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Abstract

Human dynamics and sociophysics suggest statistical models that may explain and
provide us with better insight into social phenomena. Contextual and selection effects tend
to produce extreme values in the tails of rank-ordered distributions of both census data
and district-level election outcomes. Models that account for this nonlinearity generally
outperform linear models. Fitting nonlinear functions based on rank-ordering census and
election data therefore improves the fit of aggregate voting models. This may help improve
ecological inference, as well as election forecasting in majoritarian systems.

We propose a generative multiplicative decrease model that gives rise to a rank-order
distribution, and facilitates the analysis of the recent UK EU referendum results. We
supply empirical evidence that the beta-like survival function, which can be generated
directly from our model, is a close fit to the referendum results, and also may have
predictive value when covariate data are available.

Keywords: referendum results, generative model, multiplicative process, rank-order distribu-
tion, beta-like survival function

1 Introduction

Social and technological networks are examples of complex social systems [Bar07], giving rise
to human dynamics that may be explained by generative stochastic processes. The study
of human behaviour has a wider remit than the study of networks, similar to the goals of
sociophysics [Gal08, SC14], where notions from statistical physics are used to examine social
phenomena, comparable to the investigation of economics phenomena in econophysics. One
of the principal ideas arising from statistical physics is that individuals can be thought of as
“social atoms”, each displaying simple behaviour and possessing limited reasoning capacity,
however, in aggregate, yielding complex social patterns [BO11]. One example of sociophysics
is described in [PS10], where the popularity of movies emerges as collective choice behaviour,
while another is described in [CMF13], where universal properties of election results are shown
to emerge from empirical data. The discovery of such universal patterns, which are consistent
across different countries and over a considerable time period, may help in uncovering social
patterns, thus gaining a better understanding human decision making [FC07].
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One method which helps in understanding human dynamics is the specification of a gene-
rative model that defines a stochastic process, resulting in a power law or another distribution
demonstrating the possible evolution of a complex system [FLL15]. Early exponents of the
generative model method were Simon [Sim55] and, more recently, Barabási’s group [AB02]
and other researchers [BSV07]. The objective of such research has a similar vision to that of
social mechanisms [HS98], which explore the procedures or mechanisms that help us under-
stand known social phenomena.

In this paper, we employ the multiplicative process [Mit04, Zan08] introduced in [FLL17],
which is described by the same underlying equations as the generative model proposed in
[FLL15] (see Subsection 2.1). This was designed to capture the essential dynamics of survival
analysis applications [KK12]. As in [FLL17], we introduce rank-ordering into the model as
a natural mechanism in situations where there is no intrinsic ordering of the data, such as
constituency-based election results [FLL17] or, as in this paper, regional referendum results
(see Subsection 3.1). Rank-ordering [SKKV96] is a technique in which we rank the data
objects according to some numerically described feature. We then plot this feature against
rank, and finally analyse the resulting distribution. Examples of rank-order distributions are:
the distribution of large earthquakes [SKKV96], Zipf’s rank-frequency distribution [MH99],
the size distribution of cities [BGVV99], and the distribution of historical extreme events
[CTT+12].

In many real-world situations, Zipf’s distribution, or more generally a power-law distri-
bution, may only manifest itself for small and intermediate ranks, while for larger ranks a
more pronounced cutoff is observed [MAB+09]. This has led researchers to combine these
two regimes into a single distribution, called the beta-like function [NC08, MAB+09] (see Sub-
section 2.2), which appears to exhibit universal behaviour for rank-order distributions and
is asymptotically a beta distribution [JKB95]. Whereas, in [NC08], the beta-like function is
shown to be indirectly linked to a multinomial multiplicative process, here we introduce the
beta-like survival function as a direct and intuitive consequence of a multiplicative decrease
process, where an attrition function controls the rate of decrease of the survival function at
each stage of the process. In Section 2.2, we will show that our beta-like survival function can
be approximated by the beta-like function. In particular, the attrition function is a mixture
of preferential (cf. preferential attachment [AB02]) and uniform attrition mechanisms, where
the former is inversely proportional to the rank of the voting district and the latter is uniform
over the voting districts.

The main contribution of the paper is to demonstrate the suitability of the beta-like
survival function − a rank-ordered distribution generated from a multiplicative process −
for modelling the UK 2016 EU regional referendum results (see Subsection 3.2). The EU
referendum involved a binary choice, where voters had to choose between remaining in or
leaving the EU. Voting behaviour in referenda often exhibits greater volatility than that found
in general elections [LeD02]. In a referendum, parties are often internally divided over the
issues, so party ideology is less of an issue than in a general election. Moreover, uncertainties
can introduce shifts in opinion when doubts are raised on important issues during the course
of a campaign. The UK EU referendum, also known as the “Brexit” referendum, will be
analysed for many years to come, as it is considered a momentous event in the history of
Europe.

The use of aggregate models is important for predicting election results in majoritarian
systems. Compared to polls or surveys that include attitudinal predictors, socioeconomic
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specifications predict little of the variation in individual-level voting. Yet there is a quandary.
At the aggregate level, census-based socioeconomic models account for much of the variation
in seat-level outcomes. While scholars of voting downplay socio-demographics, these are
enjoying a renaissance among election forecasters, who have augmented polls with census
data to refine seat-level predictions [Sil12]. These outperform blanket vote-to-seat conversion
rules such as the cube law [KS50]. Panel studies deploying aggregate data, which consider
the effects of variables such as economic change, “homegrown” candidacy and incumbency on
election results, perform extremely well in predicting seat-level changes over time [Fai09]. In
this paper, we show how the use of a rank-ordered distribution can improve the accuracy of
aggregate-level models (see Subsection 3.3). In particular, we focus on Britain’s referendum
on whether to leave the European Union. Held on 23 June 2016, the Leave side won an
unexpected 52-48 percent victory.

2 A multiplicative process for generating a rank-order distri-
bution

We next present a generative model in the form of a multiplicative process [Mit04, Zan08]
that can also be viewed as a survival model, similar to the one introduced in [FLL15] in the
context of human dynamics; this model was first introduced in [FLL17] but, for completeness,
we repeat it in Subsection 2.1 in the context of a referendum, and then introduce the beta-like
survival function in Subsection 2.2.

2.1 The dynamics of the multiplicative process

In its simplest form, a multiplicative process generates a log-normal distribution [JKB94,
LSA01], and has applications in many fields, such as economics, biology and ecology [Mit04].
The solution to the multiplicative process we propose will be utilised in Section 3.1, in the
context of a rank-ordered model of the proportion of votes attained for a particular answer
in a multiple-choice question referendum.

We assume a countable number of indices where, for a given answer, the ith index repre-
sents the ith district ranked in descending order of the number of votes for that answer. For
any stage s, s ≥ 0, we let µ(i, s), 0 ≤ µ(i, s) ≤ 1, be the probability that a potential vote is
“lost” in the ith district at that stage. Usually µ(i, s) is known as the mortality rate function,
but here we prefer to call it the attrition function, which is more descriptive in the context
of voting. We always require that µ(0, s) = 0 for all s.

We now let F (i, s), 0 ≤ F (i, s) ≤ 1, be a discrete function representing, for a given answer,
the expected proportion of the popular vote potentially attainable for that answer in district
i at stage s. Initially, we set F (0, 0) = 1 for a dummy district 0, and F (i, 0) = 0 for all i > 0.

The dynamics of the multiplicative process is captured by the following two equations:

F (0, s) = 1 for s ≥ 0, (1)

and
F (i+ 1, s+ 1) = (1 − µ(i, s))F (i, s) for 0 ≤ i ≤ s. (2)
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Equations (1) and (2) define the expected behaviour of a stochastic process [Ros96] descri-
bing how, as i increases, the vote decreases in districts where the given answer is less popular.
For any particular vote, the attrition function is the probabilistic mechanism that decides
whether the vote will be “lost” or not. The process obeys Gibrat’s law [Eec04], which in
its original form states that the proportional rate of growth of a firm is independent of its
absolute size. In our context, Gibrat’s law states that the proportional rate of decrease in the
popular vote is independent of the actual number of votes cast for the given answer in the
district.

As in [FLL15], we approximate the discrete function F (i, s) by a continuous function
f(i, s), and µ(i, s) is now also a continuous function; f(i, s) is known as the survival function.
Initially, we have f(0, s) = 1 for all s, and f(i, 0) = 0 for all i > 0.

The dynamics of the model is now captured by the first-order hyperbolic partial differential
equation [Lax06],

∂f(i, s)

∂s
+
∂f(i, s)

∂i
+ µ(i, s)f(i, s) = 0, (3)

which is the same as that encountered in age-structured models of population dynamics
[Cha94].

Eq. (3) is the well-known transport equation in fluid dynamics [Lax06], and the renewal
equation in population dynamics [Cha94]. Following Eq. (1.22) in [Cha94], the solution of
Eq. (3), when i ≤ s, is given by

f(i, s) = exp

(
−
∫ i

0
µ (i− t, s− t) dt

)
. (4)

As noted above, f(i, s) is well-defined as long as i ≤ s holds. In practice, s is bounded
above by the number of voting districts, say n, and so only n stages of Eq.(2) are necessary.

2.2 The beta-like survival function

The beta-like function [NC08, MAB+09], see Eq. (7) below, is a discrete version of the beta
distribution [JKB95], which has been shown to be a very good fit for a variety of rank-ordered
data distributions. Here we propose the similar beta-like survival function, which is derived
from Eq. (4) using specific attrition function introduced in Eq. (5) below. In [NC08], an
argument is given that relates the beta-like function to a multinomial multiplicative process,
while here we show that it can be derived as a direct consequence of the multiplicative process
introduced in Section 2 with the attrition function in Eq. (5).

We now derive the beta-like survival function from Eq. (4) by introducing the following
attrition function, which is a mixture of rank-dependent and rank-independent attrition:

µ(i, s) =
α

i+ κ
+
β

s
, (5)

where α, β and κ are positive constants, and i ≤ s.

In the context of the generative model introduced in Section 2, the rank-dependent com-
ponent α/(i + κ) in Eq. (5) models preferential attrition, i.e. the potential loss of a vote is
dependent on the rank i of the district, where i ≤ s. On the other hand, the rank-independent
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component β/s models uniform attrition at stage s, where we note that s is bounded above
by the number of voting districts n.

Preferential attrition might occur, for instance, because a district’s rank in terms of its
Brexit vote share may exert a contextual effect on the voting decisions of its constituent
individuals; or may attract voters to move from other districts with similar political charac-
teristics; or may produce an increased supply of local election volunteers. All these could
produce positive feedback.

Thus, from Eq. (4), it follows that the survival function is given by

f(i, s) = exp

(
α ln

(
κ

i+ κ

)
+ β ln

(
1 − i

s

))
=

(
κ

i+ κ

)α(
1 − i

s

)β
. (6)

We call f(i, s) the beta-like survival function, motivated by the following argument.

Letting K = καs−β and assuming that κ is much smaller than i, Eq. (6) can be approxi-
mated by

f(i, s) ≈ Ki−α (s− i)β , (7)

which is the beta-like function proposed in [NC08]; we note that we obtain the Lavalette
function in the special case when α = β [FMY+16].

Therefore, the multiplicative process presented in Section 2 provides a direct and intui-
tive generative model for the beta-like function. In contrast, the multinomial multiplicative
process described in [NC08] is indirectly linked to the beta-like function via a stretched ex-
ponential [LS98] derived by ranking the components of a multinomial distribution, and only
afterwards fitting a beta-like function.

We crystalise Eq. (6) by fixing κ = 0.5 and including a scaling constant C for normalisation
purposes, so that

f(i, s) = C

(
0.5

i+ 0.5

)α(
1 − i

s

)β
. (8)

The justification for fixing κ is that its sole purpose in Eq. (5) is to prevent the first term
being undefined when i = 0; setting κ = 0.5 seems sensible since, when i is large, the precise
value of κ is rather unimportant.

It can be seen that the beta-like survival function in Eq. (8) combines two regimes. The
second term exhibits a polynomial decay, whereas the first term, which dominates when i is
significantly less than s, exhibits power-law behaviour. In terms of Eq. (5), the preferential
attrition component gives rise to the power-law regime, while the uniform attrition component
gives rise to the polynomial decay regime.

We define a linear transformation f∗(i, s) of f(i, s) as follows:

f∗(i, s) = τf(i, s) + ρ = τ

(
0.5

i+ 0.5

)α(
1 − i

s

)β
+ ρ, (9)

where the scaling constant C from Eq. (8) is absorbed into the slope parameter τ , and ρ is
the shift parameter.
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3 Analysis of the UK 2016 EU referendum results

We now make use of the rank-ordering distribution and the beta-like survival function, as
introduced in Section 2, to analyse the Remain and Leave votes in the 2016 EU referendum
for the 382 Local Authority districts in the UK (we will often refer to these simply as districts);
the full set of electoral results is available online at The Electoral Commission web site [Ele16].
We first show how to apply our model in the context of a referendum.

3.1 Application of the model to the analysis of referendum results

We consider a multiple-choice question referendum with several options, where the votes are
aggregated over the whole electorate [LeD02]. In particular, the voting takes place across the
country in a designated number of Local Authority districts.

We make use of the rank-ordering technique [SKKV96] in the context of a voter model
[FLL17] as follows. Focusing on one particular answer to the referendum question, we model
the proportion of votes Vi attained for that answer in district i, where i represents the rank of
the district and 0 ≤ Vi ≤ 1. Thus, ordering the districts in descending order of the proportion
of votes, we obtain the votes vector (Vi) = (V0, V1, · · · )T , where:

V0 > V1 > V2 > · · ·Vi > · · · . (10)

District 0 is a “dummy” district with V0 = 1. In the unlikely event that two districts have
exactly the same proportion of votes, their order is chosen randomly.

The votes vector is analogous to the empirical survival function Ŝ(·) [KK12], where Vi,
which corresponds to Ŝ(i), can be viewed as an estimate of the expected proportion of the
popular vote in district i, given that Vi−1 was the proportion in district i− 1; cf. the Kaplan-
Meier estimator [KM58, KK12] in the context of survival models. In the context of the voter
model, we see that Ŝ(i) ≈ f(i, n), where n, the final stage, is equal to the number of voting
districts.

The rank-ordering of the districts, as in Eq. (10), can be simulated by the multiplicative
process described in Section 2, where i corresponds to the ith highest ranked district. An
appropriate attrition function µ(i, s) is used, which is usually decreasing in i. In terms of the
voter model, as we consider less popular districts for the given answer, i.e. those of lower
“rank” (remembering that a lower rank is represented by a higher distict number), more votes
are “lost”.

As noted earlier, Britain voted to leave the European Union on 23 June 2016. This
result surprised pollsters and commentators. Aggregate analysis subsequently showed that
education was the strongest socio-demographic predictor of the vote [GH16]. Multi-level
analysis of individual data revealed that this was mainly due to the compositional effect of
less-educated people voting Leave, but also because of a contextual effect, whereby those
with a degree living in areas with lower average education tended to have their opinions
shaped by their community and conversely. In many elections, local campaign effects are
likewise important: areas with particular social characteristics tend to be targeted or avoided
by parties, and tend to produce a larger or smaller supply of local volunteers. Populist
right parties, for example, focus their resources on whiter, less educated districts, which also
produce more volunteers. We know from the British Election Study that, when people are
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contacted by a party, they are more likely - all other things being equal - to have voted for
that party [FGE+16]. Thus contextual effects enhance political supply, which contributes to
further positive feedback and nonlinear vote distributions over location. Taking account of
this clustering within the geographic distribution of both independent and dependent variables
helps improve model fit in aggregate election analyses.

We also note that the effect of the community on the individual’s decision making has
been studied in terms of a threshold effect in models of opinion spreading [BNH17]. An
earlier paper [Chw99] dealing with collective action considers the case where an individual
will participate only if the total number of participants is above the individual’s threshold.

In Subsection 3.2, using nonlinear least squares regression, we fit beta-like survival functi-
ons f(i, s) to the referendum results vectors (Vi) for both the entire UK and Scotland, and
in Subsection 3.3 we investigate how the beta-like survival function can be used to associ-
ate regional covariates with the referendum data. We use subscripts U and S to denote the
UK and Scotland, respectively, for example, fU (i, s) and fS(i, s). All the computations were
carried out using the Matlab software package.

3.2 Analysis of the referendum results using the beta-like survival function

The overall result for the entire UK electorate was 48.11% for Remain and 51.89% for Leave.
The fitted parameters α, β and C for the UK regional referendum results as a whole, together
with the coefficient of determination R2 [Mot95] are shown in Table 3.2. As can be seen,
the power-law exponent α for Leave is significantly lower than that for Remain, while the
decay exponent β for Leave is somewhat higher than that for Remain. This may indicate
that the proportions of votes for Leave were more “stable” across the country than those for
Remain. In other words, it is feasible that positive feedback driven by contextual effects on
individual vote choice mattered more in Remain than Leave areas. Both R2 values are very
high, indicating very good fits of the beta-like survival function to the data.

Option α β C R2

Leave 0.0357 0.2094 0.7801 0.9913

Remain 0.1286 0.1244 1.0740 0.9930

Table 1: Nonlinear least-squares regression fitting the beta-like survival function fU (i, s) to
the empirical results vector (Vi)U of the regional results for the UK EU referendum.

We now consider the results over the 32 Local Authority districts in Scotland, which, in
contrast to the UK as a whole, had a majority of 62% for Remain. The fitted parameters for
Scotland are shown in Table 3.2 together with the R2 values, which again indicate very good
fits. As for the overall UK results, the proportions of votes for Leave were more “stable” than
those for Remain, despite the different overall result. The fitted curves and data points for
the districts, for both the entire UK and Scotland, are shown graphically in Figure 1.

We further compare the regional patterns for the UK and Scotland by introducing linear
transformations f∗(i, s) of the beta-like survival functions, as in Eq. (9), using the fitted
parameters α, β and C given in Tables 3.2 and 3.2. Using least squares approximation, we
then fit the transformed function f∗S(i, s) for Scotland to the referendum results vector (Vi)U
for the UK. The resulting shift and slope parameters, ρ and τ , together with the R2 values
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Option α β C R2

Leave 0.0322 0.1540 0.4984 0.9765

Remain 0.0848 0.0333 0.8274 0.9822

Table 2: Nonlinear least-squares regression fitting the beta-like survival function fS(i, s) to
the empirical vector (Vi)S of the regional results for the Scottish EU referendum.
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Figure 1: Regression curve and regional data points for the UK (left) and for Scotland
(right).

are shown in Table 3.2. Similarly, Table 3.2 shows the result of fitting f∗U (i, s) to (Vi)S . The
linear transformations demonstrate that, although the overall results for the UK as a whole
and Scotland were very different, as can be seen in Figure 1, the patterns for the regional
proportions for the UK and Scotland are linearly related for both Leave and Remain. The
extreme results in Figure 1 suggest that positive feedback is operating, whether through
contextual effects (see [GH16]) or selective migration of those with pro-Leave or pro-Remain
characteristics toward districts where they are already concentrated.

Data shift slope R2

Leave -0.1538 0.9428 0.9937

Remain -0.4935 1.5993 0.9871

Table 3: The shift and slope parameters, ρ and τ , fitting f∗S(i, s) to (Vi)U .

3.3 Analysis of four covariates with the beta-like survival function

We now outline the methodology of how covariates may be used in association with the
referendum results. The dependent variable for this analysis is Leave vote share in a Local
Authority district. This is regressed on 2011 census data [ONS13], also given as percentages.

The most common method employed for such an analysis is linear regression, although
generalised linear models are recommended when the distribution of the dependent variable
may not be normal and may not vary linearly with the independent variables [FWS06].
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Data shift slope R2

Leave 0.0876 0.4092 0.9941

Remain 0.3213 0.4853 0.9742

Table 4: The shift and slope parameters, ρ and τ , fitting f∗U (i, s) to (Vi)S .

To demonstrate how our rank-order distribution may be used for explanatory purposes,
we outline a baseline methodology using a single covariate. Our methodology is as follows,
where γ denotes a covariate.

(i) We first order γi, for districts i = 0, 1, 2, . . ., in descending order, where γ0 = 1 for the
dummy district 0, in order to obtain the empirical covariate vector (γi).

(ii) We then use nonlinear least-squares regression to fit a beta-like survival function g(i, s)
to the vector (γi) from (i); this gives the fitted parameters α, β and C, as in Eq. (8).

(iii) We now use linear regression to fit the transformed beta-like survival function g∗(i, s),
with the values of α, β and C obtained in (ii), to the votes vector (Vi) of the Leave results
of the referendum. This yields the corresponding shift and slope parameters, ρ and τ ,
respectively, as in Eq. (9). Since voters had only two choices, we could equivalently
choose to regress on the Remain results.

As a proof of concept, we chose four census covariates, which the literature suggests
may be associated with the Leave vote: “White-qualification”, which represents the average
qualification level of the white British population in a district (excluding Scotland); “Identify-
as-English”, which represents the share of White British people in a district identifying as
English rather then British, Irish or Welsh (excluding Scotland and Wales); “Social-grade”,
which represents the average occupational level of the White British population in a district
(excluding Scotland); and “Carstairs-index”, which represents the Carstairs deprivation index
in a district (excluding Scotland) [MB06]. The Carstairs index of multiple deprivation, deve-
loped by Paul Norman, is an index of four components from the census. Namely, proportion
of residents without cars, male unemployed, low status occupational groups and overcrowded
households. Social grades (AB, C1, C2, DE) and qualification levels (none, 1, 2, apprentices-
hip, 3, 4 and above) were encoded and averaged to obtain an index for each Local Authority
district.

As an exploratory step, we show, in Figure 2, a scatter plot of the proportion of votes
against the covariate values. These exhibit good correlation for all the covariates apart from
the Carstairs-index. The actual Pearson and Spearman correlations and the linear regression
parameters, i.e. the shift and slope, are given in Table 3.3. We note that White-qualification
has a negative correlation with the proportion of Leave votes, and that for the Carstairs-
index a weighted least squares linear regression [FWS06] was applied to obtain the shift and
slope. We further note that, as expected, the R2 value for the Carstairs-index is significantly
lower than for the others, even though the R2 values for the other three covariates are not
particularly high.

In Table 3.3 we see the fitted parameters to the beta-like survival function for each of the
four covariates together with their R2 values, which indicate a very good fit for all covariates.
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Figure 2: Scatter plots for the four chosen covariates; the y-values represent the proportion
of Leave votes for a district and the x-values represent the values of the covariate for the
district.

Covariate Pearson Spearman shift slope R2

White-qualification -0.8340 -0.7876 1.5335 -0.3971 0.6955

Identify-as-English 0.8139 0.7375 -0.6730 1.7063 0.6624

Social-grade 0.7602 0.7171 -0.7904 0.6226 0.5779

Carstairs-index 0.0267 0.2664 0.5639 0.0120 0.4161

Table 5: Pearson and Spearman correlation between the proportion of votes and the covariate
values per district, and the parameters obtained from their linear regression.

In Table 3.3 we give the fitted parameters for the linear transformation according to
Eq. (9), together with their R2 values, which indicate a very good fit for all covariates, apart
from the Carstairs index where R2 is less than 0.9. We observe from Table 3.3 that the R2

values are much higher than the ones in Table 3.3, indicating that our methodology using
beta-like survival functions may yield better predictive models than traditional ones based on
linear regression of the raw covariate data.

Future research could examine how the deployment of beta-like survival functions, of the
form we have outlined, might be used to generate nonlinear predictive models that could
yield superior election predictions to the linear regression models currently used by election
forecasters [Sil12].
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Covariate α β C R2

White-qualification 0.0548 0.0370 3.4830 0.9964

Identify-as-English 0.0200 0.0559 0.8414 0.9966

Social-grade 0.0189 0.0441 2.4870 0.9950

Carstairs-index 0.1620 0.6626 19.860 0.9972

Table 6: Nonlinear least-squares regression fitting of a beta-like survival function to the
empirical covariate vectors of the four covariates.

Covariate shift slope R2

White-qualification -0.7267 1.6540 0.9911

Identify-as-English -0.9493 1.7610 0.9920

Social-grade -1.2060 2.0300 0.9906

Carstairs-index 0.3913 0.5879 0.8576

Table 7: The shift and slope parameters from the linear transformation of the beta-like functi-
ons of the four covariates to the empirical votes vector.

4 Concluding remarks

Most phenomena in the social sciences are not normally distributed across geographical units
because individuals and contexts influence each other. Contextual and selection effects lead
to positive feedback loops that produce extreme geographic concentrations of both social
characteristics and political opinions/behaviour.

We model the UK EU regional referendum results with a multiplicative decrease process,
using an attrition function, that gives rise to a rank-order distribution representing the pro-
portion of votes for a particular answer in each district. The discrete model is approximated
by a continuous one leading to the solution given in Eq. (4), which is identical to that of the
renewal equation in population dynamics [Cha94].

We suggest that nonlinear social models of aggregate voting behaviour can outperform
linear models. The beta-like survival function, obtained using an attrition function that is a
mixture of preferential and uniform attrition mechanisms, is shown to generate an improved
model for the UK EU referendum results. Our results fit in well with the results in [MAB+09],
where the beta-like function was shown to exhibit universal behaviour for rank-order distri-
butions in several apparently unrelated disciplines.

We have also shown that the beta-like survival function could be instrumental in building
a predictive model of the referendum results through a judicious choice of covariates. The
methodology we presented in Subsection 3.3 may be used in tandem with traditional regression
methods [FWS06] and may, in fact, have some advantages as rank-order distributions are very
good at smoothing the data.

More research needs to be done on the methodology for working with rank-order dis-
tributions and, in particular, with the beta-like survival function, due to its hypothesised
universality. In particular, devising principled regression methods that combine the covaria-
tes through multiple regression [FWS06] would be useful. It is also worth considering other
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transformations, apart from the linear transformation in Eq. (9), which could potentially
improve the predictive power of the model. Aggregate models of voting are important for
understanding electoral geography, inferring individual-level relationships in the absence of
individual data, and for predicting election results in majoritarian systems. Our nonlinear
modelling technique, based on rank-ordering outcome and predictor variables, helps advance
scholarship in these areas of political science.
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