is

perfect observability and market demand is known when prices are set. In a similar setting

to that just described, Fabra (2006) analyses collusion where firms’ capacity constraints are

exogenous but symmetric.

The rest of the paper is organised as follows. Section 2 sets out the assumptions of the

model and solves for the static Nash equilibrium. In section 3, we analyse the repeated game.

We first show that there is some public information that firms can condition their play on, and

find when monitoring is perfect or imperfect. Then we solve the repeated game and analyse

the successfulness of collusion for di↵erent capacity distributions. In section 4, we consider the

implications for merger policy, and section 5 concludes. All proofs are relegated to appendix

A. In an online appendix, we use the techniques of Abreu et al. (1986, 1990) to show that

the simple approach used to solve the repeated game in the main text is optimal, in that it

generates the maximal equilibrium profits. We also explore the robustness of our results to two

key assumptions.

4This argument is likely to extend to other models where collusion among asymmetric firms is imperfect.
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2 The Model

2.1 Basic assumptions

Consider a market in which a fixed number of n � 2 capacity-constrained firms compete on price

to supply a homogeneous product over an infinite number of periods. Firms’ costs are normalised

to zero and they have a common discount factor, � 2 (0, 1). In any period t, firms set prices

simultaneously where p
t

= {p
it

,p�it

} is the vector of prices set in period t, p
it

is the price of firm

i = {1, . . . , n} and p�it

is the vector of prices of all of firm i’s rivals. Market demand consists of

a mass of m
t

(infinitesimally small) buyers, each of whom are willing to buy one unit provided

the price does not exceed their reservation price, which we normalise to 1. We assume that firms

do not observe m
⌧

, for all ⌧ 2 {0, . . . , t}, but they know that m
t

is independently drawn from a

continuous distribution G(m), with mean bm and density g(m) > 0 on the interval [m,m].

Buyers are informed of prices, so they will want to buy from the cheapest firm. However, the

maximum that firm i can supply in any period is k
i

, where we let k
n

� k
n�1

� . . . � k
1

> 0,

without loss of generality. We denote total capacity as K ⌘
P

i

k
i

and the maximum that firm

i’s rivals can supply in each period as K�i

⌘
P

j 6=i

k
j

. In contrast to the buyers, firm i never

observes firm j’s prices, p
j⌧

, or sales, s
j⌧

, j 6= i, for all ⌧ 2 {0, . . . , t}. Thus, similar to Tirole

(1988), our setting has the feature that all buyers are fully aware of prices, yet all firms are only

aware of their own prices. Such a setting is consistent with a market in which all buyers are

willing to check the prices of every firm in each period to find discounts from posted prices, but

actual transaction prices are never public information.5

2.2 Demand allocation and sales

Following the literature (for example, see Vasconcelos, 2005; and Bos and Harrington, 2010 and

2015), we make the common assumption that demand is allocated by the following rule:

The proportional allocation rule

Unsupplied buyers want to buy from the firm(s) with the lowest price among those with spare

capacity.

• If the joint capacity of such firms is insu�cient to supply all of the unsupplied buyers, then

such capacity is exhausted, and the remaining unsupplied buyers now want to purchase

5In contrast to Tirole (1988), our main results hold when enough buyers are informed of prices, if capacity

constraints are binding.
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from the firm(s) with the next lowest price among those with spare capacity, and so on.6

• If the joint capacity of such firms su�ces to supply all of the unsupplied buyers, then each

firm supplies an amount of buyers equal to its proportion of the joint capacity.

This allocation rule is commonly considered in the literature in terms of a cartel selecting how

much of the market demand each member supplies. Indeed, there are a number of cartels that

have allocated demand in proportion to each member’s capacity (see the examples in Vascon-

celos, 2005, and Bos and Harrington, 2010). However, this seems inappropriate in our model,

because members of such cartels are likely to have some knowledge of market demand and rivals’

sales when allocating demand, which is not present in our setup. Instead, we have tacit collusion

in mind where firms play no role in the allocation of the market demand, other than through

the prices they set. Thus, in our framework it seems more appropriate to consider the demand

allocation in terms of buyers allocating themselves to firms according to the proportional alloca-

tion rule. While it is possible to conceive of ways in which buyers would allocate themselves in

this manner in certain settings, the main purpose of this assumption is to develop the simplest

conceivable model to compare collusive and non-collusive merger outcomes. However, it should

be noted that the allocation rule is not important for the characterisation of the static Nash

equilibrium. It is also not important for the (qualitative) analysis of the collusive equilibria in

section 3.1 and 3.2. Further discussion is provided in the online appendix, where we consider

how the allocation rule can a↵ect the comparative statics analysis in section 3.3.

We also place the following plausible yet potentially restrictive assumption on the capacity

distribution:

Assumption 1. m � K�1

.

This says that the joint capacity of the smallest firm’s rivals should not exceed the minimum

market demand, and it ensures that firm i’s sales in period t are strictly positive, for all i

and all m
t

> m, even if it is the highest-priced firm. The main purpose of this assumption

is that it greatly simplifies the characterisation of the static Nash equilibrium when there are

more than two asymmetric firms.7 It is a su�cient (but not necessary) condition for the static

6Note that we do not need to specify which buyers are supplied, since all consumers have the same reservation

price. In contrast, when consumers’ reservation prices di↵er, the identities of the buyers who are supplied by the

firm has important implications for welfare (see for example Vives, 1999, p.124-6).
7For more details, see Hirata (2009) who characterises the mixed strategy Nash equilibrium in a static setting

with three asymmetrically-capacity constrained firms but without demand uncertainty.
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Nash equilibrium profits to be strictly increasing in the capacity of the largest firm, k
n

, and as

we demonstrate in the online appendix, it is still possible to characterise the optimal collusive

scheme when this assumption is relaxed. To understand the generality of Assumption 1, note

that it is not restrictive if all firms can only ever collectively supply as much as the minimum

market demand, m � K. Otherwise, for a given level of m, there is a restriction on the size

of the smallest firm in that it cannot be too small. Given the smallest firm’s capacity can be

no larger than for a symmetric duopoly, a necessary condition for Assumption 1 to hold is that

the minimum market demand must be greater than 50% of the total capacity, m � 0.5K. We

also argue in section 4 that Assumption 1 is not very restrictive in the context of mergers. No

restriction is placed on the level of the maximum market demand, m.

Assumption 1 and the proportional allocation rule together imply that firm i’s sales in period

t, s
it

(p
it

,p�it

;m
t

), for any p
it

 1, are given by (1), where ⌦(p
it

) denotes the set of firms that

price strictly below p
it

and pmax

t

⌘ max{p
t

}.

s
it

(p
it

,p�it

;m
t

) =

8
>><

>>:

k
i

if p
it

< pmax

t

min

⇢
ki

K�
P

j2⌦(pit)
k
j

⇣
m

t

�
P

j2⌦(pit)
k
j

⌘
, k

i

�
� 0 if p

it

= pmax

t

(1)

This says that a firm will supply its proportion of the residual demand if it is the highest-priced

firm in the market and if capacity is not exhausted, otherwise it will supply its full capacity. This

implies that firm i’s expected per-period profit is ⇡
it

(p
it

,p�it

) = p
it

R
m

m

s
it

(p
it

,p�it

;m) g(m)dm,

where we drop time subscripts if there is no ambiguity. Furthermore, we write ⇡
i

(p) if p
j

= p  1

for all j, such that:

⇡
i

(p) =

8
>>><

>>>:

pk
i

if K  m

pk
i

⇣R
K

m

m

K

g(m)dm+
R
m

K

g(m)dm
⌘

if m < K < m

pk
i

bm
K

if m  K,

for all i. So, such profits are maximised for pm ⌘ 1.

Finally, an important implication of our assumptions is that a firm will meet all demand up

to its capacity in any given period. This implies that a deviant is not able to attempt to hide

its deviation by limiting the units available at the deviation price. Consequently, our analysis

is likely to be appropriate for markets where collusive prices are set at the senior management

level, but the total output of the firm is determined at a lower level by sales representatives

who are unaware of the collusion. This was the case in many, if not most, detected cartels

(see Harrington, 2006, for evidence from Europe). Nevertheless, we have explored this issue
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beyond the analysis presented below and can show that our main results are robust to this

alternative setting if deviants are only able to limit their sales below demand to some extent and

if this is more di�cult for large firms than smaller firms. This may be the case, for example, if

the senior managers of a deviant firm can only imperfectly limit the total output of their sales

representatives, who are unaware of the collusion, and larger firms have more sales representatives

which makes this task more problematic.8

2.3 Static Nash equilibrium

In this subsection, we analyse the stage game. Consistent with the standard Bertrand-Edgeworth

setting, the static Nash equilibrium can be in pure strategies or mixed strategies. While the proof

of the former is trivial, we extend the equilibrium analysis in Fonseca and Normann (2008) to our

setting of demand uncertainty to solve for the latter. This is also equivalent to the equilibrium

analysis of Gal-Or (1984) if firms are symmetric.

Lemma 1. For any given n � 2 and K�1

 m:

i) if m � K, then there exists a unique pure strategy Nash equilibrium, with profits ⇡N

i

= k
i

8 i;

ii) if m < K, then there exists a mixed strategy Nash equilibrium, with profits, 8 i:

⇡N

i

(k
n

) =

8
<

:

ki
kn

⇣R
K

m

(m�K�n

) g(m)dm+ k
n

R
m

K

g(m)dm
⌘

if K < m

ki
kn

(bm�K�n

) if m  K.
(2)

Competition is not e↵ective if the minimum market demand is above total capacity, m � K, so

firms set p
i

= 1 in equilibrium and receive ⇡N

i

= k
i

for all i. In contrast, if market demand can

be below total capacity, firms are not guaranteed to supply their full capacity for every level of

demand, so they have incentives to undercut each other. However, by charging p
i

= 1, firm i

can ensure that its expected per-period profit is at least:

⇡
i

⌘

8
<

:

R
K

m

(m�K�i

) g(m)dm+ k
i

R
m

K

g(m)dm if m < K < m

bm�K�i

if m  K.
(3)

This defines firm i’s minimax payo↵. The intuition is that the firm with strictly the highest price

expects to supply its full capacity if the realisation of market demand exceeds total capacity, but

it expects to supply the residual demand otherwise. It follows from this that the largest firm

will never set a price below p ⌘ ⇡
n

/k
n

in an attempt to be the lowest-priced firm. This implies

8This analysis is available from the authors upon request.
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that the smaller firms i < n can sell their full capacity with certainty by charging a price slightly

below p to obtain a profit of k
i

p � ⇡
i

. Consequently, the mixed strategy Nash equilibrium profits

are given by ⇡N

i

(k
n

) = k
i

p. This is equivalent to (2), where Assumption 1 is su�cient to ensure

that these are nonnegative for all i. The lower bound of the support is p.

3 Monitoring with Asymmetries

In this section, we analyse the repeated game. We first show that there is some public information

that firms can condition their play on, and find when monitoring is perfect or imperfect. We

then solve the game and compare the results for alternative capacity distributions. Henceforth,

we impose m < K, as collusion is unnecessary otherwise from Lemma 1.

3.1 Information and monitoring

Under our assumptions, repetitions of the stage game generate private and public information

histories. For instance, the private history of firm i in period t is the sequence of its past prices

and sales, denoted zt
i

⌘ (p
i0

, s
i0

; . . . ; p
it�1

, s
it�1

). In contrast, a public history is the sequence

of information that is observed by all firms, regardless of their actions. In this subsection, we

show that the fact that each firm observes its own sales implies that all firms will always know

when at least one firm’s sales are below some firm-specific “trigger level”. As we discuss below,

firms can then use public strategies in which they condition their play on this public information.

Formally, let firm i’s trigger level be of the form s
i

(µ) ⌘ ki
K

µ for all i and consider the history

ht = (y
0

, y
1

, . . . , y
t�1

) where, for all ⌧ = {0, 1, . . . , t� 1}:

y
⌧

=

8
><

>:

y if s
i⌧

(p
i⌧

,p�i⌧

;m
⌧

) > s
i

(µ) 8 i

y otherwise.
(4)

This says that y
⌧

= y if all firms’ sales in period ⌧ exceed their trigger levels, but y
⌧

= y if at

least one firm’s sales does not.

We wish to establish that ht is a public history if µ � m⇤ (k
1

,m) ⌘ min

⇢
K(m�k

1

)
K�1

,K

�
. This

requires that y
⌧

is common knowledge for all ⌧ , for any zt
i

. First, suppose s
i

(µ) � k
i

such that

µ � K for any m > m. For any such case, ht is a public history because the trigger levels are so

high that all firms’ sales can never exceed them for any prices. Hence, y
⌧

= y for all ⌧ . Next,

suppose s
i

(µ) 2 [s
i

(m⇤ (k
1

,m)) , k
i

) such that µ 2

K(m�k

1

)
K�1

,K

◆
, which requires m < K. In

this case, it is possible for firms to receive sales above their trigger levels, since s
i

(µ) < k
i

, but
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each firm’s sales will never do so if the firm has been undercut on price. For instance, for any

nonempty set of rivals with a price strictly below pmax, ⌦ (pmax), the sales of firm j 2 ⌦ (pmax)

are s
j

= k
j

and, given m < K, the sales of firm i with p
i

= pmax  1 are:

s
i

=
k
i

⇣
m

t

�
P

j2⌦(p

max

)

k
j

⌘

K �
P

j2⌦(p

max

)

k
j

 k
i

(m� k
1

)

K�1

= s
i

(m⇤ (k
1

,m))  s
i

(µ) < k
i

, (5)

from (1). It then follows that ht is a public history for any µ 2

K(m�k

1

)
K�1

,K

◆
for the following

reasons. If firms set a common price p  1, then either all firms’ sales will exceed their trigger

levels or they all will not. Yet, as has just been demonstrated, if firms do not set such a common

price, then the sales of the highest-priced firms will not exceed their trigger levels, and their

lower-priced rivals will supply their full capacities.9 Any low-priced firm that supplies its full

capacity knows, from (1), that its price is strictly below the highest in the market. Furthermore,

it also knows that this implies that the highest-priced firms’ sales are below their respective

trigger levels. Finally, note that ht is not a public history if s
i

(µ) < s
i

(m⇤ (k
1

,m)) for any

m > m. The reason is that firms can receive sales above their trigger levels when firms set a

common price and when they have been undercut on price, from (1). Consequently, if firms

do not set a common price, then a low-priced firm that supplies its full capacity can no longer

infer from its sales whether the sales of the highest-priced firms are below their respective trigger

levels.

The above implies that, for any µ � m⇤ (k
1

,m), there exists some public information that

allows firms to make inferences about the behaviour of their rivals. In particular, each firm knows

that all firms’ sales will exceed their trigger levels, such that y = y, if p
j

= p  1 for all j and

if m > µ � m⇤ (k
1

,m); otherwise, at least one firm’s sales will not exceed its trigger level, so

y = y. It follows from this that if m > m⇤ (k
1

,m), then firms can perfectly monitor a strategy

in which all firms set a common collusive price. This is due to the fact that each firm would

receive sales below s
i

(m⇤ (k
1

,m)) only if it has been undercut. In contrast, if m  m⇤ (k
1

,m),

then there is imperfect monitoring for any µ � m⇤ (k
1

,m). The reason can be understood by

considering Pr
�
y|p

i

,p�i

�
which denotes the probability of observing y if firm i sets p

i

and its

rivals price according to p�i

. For the case of µ � m⇤ (k
1

,m) � m:

Pr
�
y|p

i

,p�i

�
=

8
<

:

R
min{µ,m}
m

g (m) dm 2 [0, 1] if p
j

= p 8j

1 otherwise.
(6)

9If any firms’ prices are above 1, then they will receive zero sales, which is below their trigger levels. In this

case, only the firms whose prices do not exceed 1 will supply their full capacities.
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This says that a firm’s sales can be below its trigger level if the realisation of market demand is

su�ciently low, even when firms set a common price. Thus, for such an outcome colluding firms

face a non-trivial signal extraction problem: each firm does not know whether the realisation of

market demand was unluckily low or whether at least one rival has undercut them.

Proposition 1 finds the conditions for perfect and imperfect monitoring in terms of the max-

imum market demand, holding the minimum market demand constant.

Proposition 1. For any given n � 2, K�1

 m < K, and � 2 (0, 1), there exists a unique

level of market demand, x (k
1

) ⌘ m + k
1

⇣
K�m

K

⌘
2 (m,K), such that if m 2 (m,x (k

1

)), then

monitoring can be perfect. Otherwise, there is imperfect monitoring.

Monitoring can be perfect if the fluctuations in market demand are su�ciently small, other-

wise there is imperfect monitoring. The critical level x (k
1

) is strictly increasing in the capacity

of the smallest firm, k
1

. The reason is that deviations by the smallest firm are most di�cult

to detect, from (5), and it follows from this that detecting a deviation is less di�cult when the

smallest firm is larger. Consequently, if it is just possible for a firm to infer that the smallest

firm has not deviated for a given level of m, then it is also possible for the same level of m if the

smallest firm has more capacity. Thus, deviations can be detected perfectly for a wider range of

fluctuations in market demand when the smallest firm is larger.

Finally, we have so far considered the public information that firms can infer from their

privately observed sales. Before moving on, we should discuss two possible scenarios in which

a firm’s sales can provide it with private information that is not common knowledge among all

firms. In either case though, it should be noted that any such private information is not payo↵

relevant if rivals follow public strategies. Thus, it will not be possible for a firm to use its private

information to gain by deviating from an equilibrium in public strategies. The first case is when

a firm knows for sure that it has been undercut. This occurs if firm i’s sales are inconsistent

with all firms setting a common price, s
i

< ki
K

m for some i. Such information is not common

knowledge if monitoring is imperfect, because the deviants j 6= i would be unaware of the specific

levels of its rivals’ sales: they simply know that at least one rival’s sales are below its trigger

level. The second case is when the smallest firm knows for sure that all firms have set a common

price, but its rivals i > 1 are uncertain as to whether the smallest firm has undercut them.

This may occur if firm 1 is strictly the smallest firm and if fluctuations in market demand are

not large, such that m < K. In such a case, the highest possible sales of the smallest firm if

it is undercut are k

1

K�2

(m� k
2

) < s
i

(m⇤ (k
1

,m)). Thus, if the smallest firm’s sales are below

12



s
i

(m⇤ (k
1

,m)) yet above k

1

K�2

(m� k
2

), then it knows for sure that all firms have set a common

price. Nevertheless, the fact that the smallest firm’s sales will be below its trigger level for any

µ � m⇤ (k
1

,m) will inform it that its rivals’ sales are also below their trigger levels.

3.2 Optimal collusive equilibrium profits

We now solve the repeated game restricting attention to sequential equilibria in public strategies,

in which firms condition their play only on the public history. Such equilibria are known as perfect

public equilibria (PPE) (see Fudenberg and Tirole, 1994, p.187-191). We solve the model using

two seemingly di↵erent approaches. First, in the main body of the paper, we restrict attention to

a particular class of PPE in which, similar to Green and Porter (1984) and Tirole (1988), firms

punish each other by reverting to the static Nash equilibrium for a fixed number of periods, if

they receive a bad signal in a collusive period. The strategy profile for this approach is formally

described below and we refer to it as trigger-sales strategies. Second, given that restricting

attention to trigger-sales strategies leaves open the question of whether there are other PPE

with higher profits, we solve for the set of PPE in the online appendix using the techniques

of Abreu et al. (1986, 1990). This appendix shows that trigger-sales strategies are optimal

equilibrium strategies in that they support the maximal PPE payo↵s and they generate the

lowest critical discount factor.

Trigger-sales strategies are formally defined as follows. There are ‘collusive phases’ and

‘punishment phases’. Suppose period t is in a collusive phase. In any such period, a firm

should set the collusive price, pc > p. If y
t

= y, such that all firms received sales above their

trigger levels, then the collusive phase continues into the next period t+ 1. If y
t

= y, such that

at least one firm received sales below its trigger level, then firms enter a punishment phase in the

next period t + 1. In the punishment phase, each firm should play the static Nash equilibrium

for T periods, after which a new collusive phase begins. This sequence repeats in any future

collusive phase.

Denote firm i’s expected (normalised) profit in a collusive phase as k
i

V c and its expected

(normalised) profit at the start of a punishment phase as k
i

V p. If all firms follow trigger-sales

strategies, then:

k
i

V c = (1� �)⇡
i

(pc) + �
⇥�
1� Pr

�
y|pc

��
k
i

V c + Pr
�
y|pc

�
k
i

V p

⇤

k
i

V p = (1� �)
P

T�1

t=0

�t⇡N

i

(k
n

) + �T k
i

V c,
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for all i, where Pr
�
y|pc

�
= G (µ) from (6). Substituting k

i

V p into k
i

V c and solving yields:

k
i

V c = ⇡N

i

(k
n

) +
(1� �)

1� � +G (µ) � (1� �T )

�
⇡
i

(pc)� ⇡N

i

(k
n

)
�
, (7)

where it is then straightforward to check that ⇡
i

(pc) � k
i

V c > k
i

V p for any T > 0 and that

k
i

V p > ⇡N

i

(k
n

) for any T < 1.

The profile of trigger-sales strategies is a PPE if, for each date t and any history ht, the

strategies yield a Nash equilibrium from that date on. We say that collusion under trigger-sales

strategies is not sustainable if no such equilibrium strategies exist. Given firms play the static

Nash equilibrium during each period of the punishment phase, it is clear that they have no

incentive to deviate in any such periods. Thus, we need only consider deviations during collusive

phases, in which case Pr
�
y|p

i

, pc
�
= 1 for any p

i

6= pc from (6). The incentive compatibility

constraint (ICC) for any firm i is as follows:

k
i

V c � (1� �) k
i

pc + �k
i

V p

�
⇣

1��

1��

T

⌘
k
i

pc + �⇡N

i

(k
n

) .
(8)

This says that firm i will not deviate in any period in a collusive phase if it cannot gain by

marginally undercutting pc > p to supply its full capacity k
i

.10 Notice for all ⇡
i

(pc) > ⇡N

i

(k
n

)

that lowering µ towards m⇤ (k
1

,m) increases k
i

V c, from (7), and it slackens the ICC in (8).

Consequently, it is optimal for firms to set µ = m⇤ (k
1

,m), such that the trigger levels are

determined by the largest sales firms i > 1 can make if all such firms set the same price and firm

1 undercuts to sell its full capacity. Then it is easy to check that (8) is never satisfied when the

maximum market demand is greater than total capacity, m � K, because G (m⇤ (k
1

,m)) = 1

from (6). Thus, collusion under trigger-sales strategies is not sustainable if m � K, so we can

henceforth focus on the case where m < K.

Substituting k
i

V c into (8), then rearranging yields:

(1�G (m⇤ (k
1

,m)))K
�
pc � p

�
� (K � bm) pc

�
� �T

⇥
(1�G (m⇤ (k

1

,m)))K
�
pc � p

�
� (K � bm) pc

⇤
.

(9)

It follows from the fact that (9) is independent of k
i

that if the ICC holds for firm i, then it also

holds for all other firms j 6= i. This implies that, under the proportional allocation rule, each firm

has the same incentive to deviate as its rivals despite potential asymmetries. Furthermore, note

10It follows from Lemma 1 that firm i’s optimal deviation is to undercut pc > p for all i. Furthermore, note

that pc > p is a necessary condition for firms to attain collusive profits per-period greater than the static Nash

equilibrium profit.
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that the left-hand side of (9) is strictly less than the expression in square brackets on the right-

hand side for all � < 1. Consequently, (9) can only hold if both are nonnegative, since �T 2 (0, 1]

for all T 2 [0,1). Thus, similar to Green and Porter (1984) and Tirole (1988), it follows from (9)

that there are three necessary conditions for the profile of triggers-sales strategies to be a PPE.

First, the length of the punishment phase must be su�ciently long, where the critical duration,

denoted T ⇤ (k
1

, k
n

, pc), is implicitly defined by the level of T where (9) holds with equality.11

Second, firms must also be su�ciently patient, such that:

� � (K � bm) pc

(1�G (m⇤ (k
1

,m)))K
�
pc � p

� ⌘ �⇤ (k
1

, k
n

, pc) , (10)

in which case the left-hand side of (9) is nonnegative, such that the ICC holds as T ! 1.

This implies that if firms are not su�ciently patient, then even a punishment phase that lasts

an infinite number of periods is insu�cient to outweigh the short-term benefit from deviating.

Furthermore, note that the critical punishment phase duration T ⇤ (k
1

, k
n

, pc) < 1 for any � >

�⇤ (k
1

, k
n

, pc) and T ⇤ (k
1

, k
n

, pc) ! 1 if � = �⇤ (k
1

, k
n

, pc). Third, the probability of receiving a

bad signal must be su�ciently low, where:

G (m⇤ (k
1

,m)) < 1� (K � bm) pc

K
�
pc � p

� , (11)

such that the expression in square brackets in (9) is positive. Note that (11) ensures �⇤ (k
1

, k
n

, pc) <

1, which implies that if this condition is not met, then the firms are not su�ciently patient for

any � < 1, even if a punishment phase lasts an infinite number of periods.

Proposition 2 solves for the optimal PPE profits under trigger-sales strategies. We refer to

this as collusion under imperfect monitoring.

Proposition 2. For any given n � 2 and K�1

 m < K, there exists a unique level of market

demand, x (k
1

, k
n

) 2 (x (k
1

) ,K), that solves G (m⇤ (k
1

, x (k
1

, k
n

))) = K�n

K

< 1, such that, if

m 2 [x (k
1

) , x (k
1

, k
n

)) and if � � �⇤ (k
1

, k
n

) ⌘ 1

1�G(m

⇤
(k

1

,m))

kn
K

2
�
kn
K

, 1
�
, then firm i’s optimal

PPE profits under trigger-sales strategies are:

k
i

V ⇤ =
k
i

K

✓
bm�G (m⇤ (k

1

,m))K

1�G (m⇤ (k
1

,m))

◆
2
✓
⇡N

i

(k
n

) ,
k
i

K
bm
◆
8 i.

Otherwise, collusion under trigger-sales strategies is not sustainable.

11Although T ⇤ (k1, kn, pc) may not be an integer, the expected punishment phase duration could still equal this

if firms could vary the length of punishment phases using a publicly observable randomisation device.
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This says that, if the necessary conditions (10) and (11) are satisfied, then the optimal PPE

profits under trigger-sales strategies have the firms set the monopoly price during a collusive

phase and the optimal punishment phase duration is T ⇤ (k
1

, k
n

, pm) such that the ICC (9) is

binding with no slack. Despite the fact that firms set the monopoly price during collusive

phases, the sum of firms’ equilibrium profits is below the monopoly profit, because punishment

phases occur on the equilibrium path. Finally, if firms set a collusive price below the monopoly

price, it not only lowers profits but it also raises the critical discount factor. Thus, either the

profile of trigger-sales strategies, with firms setting the monopoly price during collusive phases,

is a PPE or it is not an equilibrium strategy profile at any collusive price.

Next, we turn our attention to the case of perfect monitoring, where G (m⇤ (k
1

,m)) = 0.

In this case, any PPE is also a subgame perfect Nash equilibrium (SPNE) and, as we explain

further in a moment, we can easily generate the optimal SPNE profits by letting the punishment

phase last an infinite number of periods, such that T ! 1. Thus, the optimal SPNE profits are

summarised by the following corollary. We refer to this as collusion under perfect monitoring.

Corollary 1. For any given n � 2 and K�1

 m < m  x (k
1

), there exists a unique discount

factor �⇤ (k
n

) ⌘ kn
K

2
�
0, m

K

⇤
, such that if � � �⇤ (k

n

), then firm i’s optimal SPNE profits under

trigger-sales strategies are:

k
i

V ⇤ =
k
i

K
bm > ⇡N

i

(k
n

) 8 i.

Otherwise, collusion under trigger-sales strategies is not sustainable.

The firms divide the monopoly profits between them if they are su�ciently patient. The

equilibrium profits are highest and the critical discount factor is lowest when the firms set the

monopoly price. The critical discount factor is the same as in Compte et al. (2002) and it also

coincides with the lowest possible discount factor that sustains collusion given the proportional

allocation rule. The reason is that, as showed by Lambson (1994), the optimal punishments under

the proportional allocation rule are such that the largest firm receives the stream of profits from

its minimax strategy. In our setting, this is the case as T ! 1, because in each period of the

punishment phase the firms receive the static Nash equilibrium profits, which for the largest firm

is equivalent to its minimax payo↵. Thus, it is not possible to lower the critical discount factor

below this level, given the proportional allocation rule.

These results are brought together in Figure 1. It highlights that the critical discount factor

under imperfect monitoring, �⇤ (k
1

, k
n

), converges to the critical level under perfect monitoring,
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Figure 1: Parameter space of collusion

�⇤ (k
n

), at m = x (k
1

), but it is strictly above �⇤ (k
n

) for any higher maximum market demand.

The optimal equilibrium profits under trigger-sales strategies, k
i

V ⇤, equal the monopoly level

at or below x (k
1

) for all � � �⇤ (k
n

), and they equal the static Nash equilibrium profits at

m = x (k
1

, k
n

) where �⇤ (k
1

, k
n

) = 1. Furthermore, assuming a mean-preserving spread, they are

strictly decreasing in m between x (k
1

) and x (k
1

, k
n

). Before moving on, the reader may wish

to check the online appendix, where we use the techniques of Abreu et al. (1986, 1990) to show

that the optimal equilibrium profits under trigger-sales strategies are the maximal PPE payo↵s.

Thus, henceforth we refer to them as the optimal equilibrium profits.

3.3 Comparing capacity distributions

We want to analyse the e↵ects of mergers in our setting. Before doing so, it is helpful to get

a clear understanding of how the capacity distribution a↵ects collusion by analysing changes in

the capacity distribution when the number of firms and the total capacity are held constant.

This implies that any such changes in the capacity of a given firm will require capacity to be

reallocated from a rival. For example, increasing the size of the smallest firm in a duopoly implies

that the capacity of the largest firm decreases. Thus, throughout this subsection, we assume

that when the capacity of firm j changes by a small amount, other things equal, the capacities

of the other firms change to the extent that @ki
@kj

2 [�1, 0] for all i 6= j, where
P

i 6=j

@ki
@kj

= �1.
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However, in what follows we restrict the discussion to capacity reallocations that directly a↵ect

the equilibrium analysis, and this is the case for changes to the capacity of the smallest firm or

the largest firm.

Proposition 3 analyses the e↵ects of reallocating capacity among the firms on the critical

discount factor, which ensures that the ICC holds as T ! 1.

Proposition 3. For any given n � 2 and K�1

 m < K:

i) if m 2 [m,x (k
1

)), then �⇤ (k
n

) is strictly increasing in the capacity of the largest firm, k
n

;

ii) if m 2 [x (k
1

) , x (k
1

, k
n

)), then �⇤ (k
1

, k
n

) is strictly increasing in the capacity of the largest

firm, k
n

, and strictly decreasing in the capacity of the smallest firm, k
1

.

Consistent with Compte et al. (2002), increasing the size of the largest firm hinders collusion.

The reason is that a punishment that lasts an infinite number of periods is weaker when the largest

firm is larger, because under Assumption 1 the static Nash equilibrium profits increase for each

firm, so the critical discount factor rises. In contrast to Compte et al. (2002), increasing the size

the smallest firm facilitates collusion. This is due to the fact that firms can monitor an agreement

more successfully when the smallest firm is larger, because it is less likely that firms’ sales will be

below their trigger levels when they set a common price. This does not a↵ect the critical discount

factor under perfect monitoring but, as we saw in section 3.1, it does imply that monitoring is

perfect for a wider range of fluctuations in market demand. Under imperfect monitoring, it is

less likely that a collusive phase will switch to a punishment phase on the equilibrium path when

the smallest firm is larger. Consequently, the expected future profits from collusion are higher

than before, which implies that a punishment that lasts an infinite number of periods is relatively

harsher, so the critical discount factor falls.12

Next, we analyse the e↵ects of reallocating capacity among the firms on the optimal equilib-

rium profits. For convenience, we transform such profits to an average price and compare it to

the average static Nash equilibrium price, given by bpN (k
n

) ⌘ K

bm
(bm�K�n)

kn
for all m < K. The

average price of the optimal equilibrium profits under perfect monitoring is independent of the

capacity distribution, since firms set pm in each period if they are su�ciently patient. So, Propo-

sition 4 investigates the e↵ect of reallocating capacity on the average price associated with the

12Both results are consistent with the findings of Vasconcelos (2005). The underlying incentives for his results

are very di↵erent to ours though, as they rely on capacities a↵ecting marginal costs in a setting of perfect

observability.
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optimal equilibrium profits under imperfect monitoring. We refer to this as the optimal average

price, and this is given by bpc (k
1

,m) ⌘ K

bmV ⇤ in expectation, where bpN (k
n

) < bpc (k
1

,m) < pm.

Proposition 4. For any given n � 2, K�1

 m < x (k
1

) < m < x (k
1

, k
n

) and � � �⇤ (k
1

, k
n

),

the optimal average price, bpc (k
1

,m), is strictly increasing in the capacity of the smallest firm,

k
1

.

The optimal average price is increasing in the capacity of the smallest firm for two reasons.

First, as the capacity of the smallest firm increases, it is less likely that firms’ sales will be below

their trigger levels when they set a common price. Thus, profits rise on the equilibrium path,

other things equal, because collusive phases are less likely to switch to punishment phases than

before. Second, such an increase in profits also introduces slack into the ICC. Consequently, the

optimal punishment phase duration shortens to ensure that the ICC is binding with no slack,

which increases equilibrium profits further.

Surprisingly, the optimal average price is independent of the capacity of the largest firm,

when the capacity of the smallest firm is held constant. This is due to the fact that an increase

in the capacity of the largest firm raises the static Nash equilibrium profits under Assumption 1,

and this causes two counteracting e↵ects on the collusive profits that perfectly o↵set each other.

First, there is a direct e↵ect in that higher static Nash equilibrium profits raise collusive profits

on the equilibrium path, other things equal. Second, higher static Nash equilibrium profits make

the punishment relatively weaker than before, so the ICC is tighter. Consequently, there is

indirect e↵ect in that profits on the equilibrium path fall, because the optimal punishment phase

duration lengthens to ensure that the ICC is binding with no slack. This second e↵ect cancels

out the first under the proportional allocation rule, implying the size of the largest firm has no

e↵ect on the optimal average price.

It follows from the above analysis that asymmetries hinder collusion under perfect and im-

perfect monitoring. In summary, Proposition 3 implies that the parameter space of collusion

is greatest when firms’ capacities are symmetric, because the punishment is harshest when the

largest firm is as small as possible, and since monitoring is most successful when the smallest firm

is as large as possible. The latter also implies that the optimal average price is higher if firms

are symmetric from Proposition 4. Furthermore, since the optimal average price is independent

of the size of the largest firm, it follows that the optimal average price is highest for a symmetric

duopoly and that, for example, it would be higher for a symmetric triopoly than an asymmetric

duopoly with k
1

< K/3.
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Despite the fact that symmetry is ideal for collusion, Proposition 5 next shows that the

competitive prices of asymmetric capacity distributions can be higher on average than the optimal

collusive prices of less asymmetric capacity distributions. To prove this result, we compare the

optimal average price of one distribution, (k
1

, k
n

), to the static Nash equilibrium average price

of another, denoted (k0
1

, k0
n

).

Proposition 5. For any given n � 2, K�1

 m < K and � � �⇤ (k
1

, k
n

), if k0
n

> k
n

, such that

k0
1

 k
1

, then there exists a unique level of market demand, x (k
1

, k0
n

) 2 (x (k
1

) , x (k
1

, k
n

)), that

solves G (m⇤ (k
1

, x (k
1

, k0
n

))) = 1 � k

0
n
K

< 1, where if m 2 (x (k
1

, k0
n

) , x (k
1

, k
n

)), then the static

Nash equilibrium average price of (k0
1

, k0
n

) is strictly greater than the optimal average price of

(k
1

, k
n

), bpN (k0
n

) > bpc (k
1

,m).

This says that if fluctuations in market demand are su�ciently large, then the competitive

prices of asymmetric capacity distributions are higher on average than the optimal collusive prices

of less asymmetric capacity distributions. The intuition is that an increase in the maximum

market demand raises the likelihood that firms’ sales will be below their trigger levels when

firms set a common price. Thus, punishment periods are expected to occur on the equilibrium

path more often than before. As a result, the optimal average price of (k
1

, k
n

) falls towards its

corresponding static Nash equilibrium average price as the maximum market demand increases

towards the critical level x (k
1

, k
n

). Yet, the average static Nash equilibrium price is strictly

increasing in the capacity of the largest firm, k
n

. So, consider an alternative distribution (k0
1

, k0
n

)

that is more asymmetric than the original in the sense that k0
n

> k
n

(so k0
1

 k
1

). It follows that

if the maximum market demand is su�ciently close to x (k
1

, k
n

), then (k0
1

, k0
n

) will have a higher

average static Nash equilibrium price than the optimal average price of (k
1

, k
n

). The critical

level x (k
1

, k0
n

) is the point at which bpc (k
1

,m) = bpN (k0
n

) for all � � �⇤ (k
1

, k
n

). Furthermore, the

condition that the maximum market demand exceeds x (k
1

, k0
n

) guarantees that collusion under

trigger-sales strategies is not sustainable for (k0
1

, k0
n

). This is due to the fact that collusion under

trigger-sales strategies requires that the maximum market demand is below x (k0
1

, k0
n

) , but this

is contradicted since x (k0
1

, k0
n

)  x (k
1

, k0
n

) < m for all k0
1

 k
1

.

4 Monitoring and Mergers

We now use our equilibrium analysis to draw implications for merger policy. A merger in our

framework amounts to the merging firms consolidating their capacity, so we draw on the analysis
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of section 3.3. However, the following analysis di↵ers to section 3.3 in that a merger will reduce

the numbers of firms and can increase both the size of the smallest and largest firm at the same

time. We also consider the firms’ incentives to merge, analyse the welfare e↵ects, and discuss the

implications for divestment remedies. Following the terminology of Farrell and Shapiro (1990),

we henceforth refer to the merging firms as insiders and those not involved in the merger as

outsiders. We say that a merger is privately optimal if the sum of insiders’ profits post-merger

is strictly greater than the sum of their profits pre-merger. Finally, with respect to welfare,

we focus on the e↵ects of mergers on consumer surplus for two reasons. First, expected total

welfare is independent of the capacity distribution, so mergers do not a↵ect it. Second, ensuring

consumer surplus does not fall post-merger is commonly perceived to be the main objective of

merger control (see Lyons, 2002).

We are particularly interested in comparing unilateral and coordinated e↵ects in our frame-

work. Such e↵ects have been considered independently of each other in the previous literature.

For instance, Compte et al. (2002) and Vasconcelos (2005) analyse models where firms can op-

timally share the monopoly profits in every future period if collusion is sustainable, and they

both focus solely on the coordinated e↵ects of mergers on the critical discount factor. Bos and

Harrington (2010) analyse the coordinated e↵ects of mergers on the price of a cartel that does

not encompass all firms in the market. They find that mergers that increase the capacity con-

trolled by the cartel can raise the cartel price towards the monopoly level. However, in contrast

to our model, they restrict attention to capacity distributions for which there is a unique pure

strategy static Nash equilibrium price equal to marginal cost, so unilateral e↵ects are not an

issue. Thus, in each of these papers a merger that causes coordinated e↵ects is more harmful to

consumer welfare than compared with an alternative that causes unilateral e↵ects. This is not

always the case in our setting. The reason is that imperfect monitoring does not enable firms to

share the monopoly profits in every period, yet the static Nash equilibrium prices will be close

to the monopoly level when competition is weak. Consequently, a noncollusive merger outcome

that causes unilateral e↵ects can be worse for consumer welfare than a collusive outcome.

Before considering the e↵ects of mergers in our model, we return to discuss the generality of

Assumption 1 in the context of mergers. Recall that this restricts the smallest firm’s capacity

from being too small, m � K�1

. In this context, the necessary condition for Assumption 1 to

hold is stricter than before, due to the fact that we are only interested in outcomes with at least

2 firms post-merger. Thus, there must be n > 2 firms pre-merger, in which case the minimum

market demand must be greater than n�1

n

of the total capacity, m �
�
n�1

n

�
K. The reason
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Figure 2: The e↵ects of mergers on the parameter space of collusion

is that the smallest firm’s capacity can be no larger pre-merger than for a symmetric capacity

distribution, k
1

= K/n. This implies that Assumption 1 is more restrictive when there are more

firms in the market pre-merger. However, Assumption 1 is likely to hold for a large number

of mergers that raise concerns of collusion pre- and/or post-merger. For example, Davies et al.

(2011) found that the European Commission was concerned about post-merger collusion between

duopolists in all bar one of the cases that were seriously investigated for tacit collusion between

1990 and 2004 (see also Davies and Olczak, 2010). Consequently, there were usually only three

main players pre-merger, such that the necessary condition ism � 2

3

K. Moreover, given collusion

is likely to occur when asymmetries are small, Assumption 1 is especially unrestrictive for cases

in which there is collusion pre-merger.

Figure 2 builds on the illustration in Figure 1 to depict the e↵ects of mergers on the parameter

space of collusion. It shows how the equilibrium analysis is changed by a merger that either only

increases the size of the smallest firm or only increases the size of the largest firm. We discuss

each in turn. A merger that increases the size of both the smallest and the largest firm will have

a mix of the e↵ects described here. All other mergers will not a↵ect the equilibrium analysis.

A merger that only increases the size of the smallest firm will facilitate collusion. It follows

from Proposition 3 that the parameter space of collusion will expand and Proposition 4 implies
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that the average price may also rise post-merger. The parameter space for which such a merger

raises the average price is illustrated in the shaded area of Figure 2(a). It shows that the price will

rise if collusion is sustainable to some degree post-merger and if either the pre-merger outcome

is noncollusive or collusion pre-merger is less than perfect. Furthermore, similar to other models

where collusion pre-merger implies firms share the monopoly profits, such a merger has no e↵ect

on the average price if there is collusion under perfect monitoring pre- and post-merger. Any

such merger that raises the average price is privately optimal and it also strictly increases the

profits of the outsiders. This follows since the present discounted value of profits for any set of

firms M , given an average price bp, is
P

i2M

k
i

bm
K

⇣
bp

1��

⌘
, where this is higher post-merger only

if the average price rises. As a consequence, such a merger will also lower consumer surplus,

since the expected consumer surplus per unit is 1 � bp. Thus, any collusive outcome that has

been facilitated by a merger that only increases the size of the smallest firm is worse than the

pre-merger outcome.13

A merger that only increases the size of the largest firm will hinder collusion. Proposition 3

implies that the parameter space of collusion will contract. Yet, it follows from Proposition 5 that

such a merger may actually increase prices through unilateral e↵ects even if there is collusion pre-

merger. The parameter space for which such a merger raises the average price is illustrated in the

shaded area of Figure 2(b). It shows that prices will rise if collusion under imperfect monitoring is

sustainable pre-merger but not post-merger and if fluctuations in market demand are su�ciently

large. Prices fall for the rest of the area where collusion under imperfect monitoring is sustainable

pre-merger but not post-merger. Nevertheless, our model suggests that it is only in the insiders’

interests to merge when the average price rises post-merger. This follows since such a merger

is privately optimal for any set of firms M if
P

i2M

k
i

bm
K

✓
bpN(k0

n)
1��

◆
>

P
i2M

k
i

bm
K

⇣
bpc

(k

1

,m)

1��

⌘
.

Consequently, the condition that guarantees the insiders’ profits increase post-merger also ensures

that the average price rises post-merger. Moreover, the same condition also guarantees that such

a merger increases the profits of the outsiders and lowers consumer surplus. It should also be

noted for completeness that if there is no collusion pre- or post-merger, then such a merger would

increase the average price post-merger through unilateral e↵ects.

Finally, our analysis has important implications for the appropriate divestment remedies of

anti-competitive mergers. For instance, an implication of Proposition 5 is that the unilateral

13It also follows from this that larger firms i > 1 may increase their profits by divesting capacity to the smallest

firm, so that monitoring is easier. Such divestments are not unheard of in actual merger cases (see Compte et al.,

2002; and Davies and Olczak, 2010).
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e↵ects of a merger can be remedied by a divestment that creates a collusive symmetric outcome.

Such a remedy would commonly be rejected by a competition agency, as was the case in the

Nestlé/Perrier merger analysed by Compte et al. (2002), for example. To illustrate that such a

remedy could eliminate the unilateral e↵ects of a merger, consider a scenario where pre-merger

there is a noncollusive triopoly with a capacity distribution of (k
1

, k
3

). Suppose the two largest

firms propose to merge and that this would create an asymmetric duopoly (k
1

, k0
2

), where k0
2

> k
3

such that prices will rise through unilateral e↵ects. Consider a remedy of such unilateral e↵ects

whereby the merged entity divests some of its capacity to the outsider to create a symmetric

duopoly (k, k), where k0
2

> k > k
1

. Proposition 5 implies that if the maximum market demand

is su�ciently close to x (k, k), then the collusive symmetric duopoly (k, k) will have lower prices

and hence higher consumer surplus than the noncollusive unremedied duopoly (k
1

, k0
2

), since

lim
m!x(k,k)

bpc (k,m) = bpN (k) < bpN (k0
2

) for all k0
2

> k. Thus, here the collusive symmetric

duopoly should be preferred to the unremedied post-merger outcome (k
1

, k0
2

) from a consumer

welfare perspective. Furthermore, similar logic implies that if the largest firm pre-merger has

more capacity than in the collusive symmetric duopoly, k
3

> k, then such a divestment can even

lower prices compared to pre-merger. In such a case, the collusive symmetric duopoly should

actually be preferred to the pre-merger status quo.

5 Concluding remarks

We have explored the e↵ects of asymmetries in capacity constraints on collusion in a setting

where there is demand uncertainty and where firms never directly observe their rivals’ prices

and sales. Despite the fact that each firm must monitor the collusive agreement using their

privately observed prices and sales, we have shown that firms can perfectly detect deviations if

demand fluctuations are su�ciently small. Otherwise, monitoring is imperfect and punishment

phases occur on the equilibrium path. Consistent with the previous literature, we found that

asymmetries hinder collusion. Yet, we also analysed both the unilateral and coordinated e↵ects

of mergers in a unified framework. We showed that if demand fluctuations are su�ciently large,

then the (average) competitive prices of asymmetric capacity distributions are actually higher

than the optimal (average) collusive prices of less asymmetric capacity distributions.

Our results have three main implications for merger policy. First, although market trans-

parency is rightly an important criterion in the assessment of coordinated e↵ects in practice,

our model re-emphasises the fact that a lack of transparency about rivals’ prices and sales is
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not a su�cient condition to rule out such e↵ects: firms may be able to monitor a collusive

agreement using their private information. Second, while the possible e↵ects of imperfect moni-

toring are explicitly mentioned in general terms in the most recent US and European horizontal

merger guidelines, our model suggests that such monitoring will be di�cult in markets where

firm asymmetries are large. Third, and most importantly, collusive merger outcomes should not

be presumed to be more harmful than more asymmetric noncollusive merger outcomes. A collu-

sive agreement may require su�ciently frequent price wars that actually lead to higher consumer

surplus than a more asymmetric outcome in which one firm’s market power is strengthened uni-

laterally. Consequently, it can be appropriate to remedy a merger outcome with a singularly

dominant firm by imposing a divestment that creates a symmetric market structure, even if this

facilitates collusion under imperfect monitoring. Likewise, it can be inappropriate for a competi-

tion authority to remedy a collusive post-merger outcome by imposing a divestment that creates

a more asymmetric market structure.

Finally, an important avenue for future research is to develop techniques that can assess

accurately in practice whether a collusive merger outcome is better than a noncollusive outcome.

We believe that there are two existing methodologies that are a good place to start to address this

issue. First, if collusion is expected to be facilitated post-merger, then more advanced merger

simulation techniques may enable the likely e↵ects to be simulated. While these techniques

have been criticised in the past for not allowing the conduct of firms post-merger to di↵er

from that assumed pre-merger (see Whinston, 2007), recent developments have have gone some

way to address this. For example, Davis and Huse (2010) and Ivaldi and Lagos (2016) use

the standard simulation methodology of unilateral e↵ects to develop empirical techniques that

simulate coordinated e↵ects on the critical discount factor in di↵erentiated goods market under

perfect observability. Thus, to be applicable to the current context, these techniques would have

to be extended to the case of imperfect monitoring. Second, if the pre-merger status quo is

thought to be collusive, then it may be possible to use the screening devices for collusion on pre-

merger data to estimate the extent to which such collusion is imperfect (see Harrington, 2008,

for a review of these devices). For example, one such technique, developed by Porter (1983) and

Ellison (1994), discovers collusion under imperfect monitoring by finding evidence of price wars

(that is, abrupt changes in prices that cannot be explained by fluctuations in cost or demand).

Such price wars are inconsistent with models of competition and with perfect collusion, so if

there is no evidence of them pre-merger (and price is at or near the monopoly level), then it is

likely that welfare will be improved if collusion pre-merger is expected to be destabilised post-
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merger. On the other hand, evidence of frequent or long price wars pre-merger could suggest

that collusion is su�ciently imperfect pre-merger that destabilising collusion by enhancing the

market power of one firm unilaterally will actually harm welfare.
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Appendix A

Proof of Lemma 1. There exists a unique pure strategy Nash equilibrium if m � K, where

⇡N

i

= k
i

8 i. This follows from ⇡
i

(p
i

,p�i

) = p
i

k
i

8 p
i

 1, so the best reply of firm i is p
i

= 1 for

any p�i

, 8 i. There is no pure strategy Nash equilibrium if m < K. To see this, note that any

such candidate equilibrium requires p
j

= p 8 j. Otherwise, firm i 2 ⌦ (pmax) has an incentive to

increase its price towards pmax, from ⇡
i

(p
i

,p�i

) = p
i

k
i

8 p
i

< pmax. However, for any p 2 (0, 1],

firm i has an incentive to lower its price, since ⇡
i

(p � ✏, p) > ⇡
i

(p) if m < K, where ✏ > 0 but

small. Moreover, for p = 0, firm i has an incentive to raise its price, since Assumption 1 ensures

⇡
i

(✏, 0) > 0 8 i.

Nevertheless, if K > m � K�1

, the existence of a mixed strategy Nash equilibrium is guaran-

teed by Thereom 1 of Dasgupta and Maskin (1986). To characterise this equilibrium, let H
i

(p)

denote the probability that firm i charges a price less than or equal to p. Below we demonstrate

that the equilibrium profits are given by (2) for all i and that:

H
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where ⇡
n

is as given in (3). This converges to the analysis in Fonseca and Normann (2008) as

m ! m.

In equilibrium, firm i must receive the following expected profit from charging p  1:
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where
Q

j 6=i

H
j

(p) is the probability that firm i is the highest-priced firm. To solve for the right-

hand side of (13), notice firm i has no incentive to price below ⇡
i

/k
i

⌘ p
i

, where p
n

� p
n�1
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. . . � p
1

. Moreover, any firm j < n can guarantee profits of kj

kn
⇡
n

� ⇡
j

by charging a price

marginally below p
n

, so all firms have no incentive to price below p
n

. Finally, the fact that all

firms j < n place positive probability on charging p
n

is necessary and su�cient to ensure p
n

is

also the lowest price that firm n will charge. Thus, the lower bound of H
i

(p) is p = p
n

= ⇡
n

/k
n

8 i. Manipulating (13) yields:
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Noting that ⇡
i

� k
i

=
R
min{K,m}
m

(m�K) g (m) dm 8 i for any K > m from (3), it follows from
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(14) that:
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Thus, solving for
Q

j

H
j

(p) and substituting into (14) shows that H
i

(p) is as claimed in (12).

It follows from (12) that H
i

(1) Q 1 if
k

n�1

iQ
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R 1. This has two implications. First, if
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the inequality is strict. Note that
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p
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) = 1. Consequently, the probability distributions of the larger firms with

higher upper bounds must be adjusted accordingly. For example, if p
i

< 1 only for firm 1 (which

is the case for any triopoly with k
1

< k
2

), then the largest n� 1 firms play with H
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so that n� 1 replaces n over [p
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, 1]. Note that
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for any n � 2. ⌅

Proof of Proposition 1. There can be perfect monitoring if m > m⇤ (k
1

,m) and there is imperfect

monitoring otherwise. Note that ifm � K, then there is never perfect monitoring for anym < K,

since then m⇤ (k
1

,m) = K. So, consider the case of m < K where m⇤ (k
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where x (k
1

) 2 (m,K) for any m < K. Thus, it follows that monitoring can be perfect if
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), as this implies m > m⇤ (k
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,m). Otherwise, there is imperfect monitoring. ⌅

Proof of Proposition 2. Given k
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This is strictly increasing in pc, so pc = 1 and k
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respectively. Furthermore, note that �⇤ (k
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, pc) is strictly decreasing in pc, such that collusion
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Proof of Proposition 5. We first show that bpN (k0
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bpN (k0
n

) > bpc (k
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,m). Finally, notice that if x (k
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n

). ⌅
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