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Ask not about things which, if made plain to you, may cause you trouble



Abstract

With the exponential growth of data amount and sources, access to large collec-

tions of data has become easier and cheaper. However, data is generally unlabelled

and labels are often difficult, expensive, and time consuming to obtain. Two learn-

ing paradigms have been used by machine learning community to diminish the

need for labels in training data: semi-supervised learning (SSL) and active learn-

ing (AL). AL is a reliable way to efficiently building up training sets with minimal

supervision. By querying the class (label) of the most interesting samples based

upon previously seen data and some selection criteria, AL can produce a nearly op-

timal hypothesis, while requiring the minimum possible quantity of labelled data.

SSL, on the other hand, takes the advantage of both labelled and unlabelled data

to address the challenge of learning from a small number of labelled samples and

large amount of unlabelled data. In this thesis, we borrow the concept of SSL by

allowing AL algorithms to make use of redundant unlabelled data so that both

labelled and unlabelled data are used in their querying criteria.

Another common tradition within the AL community is to assume that data sam-

ples are already gathered in a pool and AL has the luxury to exhaustively search

in that pool for the samples worth labelling. In this thesis, we go beyond that by

applying AL to data streams. In a stream, data may grow infinitely making its

storage prior to processing impractical. Due to its dynamic nature, the underlying

distribution of the data stream may change over time resulting in the so-called

concept drift or possibly emergence and fading of classes, known as concept evolu-

tion. Another challenge associated with AL, in general, is the sampling bias where

the sampled training set does not reflect on the underlying data distribution. In

presence of concept drift, sampling bias is more likely to occur as the training set

needs to represent the underlying distribution of the evolving data. Given these

challenges, the research questions that the thesis addresses are: can AL improve

learning given that data comes in streams? Is it possible to harness AL to handle

changes in streams (i.e., concept drift and concept evolution by querying selected

samples)? How can sampling bias be attenuated, while maintaining AL advan-

tages? Finally, applying AL for sequential data steams (like time series) requires

new approaches especially in the presence of concept drift and concept evolution.

Hence, the question is how to handle concept drift and concept evolution in se-

quential data online and can AL be useful in such case?

In this thesis, we develop a set of stream-based AL algorithms to answer these ques-

tions in line with the aforementioned challenges. The core idea of these algorithms

is to query samples that give the largest reduction of an expected loss function

that measures the learning performance. Two types of AL are proposed: decision

theory based AL whose losses involve the prediction error and information theory



based AL whose losses involve the model parameters. Although, our work focuses

on classification problems, AL algorithms for other problems such as regression

and parameter estimation can be derived from the proposed AL algorithms. Sev-

eral experiments have been performed in order to evaluate the performance of the

proposed algorithms. The obtained results show that our algorithms outperform

other state-of-the-art algorithms.
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Chapter 1

Introduction

In this chapter, we present a general background on machine learning, its im-

portance and paradigms; in particular online learning and active learning. We

introduce the challenges of online learning from data streams. We also discuss the

relevance of active learning as well as the main approaches, with particular focus

on stream-based active learning. A literature review on this later is presented,

where the state-of-the-art competitors of our new algorithms proposed in this the-

sis are described. Finally, the research questions, contributions and structure of

the thesis are presented.

The organization of this chapter is as follows. Section 1.1 is a background. Sec-

tion 1.2 introduces online learning and its challenges. Section 1.3 reviews active

learning with focus on the state-of-the-art stream-based active learning algorithms.

Section 1.4 presents the aim and objectives of the thesis. Section 1.5 discusses the

contributions of the thesis. The structure of the thesis is presented in Sec. 1.6. A

list of the publications on which the thesis is based is shown in Sec. 1.7.

1.1 Background

Our digital universe is rapidly growing. According to an updated digital universe

study [4], in 2020, the amount of digital data produced will exceed 40 zettabytes

which is the equivalent of 5, 200 GB of data for every man, woman and child on

earth. The abundance of data has been exploited and generated a major impact in

many fields of application like manufacturing, health-care, media, sports, science

1
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and more. In order to exploit such data, for the sake of decision making, machine

learning (ML) techniques can be used.

ML has a long history in applied mathematics and statistics. ML community has

been exceedingly creative at taking existing ideas across many fields and mixing

and matching them to solve problems in different domains [5]. From statistical

inference point of view, ML can be categorised into two views: Frequentist view

and Bayesian view. Bayesian inference is performed with probabilistic parameters

(model’s parameters) and fixed data, while Frequentist inference is performed

with fixed parameters and random data samples. In the Frequentist approach,

unknown set of parameters is treated as having fixed unknown values. It cannot

be envisioned as random variables. In contrast, the Bayesian approach does allow

probabilities to be associated with the unknown parameters. In ML literature, we

can distinguish the following paradigms.

• Supervised learning (SL).

• Unsupervised learning (UL).

• Semi-supervised learning (SSL).

• Reinforcement learning (RL).

• Active learning (AL).

SL is about learning a mapping function, f : X → Y , between a set of input

instances and their corresponding output (e.g., labels of classes). The training set

D = (X, Y ) is used to find the mapping (model) with the least expected loss. If

the output is categorical, SL is a classification task; otherwise it is a regression

task. Classification is a supervised learning task where the labels that we wish to

predict take discrete values.

In UL, we are not given any output to use for training D = {x1, ...,xN}. UL

encompasses clustering where we try to find groups of data instances that are

similar to each other. Loss function here is sometimes called objective function

(e.g., K-Means algorithm).

SSL, as its name implies, falls between UL and SL. It can be thought of as a class

of supervised learning that also makes use of unlabelled data for training. SSL

makes use of one of the following assumptions.
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• Smoothness assumption: points which are close to each other are more likely

to share the same class label.

• Cluster assumption: the data tends to form discrete clusters and points in

the same cluster are more likely to share a label (this is special case of the

smoothness assumption)

• Manifold assumption: the data lies approximately on a manifold of much

lower dimension than the input space.

In RL, the output is a reward given by the environment according to its state as

a result of certain provided input (action) by the learner (agent). Thus, given a

state s and an action a, the environment feedback is a reward function R(s, a).

Unlike SL, where we receive inputs and outputs from the environment and tries to

learn a model, RL agent interacts with the environment and try to learn a policy

f that maximizes cumulative rewards, where f : A× S → R and A, S, R are the

set of actions states and rewards respectively.

AL is about interacting with an oracle to query the label of selected data instances.

In contrast to RL, the actions space is just queries and the reward is the true

label. Once obtained, the data instances and their labels are used to train SL

algorithms. We should point out that AL can be used to ask questions of different

form than querying certain data [6, 7]. However in this research work, we consider

AL that queries data labels for classification purposes. On the other hand, passive

learning is a terminology that will be used for any learner that receives passively

the information provided (class label in our case).

ML algorithms can also be classified according to the way data is processed. We

can distinguish two paradigms: online learning and offline learning. In offline

learning, once the training phase is exhausted, the model is no more capable to

learn further knowledge from new instances, that is, it is not able to self-update

in the future. On the contrary, in online setting, data comes in a form of streams

and the model must predict and adapt online, that is, it keeps learning over time.

For example, a spam detector receives online message and the task is to predict

whether the messages are spam or not. The quality of the model’s prediction is

assessed by a loss function that measures the discrepancy between the predicted

label and the true one. Then, an adaptation of the model is applied if needed.
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Since this thesis is about online active learning, in the following, we provide more

details related to online learning and active learning.

1.2 Online Learning

Online learning has been studied in several research fields including game theory,

information theory, data mining and machine learning [8–13]. The concept of

online learning may be interpreted differently. Any online learning algorithm must

be able to learn from data streams. The characteristics of data stream include [14]:

• Continuous flow (data samples arrive one after another.

• Huge data volumes (possibly of an infinite length).

• Rapid arrival rate (relatively high with respect to the processing power of

the system).

• Susceptibility to change (data distributions generating examples may change

over time).

Therefore, an online learning algorithm should fulfil the following requirements:

• The algorithm can access data only once and sequentially,

• The time and space complexity of the algorithm must not scale with the

number of instances,

• The algorithm should be able to self-adapt.

Incremental learning [15–18] is sometime mistaken for online learning, but it can-

not fulfil all the listed requirements. Although, it processes one instance or a

mini-batch of instances at each iteration, it requires to cycle over the whole data

many times. Besides, incremental learning algorithms cannot adapt to changes.

Online learning presented in [8, 9, 19], views data samples as the product of some

unknown and unspecified mechanism that could be deterministic, stochastic, or

even adversarial adaptive to the algorithm behaviour. In this thesis, we focus on

online learning from data streams with non-adversarial actions. Many such algo-

rithms can be derived from their offline counterparts. To do so, algorithms require
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adjustment to make online update and mechanisms to forget outdated data and

adapt to changes [20].

Some algorithms can be naturally updated online (e.g., k-nearest neighbours and

naive-Bayes) and only require mechanisms to deal with changes [20–22]. Others,

like decision trees, require, in addition to mechanisms for dealing with changes,

substantial adjustments to make online update [23, 24]. Details on mechanisms

and techniques for online learning methods can be found in [20, 25].

In this thesis, we adopt sequential Bayesian approaches for learning from non-

stationary data streams [26–29]. That is, the sequential nature of Bayes theorem is

exploited to recursively update some models. Forgetting factors [30] are employed

to decay the contributions from old data points in favour of new better ones.

As mentioned earlier, data streams are susceptible to changes over time resulting

in the so-called concept drift or the possible emergence of classes, known as con-

cept evolution. Concept drift occurs when the statistical properties of the target

variable, which the model is trying to predict, change over time in unforeseen

ways [21]. More precisely, we can distinguish two types of drifts:

• Real concept drift refers to changes in the conditional distribution of the

targets (labels) p(y|x) given the observations. Such changes can happen

either with or without change in the marginal distribution of the incoming

data p(x).

• Virtual drift occurs if the distribution of the incoming data changes p(x)

without affecting p(y|x). Hence, in both cases the joint distribution p(x, y)

changes.

Concept evolution occurs when new classes emerge [31–33]. Emergence of new

classes has been studied in the context of novelty detection where classification

models are unable to detect the novel class until they are trained with labelled

instances of it. In this thesis, concept evolution is defined as emergence of new

unseen classes as the data streams evolve over time.

Finally, we give an illustrative example of a simple online learning algorithm called

perceptron. The perceptron [34–36] is perhaps the first and simplest online learn-

ing algorithm. Perceptron uses a class of linear separators in the input space,
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where the prediction of the data label depends on the side of hyperplane the

data instance falls in. If the predicted label and the true label are different, the

algorithm adjusts itself.

h(x) =

1 w.
(

1
x

)
>0

−1 otherwise

A simple perceptron consists of the following steps:

1. Initialise the weights w.

2. Receive the input xt.

3. Predict the output by computing ŷ = h(xt).

4. Update w if yt 6= h(xt): wt+1 = wt + αytxt, where α is a learning rate and

yt is the true output.

1.3 Active Learning

In the context of classification, AL allows to label some selected data samples by

an expert (oracle or annotator) according to some selection criteria. The overall

goal of AL is to provide, at least, the same performance as that of passive learning

while using less labelled examples.

1.3.1 Querying Criteria

There exist three main approaches of AL [37]: membership query synthesis

(MQS), pool-based selective sampling (PSS) and stream-based selective sampling

(SSS). According to MQS, the learner generates new data samples from the feature

space that will be queried. However, labelling such arbitrary instances may be im-

practical, especially if the oracle is a human annotator as we may end up querying

instances [38] that are hard to explain. PSS is the most popular AL method, ac-

cording to which the selection of instances is made by exhaustively searching in a

large collection of unlabelled data gathered at once in a pool. Here, PSS evaluates

and ranks the entire collection before selecting the best query. On the other hand,
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SSS scans through the data sequentially and makes query decisions individually.

In the case of data streams, PSS is not appropriate, especially when memory or

processing power is limited. It also assumes that the pool of data is stationary and

uses the whole dataset. This will delay the adaptation and waste the resources.

SSS, instead, adapts the classifier in real-time leading to fast adaptation.

While there have been many AL studies on the offline variant, only few ones

have investigated the online setting. Most of the AL sampling criteria have been

first introduced for offline setting, then adapted to work online. Authors in [39]

introduce one of the most general frameworks for measuring informativeness, label

uncertainty sampling criterion, where the queried instances are those which the

model is most uncertain about their label. It has been since then used in many

successful offline AL algorithms [40–44].

Another popular AL sampling criterion framework is the query-by-committee [45].

Here, a committee of models trained on the same dataset are maintained. They

represent different hypotheses. The data label about which they most disagree is

queried. To use the query-by-committee framework, one must construct a commit-

tee of models and have some measure of disagreement. Query-by-committee has

shown both theoretical and empirical efficiency in several offline AL studies[46–48].

Density-based is another AL sampling criterion that differs from uncertainty and

query-by-committee in that it uses unlabelled data for measuring the instance infor-

mativeness [44]. Density-based criterion assumes that the data instances in dense

regions are more important. Many studies have involved density-based criterion

by combining it with other criteria like uncertainty sampling [49] and Query-by-

committee sampling [50].

Authors in [51] point out that there is no individual AL method superior to the

others and that their combination could produce better results. A reasonable ap-

proach to combine an ensemble of active learning algorithms might be to evaluate

their individual performance and dynamically switch to the best performer so far

[51]. This idea of rewarding is rooted in RL [52]. There exists a classical trade-off

in RL called the exploration/exploitation trade-off which can be explained as fol-

lows. If we have already found a way to act in the domain that gives a reasonable

reward, then is it better to continue exploiting the explored domain or should we

try to explore a new domain in the hope that it may improve the reward [53]. This

concept dates back to the study of bandit problems in 1930s which are the most

basic examples of sequential decision problems with an exploration-exploitation
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trade-off. Because of the strong theoretical foundation of bandit problems, they

are exploited by many authors to formulate AL [51, 54, 55]. However, none of

them considers SSS active learning.

1.3.2 Online Active Learning

Online AL methods for data streams in presence of drift have been dealt with

using batch-based learning, where data is divided into batches [56, 57]. These

methods assume that the data is stationary within each batch and then PSS AL

strategies are applied. Authors in [58] use a sliding window approach, where the

oldest instances are discarded. Label uncertainty is, then, used to label the most

informative instances within each new batch. In [59] an online approach is com-

pared against a batch based approach, finding that both have similar accuracy, but

the batch-based one requires more resources. Moreover, the batch-based approach

requires to specify the size of the batch. Some studies consider fixed size; others

use variable one. However, in both cases, more memory than the one with the on-

line approach is needed. Another issue is that, in general, batch-based approaches

cannot learn from the most recent examples until a new batch is full. This leads to

more delay when responding to changes. This delay has a negative effect leading

to late recovery. All these reasons make online learning more natural and suitable

for AL.

Few SSS AL studies have been proposed [1, 3, 60–62]. Methods in [60, 61] as-

sume that the data is stationary. They cannot work in the case of evolving data

streams as the models cannot perceive the change of data distribution. Thus, these

methods lead to sampling bias [63] problems when data evolves (see Sec. 1.3.3).

Authors in [3], handle the problem of concept evolution by defining a non-parametric

Bayesian prior on the classes using Pitman-Yor Processes [64]. However, they use

Query-by-committee (QBC) [45] which aims at reducing the version-space instead

of directly optimizing the error rate. QBC often fails by spending effort eliminat-

ing areas of parameter space that have no effect on the error. It does not consider

the data distribution effect and ignores the problem of sampling bias. It is worth

noting that although this method is stream-based AL, it memorizes all labelled

samples and re-use them at each iteration for updating the model.
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Online AL approaches that address the three data stream challenges: infinite

length, concept drift and concept evolution are the rarest. Authors in [65] also deal

with concept evolution and concept drift. They apply a hybrid batch-incremental

learning approach, where the data is divided into fixed-size chunks and an offline

classifier is trained from each chunk. An ensemble of M classifiers is maintained

to classify the unlabelled data. To detect the novel classes, a clustering technique

is used in order to isolate odd data instances. If the isolated samples are enough

and sufficiently close to each other (coherent), they get queried. Otherwise, the

algorithm considers them as noise. The algorithm also uses the uncertainty sam-

pling within the current chunk to query the label of instances for which it is most

uncertain. This algorithm does not address sampling bias and it needs to store

the data instances in different batches.

1.3.3 Sampling Bias

Sampling bias problem is, in general, associated with AL, where the sampled

training set does not reflect on the underlying data distribution. Basically, AL

seeks to query samples that, if labelled, significantly improve the learning. AL

becomes increasingly confident about its sampling assessment. That confidence

could lead, however, to negligence of valuable samples that reflect on the true

data distribution. It, therefore, creates a bias towards a certain set of instances,

which could become harmful. Sampling bias problem is more severe in online

setting as the underlying classifier used by AL has to adapt. On the other hand,

the adaptation can depend on the queried data. Hence, if drift occurs for samples

which the model is confident about their labels, they will not be queried and the

model will not be adapted.

Methods in [1, 62] takes sampling bias problem into account. In [1], SSS is adopted

using randomization to avoid bias estimation of the class conditional distribution

that may result from querying. This randomization is combined with label un-

certainty to deal with concept drift. However, it results in wasting resources by

randomly picking data to cover the whole input space. Moreover, randomization

has no interaction when drift occurs and it naively keeps querying randomly. In

[62], sampling bias is studied using importance weighting principle to re-weight

labelled data and remove the bias. Importance weighting principle has been the-

oretically proven to be effective [66]. However, the method in [62] is restricted



10

to binary classification. Both methods [1, 62] assume that the number of classes

is fixed and known in advance, namely there is no concept evolution. Further-

more, they ignore the effect of data distribution and do not benefit of abundant

unlabelled data samples.

1.4 Aims and Objectives

Using AL in real world scenarios is not an easy task as many constraints and side

effects arise. Most of the studies have been associated with unrealistic assumptions

such as:

1 The data can be re-accessed at any time.

2 The number of classes is a-priori known (no concept evolution).

3 The data is stationary (no concept drift).

4 The data stream samples are temporally independent from each others.

The main aim of this thesis is to make AL applicable in realistic real-world sce-

narios. Since data comes as a stream, online learning classifiers and SSS active

learning algorithms should be adopted. AL for data streams with concept drift

could suffer the problem of sampling bias. For example, in classification, label un-

certainty aims at selecting the most uncertain instances that typically lie close to

the classification boundary. Training the classifier on those instances is expected to

adjust the boundary and achieving better classification accuracy. However, given

the non-stationary aspect of data coming over time in a stream, concept drift may

occur any time and anywhere in the feature space. Applying label uncertainty may

result in missing the changes occurring farther from the boundary. Here, the sam-

pled instances are biased towards the boundary rather than being representative

of the underlying data distribution. The evolving nature of data streams leads to

concept evolution which poses another challenge for using AL to learn from data

streams. That is, AL algorithms should not only query informative samples, but

also discover the class space. This task becomes even more challenging in the

case of data involving classes of unbalanced proportions. Applying AL for sequen-

tial data steams with temporal dependency requires new approaches especially in
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presence of concept drift and concept evolution. That is, how to take the tempo-

ral dependency of the data into consideration when querying. To the best of our

knowledge, this work is original considering the training data as a set of sequences

(with temporal dependency within sequences); while existing AL work has focused

on data assumed being drawn independently and identically (iid) from some joint

distribution P.

In a nutshell, the objectives of this thesis:

• To provide a uniform probabilistic approach to cope with active learning

taken into account inherent phenomena.

• To investigate active learning in the context of Streaming using various

querying criteria.

• To investigate decision-theory based and information-theory based active

learning in the context of stream-based selective sampling.

• To develop innovative application for AL from sequential data streams.

Section 1.5 provides a more precise description of contributions in line with these

objectives.

1.5 Contributions

Most AL approaches, including those mentioned in Sec. 1.3, are basically derived

from the general approach of finding queries that yield the largest reduction of

the expected loss. Let Ω denote the set of variables that can be fully random or

include some random elements. Let L refer to the loss function. The expected loss

function that AL aims to reduce can be expressed as follows:

R = EΩ[L(Ω̂,Ω)] (1.1)

where the hat refers to an estimated term. Depending on the loss functions in-

volved, AL can be divided to two main groups: information-based and decision-

based AL. These groups mainly differ in the type of loss functions used. While

decision theory based AL relies on the prediction error, information theory based
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AL losses involve the model parameter. The set of variables in Ω includes labelled

and unlabelled data.

The contributions of the thesis can be summarised as follows:

1. We propose decision theory and information theory AL algorithms that seek

to directly reduce the expected loss online while taking the data streams

challenges (infinite length, concept drift and concept evolution) into account.

2. The proposed algorithms can handle concept drift and concept evolution by

querying the data samples representative of them. Hence, they are changes

aware.

3. Some of the proposed AL algorithms handle sampling bias problem.

4. The proposed AL algorithms uses both labels and unlabelled data.

In this thesis, we propose AL algorithms that query the samples which incur the

highest reduction in the expected loss (Eq. (1.1)), while using both labelled (like in

uncertainty criteria) and unlabelled data (like in the density-based criterion). The

proposed algorithms called BAL, SAL and BSAL (see abbreviations list for full

names) address the challenges of AL for data streams (i.e., concept drift, concept

evolution, sampling bias and temporal dependency). They handle concept drift and

concept evolution by querying the data samples representative of them (i.e., their

characteristics). In contrast to standard techniques for handling concept drift and

concept evolution [22, 32, 33, 67, 68], where only automatic detection mechanisms

are applied, AL assumes that an oracle provides the true labels of data. BAL and

SAL are decision theory based AL approaches while BSAL is an information theory

based AL approach. The information based approach seems better at coping with

concept evolution when classes are unbalanced (See Chap. 4). Table 1.1 sums up

the contributions of the thesis showing how such contributions compare against

the closest state-of-the-art algorithms based on well-defined characteristics.

1.6 Structure of the Thesis

The structure of this thesis is as follows:



13

Table. 1.1 Comparisons

AL uses Type of Data Type of AL Data Streams Challenges Sampling Bias
Labelled data Unlabelled data Sequential Non-sequential Information-based Decision-based Concept drift Concept evolution

BAL X X X X X X
SAL X X X X X X X
BSAL X X X X X X
[1] X X X X
[3] X X X X
[60] X X X X
[61] X X X
[62] X X X X X

• Chapter 2 shows how AL can be applied for classifying drifting data streams.

A new online AL algorithm called BAL is proposed. BAL queries data sam-

ples contributing to the reduction of the expected future error
(
Eq. (1.1)

)
.

Because the calculation of the expected future error is intractable, it is ap-

proximated using online classification and online clustering models. Impor-

tance weighting principle is used to curb the sampling bias problem, so that

drifting samples are queried. The proposed approach only considers binary

classification and does not deal with concept evolution.

• Chapter 3 proposes a new online AL algorithm, called SAL. It is capable of

coping with both concept drift and concept evolution. SAL seeks to minimize

the expected future error. However, here the approximation is done using

different estimation models (i.e., non-parameter Bayesian models). These

models allow to cope with the lack of prior knowledge about the data stream,

like the number of classes and data distribution. The minimization process

is done, while tackling the problem of sampling bias so that samples that

induce the change (i.e., drifting samples or samples coming from new classes)

are queried.

• Chapter 4 proposes a new online information-based AL algorithm (BSAL)

that is able to cope with both concept drift and concept evolution. In con-

trast to decision-based AL approaches, adopted by BAL and SAL whose

losses involve the prediction error, information-based AL losses involve the

model parameter. Hence, BSAL can elegantly handle concept evolution since

there is no need to heuristically modify the loss function to account for the

new classes. More importantly, it can efficiently handle concept evolution

from data involving classes of unbalanced proportions. Another contribu-

tion in this chapter is applying AL for sequential data streams with tempo-

ral dependency. To cope with this challenge, we propose an algorithm with

a three-module architecture composed of a feature extractor (CRBM) and

an online semi-supervised classifier (OSC) equipped with the AL algorithm
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BSAL. Knowing that the proposed approach is generic and not dedicated

to specific application, human activity recognition (HAR) is used as a real-

world application.

• Chapter 5 summarizes the key contributions of this thesis and provides a

broad view of the future work. Particularly, how to address the delayed and

noisy labelling challenges.
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A number of publications have emerged from this research work with some of them
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Impact Factor: 6.108

• Chapter 3 is based on the following publications:

– S. Mohamad, M. Sayed-Mouchaweh, A. Bouchachia. Active Learning

for Classifying Data Streams with Unknown Number of Classes. Neural

Networks, accepted with minor revision, 2017.

Impact Factor: 5.287

– S. Mohamad, Moamar Sayed-Mouchaweh, and Abdelhamid Bouchachia.
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lution. Workshop STREAMEVOLV organised at the European Con-

ference on Machine Learning, 2016.
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2015.



Chapter 2

Active Learning for Data Streams

under Concept Drift

In this chapter, we address the challenges of applying AL for data streams which

are concept drift and sampling bias. We propose a novel bi-criteria AL approach

(BAL) that relies on label uncertainty criterion and density-based criterion. While

the first criterion selects instances that are the most uncertain in terms of class

membership, the latter dynamically curbs the sampling bias and avoids querying

outlier by weighting the samples to reflect on the true underlying distribution.

In order to design and implement these two criteria for learning from the data

stream, BAL adopts a Bayesian online learning approach and combines online

classification and online clustering through the use of online logistic regression

and online growing Gaussian mixture models respectively.

The organization of this chapter is as follows. Section 2.1 is an introduction. Sec-

tion 2.2 describes the proposed selection criteria along with the used classification

and clustering algorithms. Section 2.3 provides the details of the proposed online

sampling. Section 2.4 presents the algorithm. Section 2.5 discusses the experi-

mental results for a number of well-known academic and real world datasets and

Sec. 2.6 concludes the chapter.

16
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2.1 Introduction

Classification has been the focus on large body of research due to its key relevance

to numerous real-world applications. A classifier is trained by learning a mapping

function between input and pre-defined classes. In an offline setting, the training

of a classifier assumes that the training data is representative and is available prior

to the training phase. Once this latter is exhausted, the classifier is deployed and,

therefore, cannot be trained any further even if performs poorly. This can happen

if the training data used does not exhibit the true characteristics of the underlying

distribution. Moreover, for many applications data arrives over time as a stream

and therefore the offline assumptions cannot hold. That is, the characteristics

of data streams make it impractical to use offline learning algorithms: i) data

streams are unbounded in size, ii) they arrive at high steady rate and iii) they

may evolve over time. Thus, to deal with data streams efficiently, the classifier

must (self-)adapt online over time [69, 70]. To do that, the classifier needs to be fed

with labeled data continuously which is not feasible in most real-world streaming

situations where the data is usually unlabeled. It is therefore very important

to seek well-informed ways to obtain labels. AL methods provide a systematic

approach to select data examples whose labels should be queried. It reduces the

cost of obtaining labelled data by querying much less examples to reach the same

performance as when data samples are randomly queried.

For the sake of illustration, consider the example of internet advert popping up on

screen where both online and active learning are relevant. The goal is to predict

if an advert item will be interesting to a given shopper at a given time. To this

end, a classifier is built based on the feedback from the shoppers. However, the

interest and preference of the shoppers may change over time leading to what is

known as concept drift. Therefore, building a static model for such a scenario will

not be effective; hence, the importance of an online adaptive model is manifested.

In the streaming setting, obtaining unlabelled data is often cheap but labelling it

is expensive. For instance, in the previous example, asking frequently for feedback

whether an advert is interesting would annoy the shoppers; hence AL should be

deployed in applications with caution.

Label uncertainty (or uncertainty sampling) is a simple and popular criterion and

more important it is very suitable for online AL. However, selecting the data

examples from the stream using label uncertainty leads to sampling bias as we
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explained in Chap. 1. On the other hand, density-based allows covering the whole

input space with only few data samples [71] and reducing the sampling bias.

In this work, we introduce a bi-criteria AL algorithm (BAL) for evolving data

streams. Specifically, we combine label uncertainty and density-based labelling in

an SSS-like setting. The uncertainty of data samples is evaluated using a classi-

fication model while density of regions is evaluated using a clustering model. In

general, density criterion performs efficiently with few labelled data since it sam-

ples from maximum-density unlabelled regions. On the other hand, uncertainty

criterion tunes the decision boundary after selective sampling from the uncertain

regions [39, 72–74]. Thus, the density criterion is useful when there is regularity

in the data which is the case of many applications. However, the density criterion

alone would not provide an accurate classifier. In other words, the density crite-

rion helps establishing the initial decision boundary; while uncertainty sampling

”fine-tunes” that boundary by sampling the regions where the classifier is least

certain. By combining both criteria, we can take advantage of the density crite-

rion to reduce the data examples required by the uncertainty criterion to build an

accurate classifier.

To ensure enough flexibility of BAL, we explicitly distinguish between the learning

engine and the selection engine. The learning engine uses a supervised learning

algorithm to train a classifier on the existing labeled data, while the selection

engine selects influential samples from the data stream for labelling. Here, the

selection engine includes a classifier which is different from the classifier used by

the learning engine and the clustering model that serves to design and deploy the

two criteria.

AL stands as a very interesting opportunity to handle concept drift by querying

the data samples representative of this drift (i.e., its characteristics). In contrast

to standard concept drift handling techniques, where only automatic detection

mechanisms are applied, in AL an access to the oracle that provides the ground

truth (true labels of data) is granted. To this end, we use importance weighting

principle to weight labelled data samples that drives a drift in order to increase

the importance of their regions in the feature space. Importance weighting prin-

ciple has also been theoretically proved to correct sampling bias [75]. The BAL

algorithm proposed in this work is the first AL algorithm that is concept drift

aware.
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To illustrate how BAL behaves, consider the example that pertains to internet

advertisement. Using uncertainty criterion only would result in querying adverts

for which the classifier is uncertain and therefore by interactively labelling such

adverts, the classifier can improve its performance towards a better prediction of

what to propose to the shopper. On the other hand, the density criterion takes the

similarity of the adverts into account. Thus, from a dense group of similar adverts

only one which represents the whole group will be queried. Clearly combining

the two criteria allows querying representative adverts for which the algorithm is

not sure. Furthermore, in the streaming case, the interest and preference of the

shoppers may change over time; hence when the change (drift) occurs in relation

to those adverts for which the classifier is certain, the sampling bias caused by the

active learning will be harmful. By implementing the weighting mechanism, we

aim at reducing the sampling bias by labelling more of data samples that drive

the drift and that make the uncertainty criterion less important for these data.

In a nutshell, the contributions in this chapter are:

1. We propose a novel online AL algorithm for data streams based on a proba-

bilistic model that combines two querying criteria: uncertainty and density-

based criteria. To the best of our knowledge this is the first approach based

on density-uncertainty to the online setting.

2. The proposed combination brings classification through logistic regression

and clustering through growing Gaussian mixture models together to imple-

ment the two querying criteria in a uniform probabilistic way. The choice of

these algorithms is therefore well motivated.

3. We propose mechanisms for making the proposed BAL algorithm aware of

concept drift. It is the first study that shows the effectiveness of AL in dealing

with concept drift.

2.2 Online bi-criteria AL

The steps of the bi-criteria active learning algorithm (BAL) proposed in this work

are portrayed in Fig. 2.1 and the corresponding details are discussed in Sec. 2.4.

In a nutshell, BAL consists of 4 steps. In the first step, given an instance x, the
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Figure. 2.1 General scheme of BAL

clustering model which is used to implement the density-based criterion is updated

(see Sec. 2.2.1). Using BAL’s sampling model in the second step, the probability

of querying is computed and the decision whether to query and carry on to the

third step or discard the instance and receive new one is made (see Sec. 2.3). In

the third step, the label corresponding to the queried instance x is received and

the classification model which is used to implement the label uncertainty criterion

will be updated (see Section 2.2.2). In the fourth step, a weighting technique is

used to curb the sampling bias (see Section 2.3.1).

In order to identify the data examples to query, we seek to minimize the current

expected error which consequently leads to the minimization of the future expected

error. It can be seen that this error can be derived from Eq. (1.1) (see Chap. 1) by

using a prediction error loss function. The current expected error for an instance

x can be computed using density-based and label uncertainty criteria which are

estimated by dynamic classification and clustering models.

In [76] it is suggested to select samples that minimize the expected future classi-

fication error given as follows:
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Figure. 2.2 Combining clustering and classification for AL

R =

∫
x

E[(ŷ − y)2|x]p(x)dx (2.1)

where y is the true label of data instance x and ŷ is the predicted output. E[.|x]

denotes the expectation over p(y|x). This integral cannot be computed due to its

complexity. Authors in [49], who proposed an AL method that relies on an offline

pool-based selective sampling setting, noted that instead of selecting data that

produces the smallest future error, we can select the data that has the largest con-

tribution to the current error in order to achieve a good approximation. Another

issue pointed out is that the data distribution p(x) affects the expected error.

In this study, we are concerned with online learning. Therefore, in order to have

online approximation of Eq. (2.1), an online learning model that involves online

sampling technique is needed. This model should be able to handle real drift and

virtual drift [21]. The former refers to changes in the conditional distribution

p(y|x), whereas the latter refers to the changes in the distribution of the incoming

data p(x).

Our approach deals with the problems mentioned above and works independently

from the classifier by adopting an online selection engine that uses the Bayesian

inference. The random vector z is typically estimated from a training set of vectors

Z [77, 78]. The Bayesian inference estimation process is given as follows:

p(z|Z) =

∫
Θ

p(z,Θ|Z)dΘ =

∫
Θ

p(z|Θ, Z)p(Θ|Z)dΘ (2.2)



22

Assume that the selection engine has processed until time t, Xt data, among

which XLt are labelled. YLt is the set of labels associated with XLt . By replacing

z with (x, y), Z with (Xt, YLt), and Θ with (θ,θ′) where θ and θ′ represent the

parameters that govern respectively the clustering and the classification models.

Equation (2.2) can be written as follows

p(x, y|YLt , Xt) =

∫
θ′

∫
θ

p(x, y|θ,θ′)p(θ,θ′|YLt , Xt)dθdθ′ (2.3)

p(θ,θ′|YLt , Xt) = p(θ|YLt , Xt,θ
′)p(θ′|YLt , XLt) (2.4)

Assuming that θ and θ′ are independent, then Eq. (2.4) can be rewritten as

follows:

p(θ,θ′|YLt , Xt) = p(θ|Xt)p(θ
′|YLt , XLt) (2.5)

Assuming also that all the information about the class label y is encoded in the

cluster parameter vector θ, then y and x are conditionally independent given θ.

Therefore:

p(x, y|θ,θ′) = p(y|x,θ,θ′)p(x|θ,θ′)

= p(y|θ,θ′)p(x|θ) (2.6)

Equation (2.3) can then be rewritten as:

p(x, y|YLt , Xt) =

∫
θ′

∫
θ
p(y|θ,θ′)p(θ′|YLt , XLt)p(x|θ)p(θ|Xt)dθdθ′ (2.7)

This clearly explain how the selection engine consists of two models: a supervised

learning classifier which is used to estimate the uncertain data examples and an

unsupervised clustering model which is used to estimate the dense regions. These

two models are used to approximate the future error. Equation (2.1) can be written

as follows: ∫
x

∫
y

(ŷ − y)2p(x, y)dydx (2.8)

p(x, y) can be estimated using Eq. (2.7). This later shows how label uncertainty

and density-based criteria are combined. The data examples that minimize the

current expected error are those located close to the center of clusters near the class

boundaries. Figure 2.2 shows an example in two dimensions space illustrating the

relationship between the clustering and classification models expressed in Eq. (2.7).
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The distribution of θ′ and θ are represented by lines and clusters. p(y|θ,θ′)
depends on the distance between cluster θ and line θ′. p(x|θ) depends on the

distance between x and cluster θ. As data is drawn from potentially changing

distribution, θ and θ′ may change.

In the following, the models exploited to define the two criteria used to decide

when to query the labels are introduced. The two criteria are label uncertainty

defined through logistic regression [28] and density-based criterion defined through

Growing Gaussian Mixture Model (GGMM) [69, 79].

2.2.1 Growing Gaussian Mixture Model (GGMM)

To detect the dense regions, an online learning algorithm to estimate the density

of data examples xt is needed. According to Bayesian inference:

p(xt|Xt−1) =

∫
θt−1

p(xt|θt−1)p(θt−1|Xt−1)dθt−1 (2.9)

where t represents the time. Traditionally, computing the integral in Eq. (2.9)

is not always straightforward and the Bayesian inference is often approximated

via maximum-a-posteriori (MAP) or maximum likelihood estimation (MLE). In

order to obtain an online approximation for Eq. (2.9), an online Gaussian Mixture

Model algorithm (GMM) is used. The Gaussian mixture model perceives the data

as a population with K different components where each component is generated

by an underlying probability distribution [80].

p(xt|Xt−1) =
K∑
i=1

p(xt|θ̂it−1)τ it−1 (2.10)

where τ it−1 is the weight of the ith Gaussian in the mixture model, θ̂t = (θ̂1t , ..., θ̂
K
t ),

where θ̂it is parameter vector of cluster i.

In this case of incomplete data, MLE and MAP estimates are not directly com-

putable. Therefore, it is standard to use iterative algorithms such as Expectation

Maximization (EM). To accommodate online learning, the GGMM proposed in [69]

is adopted. It estimates θ̂t from data by maximizing the likelihood of the joint

distribution p(Xt, θ̂t)[81]. GGMM learns from labeled and unlabeled data and

handles the complexity of the mixture model efficiently. Consequently by using
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Figure. 2.3 The main steps of GGMM

GGMM, we wish to implement the density-based active learning criterion in an

efficient way.

The parameters of GGMM are the clusters variance, the learning rate which de-

termines the update step of the clusters’ parameters, the maximum admissible

number of clusters and the closeness threshold which controls the creation of new

clusters. GGMM creates a new cluster when the Mahalanobis distance between a

new input and the nearest cluster is more than the closeness threshold. To make

the experiments easier, the closeness threshold is set equal to the variance. GGMM

uses a constant fading factor (learning rate) to tune the contribution of clusters

by updating θ̂i. The least contributing clusters are discarded systematically and

new ones are added dynamically over time. Figure 2.3 shows the main steps of

GGMM.

Due to its incremental nature, GGMM can cope with concept drift [69] and its

combination with the online classifier, logistic regression, (see Sec. 2.2.2) to devise

BAL ensures real-time adaptation.
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2.2.2 Logistic regression

To sample the uncertain data examples, the logistic classifier which is offline, prob-

abilistic, and linear in the parameters is applied. To meet the online requirement

of our approach, this classifier will be adapted as will be shown below.

Logistic regression corresponds to the following binary classification model:

y|x ∼ Bern(µ′) (2.11)

y|x has the Bernoulli distribution with parameter µ′ given as:

µ′ = p(y = 1|x,θ′) = sigm(θ′
T
x) (2.12)

where sigm(a) refers to the sigmoid function, sigm(a) = 1
1+exp(−a)

.

Note that in this work, binary classification is considered. However, it is easy

to extend logistic regression to multi-class classification. In the following, the

adaptation of logistic regression to online classification is discussed and then our

method for handling concept drift using online logistic regression is introduced.

2.2.2.1 Bayesian view of online logistic regression

Logistic regression can be trained in an online mode either by using stochastic

optimization or by adopting a Bayesian view which has the obvious advantage of

returning posterior instead of just point estimate. In this work, we use the Bayesian

view because we want to capture the non-deterministic nature (uncertainty) of the

querying process that itself exploits the label uncertainty criterion. The Bayesian

approach of the logistic regression is expressed through:

p(θ′t|DLt) ∝ p((xt, yt)|θ′t)p(θ
′
t|DLt−1) (2.13)

where DLt is the labeled data seen up to time t. Suppose that at time t − 1 our

knowledge about the parameters θ′t−1 is summarized by the posterior distribution

p(θ′t−1|DLt−1). After receiving an observation xt, we consider the probability:

p(yt|xt, DLt−1) =

∫
θ′t

p(yt|xt,θ′t)p(θ
′
t|DLt−1)dθ′t (2.14)
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where p(θ′t|DLt−1) is the predicted posterior which can be expressed as:

p(θ′t|DLt−1) =

∫
θ′t−1

p(θ′t|θ
′
t−1)p(θ′t−1|DLt−1)dθ′t−1

(2.15)

In order to calculate the expression p(θ′t|θ′t−1), we must specify how the parameters

change over time. Following [28], we assume no knowledge of the drifting distribu-

tion p(θ′t|θ′t−1). Thus, Eq. (2.15) can be eliminated by estimating p(yt|xt, DLt−1)

which is done as follows:

p(yt|xt, DLt−1) =

∫
θ′t−1

p(yt|xt,θ′t−1)p(θ′t−1|DLt−1)dθ′t−1
(2.16)

Here, two challenges need to be dealt with:

• predicting the class of the new data example xt by computing the posterior

predictive distribution (Eq. (2.16))

• updating the posterior distribution p(θ′t|DLt) as soon as the label of xt is

obtained by computing Eq. (2.13)

Both challenges require to approximate the prior distribution over the weight θ′t

as a Gaussian distribution N (µt,Σt). Two methods have been proposed in the

literature to approximate the integral of Eq. (2.16): Monte Carlo approximation

and probit approximation [82]. We use the probit approximation as it does not

require sampling, thus it takes less computational time. However, it has been

found that probit approximation gives very similar results to the Monte Carlo

approximation [82]. The result of the approximation is as follows:

p(ŷt = 1|xt, DLt−1) ≈ ∇̂t = sigm(K(st)āt) (2.17)

s2
t = xt

TΣt−1xt (2.18)

āt = µt−1
Txt (2.19)

K(st) = (1 +
πs2

t

8
)−

1
2 (2.20)
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For more details about the approximation steps, the interested reader is referred

to [82].

In the following, we show how the parameters of the proposed online logistic

regression classifier are updated. We use Newton’s method as formulated in [83]

to sequentially update θ′t = (Σt,µt) of Eq. (2.13) using Eq. (2.17). Therefore, the

mean µt and covariance Σt can be updated as follows:

Σt = Σt−1 −
∇̂t(1− ∇̂t)

1 + ∇̂t(1− ∇̂t)s2
t

(Σt−1xt)((Σt−1xt))
T

µt = µt−1 + Σtxt(yt − ∇̂t) (2.21)

These recursive equations reflect on the current and the past data. Nevertheless,

the effect of data is implicitly decreasing as more data is processed due to the

variance shrinkage.

2.2.2.2 Handling of concept drift

In non stationary setting, a variant version of (2.21) proposed in [28] is used.

The situation is exactly the same as for the stationary case, except that the prior

distribution is now N (µt−1,Σt−1 +vtA). Here A = cI with c is a constant and I

is the identity matrix. vtA assumes that the weight vector θ′t changes are of similar

magnitude. Alternatively, one could use a separate forgetting matrix parameter

for every weight coordinate as discussed in [84]. In this work, we consider the first

assumption:

Σt =(Σt−1 + vtA)− ∇̂t(1− ∇̂t)

1 + ∇̂t(1− ∇̂t)s′2t
[(Σt−1 + vtA)xt][(Σt−1 + vtA)xt]

T

µt =µt−1 + Σtxt(yt − ∇̂t) (2.22)

where s′2t = xTt (Σt−1 + vtA)xt. Here vt can be thought of as the Bayesian version

of the window size in batch learning for data stream. In order to adjust the model

as soon as it becomes unable to estimate the true changing θ′ distribution, we

compute the discrepancy between the predictive class uncertainty after and before

observing the true class label:

Gt = Ũ(xt)− Û(xt) (2.23)
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where Û(xt) is the uncertainty of the label predicted from xt and Ũ(xt) is the

uncertainty remaining after incorporating the true class label.

Û(xt) = E[(ŷt − yt)2|xt]

Ũ(xt) = E[(ỹt − yt)2|xt] (2.24)

ŷt is the predicted label and ŷt = 1(∇̂t > 0.5). ỹt is the predicted label after

updating the classification model with the true label. ỹt = 1(∇̃t > 0.5), where ∇̃
can be computed as follows:

p(ỹt = 1|xt, DLt) ≈ ∇̃t = sigm(K(s̃t)ãt) (2.25)

s̃2
t = xt

TΣtxt (2.26)

ãt = µt
Txt (2.27)

K(s̃t) = (1 +
πs̃2

t

8
)−

1
2 (2.28)

The discrepancy Gt of the model uncertainty is monitored using a forgetting

technique[85]:

vt =
αvt−1 + max(Gt, 0)

NLt
(2.29)

NLt = αNLt−1 + l(xt) (2.30)

NLt is the prequential number of labeled data. l(xt) is 1 if xt is labeled and 0

otherwise. α is a constant fading factor empirically set to 0.9. Equation (2.29)

will be used to update Eq. (2.22).

Finally, the online logistic regression classifier is incrementally updated using

(2.22) that addresses concept drift.

2.3 Online sampling

In the following, the sampling method used by BAL that avoids the problem of

sampling bias is illustrated. Next, a technique to restrict the available resources

in terms of labelling budget is described.

We have noted earlier that the computation of the future error in Eq. (2.1) is

complicated. So instead, we select the sample that has the largest contribution to
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the current error. Although such approach does not guarantee the smallest future

error, there is a good chance for a large decrease in error. In an offline setting, the

selection criterion based on the set of unlabeled data XU is:

x = arg max
xj∈XU

E[(ŷj − yj)2|xj ]p(xj) (2.31)

E[(ŷj − yj)2|xj] = p(yj = 1|xj)(ŷj − 1)2 + p(yj = 0|xj)ŷ2
j (2.32)

where p(y|x) is unknown and needs to be approximated. In [49], the authors use

the current estimation p(y|x, θ̂′) assuming that θ̂′ is good enough. Unfortunately,

in the online learning setting, the task is more challenging for three issues:

• No access to the already seen unlabeled data.

• The probability p(y|x, θ̂′) dynamically changes as more labeled data is seen.

That means the approximation assumed above needs adjustment.

• Need to address the problem of sampling bias (which is detailed in the next

Section).

To address these issues, we formulate the querying (sampling) probability in a

recursive manner as follows. Let q be the binary random variable that determines

whether x should be queried. The querying probability is defined by the following

model:

q|x ∼ Bern(µ′) (2.33)

Using Eq. (2.8), the querying probability can be reformulated as follows:

p(q = 1|x) =

∫
y

(ŷ − y)2p(x, y)dy (2.34)

That is to say, a sample that has a large contribution to the current error is likely

to be queried.

Now, let’s see how this probability is formulated for the online setting so that we

avoid the requirement to have access to the whole data. Let Dt = (YLt , Xt) be

the set of labeled data seen so far. Using Eq. (2.7), we express the probability of
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querying xt as follows:

p(qt = 1|xt, Dt−1) =

∫
yt

∫
θt

(ŷt − yt)
2p(yt|θt, DLt−1)p(xt|θt)p(θt|Xt)dθtdyt

=

∫
θt

E[(ŷt − yt)
2|θt]p(xt|θt)p(θt|Xt)dθt (2.35)

E[.|θt] denotes the expectation over p(yt|θt, DLt−1). Using Eq. (2.10), p(qt =

1|xt, Dt−1) can be estimated as follows:

p(qt = 1|xt, Dt−1) =
K∑
i=1

E[(ŷt − yt)2|θ̂it]p(xt|θ̂
i
t)τ

i
t (2.36)

where E[(ŷt − yt)2|θ̂it] = Û(θ̂it) can be computed as:

Û(θ̂it) = p(yt = 1|µθ̂it , DLt−1)(ŷt − 1)2 + p(yt = 0|µθ̂it , DLt−1)ŷ
2
t (2.37)

µθ̂it is the mean of cluster i at time t. p(yt = 1|µθ̂it , DLt−1) can be computed using

Eq. (2.17) after replacing xt by µθ̂it . The resulting p(yt = 1|µθ̂it , DLt−1) is the

recursive approximation of the querying probability.

2.3.1 Tackling the problem of sampling bias

In general, the active learning model starts by exploring the environment. As train-

ing proceeds, the model becomes more certain. Then, data samples are queried

based on their informativeness. As a result, the training set quickly will no more

represent the underlying data distribution, hence the problem sampling bias.

Given a classification model with a parameter vector θ, the maximum a posteriori

(MAP) estimate is ŷ = argmaxyp(y|x,θ) and the risk associated is expressed as:

R(θ) =

∫
x

∫
y

L(ŷ, y)p(x, y)dydx (2.38)

where L(.) is the loss function measuring the disagreement between prediction and

the true label. Since p(x, y) is unknown the expected loss can be approximated

by an empirical risk:

R̂n(θ) =
1

n

n∑
j=1

L(ŷj, yj) (2.39)
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where (xj , yj) are drawn from p(x, y) and n is the number of samples. In active

learning instances are drawn according to an instrumental distribution g(x). Thus,

(xj , yj) are sampled from g(x)p(y|x). In presence of drift, g(x) may have low

probability for data located far from the class boundary because it is considered as

an uninformative region. If a drift occurs in that region, many instances with high

loss L(ŷj, yj) will not be queried. This leads to a negative effect of active learning;

sometimes, worse than learning from random sampling. In order to develop an

unbiased estimator of the expected loss, we weight each drawn instance following

the concept of weighted sampling. Thus, the empirical risk can be written as

follows:

R̂g,n(θ) =
1

S

n∑
j=1

SjL(ŷj, yj) (2.40)

where Sj =
p(xj)

g(xj)
is the importance weighting compensating for the discrepancy

between the original and instrumental distributions, and S =
∑n

j=1 Sj is the nor-

malizer. Thanks to the importance weighting, Eq. (2.40) defines a consistent

estimator [86]. That is, the expected value of the estimator R̂g,n(θ) converges to

the true risk R(θ) for n → ∞. The importance weighting was used in [75] to

correct the sampling bias showing that by weighting the queried sample according

to the reciprocals of the labelling probability, a statistical consistency is guaran-

teed. For any distribution and any hypothesis class, active learning eventually

converges to the optimal hypothesis in the class. In the case of online learning,

the importance weighting can be defined as follows:

St =
p(xt)

p(xt)p(qt = 1|xt, Dt−1)

=
1

p(qt = 1|xt, Dt−1)
(2.41)

In order to apply the importance weighting, we interpolate the effect of weighting

into the selection engine through the density estimation. Thus, the clustering

model is updated with the importance sampling St. The effect of St on each

cluster is represented by H i
t as follows:

H i
t =


S−1
t p(θ̂it|xt) if xt is classified correctly

0, if xt is not queried

(1− S−1
t )p(θ̂it|xt) otherwise

(2.42)
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Therefore, the new cluster weight can be written as follows:

τ it,St
= (1−H i

t)τ
i
t (1− It) + ((1−H i

t)τ
i
t +H i

t)It (2.43)

where It = |ŷ − y|, that is, It is 0 if xt is correctly classified and 1 otherwise. The

first term of Eq. (2.43) is used to decrease the effect of over-sampling by reducing

the weight of clusters representing the instances correctly labeled. The second

term is used to decrease the effect of under-sampling by increasing the weight of

clusters representing the instances wrongly labeled.

2.3.2 Budget

Under limited labelling resources, a rationale querying strategy to optimally use

those resources needs to be applied. To this end, the notion of budget was in-

troduced in [1] in order to estimate the label spending. Two counters were

maintained: the number of labeled instances ft and the budget spent so far:

bt = ft
|data seen so far| = ft

|Xt| . As data arrives, we do not query unless the budget is

less than a constant Bd and querying is granted by the sampling model. However,

over infinite time horizon this approach will not be effective. The contribution of

every label to the budget will diminish over the infinite time and a single labelling

action will become less and less sensitive. Authors in [1] propose to compute the

budget over fixed memory windows wnd. To avoid storing the query decisions

within the windows, an estimation of ft and bt were proposed. It is computed as

follows:

b̂t =
f̂t
wnd

(2.44)

where f̂t is an estimate of how many instances were queried within the last wnd

incoming data examples.

f̂t = (1− 1/wnd)f̂t−1 + Labt−1 (2.45)

where Labt−1 = 1 if instance xt−1 is labelled, and 0 otherwise. Using the forgetting

factor (1− 1/wnd), the authors showed that b̂t is unbiased estimate of bt.

In the present work, this notion of budget will be adopted in BAL so that we can

assess it against the active learning proposed in [1]. Note that in our experiments

in relation to the budget, we set wnd = 100 as in [1].
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2.4 Algorithm

Having introduced the active learning criteria and the sampling technique based

on Fig. 2.2, the full details of the algorithm are provided in Alg. (1). The lines 7,

15, and 16 are included in BAL only when the budget is considered. Otherwise,

BAL is not constrained by the budget.

Algorithm 1 Steps of BAL

1: Input: data stream, parameters of GGMM: {maximum number of clusters,
variance, learning rate }, BAL forgetting matrix A

(
Eq. (2.22)

)
, budget Bd.

2: initialize: t = 0, µ0 = ~0, Σ0 = 5I
(
Eq. (2.22)

)
, vt = 0

(
Eq. (2.29)

)
, f̂1 = 0(

Eq. (2.45)
)

3: while (true) do
4: t← t+ 1,
5: Receive xt
6: Update the clustering model {θ̂1t−1, ...θ̂

k
t−1} by xt.

7: if b̂t < Bd
(
Eq. (2.44)

)
then

8: compute µ′ = p(qt = 1|xt, Dt−1) that refers to the combination of uncer-
tainty and density criteria using Eq. (2.36)

9: qt ∼ Bern(µ′)
(
Eq. (2.33)

)
10: if qt = 1 then
11: yt ← query(xt)
12: Update the classifier model {µt−1,Σt−1} by (xt, yt) using Eq. (2.22)
13: Remove the effect of sampling bias using Eq. (2.43)
14: end if
15: end if
16: Compute f̂t+1

(
Eq. (2.45)

)
17: end while

2.5 Experiments

First, BAL is evaluated by analyzing its behavior under different data distributions

and different types of concept drift. In order to have controlled settings with known

distribution and drift type, 2D synthetic datasets proposed in [87] are considered.

Second, BAL is compared against the state-of-art active learning methods designed

for data streams on real-world datasets. Two real-world benchmark datasets are

used: Electricity [88] and Airline [89].

The forgetting constant ’c’ which determines the forgetting matrix A in Eq. (2.22)

is empirically set to 5. The parameters of GGMM are empirically specified in
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(a) Gradual drift
(moving plane)

(b) Abrupt drift (c) Mixture drift
(moving Gaussian)

Figure. 2.4 Synthetic data

Tab. 2.1 (see App. A.1 for more details). To capture the real performance of BAL,

all experiments are repeated 30 times and the results are averaged.

2.5.1 Simulation on synthetic data

The main goal of this section is to analyze BAL in terms of effect of concept drift

and data distribution. Also the impact of the budget and the number of clusters

on the performance of BAL are studied. Then the strengths and weaknesses of

BAL are discussed. Note that here the online logistic regression algorithm serves

as learning engine. Three synthetic datasets involving two different distributions,

Gaussian and uniform, and three types of data drift: gradual, abrupt and mixture

which involves both gradual and abrupt drifts are used. These types of drift occur

in real-world applications as shown in the following:

• Gradual drift: consider two sources with gradual changes from one source

to the other. The so-called moving plane data is used. A gradual changing

environment is simulated by rotating the linear class boundary about the

origin in a 2-d space. All data points come from a uniform distribution

in the unit square (see Fig. 2.4a ). The class definition (concept) changes

with each new data point by rotating the boundary at a further angle of 1.

The distribution p(x) does not change over time, while p(y|x) does. A real

example is when a device begins to malfunction; the quality of the service

that it provides starts to decrease. After a certain period, the service quality
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reaches an unacceptable level. In this case, the device is considered to work

under failure operation conditions [90].

• Abrupt drift: consider many data sources each related to one of the target

concepts. In the abrupt drift scenario, usually one data source is instantly

replaced by another. An example where data is Gaussian distributed is used.

Here, we have 4 Gaussian sources with half related to one concept and half

to another. In the substitution process, one data source is instantly replaced

by another yielding change in p(y|x) with the same p(x) (see Fig. 2.4c). A

real example is the stuck on or stuck off faults in a valve or the failed on or

failed off of a pump [90]. We also introduce remote abrupt drift for uniformly

distributed data by instantly moving the boundary far away (see Fig. 2.12).

• Mixture drift: another version of Gaussian drift called moving Gaussian,

where both p(x) and p(y|x) change. If p(x) gradually changes, then p(y|x)

abruptly drifts and continues gradually drifting (see Fig. 2.4c). Consider,

for example, textual news arriving as a data stream. The goal is to predict

if a news item will be interesting to a given user at a given time. The

preferences of the reader (P (y|x)) as well as the news popularity (p(x)) may

change gradually or abruptly over time.

2.5.1.1 Simulation on synthetic data

The notion of budget is not used here, thus there is no restriction on the use of

resources. In order to study the behaviour of BAL on different types of drift and

distributions, each dataset is experimented using only the uncertainty criterion

(UAL). Then, another three experiments on the same datasets are carried out

using BAL. Comparing the results allows us to study the impact (interest) of in-

corporating density-based criterion on different scenarios (different distributions

and types of drift). The behavior of BAL is analyzed in terms of sequential query-

ing probability and accuracy. In the following, the results of the experiment on

these three datasets are shown.

Figures 2.5 and 2.6 show the results after applying UAL and BAL on the moving

plane data to test the gradual drift. Figure 2.5a and 2.6a show the queried data

in white. BAL and UAL algorithms adaptively pick the uncertain data around

the center of the whole data as the rotation hyperplane crosses the data in the
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(a) Data (b) Classifier variance (c) Accuracy

Figure. 2.5 UAL gradual drift

(a) Data (b) Classifier variance (c) Accuracy

Figure. 2.6 BAL gradual drift

(a) Data (b) Querying probability (c) Accuracy

Figure. 2.7 UAL abrupt drift

center. However, it is clear that the number of queried data examples using BAL

is larger. Figures 2.5b and 2.6b depict the determinant of the covariance Σt com-

puted by Eq. (2.22). The variance is proportional to the classifier uncertainty.

In particular, Fig. 2.5b and Fig. 2.6b show that the predictive model uncertainty

is fluctuating over time. This fluctuation reflects the continuous data drift which

proves the capability of the classifier to adapt to gradual drift. Higher uncertainty

of the predictive model in Fig. 2.6b implies slow adaptation to drift. It is mainly

caused by the uniform distribution of the data leading to inaccurate clustering.

That is, the uncertainty criterion alone could be more valuable than its combina-

tion with the density criterion. Figures 2.5c and 2.6c show the accuracy over time.

BAL uses more resources to obtain accuracy similar to UAL. In section B below,
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(a) Data (b) Querying probability (c) Accuracy

Figure. 2.8 BAL abrupt drift

(a) Data (b) Querying probability (c) Accuracy

Figure. 2.9 UAL mixture drift

(a) Data (b) Querying probability (c) Accuracy

Figure. 2.10 BAL mixture drift

this issue is investigated in detail.

After applying BAL and UAL on the Gaussian data with abrupt drifts, we obtain

the results shown in Fig. 2.7 and Fig. 2.8. Figures 2.7b and 2.8b illustrate the

querying probability over time highlighting the reaction of the model to change.

In particular, Fig. 2.7b shows that the querying probability has a peak between

the instance numbers 5000 and 6000; while the drift happens at sample 5000

which means that the model adapts to abrupt drift with some delay. Figure 2.8b

shows that BAL reduces the querying probability and handles drift with less delay.

Moreover, it is clear that BAL has better accuracy (compare Fig. 2.6c against

Fig. 2.5c).
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The results of UAL and BAL on mixture drift data are shown in Fig. 2.9 and

Fig. 2.10. For both algorithms, it is clear that the majority of queried data is

around the drifting regions (see Fig. 2.9a and Fig. 2.10a). Figure 2.10a shows

slightly more concentrated queried data around the drifting regions using BAL.

In contrast to abrupt drift, the probability of querying remains high because the

gradual drift occurs after the abrupt drift. Figure 2.10b shows that BAL reduces

the probability of querying when there is no drift and produces slightly better

accuracy (compare Fig. 2.9c and Fig. 2.10c).

To sum up, BAL shows the ability to adapt to different types of drift but its

performance may be affected by the data distribution. However, in the case of

more complicated drift, BAL shows much more improvement as we will see also

in the experiments related to real-world data in Sec. 2.5.3.

2.5.2 Performance Analysis

In the following, the effect of data distribution is studied in detail and the perfor-

mance of both BAL and UAL with respect to the number of clusters is investigated.

The notion of budget is also taken into account and its effect is analyzed.

Effect of the data distribution: In order to capture the data distribution’s

effect on BAL, we evaluate its performance on Gaussian (mixture drift) and uni-

formly (gradual drift) distributed data with respect to the number of clusters.

Here, the budget is fixed to 0.05. Figure 2.11 illustrates the performance on both

datasets. It is clear that incorporating density-based criterion improves the per-

formance on the Gaussian distributed data.

For the case of uniformly distributed data, density-based criterion yields lower

performance compared to UAL. However, for both datasets, the accuracy improves

as the number of clusters increases (see Tab. 2.2). The uniform distribution is

the most extreme break for the Gaussian assumption. However, BAL has good

performance compared to UAL when remote drift occurs. Figure 2.12 shows that

BAL can adapt faster to abrupt remote drift. Based on these experiments, BAL

shows great potential in maintaining higher classification over time.

Effect of the budget: Table 2.3 illustrates the average accuracy of BAL com-

pared to random sampling (baseline) on the three types of drift (gradual, abrupt
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Figure. 2.11 Effect of the number of clusters on the performance

Figure. 2.12 Sensitivity to remote drift

and mixture) using different budgets. The values with star indicate that the ad-

ditional budget is not used. To cope with abrupt drift, BAL does not need big

budget to show high accuracy. However, budget has more impact on the accuracy

in the case of gradual drift. Mixture drift requires less budget compared to the

gradual drift and more budget compared to abrupt drift.
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Table. 2.1 Clustering parameters (empirically obtained)

Datasets Variance Learning rate Number of clusters
Gradual drift 0.1 0.01 50
Mixture drift 1 0.01 50
Electricity 0.5 0.6 50
Airlines 9 0.5 50

Table. 2.2 Effect of the number of clusters on BAL accuracy: case of plane
and Gaussian data

Number of clusters 10 30 50 70 90

Accuracy (Gaussian) 96.5% 96.6% 96.9% 97.1% 97.3%
Accuracy (plane) 90.8% 91.3% 92.5% 92.9% 93.2%

Table. 2.3 Accuracy of BAL compared with random sampling using different
budget values (Synthetic data)

Budget 0.01 0.05 0.1 0.2

Gradual drift (BAL) 80.35% 92.5% 93.5% 95.1%
Random sampling 80.7% 88.2% 91.6% 93%
Abrupt drift (BAL) 99.4% 99.4%∗ 99.4%∗ 99.4%∗

Random sampling 96.5% 98.6% 99% 99.6%
Mixture drift (BAL) 94.6% 96.9% 96.9%∗ 96.9%∗

Random sampling 92.6% 95% 96.9% 97.8%

Table. 2.4 Characteristics of the real-world datasets

Dataset #Instances #Features #Classes
Airlines 539383 7 2
Electricity 45312 8 2

2.5.3 Simulation on real-world data

Two real-world benchmark datasets: Electricity and Airlines are used to evaluate

BAL in more challenging settings. Their characteristics are shown in Tab. 2.4.

Electricity data [88] is a popular benchmark used in evaluating classification in

the context of data streams. The task is to predict the rise or fall of electricity

prices (demand) in New South Wales (Australia), given recent consumption and

prices in the same and neighboring regions. The Airlines dataset was collected by

the USA flight control [89]. The task is to predict whether a flight will be delayed,

given the information of the scheduled departure.

To illustrate the performance of BAL compared to the state-of-the-art active learn-

ing algorithms over data streams, two methods are considered: Random (baseline

method) and Variable Randomized Uncertainty proposed in [1]. Unlike BAL, the
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method described in [1] depends on the internal classification algorithm (learning

engine). Here, we use Naive Bayes classifier as learning engine as in [1]. Only the

first 10% of the whole data sequence for both datasets are used. The parameters

of GGMM are empirically set to the values shown in Tab. 2.1.

In this experiment, the algorithms are evaluated using different budgets in [0.01; 0.3].

The final accuracy results are reported in Fig. 2.13 which show that UAL outper-

forms the rest of the competitors for high budget, while BAL works better for low

budget (10 % for Electricity and 7̃% for Airlines).

2.5.4 Discussion

While the performance of UAL and BAL are far better than the competitors, the

application of the uncertainty criterion solely becomes more valuable as more data

are queried (high budget). This finding was already shown in previous studies

in the context of batch-based learning [74]. In the case of drifting data where

the boundary between classes is very dynamic like with Electricity and Airlines

datasets, the samples close to the boundary are more interesting since they drive

the change in the distribution. Increasing the number of queries (i.e. high budget)

will definitely enhance the accuracy irrespective of the data density, hence UAL

performs better than BAL when the budget is high. This is in contrast to the case

of drifting synthetic data where the simulations showed that overall BAL performs

better and has a recovery speed faster than UAL.

In [1], authors claimed that the Electricity data has more aggressive drift com-

pared to the Airlines data, which may explain the difference between the accuracy

improvement associated with density-based criterion over the two datasets. BAL

accuracy is better than UAL over the Airlines data only for budget less than 0.07,

while it is up to 0.1 in the case of Electricity data. However, it is clear that the

two proposed models UAL and BAL could be dynamically combined yielding one

model that gives better result under any kind of drift over the whole budget line

such that BAL selects the data to be queried for low budget, while UAL takes

control for high budget.
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(a) Electricity data (b) Airlines data

Figure. 2.13 Results related to the real-world datasets

2.6 Conclusion

We proposed an active learning algorithm for data streams capable of dealing

with changes of the data distribution. The algorithm labels the samples with high

uncertainty and representativeness in a completely online scenario. It also tackles

the sampling bias of active learning with potentially adversarial concept drift.

Experimental results on real-world data showed the limitation of the proposed

approach when the budget is high or the drift occurrence is rare and smooth.

However, the main goal of reducing the labelling cost in presence of concept drift,

while maintaining good accuracy, has been achieved. Experimental results on

synthetic data showed that as the data distribution becomes more uniform, more

clusters are needed, and the time complexity increases. However, the maximum

number of clusters is fixed, and we can have an upper bound on the time complex-

ity. Therefore, based on the data stream velocity, we can decide the maximum

number of clusters allowed. Finally, many experiments have been carried out in

App. A.1 in order to come up with an approximation of local optimal values for

GGMM’s parameters. This is the main drawback of the proposed method and an

improvement will be done in Chap. 3 by reducing the effect of parameter settings.

A non-parametric model will be developed for this reason. We will also handle the

concept evolution challenge.



Chapter 3

Active Learning for Data Streams

under Concept Drift and Concept

Evolution

In this chapter, we address the challenges of applying AL for data streams which

are concept drift, concept evolution and sampling bias already found in Chap. 1.

We propose a novel stream-based active learning algorithm (SAL) which is ca-

pable of coping with both concept drift and concept evolution by adapting the

classification model to the dynamic changes in the stream. SAL is the first AL

algorithm in the literature to take account of these concepts together. Moreover,

using SAL, only labels of samples that minimize the expected future error are

queried. The minimization process is done while tackling the problem of sampling

bias so that samples that induce the change (i.e., drifting samples or samples com-

ing from new classes) are queried. To efficiently implement SAL, we propose the

application of non-parametric Bayesian models allowing to cope with the lack of

prior knowledge about the data stream. In particular, Dirichlet mixture models

and the stick breaking process are adopted and adapted to meet the requirements

of online learning. In a nutshell, the main improvement achieved by SAL is that,

in contrast to BAL, it uses a unified non-parametric Baysian model that can ap-

proximate both conditional and marginal distributions and accommodate growing

complexity as more data is seen. Thus, the number of parameters need to be set

will be reduced and the number of classes can dynamically changes allowing SAL

to cope with concept evolution

43
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The organization of this chapter is as follows. Section 3.1 presents an introduction.

Section 3.2 describes SAL including the formulation of the objective function that

it is intended to be optimised as well as the proposed AL approach. Section 3.3

provides the details of the proposed model to estimate the objective function

described in Sect. 3.3. Section 3.4 discusses the experimental results for a number

of well-known real-world datasets. Finally, Sec. 3.5 concludes the chapter.

3.1 Introduction

In this chapter, we relax the assumption of known and fixed number of classes

taken in the previous chapter, where binary classification was performed. In fact,

the evolving nature of data streams poses both concept drift and concept evolution

challenges. Concept evolution occurs when new classes emerge or existing classes

vanish. The classifier must be able to identify these new classes and incorporate

them into the decision model [31, 91–93]. Emergence of new classes has been

studied in the context of abnormality detection, where the task is to identify the

non-conforming instances. This is seen as one-class classification, in which a very

large number of data samples describing normal condition is available while the

data samples describing the abnormalities are rare [94, 95]. In contrast, Concept

evolution involves the emergence of different normal and abnormal classes.

In this chapter, we propose an AL methodology, called Stream Active Learning

(SAL) that addresses data stream challenges (i.e., infinite length, concept drift and

concept evolution) and sampling bias in a unified and systematic way. In contrast

to most of the existing AL approaches which adopt heuristic AL criteria, SAL aims

at directly optimizing the expected future error [76]. This latter can be derived

from Eq. (1.1) (see Chap. 1) by using a prediction error loss function. Similar AL

approaches are proposed in [76, 96, 97]; however, they work in offline setting and

do not take into account the challenges associated with data streams.

SAL adopts the same concept as BAL, but with some differences. While BAL

has used existing classification and clustering algorithms, SAL uses a unified non-

parametric Baysian model. The proposed model is a Dirichlet process mixture

model [98] with a stick breaking prior [99] attached to each mixture component.

This prior is applied over the classes of the data in the mixture components. Dirich-

let process mixture model is based on the most common non-parametric prior, the
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Dirichlet Process. This prior allows the number of the components forming the

mixture to grow, if necessary, as more data is seen. Such a characteristic is useful

in the case of data streams as not much prior knowledge is available. The pro-

posed model can approximate both the conditional and marginal distributions. In

contrast to BAL, SAL allows multi-class classification with dynamic number of

classes and hence it is capable of dealing with concept evolution. The application

of stick-breaking prior over the classes allows the potential growth of the number of

classes. We employ a particle filter method [29, 100] to perform online inference.

As in Chap. 2 and [62], SAL handles sampling bias problem caused by AL using

importance weighted empirical risk [66]. Such problem is more severe in online

setting as the underlying classifier used by AL has to adapt. On the other hand,

the adaptation can depend on the queried data. Hence, if drift occurs for samples

which the model is confident about their labels, they will not be queried and the

model will not be adapted. SAL handles concept drift by querying the data samples

representative of this drift (i.e., its characteristics). Similarly, it handles concept

evolution by querying the data samples coming from a new class. In contrast to

standard techniques for handling concept drift and concept evolution [32, 33, 67,

68], where only automatic detection mechanisms are applied, AL assumes that

an oracle provides the true labels of data. To this end, we use the importance

weighting principle to weight labelled data samples that drive a change in order to

increase the importance of their regions in the feature space. Thus, by mitigating

the sampling bias problem, concept drift and concept evolution will be efficiently

handled. Similar technique was used in Chap. 2 and [62], but they are limited to

binary classification. To the best of our knowledge, SAL is the first AL algorithm

in the literature to consider both concept drift and concept evolution.

To sum up, our contribution to the state-of-the-art, SAL is the first approach

satisfying the following needs together:

1. directly reducing the expected future error online while taking the data

streams challenges (infinite length, concept drift and concept evolution) into

account.

2. mitigating the sampling bias problem which implicitly allows SAL to be

aware of concept drift and concept evolution.
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3.2 Active Learning Approach

Many active learning approaches seek to minimize an approximation of the ex-

pected error (Eq. (3.1)) [76, 96, 97]. SAL follows the same methodology, but with

more challenging setting where the data comes as a stream,

R =

∫
x

L
(
p̂(ŷ|x), p(y|x)

)
p(x)dx (3.1)

where (x, y) is a pair of random variables, such that x represents the data instance

(observation) and y is its class label. ŷ represents the predicted label of x, p(y|x))

and p(x) are the true conditional and marginal distributions respectively. p̂(ŷ|x)

is the learner’s conditional distribution used to classify the data. The learner

receives observations drawn from p(x) with latent labels y unless they are queried

by the AL algorithm. We denote the labelled observations up to time t as XLt and

their labels as YLt . The unlabelled observations up to time t are denoted as XUt .

We also use Xt to denote {XUt , XLt}, DLt to denote {XLt , YLt} and Dt to denote

{Xt, YLt}. We separate the learner algorithm or the hypothesis class from the AL

algorithm so that we can simply plug in any learner to test the AL algorithm.

Let p(ŷ|x,φ) refer to the learner’s conditional distribution p̂(ŷ|x), where φ is the

parameter vector that governs the learner’s distribution.

In the following, we discuss the offline AL approaches used to minimize an ap-

proximation of Eq. (3.1) since a closed form solution is not available. Then, we

present our online AL approach. Authors in [96] approximate the expected error

using the empirical risk over the unlabelled data:

R̂XU
(φXL

) =
1

|XU |
∑
x∈XU

L
(
p(ŷ|x,φDL

), p(y|x)
)
. (3.2)

We refer to the classifier parameters after being trained on DL as φDL
. Different

types of loss functions can be adopted according to the classification problem.

Active learning seeks to optimize Eq.(3.2) by asking for the labels of the samples

that, once incorporated in the training set, the empirical risk drops the most.

Ideally, the selection should depend on how many queries can be made. However,

the solution of such optimization problem is NP hard, since the number of trials

is combinatorial. Hence, most commonly used AL strategies greedily select one
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example at a time [62, 96, 97].

x̃ = arg min
x∈XU

R̂XU−(x)
(φDL+(x,y)

). (3.3)

The empirical risk over the labelled and unlabelled samples is considered in [97]:

R̂D(φDL
) =

1

|D|
∑
x∈D

L
(
p(ŷ|x,φDL

), p(y|x)
)
. (3.4)

The risk incurred when training the learner is the one related to the labelled data:

R̂DL
(φDL

) =
1

|DL|
∑
x∈DL

L
(
p(ŷ|x,φDL

), p(y|x)
)
. (3.5)

In active learning, a subset of unlabelled samples is selected for labelling. Let q be

a random variable distributed according to a Bernoulli distribution with parameter

a, q ∼ Bern(a). That is, an instance x is queried if q = 1. The data instances

used to train the model are sampled from a distribution induced by the AL queries

instead of the data underlying distribution. That is, the distribution of the queried

data p(x|q = 1) is different from the original one p(x). Hence, Equation (3.5) is

a biased estimator of (3.1) and the learned classifier may be less accurate than

when learned without using AL (Sampling bias). Similar to Chap. 2 and [62], we

use the importance weighting technique [66] in order to come up with an unbiased

estimator. Thus, Eq. (3.5) can be written as follows:

R̂′DL
(φDL

) =
1

|DL|
∑
x∈DL

1

p(q = 1|x)
L
(
p(ŷ|x,φDL

), p(y|x)
)
. (3.6)

Hence, the unbiased estimation above can be shown as:

Ex∼p(x|q=1)

[
R̂′DL

(φDL
)
]

= Ex∼p(x)

[
R̂DL

(φDL
)
]
. (3.7)

So far, we assumed that the underlining conditional distribution p(y|x) is known,

but in reality it is not. Thus, we need to estimate it. Furthermore, in online setting,

comparing the effect of labelling certain data instances against that of other data

instances (as done in Eq.(3.3)) is not possible. Thus, storing pools of data seen

so far might be a choice. However, it will violate the online learning assumption.

We, instead, estimate the probability of unlabelled and labelled data at time t.

Consider p(y|x, Dt), p(x|XUt) and p(x|XLt) as estimators for the true conditional

distribution, the unlabelled data distribution and the labelled data distribution at
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time t, where Dt represents the set of the previously seen data instances with the

labels of the queried ones. Thus, Eq. (3.4) equipped with the importance weighting

on the labelled data can be written as the sum of the following equations:

R̂Dt(φt) =

∫
x

L
(
p(ŷ|x,φt), p(y|x, Dt)

)
p(x|XUt)dx (3.8)

R̂′Dt
(φt) =

∫
x

L
(
p(ŷ|x,φt), p(y|x, Dt)

)
p(q = 1|x)

p(x|XLt)dx (3.9)

where φt denotes the classifier parameters after being trained on DLt . Based

on Eq. (3.8) and Eq. (3.9), we can develop an online querying strategy similar

to the one proposed in Eq. (3.3). The data instance can be assessed on-the-

fly by comparing the error reduction incurred by labelling it against the highest

error reduction. To compute the highest error reduction, we can sample a pool

of unlabelled data at each time step from p(x|XUt). Then, we search for the

sample that incurs the highest error reduction. A more direct approach would be

to use a non-convex optimizer to find the highest error reduction to be taken as

an error reference. Both approaches are nonetheless computationally expensive

as they involve estimation of integrals. Furthermore, we need to compute the

expectation of the error reduction because the labels are unknown which is again

computationally very demanding given that the labels are unknown.

We can conclude from Eq. (3.8), (3.9) that the error can be reduced by labelling the

samples that have the largest contribution to the current error. This contribution

can be expressed through the following equations:

R̂Dt−1(φt−1,xt) = L
(
p(ŷt|xt,φt−1), p(yt|xt, Dt−1)

)
p(xt|XUt−1) (3.10)

R̂′Dt−1
(φt−1,xt) = L

(
p(ŷt|xt,φt−1), p(yt|xt, Dt−1)

)
p̃(xt|XLt−1) (3.11)

As stated in the introduction, we seek to mitigate harmful bias that is caused by

dynamic changes in the data (i.e., concept drift and concept evolution). Thus, if xt

is queried and wrongly classified, SAL integrates the weight effect of p(qt = 1|xt)
into the current labelled data marginal distribution

(
p(xt|XLt−1)

)
. This is done by

repetitive update
(

1
p(qt=1|xt)

)
iterations (Sec. 3.3). Hence, p̃(xt|XLt−1) represents

the labelled data marginal distribution with the weight effect of the previously

queried samples integrated.

Equation (3.10) encourages querying samples that have strong representativeness

among the unlabelled data and that are expected to be wrongly classified; while
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Eq.(3.11) encourages querying those which have strong representativeness among

the labelled data, but, still wrongly classified. Such samples are rare. However,

Eq. (3.11) allows the learner to be completely independent from the sampling

approach, as it integrates the sampling bias independently from the learner algo-

rithm. Thus, as the learner proceeds, Eq. (3.11) also helps to switch the focus

from only representative samples to samples which are underestimated.

The querying probability is computed by comparing the samples with the one that

has the largest contribution to the error. A solution can be devised by trying to

optimize Eq.(3.10) and Eq.(3.11). However, to avoid time-consuming computation

and keep the AL algorithm independent of the learner, we maintain the largest

contribution to the error among the already seen data in variable At. Hence, this

latter becomes a comparison reference for computing the probability of querying.

A forgetting factor β empirically set to 0.9 is used to consider the dynamic nature

of the data:

At = max
(
(R̂Dt−1(φt−1,xt) + R̂′Dt−1

(φt−1,xt)), βAt−1

)
(3.12)

p(qt = 1|xt, Dt−1,φt−1) =
1

At

(
R̂Dt−1(φt−1,xt) + R̂′Dt−1

(φt−1,xt)
)

(3.13)

The number of classes evolves over time such that new classes may emerge and old

ones may vanish. Thus, p(yt|xt, Dt−1) (in Eq. (3.10) and Eq. (3.11)) must account

for all classes in the data stream. Potentially, the length of the stream is infinite,

which means that the probability of receiving infinite different classes is not zero.

Hence, the support of the distribution over the classes must be infinite. To allow

that, stick-braking distribution is imposed as a prior over the classes. Intuitively,

this prior allows to foresee a probability on the creation of new classes. To remove

obsolete classes, we propose an online estimator of p(yt|xt, Dt−1) equipped with a

forgetting factor to handle the evolving nature of data. The same model estimates

p(xt|XLt−1) and p(xt|XUt−1) online. More details about the estimators are found in

the next section. Concept evolution is implicitly handled through the loss function

in Eq. (3.10) and Eq. (3.11). While the support of the classifier’s distribution

p(ŷt|xt,φt−1) is set over the already seen classes, the estimator of p(yt|xt, Dt−1))

poses a probability on the creation of a new class. Thus, the losses in Eq. (3.10)

and Eq. (3.11) are high if the probability of a new class is high. Hence, the
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Figure. 3.1 General scheme of SAL

probability of querying (Eq. (3.13)) becomes high. We use the 0-1 loss funtion:

l(ŷt, yt) =

0 if ŷt = yt

1 otherwise
(3.14)

hence, the loss in Eq. (3.10) and Eq. (3.11) can be rewritten as follows:

L
(
p(ŷt|xt,φt−1), p(yt|xt, Dt−1)

)
= Eŷt∼p(ŷt|xt,φt−1)

[
Eyt∼p(yt|xt,Dt−1)[l(ŷt, yt)]

]
.

(3.15)

Since the support of the classifier’s distribution is over the already seen classes,

ŷt ∈ Ct−1 with Ct−1 is the set of classes discovered up until time t−1. On the other

hand, the estimator support includes the novel class, yt ∈ Ct−1∪{|Ct−1|+1}. Thus,

the loss is high if the probability of a new class
(
p(yt = |Ct−1|+1|xt, Dt−1)

)
is high

and the probability of querying becomes high. The steps of SAL are portrayed in

Fig.3.1. Similar to Chap. 2, SAL adopts the notion of budget; so that it can be

assessed against the active learning algorithms proposed in [1]. Details about this

notion can be found in Sec. 2.3.2.
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3.3 Estimator Model

In this section, we develop the model that will be used to estimate the distributions(
Eq. (3.10) and Eq. (3.11)

)
needed for SAL to work online. First, we give a brief

background on Dirichlet process (DP) which is the core of our model. DP is used

as a non-parametric prior in Dirichlet process mixture model (DPMM) which, in

contrast to parametric model, allows the number of components to grow, if nec-

essary, to accommodate the data. Second, we describe the proposed estimator

model and develop an online particle inference algorithm for it. While DPMM

estimates the marginal distributions, the conditional distribution is estimated by

an upgrade of DPMM. It accommodates labelled data using a stick-breaking pro-

cess [101] over the classes. These estimations are done on-the-fly by performing

online inference using the particle inference algorithm.

3.3.1 Dirichlet process

DP is one of the most popular prior used in Bayesian non-parametric modelling.

It was first used by the machine learning community in [102, 103]. In general,

stochastic process is probability distribution over a space of paths which describe

the evolution of some random value over time. DP is a family of stochastic pro-

cesses whose paths are probability distributions. It can be seen as an infinite-

dimensional generalization of Dirichlet distribution. In the literature, DP has

been constructed with different ways, the most well-known constructions are: in-

finite mixture model [103], distribution over distribution [104], Polya-urn scheme

[105] and stick-breaking [101]. For more details, interested reader is referred to

[106].

Figure 3.2 shows two graphical models, DP mixture model and the finite mixture

model with a number of clusters L which becomes an infinite mixture model when

L goes to ∞. Infinite mixture model is simply a generalization of the finite mix-

ture model, where DP prior with infinite parameters is used instead of Dirichlet

distribution prior with fixed number of parameters. The finite mixture model can

be represented by the following equations:
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(a) DP mixture model (b) Finite mixture model

Figure. 3.2 Graphical model

π|α0 ∼ Dirichlet(α0/L, ..., α0/L)

zi|π ∼ Discrete(π1, ..., πL)

θk|G0 ∼ G0

xi|zi,θ ∼ F (θzi) (3.16)

F (θzi) denotes the distribution of the observation xi given θzi, where θzi is the

parameter vector associated with component zi. Here zi indicates which latent

cluster is associated with observation xi. Indicator zi is drawn from a discrete dis-

tribution governed by parameter π drawn from Dirichlet distribution parametrized

by α0. We can simply say that xi is distributed according to a mixture of compo-

nents drawn from prior distribution G0 and picked with probability given by the

vector of mixing proportions π. The model represented by Eq. (3.16) above is a

finite mixture model, where L is the fixed number of parameters (components).

The infinite mixture model can be derived by letting L→∞, then π can be rep-

resented as an infinite mixing proportion distributed according to stick-breaking

process GEM(α0) [101]. Thus, Eq. (3.16) can be equivalently expressed according

to the graphical representation as follows:

G|α0, G0 ∼ DP (α0, G0)

θi|G ∼ G

xi|θi ∼ F (θi) (3.17)

where G =
∑∞

k=1 πkδθi is drawn from the DP prior. δθi is a Dirac delta function

centred at θi. Technically, DP is a distribution over distributions [104], where
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Figure. 3.3 Infinite mixture model

DP (G0, α), is parametrized by the base distribution G0, and the concentration

parameter α. Since DP is distribution over distributions, a draw G from it is a

distribution. Thus, we can sample θi from G. Back to Eq. (3.16), by integrat-

ing over the mixing proportion π, we can write the prior for zi as conditional

probability of the following form [107]:

p(zi = c|z1, ..., zi−1) =
n−ic + α0/L

i− 1 + α0

(3.18)

where n−ic is the number of data samples excluding xi that are assigned to com-

ponent c. By letting L goes to infinity we get the following equations:

p(zi = c|z1, ..., zi−1)→ n−ic
i− 1 + α0

p(zi 6= zj for all j < i|z1, ..., zi−1)→ α0

i− 1 + α0

(3.19)

For an observation xi with zi 6= zj for all j < i, a new component is created with

indicator zi = cnew. For more details about the process of obtaining the prior

distribution, the reader is referred to [107].

3.3.2 Proposed Model

For the sake of simplification, we start with an unsupervised clustering model,

then we add a new ingredient to the model in order to accommodate labelled data

resulting in a semi-supervised clustering model.
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3.3.2.1 Clustering

Figure 3.3 shows the infinite mixture model where π is drawn from a stick-breaking

processGEM(α) andG0 is a Normal-Inverse-Wishart distributionNIW (.|µ0,Σ0, k0, v0).

Where µ0 is the prior of the clusters’ means, Σ0 controls the variance among their

means, k0 scales the diffusion of the clusters means and v0 is the degree of freedom

of the Inverse-Wishart distribution.

Following [29], we introduce a state vector Ht that summarizes the data seen up

to time t. Hence, Ht = {zt,mt,nt, st} can represent all the statistics used by

the model. Here zt assigns the component generating xt, mt is the number of

components, nt is a vector of components cardinalities and st is the sufficient

statistics for each mixture component i.e., means su and scatter matrices sc.

Given the concentration parameter α0 and the prior distribution parameters {µ0,Σ0, k0, v0},
we aim at computing online the marginal distribution of the current data p(xt|Xt−1)

without the need for saving all data Xt−1 ≡ x1:t−1:

p(xt|Xt−1) =
∑
z1:t

p(xt|z1:t, Xt−1)p(z1:t|Xt−1) (3.20)

The estimation of p(xt|XUt−1) and p(xt|XLt−1) in SAL can be derived from Eq.(3.20)

by simply replacing Xt−1 by XUt−1 or XLt−1 .

p(z1:t|Xt−1) = p(zt|z1:t−1)p(z1:t−1|Xt−1) (3.21)

The first term of Eq. (3.20) can be written as follows:

p(xt|z1:t, Xt−1) =

∫
θ

p(xt|θ, zt)p(θ|z1:t, Xt−1) (3.22)

If zt refers to a new component, p(θ|z1:t, Xt−1) becomes equivalent to the prior

distribution p(θ|G0). Otherwise, zt refers to an already existing component. Then,

p(θ|z1:t, Xt−1) becomes equivalent to p(θ|szt,t−1, nzt,t−1, z1:t−1), where nzt,t−1 is the

number of data samples which have been assigned to component zt until time

t−1, szt,t−1 = {suzt,t−1, sczt,t−1} is the sufficient statistics i.e., mean and variance
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respectively.

suzt,t−1(z1:t−1) =

∑
zi=zt,i<t

xi

nzt,t−1

sczt,t−1(z1:t−1) =
∑

zi=zt,i<t

(xi − suzt,t−1)(xi − suzt,t−1)T (3.23)

Equation (3.22) can be solved given the sufficient statistics, the past assignments

and the model hyper-parameters. More details can be found in App. B.1. The

first term of Eq. (3.21) can be computed in the same way as Eq. (3.19):

p(zt|z1:t−1) ∝

nzt,t−1 zt is an existing cluster

α0 zt is a new cluster
(3.24)

The second term of Eq. (3.21), p(z1:t−1|Xt−1), is the probability of the different con-

figurations. Such configurations determine the different statistics represented by

Ht−1. Thus, p(Ht−1|Xt−1) has the same probability as the posterior p(z1:t−1|Xt−1).

We track this posterior online by approximating it with a set of (at maximum)

N particles. Upon the arrival of a new data point, the particles are extended to

include a new assignment zt assuming that the previous assignments are known

and fixed. Thus, the task is to update the posterior of the extended particles at

time t, p(Ht|Xt), given that the posterior at t− 1, p(Ht−1|Xt−1) is known. In or-

der to prevent combinatorial explosion, we use the re-sampling technique proposed

in [100] which retains the maximum N particles. We approximate the posterior

at time t in two steps:

Updating:

p(Ht|Xt) ∝
∫
Ht−1

p(Ht|Ht−1,xt)p(xt|Ht−1)p(Ht−1|Xt−1) (3.25)

Given the N particles along with their weights, p(Ht−1|Xt−1) =
∑N

i=1w
(i)
t−1δ(Ht−1−

H
(i)
t−1), the update can be written as follow.

p(Ht|x1:t) ∝
N∑
i=1

p(Ht|H(i)
t−1,xt)p(xt|H

(i)
t−1)w

(i)
t−1 (3.26)

The solution of the second term of Eq. (3.26) can be computed in a similar way

to Eq. (3.22) and Eq. (3.24). Following the update step, the number of resulting
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particles for each H
(i)
t−1 equals to the number of existing components m

(i)
t−1 + 1.

The new assignment zt expresses the different configurations of the new particles.

Therefore,

p(H
(i2)
t |H

(i)
t−1,xt) = p(zt = j|H(i)

t−1,xt)

∝ p(xt|zt = j,H
(i)
t−1)p(zt = j|H(i)

t−1) (3.27)

We use Cantor pairing function to uniquely encode the jth assignment and the

ith particle to a single natural number:

i2 = Ω(i, j)

Ω(i, j) =
1

2
(i+ j)(i+ j + 1) + j (3.28)

By solving Eq. (3.27), we determine the weights of the new particle wi2t . Equation

(3.27) can be solved in a similar way to Eq. (3.22) and Eq. (3.24). The elements

of the new state vector H
(i2)
t are updated as follows:

H
(i2)
t =



z
(i2)
t = j j is an existing component

n
(i2)
j,t = λn

(i)
j,t−1 + 1

n
(i2)
k,t = λn

(i)
k,t−1 ∀k 6= j, k ≤ m

(i)
t

su
(i2)
j,t =

λn
(i)
j,t−1su

(i)
j,t−1+xt

n
(i)
j,t

sc
(i2)
j,t = λsc

(i)
j,t−1 + n

(i)
j,t−1su

(i)
j,t−1su

(i)T
j,t−1

−n(i)
j,tsu

(i)
j,tsu

(i)T
j,t + xtx

T
t

z
(i2)
t = m

(i)
t−1 + 1 j is a new component

m
(i2)
t = m

(i)
t−1 + 1

n
(i2)
j,t = 1

n
(i2)
k,t = λn

(i)
k,t−1 ∀k ≤ m

(i)
t−1

su
(i2)
j,t = xt

sc
(i2)
j,t = 0

(3.29)

where λ is a forgetting factor which allows the components to adapt with changes.

Having approximated all the terms of Eq.(3.26), we end up with M =
∑N

i=1(m
(i)
t−1+

1) new particles along with their weights w
(i2)
t . So, we move to the next step which
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Figure. 3.4 Proposed semi-supervised clustering model

reduces the number of created particles to a fix number N .

Re-sampling:

We follow the re-sampling technique proposed in [100] which discourages the less-

likely particles (configurations) and improves the particles that explain the data

better. It keeps the particles whose weights are greater than 1/c and re-samples

from the remaining particles. The variable c is the solution of the following equa-

tion:
M∑
i2=1

min{cw(i2)
t , 1} = N (3.30)

The weights of re-sampled particles are set to 1/c and the weights of the particles

greater than 1/c are kept unchanged.

Next, we consider the labels by proposing stick-breaking prior over the classes.

3.3.2.2 Semi-supervised classifier

The stick-breaking component assignment is the same as the Gaussian component

assignment. That is, every Gaussian component is associated with a stick-breaking

component where the variable zt controls the components assignment (see Fig.3.4).

We propose to include the classes information in the state vector Ht so that it

becomes H ′t = {Ht,n
′
t}, where n′t is a matrix of the number of different classes

assigned to each component. Hence H ′t comprises all the statistics used in the

model. Assume that at time t, we need to predict the distribution over yt given
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all the data and their labels seen so far.

p(yt|xt, Dt−1) =
∑
zt

p(yt|zt, Dt−1)p(zt|Dt−1,xt). (3.31)

The first term of Eq. (3.31) can be computed in a similar way to Eq. (3.24), where

zt selects the stick-breaking component generating yt. Hence, the probability of yt

depends only on the data assigned to component zt. More details can be found in

App. B.2.

p(yt|zt, Dt−1) ∝

n′zt,yt,t yt is an existing class

α1 yt is a new class
(3.32)

where n′zt,yt,t refers to the number of the data samples which are assigned to com-

ponent zt and have label yt at time t. So, to compute Eq. (3.32), the distribution

of the labels to the data in each component must be memorized. The second term

of Eq. (3.31) can be written as follows:

p(zt|xt, Dt−1) =
∑
z1:t−1

p(zt|z1:t−1,xt, Dt−1)p(z1:t−1|xt, Dt−1) (3.33)

p(zt|z1:t−1,xt, Dt−1) ∝ p(xt|z1:t, Dt−1)p(zt|z1:t−1) (3.34)

p(z1:t−1|xt, Dt−1) ∝ p(xt|z1:t−1, Dt−1)p(z1:t−1|Dt−1) (3.35)

Equation (3.33) can be solved by following similar steps to Eq. (3.20) but with

additional observation YLt−1 . Hence, p(xt|z1:t, Dt−1), p(xt|z1:t−1, Dt−1) is solved

by following the same steps in Eq. (3.22) after replacing Ht−1 by H ′t−1. The

second term of Eq. (3.35), p(z1:t−1|Dt−1), has the same probability as the posterior

p(H1:t−1|Dt−1). Thus, similar to Eq.(3.26), the solution of Eq. (3.31) depends only

on the elements of the state vector H ′t along with its posterior distribution. We

track this posterior online. Similar to Sec. 3.3.2.1, we approximate the posterior at

time t by a set of N weighted particles using two steps; updating and re-sampling.

The re-sampling step is the same as in Sec. 3.3.2.1. The updating step follows the

same way:

p(H ′t|Dt) ∝
N∑
i=1

p(H ′t|H
′(i)
t−1,xt, yt)p(xt, yt|H

′(i)
t−1)w

′(i)
t−1 (3.36)

p(H
′(i2)
t |H ′(i)t−1,xt, yt) = p(zt = j|H ′(i)t−1,xt, yt)

∝ p(xt, yt|zt = j,H
′(i)
t−1)p(zt = j|H ′(i)t−1) (3.37)
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p(xt, yt|zt = j,H
′(i)
t−1) = p(xt|zt = j,H

′(i)
t−1)p(yt|zt = j,H

′(i)
t−1)) (3.38)

The second term of Eq.(3.37) is computed in Eq.(3.24). The first and second

terms of Eq. (3.38) can be solved in the same way as in Eq. (3.22) and Eq. (3.32)

respectively. The second term of Eq. (3.36) can be written as follows:

p(xt, yt|H ′(i)t−1) =
∑
zt

p(xt, yt|zt, H ′(i)t−1)p(zt|H ′(i)t−1) (3.39)

The elements of the new state vector are updated in the same way as in Eq.(3.29):

H
′(i2)
t =



H
(i2)
t j is an existing component

n
′(i2)
j,yt,t

= λ′n
′(i)
j,yt,t−1 + 1

n
′(i2)
k,t = λ′n

′(i)
k,t−1 ∀k 6= j, k ≤ m

(i)
t

H
(i2)
t j is a new component

n
′(i2)
j,yt,t

= 1

n
′(i2)
k,t = λ′n′k,t−1 ∀k ≤ m

(i)
t−1

(3.40)

The estimation of p(yt+1|xt+1, Dt)) in SAL is computed by Eq. (3.31). The es-

timation of p(xt|XUt−1) and p(xt|XLt−1) are computed by Eq. (3.20). We main-

tain three state vectors, one for the unlabelled data Hu
t−1, one for the labelled

data H l
t−1 and one for all the data samples and their labels seen up to time

t − 1, H ′t−1. Hence, three estimators represented by state vectors associated

with their weights: {(H ′t, w′t), (Hu
t , w

u
t ) and (H l

t , w
l
t)} and their hyper-parameters:

{(α0, α1,µ0,Σ0, k0, v0), (αu0 , α
u
1 ,µ

u
0 ,Σ

u
0 , k

u
0 , v

u
0 ) and (αl0, α

l
1,µ

l
0,Σ

l
0, k

l
0, v

l
0)} are main-

tained.

Having introduced the AL approach in Sec. 3.2 and developed the needed estimator

model in Sect 3.3, the full details of the algorithm are provided in Alg. (2).

3.4 Experiments

In this section, we present the algorithms that SAL is compared against, then we

describe the datasets on which the experiments are carried out. SAL is compared
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Algorithm 2 Steps of SAL

1: Input: data stream, hyper-parameters of the estimators, forgetting factors λ
and λ′

(
Eq. (3.29) and Eq. (3.40) resp.

)
, the input of the classifier, forgetting

factor β (Eq. (3.12)), budget B, wnd (Eq. (2.44)), the maximum number of
particles N

2: initialize: the weight of the first particle of all the three estimators to 1,
the number of components for all the estimators’ state vector to 0, f̂t = 0
(Eq. (2.44)), A0 = 0 (Eq. (3.12)), t = 1

3: while (true) do
4: t← t+ 1,
5: Receive xt
6: if b̂t < B

(
Eq. (2.44)

)
{enough budget} then

7: compute at = p(qt = 1|xt, Dt−1,φLt−1
) that refers to the probability of

querying xt
(
Eq. (3.13)

)
8: qt ∼ Bern(at)
9: if qt = 1 {querying} then

10: yt ← query(xt)
11: Update the classifier (represented by its vector parameter φt−1)
12: Update the estimator of the labelled data distribution

(
represented

by its state vector’s particles along with their weights (H
l(i)
t−1, w

l(i)
t−1)

)(
Eq. (3.26) and Eq. (3.29)

)
13: Update the estimator of the conditional distribution

(
represented

by its state vector’s particles along with their weights (H
′(i)
t−1, w

′(i)
t−1)

)(
Eq. (3.36) and Eq. (3.40)

)
14: else
15: Classify the instance xt using the classifier (base learner represented by

its vector parameter φt−1)
16: Update the estimator of the unlabelled data distribution

(
represented

by its state vector’s particles along with their weights (H
u,(i)
t−1 , w

u,(i)
t−1 )

)(
Eq. (3.26) and Eq. (3.29)

)
17: end if
18: end if
19: Compute f̂t+1

(
Eq. (2.45)

)
20: end while

against two types of stream-based AL approaches. The first set of approaches

introduced in [1] takes into consideration the challenges of data stream, namely

the infinite length of the data and concept drift, but ignores concept evolution.

These methods are:

- VarUn: Variable Uncertainty, stream-based AL.

- RanVarUn: Variable Randomized Uncertainty, stream-based AL.
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We also consider a baseline random sampling: Rand. The aim of this comparison

is to show how SAL performs against these methods just cited (with restricted

budget). Fortunately, these methods are integrated in the MOA data stream

software suite [108] which helps carry out the experiments without the need to

implement them.

The second set of stream-based AL approaches are developed to cope with concept

drift and concept evolution [2, 3]. However, they do not explicitly handle concept

drift as well as the sampling bias problem. We consider the following:

- lowlik : Low-likelihood criterion specialized for quick unknown class discovery

[2].

- qbc: Query-by-Commitee, a stream-based version proposed by [3].

- qbc-pyp: Stream-based joint exploration-exploitation AL proposed in [2].

These methods have shown good class discovery performance on unbalanced data

including the datasets that we use in this study. Hence, by comparing against

them, we highlight the efficiency of SAL in dealing with concept evolution in

challenging setting where the class of the datasets are highly unbalanced. We

set up the same settings described in [3]. It is worth noting that although these

methods are stream-based AL, they memorize all labelled samples and re-use them

at each iteration for updating the model. On the contrary, SAL does not reuse past

instances in a strict stream-based learning environment. That is, its complexity

does not grow with time.

As we have shown previously, SAL is flexible and any learner (classifier) can be

plugged in. Here, we use online Naive Bayes as a learner like in [1]. For all the

experiments, the number of particles N is set to 5. Normally, as we increase

the number of particles, the estimator model gives better estimation, but the

computation becomes heavier.

3.4.1 datasets

SAL is evaluated on six real-world benchmark datasets widely used in the AL area:

Thyroid, Covertype (Forest), KDDCup 99 network intrusion detection (KDD),

Electricity, Airlines and MNIST handwritten digits (Digits). The first three of
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Table. 3.1 Benchmark Datasets properties used for comparing SAL against [1]

Datasets N d Nc S% L% E CD CE
Electricity 45312 8 2 42 58 0.98 1 0
Airlines 53938 7 2 36 64 0.94 1 0
Forest 10000 55 7 12.6 16.2 1 0 1
Digits 13184 25 10 0.1 50.05 0.62 0 1

Table. 3.2 Benchmark Datasets properties used for comparing SAL against [2,
3]

Datasets N d Nc S% L% E CD CE
Thyroid 7200 21 3 2.47 92.47 0.28 0 1
Forest 5000 10 7 3.56 24.36 0.94 0 1
KDD 33650 41 10 0.04 51.46 0.17 1 1
Digits 13184 25 10 0.1 50.05 0.62 0 1

these datasets are downloaded from UCI repository [109]. Electricity [88] and

Airlines [89] are popular real-world benchmark used in evaluating classification in

the context of evolving data streams. Digits is a well-known vision dataset1.

These datasets are presented in Tab.3.1 and Tab.3.2, where N is the number of

instances, d is the number of features/attributes, Nc is the number of classes,

S% and L% are the proportions of smallest and largest classes respectively, E

represents the class entropy, CD and CE flag if the data experiences concept

drift and concept evolution. According to [1], Electricity data experiences more

frequent and abrupt drift than Airlines data. Both enjoy well-balanced binary

classes (high entropy). Such properties will help manifest the capability of SAL

to efficiently cope with concept drift and sampling bias. Although Forest data

enjoys high class entropy, its classes are unbalanced through time; Hence, it ex-

periences concept evolution. Thyroid and KDD show multiple classes in naturally

unbalanced proportions. Such property will help manifest the capability of SAL to

efficiently discover the unknown classes. Digits dataset is used in its preprocessed

version [110]

In this work, we use the full Thyroid and Electricity datasets but only portions

of Forest, KDD and Digits datasets. When comparing against the first type of

competitors (VarUn, RanVarUn and Rand) [1], 10000 and 53938 (10%) instances

are used from Forest (hight entropy) and Airlines datasets respectively. As for the

second type of competitors (lowlik, qbc and qbc-pyp) [2, 3], we follow the setting

in [3] where 33650 and 5000 instances are used from KDD and Forest respectively.

1http://yann.lecun.com/exdb/mnist/
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For both types of competitors, 13184 instances are used from Digits data. These

settings are observed to ensure a fair comparison of SAL against the competitors.

All datasets were collected and saved in flat files. To simulate streams from these

files, SAL reads through the data in the same order it was collected. It processes

the samples sequentially before they are discarded. If SAL decides to query a

certain sample, this latter is sent along with its label to the online classifier in

order to update itself. Note that it is assumed that the ground truth is available

immediately after a query is made.

3.4.2 Classification performance

In this section, we evaluate SAL against the methods presented in [1] on all datasets

(see Tab. 3.1) that have well-balanced classes (E is high, except for Digits). Such

datasets will help manifest the classification performance of SAL compared to

the others. Following the competitors setting, the evaluation of SAL is based

on a prequential methodology which is given as follows: Each time we get an

instance, we first compute the probability of querying before using it to train the

classifier if queried. Otherwise, it is used for testing the classifier. The classification

performance of SAL is measured according to the average accuracy which is the

ratio of correctly classified testing samples:

AA =

∑
i∈T 1(ŷi,yi)

|T |
(3.41)

1(ŷi,yi) =

1 if ŷi = yi

0 otherwise
(3.42)

where the elements of T are the indices of all testing samples, |T | is the total

number of testing samples. All results are averaged over 30 runs in order to

capture the real performance of SAL.

3.4.2.1 Settings

The hyper-parameters of the estimator model are fixed apriori (see Tab. 3.3). In

order to allow vague prior, we set α0, αu0 and αl0 to 1. The means u0, uu0 and ul0 are

set to 0. The covariance matrices Σ0, Σu
0 and Σl

0 are roughly set to be as large as
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Table. 3.3 Learning rate parameters

Datasets Thyroid Forest KDD Electricity Airlines Digits
λ 0.8 0.6 0.7 0.7 0.7 0.8
λ′ 0.7 0.7 0.6 0.6 0.6 0.7

Table. 3.4 SAL hyper-parameters setting

Hyper-parameters α0 α
u
0 α

l
0 µ0 µ

u
0 µ

l
0 v0 v

u
0 v

l
0 k0 k

u
0 k

l
0

Values 1 0 d+ 2 0.01

the dispersion of the data. The degree of freedom of the Wishart distributions v0,

vu0 , vl0 must be greater than d. We set them to d + 2. The hyper-parameters k0,

ku0 and kl0 are empirically set to 0.01. Because at this stage, we are interested only

in the classification error, the hyper-parameter α1 which controls the prior over

the classes is set to a low value. It can be seen from Eq. (3.32) that when α1 is

low, the model tends to put low probability on the emergence of new classes. We

empirically set it to 0.01. The effect of the forgetting factors λ and λ′ in Eq.(3.29)

and Eq.(3.40) on SAL’s performance is studied and the parameters are set to the

values that give the best performance (see Table 3.4). Note that we also consider

the best results of the competitors.

3.4.2.2 Performance Analysis

Following similar setting in [1], we carry out the experiments on the five datasets

shown in Tab. 3.1 using different budget values. Figure 3.5 shows the classification

accuracy of both SAL and the competitors for different values of budget B.

Using budget less than 0.05, SAL outperforms all competitors on the four datasets:

Electricity, Forest, Airlines and Digits datasets. Such superiority with low budget

is a very strong point for SAL as it aligns with the goal of AL which is high

accuracy with low budget. SAL shows the best performance on Electricity data

for all budgets except for 0.1 where VarUn slightly outperforms SAL. On Airlines

and Forest datasets, SAL has the best performance when using budget less than

0.3. SAL also gives the best results on Digits dataset using budget less than 0.05

or more than 0.3.

As stated earlier, Airlines and Electricity datasets suffer from concept drift. The

concept drift occurring for Airlines datasets is less frequent and softer than that of

Electricity dataset [1]. Having frequent aggressive drift makes sampling bias more

likely to occur. Indeed, AL’s confident sampling assessment is more likely to miss
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(a) Electricity (b) Forest

(c) Airlines (d) Digits

Figure. 3.5 Classification performance

(a) Querying rate (b) Drift rate

Figure. 3.6 Active learning behaviour along the stream for Electricity

drifting valuable samples. Thus, the contrary behaviour between SAL’s accuracies

for Electricity and Airlines datasets as budget exceeds 0.2 could be explained

by SAL’ capability of coping with concept drift and sampling bias. As querying

budget of Electricity data exceeds 0.2, the accuracy of competitors converges to

a certain value while SAL’s accuracy increases linearly. That is, the competitors

do not exploit the budget properly. Since drift of Airlines dataset is less tricky,



66

competitors are able to handle it when higher budget is granted. However, for low

budget SAL enjoys the best performance. Figure 3.6 shows SAL behaviour along

the stream of Electricity dataset with budget fixed at 0.4. Figure. 3.6a presents

the prequential labelling rate, and Fig.3.6b presents the prequential drift rate. To

smooth the curve, a fading factor of 0.999 is used. The drift is detected using the

drift detection method (DDM) proposed by [30]. We can notice the correspondence

between the drift and querying rate. SAL tends to query less intensively when drift

rate is low. However, it is not only the drift that drives SAL querying behaviour

and it is not guaranteed that DDM detects all occurring drifts.

Note that the reasons why SAL outperforms the competitors are not only because

of its ability to explicitly handle sampling bias problem. SAL’s superiority is

rooted in the fact that it tries to directly minimise the expected future error

instead of employing heuristic AL criteria as the competitors do. Forest and Digits

datasets do not involve concept drift, however, SAL provides a good classification

performance compared to the competitors.

To sum up, we highlight two main differences between SAL and the competitors

AL approaches. Firstly, SAL explicitly deal efficiently with the problem of sam-

pling bias. On the other hand, RanVarUn combines naive randomization with

uncertainty criterion to deal with drift. By doing so, the budget is wasted on

some random queries. VarUnc does not handle sampling bias problem. Secondly,

SAL takes the importance of data marginal distribution into account; while the

competitors do not.

3.4.3 Class discovery performance

In this section, we evaluate SAL against the methods in [2, 3] on datasets that

show multiple classes in naturally unbalanced proportions (see Tab. 3.2). Such

datasets will help manifest the class discovery performance of SAL. Following the

competitors setting, the class discovery performance of SAL is measured using the

average class accuracy [110] which is given as:

AAj =

∑
i∈Tj 1(ŷi,j)

|Tj|
(3.43)
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where the elements of Tj are the indices of all testing samples coming from class

j.

ACA =

∑
j∈C AAj

|C|
(3.44)

where the elements of C are the classes. It is worth mentioning that the final class

accuracy is fairly penalized when there are misclassifications in small classes. All

results are averaged over 15 runs with two-fold cross-validation.

3.4.3.1 Settings

SAL takes the data density into account when querying. It might then consider

the data representing small classes as outliers or noise and therefore never queries

them. To avoid such a scenario and to improve the class discovery performance of

SAL, we increase the importance of the small classes by integrating online their

effect in the loss function L(.). In other words, we weight the loss according to

the size of the classes seen at time t. Thus, the loss in Eq.(3.14) is formulated as

follows:

l(ŷt, yt) =

0 if ŷt = yt

1
s(yt)

otherwise
(3.45)

where s(yt) represents the importance of the class. It is proportional to the number

of samples from a class yt. To consider the dynamic nature of the data, we use a

forgetting factor instead of counting all the samples seen so far:

nb = fr ∗ nb+ 1yt (3.46)

where fr is the forgetting factor empirically set to 0.99, nb is a vector whose

elements are the size of discovered classes, 1yt is a vector whose elements are zeros

expect for the element indexed by yt which is equal to 1.

s(yt) ∝

nbyt ∀yt ∈ Ct−1

1 yt is a new class
(3.47)

where Ct−1 is the set of discovered classes at time t− 1.
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Table. 3.5 Number of classes discovered by different methods

No Datasets Nc lowlik qbc qbc− pyp SAL
1 Thyroid 3 2.92 2.68 3 3
2 Forest 7 7 7 7 7
3 KDD 10 9.76 3.32 8.71 8
4 Digits 10 8.84 8.84 7.76 8.5

Table. 3.6 Average class accuracy achieved using different methods

No Datasets lowlik qbc qbc− pyp SAL
1 Thyroid 54.62 50.07 58.45 59.8
2 Forest 57.13 58.68 58.45 58.71
3 KDD 51.21 19.42 47.35 45.14
4 Digits 48.94 58.04 50.27 55.42

Overall 53.73 46.55 53.63 54.77

All the parameters of the estimator model excluding α1 are set to the same values

as in the previous section (see Tab. 3.3). Because α1 controls the prior over the

classes, it has impact on the class discovery performance. The model tends to put

high probability on the emergence of new classes when α1 is high (See Eq.(3.32)).

We studied its effect on each dataset. So, it is set to 0.5 for Thyroid and KDD and

0.4 for Forest and Digits. We can see that the value of α1 for Forest and Digits

datasets is less than the others. Such a difference can be interpreted as a result of

the less unbalance classes in the Forset and Digits datasets compared to Thyroid

and KDD datasets.

3.4.3.2 Performance Analysis

In these experiments, we follow the same setting as in the competitors [2, 3], where

the maximum number of queries is set to 150 instances (SAL takes the budget ratio

as input).

The results of the experiments are shown in Tab.3.5, Tab.3.6 and Fig. 3.7. Table

3.5 presents the number of classes discovered by the different methods. Table 3.6

presents the average class accuracy ACA achieved using the different methods.

Figures 3.7 comprises four sub-figures; each one shows the discrepancy between

ACA of each method and the highest ACA among the other methods. The dis-

crepancy is negative when the method does not have the highest ACA among all

methods.



69

(a) SAL (b) qbc-pyp

(c) qbc (d) lowlik

Figure. 3.7 Comparison of the class discovery performance

The results show that SAL provides a comparable class discovery performance

compared to the competitors. SAL was able to discover all the classes for Thyroid

and Forest datasets. For the KDD and Digits data, around 8 out of 10 and 8.5

out of 10 classes are discovered respectively (see Tab.3.5). SAL’s average class

accuracy is the best on the Forest and Thyroid datasets which may be explained

by the fact that the proportion of the smallest classes are higher than the others.

That might be a result of SAL consideration of the data density which has shown

good classification performance in the previous section. As for Digits, SAL has

the second best results among the competitors. SAL has the third best result

on KDD. This result may be explained by the fact that the data is severally

unbalanced (percentage of the rarest class is around 0.04% and entropy is 0.17).

On the other hand, SAL essentially selects the data instances that should reduce

the error regardless of their classes percentage. SAL takes the density of the data

samples into account, thus, instances from very rare classes might be deemed as

outliers even if they are well isolated in the feature space. Nevertheless, SAL has

the best results on two datasets (Thyroid and Forest); while each competitor gives

the best result on one dataset (see Fig. 3.7).

To sum up, the reason why SAL’s class discovery performance is not the best on all

datasets can be related to the fact that SAL avoids outliers. This avoidance along

with the sampling bias mechanism have led to strong classification performance.

Nevertheless, the class discovery performance is comparable to strong competitors
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which some of them are specialized for detecting the outliers as novel classes. SAL

can be reliably used for novelty detection tasks for datasets which are moderately

unbalanced. Such datasets can be seen in applications where there are many

normal and abnormal classes rather than one big normal class and many rare

abnormal classes like the case of KDD.

3.5 Conclusion

We propose an active learning algorithm, SAL, for data streams to deal with data

streams challenges: infinite length, concept drift and concept evolution. SAL labels

samples that reduce the future expected error in a completely online setting. It

also tackles the sampling bias problem of active learning.

Experimental results on real-world data are very good in general. Unfortunately,

SAL shows some limitations for class discovery when applied to highly unbalanced

data. However, the main goal of the proposed algorithm is for classification in

presence of unknown number of classes not specifically for unbalanced data. Fur-

thermore, the performance of SAL with respect to class discovery is comparable

to the state-of-the-art and is even better when the classes are not severely unbal-

anced. To further investigate this problem with unbalanced data, we introduce

in Chap. 4 an information-based AL algorithm capable of coping with concept

evolution in data streams involving classes of severely unbalanced proportion.



Chapter 4

Active Learning for Sequential

Data Streams: An Application to

Human Activity Recognition

The contribution of this chapter is two-fold. Firstly, we propose a novel online

AL algorithm that can handle concept evolution in data stream involving classes

of unbalanced proportions. Secondly, we propose an algorithm equipped with the

proposed AL algorithm to deal data streams with sequential temporal dependency.

The proposed AL algorithm is Bayesian stream-based; hence we call it BSAL. It

can cope with both concept drift and concept evolution. In contrast to BAL and

SAL which adopt decision-based AL approaches, BSAL is an information-based

AL algorithm. While BAL and SAL rely on the prediction error, BSAL selects

data samples which reduces the expected future error such that the loss involves

the model parameter. Therefore, there is no need to heuristically modify the

loss function as done in SAL to account for the new classes. More importantly,

BSAL is more efficient at handling concept evolution in data streams involving

classes of severely unbalanced proportions. The reason is that BSAL selects the

data instances that lead to gaining information. SAL, on the contrary, essentially

selects the data instances that contribute to the reduction of the error regardless

of their classes percentage (see Chap. 3). While very rare novel classes are likely to

be considered as outliers by SAL (they are not expected to have significant impact

on the error), they bring significant information gain.

71
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In this chapter, we also propose an approach to apply AL to a real-world ap-

plication involving a sequential data stream, namely human activity recognition

(HAR). It is highly relevant to many real-world domains like safety, security, and in

particular healthcare. The current HAR technology faces many challenges among

which : (1) the engineering of input features, (2) coverage of the training activity

data, and (3) the annotation (the labelling) of activity data. In this chapter, we

propose a new approach that consists of novel algorithms to deal with each of these

problems. In particular, we apply a Conditional Restricted Boltzmann Machine

(CRBM) to extract low-level features from unlabelled raw high-dimensional activ-

ity input. Because of the changes that may affect the sensor layout embedded in

the living space and the change in the way activities are performed, we regard sen-

sor data as a stream and human activity learning as an online continuous process.

In such process the leaner can adapt to changes, incorporates novel activities and

discards obsolete ones. Equally challenging, labelling sequential data with time

dependency is highly time-consuming and difficult. Hence, the importance of AL

algorithm is illustrated. It queries the user/resident about the label of particular

activities in order to improve the model accuracy. The resulting approach will then

tackle the problem of activity recognition using a three-module architecture com-

posed of a feature extractor (CRBM), an online semi-supervised classifier (OSC)

based on Dirichlet process mixture model (DPMM) equipped with BSAL.

The organization of this chapter is as follows. Section 4.1 presents an introduction.

We discuss the related work and the motivation behind our work in Sec. 4.2. We

describe OSC in Sec. 4.4. BSAL is described in Sec. 4.5. Empirical evaluation is

presented in Sec. 4.6. Section. 4.7 concludes this chapter.

4.1 Introduction

The recent advances of sensor technologies have led to affordable sensors with ex-

cellent performance, low weight, and low power consumption. In smart-homes,

these sensors are widely deployed to collect data for monitoring purposes. From

such data, useful knowledge can be extracted allowing for a variety of applications.

In many of these applications, human activity recognition (HAR) is an essential

task, such as health-care [111, 112], ambient assistive living [69, 113–116] and

surveillance-based security [117–119]. There are three main types of HAR, sensor-

based [120], vision-based [117] and radio-based [121]. Sensor-based methods rely
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on a large number of pervasive distributed sensors. Vision-based methods utilise

image and video processing techniques to detect human activities. Radio-based

methods use signal attenuation, propagation, and fading characteristics to detect

human activities. In this work, we are interested in pervasive sensor-based meth-

ods, which, unlike the other two classes of methods, do not work under a limited

coverage area, enjoy the merits of information privacy, use widely available and

affordable sensors and do not expose the human body to radiation that may raise

health concerns.

Recently, the field of deep learning (DL) has made a huge impact and achieved

remarkable results in computer vision, natural language processing, and speech

recognition. Yet it has not been fully exploited in the field of AR. DL provides an

effective tool for extracting high-level feature hierarchies from high-dimensional

data. Each layer of the deep architecture performs a non-linear transformation on

the outputs of the previous layer. Thus, through DL, the data is represented in the

form of a hierarchy of features, from low-level to high-level [122, 123]. Instead of

relying on heuristic hand-crafted features, DL learns to extract features that allow

for more discriminative power. Furthermore, in our experimental setting, hundreds

of sensors, wearable and distributed in the environment, are deployed resulting in

high-dimensional data. Hence, designing hand-crafted features is extremely hard

and time-consuming. The variation of the sensor network layouts in different

homes makes the task even harder if portability of the system is desired.

A key advantage of DL is that it can be trained from unlabelled data which is often

massively available. In this work, we tackle the HAR problem by pre-trainning a

Conditional Restricted Boltzmann Machine (CRBM) [124] to learn generic features

from unlabelled raw high-dimensional sensory input. CRBM has been successfully

applied in pattern recognition [124–130]. In this work, we apply CRBM to extract

generic features from the sensory input. More details on CRBM are provided in

Sec. 4.3.

A major contribution of this work is the application of online and active learning

for HAR. To the best of our knowledge, this study is the first in the field to

propose online learning to train a HAR algorithm. The HAR approaches have

dominantly focused on traditional offline learning algorithms which assume that

any new activities can be recognised using trained model on previously collected

data. This is a strong assumption as it ignores natural changes in individuals’

activity patterns and sensory measurements. In real-world situations, future data
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deviates from historical data because of changes in the activities induced by the

resident. Such changes take place for several reasons: the way the people perform

activities changes over time, their health conditions change, they perform novel

activities, etc. We adopt an online learning algorithm to cope with these changes

over time; hence, we view the sensory input as continuous stream. In the vast

majority of HAR approaches, training data is assumed to be manually annotated

(labelled). Such manual annotation is extremely hard and time-consuming task.

Furthermore, in the online setting, the data stream evolves, meaning that fresh

labels are needed from time to time. Hence, using AL is a very practical solution.

In the context of HAR, AL algorithm can query the user (individual carrying

out the activities) about ambiguous or unknown activities in order to guide the

learning process when needed.

In this work, we propose a novel and original architecture composed of an online

semi-supervised classifier (OSC), stacked on the top of the deep learning (DL)

feature extractor, CRBM, and equipped with an AL strategy. Similar to the

model proposed in Chap. 3, OSC is based on the Dirichlet process mixture model

(DPMM) [98] with a stick-breaking prior [99] over the classes. The basic difference

is that OSC does not assume that the classes distribution of each instance is

selected by the same variable selecting its cluster. OSC is a class-specific mixture

model, where a mixture model is associated with each class. As in Chap. 3, we

employ a particle filter method [29, 100] to perform online inference.

We also propose a Bayesian stream-based AL strategy called (BSAL). BSAL is an

information theory based AL which aims at reducing the space of hypothesis by

querying samples according to how much they are expected to reduce the model

uncertainty [6]. On the contrary, decision theory based AL aims at reducing the

prediction error by querying samples according to how much they are expected to

reduce the future classification error [96]. While the two approaches seem quite

distinct, they both aim at identifying data instances that give the largest reduction

of the expected loss function Eq. (4.21). Thus, they mainly differ in the used type

of loss functions. While decision theory based AL relies on the prediction error,

information theory based AL losses involve the model parameter. One commonly

used loss is the entropy of the model distribution.

Our proposed BSAL uses the Kullback-Leibler (KL) divergence as loss function

(see Sec.4.5). We adopt an information based AL approach because it fits the

Bayesian approach of the proposed semi-supervised classifier OSC (see Sec 4.4).
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Figure. 4.1 General Architecture of CRBM-OSC-BSAL

Furthermore, there is no need to heuristically modify the loss function to account

for the new classes because the loss involves the model distribution and not the

prediction error. BSAL works completely online and is able to cope with the

challenges associated with data streams, including the possible emergence of new

classes. Since, BSAL selects the data instances that lead to gaining information, it

is likely to query novel rare classes. Indeed, integrating these classes will result in

significant changes in the model parameter. Hence, BSAL is capable of handling

concept evolution even in data streams involving classes of severely unbalanced

proportions.

Figure 4.1 shows a simple sketch of the proposed architecture (CRBM-OSC-

BSAL).

4.2 Related Work and Motivation

Hand-crafted features have been the focus of most sensor-based HAR literature [131,

132], in which distinctive features are created or selected to train HAR systems.

Statistical features such as mean, variance are utiliszed by [120, 133–137] as distinc-

tive features of the sensory input. Such features are problem-specific and require

the designer to understand the underlying problem to select and weight the most
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effective features using the expensive trial and error process. Any variation of the

environment implies re-crafting the features, which is inadequate.

On the contrary, DL can be used to learn discriminative features from the data

automatically and in a systematic way. DL learns different layers of features from

low-level generic features to high-level features. DL has made a tremendous impact

on different fields such as computer vision and natural language processing [138].

Recently, few studies have considered deep learning in sensor-based AR [139–143].

However, all of these studies work offline.

The great majority of HAR research is based on offline learning algorithms, in

which the adaptation of the learner after the training is not possible. Recently,

authors in [144] used online learning for HAR where the data is considered as a

stream and where AL was applied to query activity labels when necessary. How-

ever, the proposed approach requires labelled training set. In fact, there is two

phases: (1) offline training phase and (2) online recognition and adaptation phase.

In the offline phase, the model is built from a set of annotated sensory data that

represents different activities. In the online phase, the recognition of unlabelled

streaming data is performed. In this approach, the number of activities is assumed

to be fixed. The proposed model does not extract the features and instead directly

uses clustering technique.

Authors in [145] proposed to address some of HAR challenges such data annotation

through active learning. However, instead of using online learning to adapt the

model when necessary, transfer learning is used. Models are trained on different

collected houses and persons where transfer learning is employed to share the

knowledge among these models. Authors also apply offline AL to obtain labels.

However, any change is assumed to be represented in the training data, but on

a large scale where different houses and different persons are covered. Hence,

any change not occurring in the training data (e.g., emergence of novel activities)

cannot be handled.

A similar architecture to ours is proposed in [146], where a hierarchical non-

parametric Bayesian model is plugged on top of a deep network. The deep network

learns low-level generic features, then the hierarchical non-parametric Bayesian

model learns high-level features that capture correlations among low-level fea-

tures. However, the model works offline, does not use AL and does not process

time-series data.
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The present work goes beyond the sate-of-the-art methods by addressing the chal-

lenges of HAR in the smart-home setting with each component of the CRBM-

OSC-BSAL architecture coping with one specific challenge.

1. CRBM allows to capture features that are less sensitive to the subtleties of

sensory input. It learns generic features from the data in unsupervised way.

2. OSC helps overcome dynamic changes within the same environment. It

allows CRBM-OSC-BSAL to be self-adaptive. OSC works online and adapts

to change.

3. BSAL helps overcome hard and time-consuming activities annotation. It

allows CRBM-OSC-BSAL to be self-exploring. BSAL is the first AL that

directly reduces the expected loss online, while considering the challenges of

data streams.

Note that this proposed architecture is generic, not dedicated only to HAR prob-

lems but can be applied to different applications with sequential time dependency.

We review CRBM and Dirichlet process (DP) in Sec. 4.3 and Sec. 3.3.1 respec-

tively. CRBM will be used to extract generic low level features which are used by

our proposed online semi-supervised classifier (OSC) to learn activities. Being the

core of OSC, DP is used as a non-parametric prior in Dirichlet process mixture

model (DPMM) which, in contrast to the parametric prior, allows the number of

components to vary during learning.

4.3 Conditional Restricted Boltzmann Machine

CRBM [124] is a non-linear generative model for time-series that uses an undirect

model with binary latent variables, h, connected to visible variables, v. Unlike

Hidden Markov models (HMMs) which rely on a single discrete K-state multino-

mial, CRBM allows for distributed binary representations for its hidden states.

For, example, to model N bits of information about the past history, HMMs re-

quire 2N hidden states, while CRBM only needs N binary latent variables. Linear

dynamical systems are models with distributed hidden state, but, they cannot

model the complex non-linear dynamics in the high-dimensional sensory input.
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Figure. 4.2 Feature Extractor Architecture (r1 = 2, r2 = 1)

CRBM is a temporal extension of restricted Boltzmann machines (RBM). Typ-

ically, RBM uses binary units for both visible and hidden variables. But the

sensory input in our data is continuous; therefore, we use real-valued Gaussian

input units. CRBM has a layer of visible units which resembles to autoregressive

model and a layer of hidden units. The visible variables v and hidden variables

h in the current time slice receive directed connections from the visible variables

at the previous few time slices. Also, there are undirected connections between

layers at the current time slice like in RBM. Figure 4.2 shows a CRBM example

with two layers, where the temporal order of the one at the bottom (r1) is 2 and

for the one in the top (r2) is 1. CRBM defines a joint probability distribution over

v and h, conditional on the past n observations and model parameters Φ:

p(v,h|{v}t−1
t−n,Φ) ∝ exp(−E(v,h|{v}t−1

t−n,Φ))

E(v,h|{v}t−1
t−n,Φ) =

∑
i

(vi − bi)2

2σ2
i

−
∑
j

hjbj −
∑
ij

φij
vi
σi
hj (4.1)

where σi is the standard deviation of the Gaussian noise for visible unit i. Like in

[124], it is set to one after rescaling the data to have zero mean and unit variance.

The dynamic biases, bi, bj, are affine functions of the past n observations. The

parameter φij is a weight between elements vi and hj. The undirected connections

between the hidden and visible variables in the current layer (time t) makes the

inference easy because the hidden units become conditionally independent when

the visible units are observed. The training is, therefore, easily done by minimizing

contrastive divergence (for more details see [124]).
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Figure. 4.3 Graphical model of OSC

A crucial characteristic of CRBM is that we can add layers like in Deep Belief

Networks [147]. All layers in the CRBM architecture are trained similarly but

sequentially. As more layers are added, CRBM can model higher-level features. In

this paper, we use only two layers to retain the low-level inter-features correlations

at a lower training computational cost.

4.4 Online Semi-supervised Classifier

The proposed online semi-supervised classifier (OSC) can be expressed as a Dirich-

let process mixture model (DPMM) with a new latent label variable yt (ob-

served after querying the sample). Figure 4.3 shows the structure of OSC in the

form of a graphical model. π1,c and π2 are drawn from stick-breaking processes

GEM(α1) and GEM(α2) respectively; G0 is a Normal-Inverse-Wishart distribu-

tion NIW (.|µ0,Σ0, k0, v0) with µ0 is the prior of the clusters’ means; Σ0 controls

the variance among the means; k0 scales the diffusion of the clusters’ means and

v0 is the degree of freedom of the Inverse-Wishart distribution.

The label yt is generated from a stick-breaking prior. While zt selects the compo-

nent generating xt, yt selects the stick-breaking component generating zt. Label yt

selects from different mixture models associated with different classes. The model

is updated as follows. If the data samples received are unlabelled, the whole model

is updated such that the class variable is marginalized out. Otherwise, only the

mixture model associated with the same class as the sample is updated with the

new data sample. A particle filter method derived from [29, 100] is used to perform

the online inference.
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Following [29], we introduce a state vector Ht that summarizes the data seen up

to time t. Hence, Ht = {zt,mt,nt, st} can replace all the statistics used in OSC,

where mt is the number of components; nt is a matrix with rows referring to the

number of data samples labled to the existing classes and columns referring to

the number of data samples assigned to the existing components; and st is the

sufficient statistics for all mixture components(i.e., means and scatter matrices).

Every time a new sample is received, OSC carries out three steps: prediction,

updating and re-sampling. While updating step differs according to whether the

data sample is labelled or not, prediction and re-sampling steps are applied in the

same way for both cases. The 3 steps of OSC are described as follows:

4.4.1 Prediction:

Given the concentration parameters α1, α2 and the prior distribution parameters

{µ0,Σ0, k0, v0}, we aim at computing the conditional probability of the label given

a data sample, p(yt|xt, Dt−1):

p(yt|xt, Dt−1) ∝ p(xt|yt, Dt−1)p(yt|Dt−1) (4.2)

where Dt−1 represents all data samples previously seen along with their labels if

provided.

p(yt|Dt−1) ∝

nyt,:,t yt is an existing class

α2 yt is a new class
(4.3)

where nyt,:,t is the number of data samples labelled yt at time t regardless of the

components. The ’:’ denotes all the components.

p(xt|yt, Dt−1) =
∑
z1:t−1

p(xt|yt, z1:t−1, Dt−1)p(z1:t−1|yt, Dt−1) (4.4)

p(xt|yt, z1:t−1, Dt−1) =
∑
zt

p(xt|yt, zt, z1:t−1, Dt−1)p(zt|yt, z1:t−1, Dt−1) (4.5)

p(z1:t−1|yt, Dt−1) ∝ p(yt|Dt−1)p(z1:t−1|Dt−1) (4.6)

We use z1:t to denote the sequence {z1, z2, ..., zt}. The first term of Eq. (4.5) can

be computed as follows:

p(xt|yt, zt, z1:t−1, Dt−1) =

∫
θ

p(xt|θ, zt)p(θ|zt, z1:t−1, Dt−1) (4.7)
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If zt refers to a new component, p(θ|zt, z1:t−1, Dt−1) becomes equivalent to the

prior distribution p(θ|G0). Otherwise, zt refers to an already existing component.

Then, p(θ|zt, z1:t−1, Dt−1) becomes equivalent to p(θ|szt,t−1, nzt,t−1, z1:t−1), where

szt,t−1 = {suzt,t−1, sczt,t−1} is the sufficient statistics (i.e., mean and scatter matrix

respectively) defined as.

suzt,t−1(z1:t−1) =

∑
zi=zt,i<t

xi

nzt,t−1

sczt,t−1(z1:t−1) =
∑

zi=zt,i<t

(xi − suzt,t−1)(xi − suzt,t−1)T (4.8)

where nzt,t−1 is the number of data samples which have been assigned to component

zt until time t− 1. Equation (4.7) can be solved given the sufficient statistics, the

past assignments and the model hyper-parameters. It can be computed the same

way as in Eq. (3.22) with Xt replaced by Dt. The second term of Eq. (4.5) can be

written as follows:

p(zt|yt, z1:t−1, Dt−1) = p(zt|{zi}yi=yt,i<t) (4.9)

Similar to Eq. (4.7), the solution is as follows:

p(zt|{zi}yi=yt,i<t) ∝

nyt,zt,t zt is an existing component

α1 zt is a new component
(4.10)

where nyt,zt,t is the number of data samples labeled yt and assigned to component

zt at time t.

The second term in Eq. (4.6), p(z1:t−1|Dt−1), is the probability of the different

configurations. Such configurations determine the different statistics represented

by Ht. Thus, p(Ht−1|Dt−1) has the same probability as the posterior p(z1:t−1|Dt−1).

p(Ht−1|Dt−1) is outlined and developed in Eq. (4.11).

The solution of Eq. (4.2) depends only on the elements of the state vector along

with its posterior distribution. Thus, we need to track this posterior online by

approximating it with a set of P particles. Upon the arrival of a new data point,

the particles are extended to include a new assignment zt assuming that the pre-

vious assignments are known and fixed. Thus, the task is to update the posterior

of the extended particles at time t, p(Ht|Dt), given that the posterior at t − 1,

p(Ht−1|Dt−1) is known. In order to prevent combinatorial explosion, we use the
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re-sampling technique proposed in [100] which retains only P particles. There-

fore, we approximate the posterior at time t using the following updating and

re-sampling steps:

4.4.2 Updating:

p(Ht|Dt) ∝
∫
Ht−1

p(Ht|Ht−1, yt,xt)p(yt,xt|Ht−1)p(Ht−1|Dt−1) (4.11)

Given the P particles along with their weights, p(Ht−1|Dt−1) =
∑P

i=1 w
(i)
t−1δ(Ht−1−

H
(i)
t−1), the update can be written as follow.

p(Ht|Dt) ∝
P∑
i=1

p(Ht|H(i)
t−1, yt,xt)p(yt,xt|H

(i)
t−1)w

(i)
t−1 (4.12)

The solution of the second term of Eq. (4.12) can be computed in a similar way

to Eq. (4.4) and Eq. (4.3). Following the updating step, the number of resulting

particles for each H
(i)
t−1 becomes equal to the number of existing components m

(i)
t−1+

1. The new assignments zt lead to different configurations of the new particles.

Therefore,

p(H
(j)
t |H

(i)
t−1, yt,xt) = p(zt = j1|H(i)

t−1, yt,xt)

∝ p(xt|yt, zt = j1, H
(i)
t−1)p(zt = j1|yt, H(i)

t−1) (4.13)

where j = f(i, j1) and f(a, b) = 1
2
(a + b)(a + b + 1) + b is the Cantor pairing

function which uniquely encodes the assignment j1 and the particle number i into

a single natural number. By solving Eq. (4.13), we determine the weight of the

new particle w
(j)
t . The first term of Eq. (4.13) is computed in Eq. (4.7), and the

second term is computed in Eq. (4.9)). The elements of a new state vector H
(j)
t
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are updated as follows:

H
(j)
t =



z
(j)
t = j1 j1 is an existing component

n
(j)
yt,j1,t

= λn
(i)
yt,j1,t−1 + 1

n
(j)
h,k,t = λn

(i)
h,k,t−1 ∀h 6= yt, ∀k 6= j1, h ∈ Ct, k ≤ m

(i)
t

su
(j)
j1,t

=
λn

(i)
:,j1,t−1su

(i)
j1,t−1+xt

n
(i)
:,j1,t

sc
(j)
j1,t

= λsc
(i)
j1,t−1 + n

(i)
:,j1,t−1su

(i)
j1,t−1su

(i)T
j1,t−1

−n(i)
:,j1,t

su
(i)
j1,t
su

(i)T
j1,t

+ xtx
T
t

z
(j)
t = m

(i)
t−1 + 1 j1 is a new component

m
(j)
t = m

(i)
t−1 + 1

n
(j)
yt,j1,t

= 1

n
(j)
h,k,t = λn

(i)
h,k,t−1 ∀h 6= yt,∀k ≤ m

(i)
t−1, h ∈ Ct

su
(j)
j1,t

= xt

sc
(j)
j1,t

= 0

(4.14)

where λ is a forgetting factor which allows the components to adapt with change,

Ct is the set of the labels of all existing classes. If the label yt is unknown, we

consider it as a latent variable. The posterior p(Ht|Dt) in the update Eq. (4.12)

can be written as follows:

p(Ht|Dt) =
∑
yt

p(Ht|Dt−1,xt, yt)p(yt|Dt−1,xt) (4.15)

p(yt|Dt−1,xt) ∝ p(xt|yt, Dt−1)p(yt|Dt−1) (4.16)

The first and second terms of Eq. (4.16) are computed in Eq. (4.4) and Eq. (4.3)

respectively. The first term of Eq. (4.15) is already computed in Eq. (4.12), where

the label is assumed to be known. We can see from Eq. (4.15) that for each

new assignment zt, there is a mixture of particles that depends on j and the

different labels yt. We re-define the state vector Ht to accommodate yt as hidden

variable when it is unknown. Thus, H ′t = {Ht, yt}, where the different particles
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are determined now by both zt and yt,

H
′(j)
t = {H(j2)

t , yt = j3}

j = f(j2, j3) (4.17)

where j3 can be either an existing or a new class. To compute the weight and

the update of the new state vector, we follow the same trend as in Eq. (4.12),

Eq. (4.13) and Eq. (4.14).

p(H ′t|Dt) ∝
P∑
i=1

p(H ′t|H
′(i)
t−1,xt)p(xt|H

′(i)
t−1)w

′(i)
t−1 (4.18)

p(H
′(j)
t |H

′(i)
t−1,xt) = p(zt = j1, yt = j3|H ′(i)t−1,xt)

∝ p(xt|yt = j3, zt = j1, H
′(i)
t−1)p(zt = j1, yt = j3|H ′(i)t−1) (4.19)

After updating the P particles with all the possible new assignments zt and yt, we

end up with M combinations of the P particles with the new assignments, along

with the weights w
′(j)
t . So, we move to the next step which reduces the number of

created particles to a fixed number P .

4.4.3 Re-sampling:

We follow the resampling technique proposed in [100] which discourages the less

likely particles (configurations), and improves the particles explaining the data

better. It keeps the particles whose weight is greater than 1/κ, and re-samples from

the remaining particles. The variable κ is the solution of the following equation:

M∑
j=1

min{κw′(j)t , 1} = P (4.20)

The weight of re-sampled particles is set to 1/κ, and the weight of the particles

greater than 1/κ is kept unchanged. All the re-sampled particles are ensured to

be re-sampled once.
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4.5 Active Learning Approach

We propose an AL algorithm that deliberately queries particular instances to train

the OSC using as few labelled data instances as possible. In the context of HAR,

the labels are the human activities, and the AL algorithm queries the user (indi-

vidual carrying out the activities) about some activities. Thus, extensive queries

will be annoying and must be avoided.

Most AL approaches are basically derived from the general approach of finding

queries that result of the largest reduction in the expected loss. Let Ω denote the

set of variables that can be fully random or include some random elements. Let L

refer to the loss function. The expected loss function that AL aims to reduce can

be expressed as follows:

R = EΩ[L(Ω̂,Ω)] (4.21)

where the hat refers to an estimated term. Depending on the loss functions in-

volved, AL can be divided to two main groups: information-based and decision-

based AL. If we take Ω as the set of vectors consisting of observed set X and latent

set Y elements, we can end up with the expected classification error:

R =

∫
x

L(p̂(y|x), p(y|x))p(x)dx (4.22)

Here, the loss function involves the prediction error. In AL, we request infor-

mation about certain samples. That is the learner queries the latent labels Y of

some subset of X/Ω. We introduce a binary set Q whose elements are attached

to the vectors in the set Ω. If an element q ∈ Q = 1, the latent elements of the

corresponding vector in Ω is queried. Equation (4.22) can be seen as the core

of most heuristic and non-heuristic decision-based AL. Many active learning ap-

proaches seek to minimize an approximation of the expected error of the learner

Eq. (4.22) [76, 96, 97]. In our previous work [148, 149], we proposed an AL strat-

egy that seeks to minimize Eq. (4.22) online, while considering the challenges of

data streams.

If Ω is taken to be the set of the true model parameters ψ, then the loss is over

the model parameters. We obtain the following risk function:

R = Eψ[L(ψ̂,ψ)] (4.23)
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Similar to Eq. (4.22), Eq. (4.23) can be seen as the core of most heuristic and

non-heuristic information-based AL. Authors in [150, 151] use the entropy of the

model as the loss function. In this work, we propose a Bayesian stream-based

AL (BSAL) inspired from information-based AL. BSAL is designed to cope with

the challenges of data streams (infinite length, evolving nature, emergence of new

classes). Information-based AL fits better the nature of the proposed Bayesian

semi-supervised classifier (OSC), where the uncertainty over the model parameters

is systematically expressed. Because information-based loss functions are over the

model distribution, BSAL can easily deal with the challenges of data streams. In

fact, the task is only to take the decision whether to online query or not, while

OSC works online and accommodates novel classes. Thus, BSAL is completely

compatible with OSC.

In the following, we discuss the offline AL strategy to minimize an approximation

of Eq. (4.23), then we present our online AL strategy. The authors in [6] propose

an algorithm that selects queries in a greedy way in order to improve the model

accuracy as much as possible. Their original goal is to minimize the loss L(ψ, ψ̂)

incurred by using a single representation ψ̂ of the model instead of the true model

parameters ψ. As the true model parameters are unknown, authors estimate them

using the posterior of the Bayesian model parameters p(ψ|X, Y ). Therefore, the

risk associated with a particular ψ̂ with respect to p(ψ|X, Y ) can be expressed as

follows:

R(p(ψ|X, Y ), ψ̂) = Eψ∼p(ψ|X,Y )[L(ψ, ψ̂)] (4.24)

The point estimate ψ̂ that minimizes the risk is defined as the Bayesian point

estimate. By fixing ψ̂ to the Bayesian point estimate, the resulting risk depends

only on the model posterior. Authors in [6] adopted a pool-based AL approach,

where the samples that reduce the risk the most are selected. Because the labels

are unknown a priori, the expected risk, given the query, is computed as follows:

R̂
(
p(ψ|X, Y ), ψ̂;Q = q

)
= EYS(Q)∼p(YS(Q)|X)[R(p(ψ|X, YS(Q)), ψ̂)] (4.25)

where clamping q to Q refers to the state of querying samples that correspond to

the elements in q which are equal to one. The function S(Q) returns the indices

of the elements in Q that are equal to 1 (i.e., the samples to be queried). If S(Q)

is empty, the expected risk in Eq. (4.25) becomes:

R̂
(
p(ψ|X, Y ), ψ̂;Q = q

)
= R(p(ψ|X), ψ̂) (4.26)
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The goal of AL is to query the data samples that result in maximizing the difference

between the risk (Eq. (4.24)) and the expected risk (Eq. (4.25)).

∆̂(X, Y |q) = R(p(ψ|X), ψ̂)− R̂(p(ψ|X, Y ), ψ̂;Q = q) (4.27)

Given a stream of samples, BSAL evaluates each sample at time t before discarding

it. Equation (4.27) can be reformulated as follows:

∆̂(xt, yt|Dt−1, qt) = R(p(ψt|Dt−1,xt), ψ̂t)− R̂(p(ψt|Dt−1,xt, yt), ψ̂t; qt) (4.28)

where:

R(p(ψt|Dt−1,xt), ψ̂t) = Eψt∼p(ψt|Dt−1,xt)[L(ψt, ψ̂t)] (4.29)

If the sample at time t is not queried (qt = 0), the current expected risk (second

term of Eq. (4.28)) is equal to the current risk (first term of Eq. (4.28)). Otherwise,

the current expected risk can be written as follows:

R̂(p(ψt|Dt−1,xt, yt), ψ̂t; qt = 1) = Eyt∼p(yt|Dt−1,xt)[R(p(ψt|Dt−1,xt, yt), ψ̂t)]

(4.30)

BSAL uses the KL divergence as the loss function. It turns out that by using

the KL divergence loss, the mean value of the parameters turns into the Bayesian

point estimate [6]. Similar to the Bayesian information theoretic AL proposed

in [152], we consider the loss of the predictive posteriors parameterized by ψt and

ψ̂t:

L(ψt, ψ̂t) =
∑
y

∫
x

p(x, y|Dt,ψt) log
p(x, y|Dt,ψt)

p(x, y|Dt, ψ̂t)
dx (4.31)

ψ̂t = Eψt∼p(ψt|Dt)[ψt] (4.32)

Our BSAL relies on our proposed Bayesian online semi-supervised classifier (OSC).

OSC’s parameters, ψ, involve the stick-breaking components, the Gaussian com-

ponents and the hidden configurations. We marginalize out the Gaussian and

the stick-breaking components and keep the hidden configurations. The Bayesian

point estimate is approximated by the mode of the different configurations induced

by the particles. The details on how the discrepancy between the current risk and

the current expected risk expressed in Eq. (4.28) is computed can be found in

App. C.1.
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As BSAL is an online-based AL, it must assess the data on the-fly and query

those which incur highest risk reduction. The problem is how to decide whether

the incurred reduction is high or not. A dynamically adaptive threshold, τ , is used

so as to request the labels of samples whose current expected risk subtracted from

their current risk (see Eq. (4.28)) breaches the threshold. This latter is adapted

using a threshold adjustment step, s, following the Variable Uncertainty strategy

in [1]. Further illustration may be found in Alg. 3. The binary input ALE in the

algorithm activates/deactivates the active learning.

Another issue is the limited labelling resources. Hence, a rationale querying strat-

egy to optimally use those resources needs to be applied. To this end, the notion of

budget used in Chap. 2 is adopted in BSAL so that the labelling rate is controlled.

Details about this notion can be found in Sec. 2.3.2.

Instead of fixing the precision hyper-parameters (also called concentration hyper-

parameters) α1 and α2, we put hyper priors over them using G(a, b) (gamma priors

with shape a and scale b) and sample their values online following the sampling

approach in [153]. More details on the sampling routine can be found in App. C.2.
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Algorithm 3 Steps of CRBM-OSC-BSAL

1: Input: data stream, OSC hyper-parameters {µ0,Σ0, k0, v0, a, b} (see
Sec. 4.6.2), forgetting factor λ, maximum number of particles P , budget Bd,
ALE

2: initialize: set OSC precision parameters {α2, α1i}m2
i=1 to 1 (more details in

Sec. 4.6.2 and App. C.2), set the OSC first particle weight w
(1)
0 to 1, threshold

τ to 0.1, threshold adjustment step s to 0.1, wnd = 100, f̂t = 0 (Eq. (2.44))
and t = 0

3: while (true) do
4: t← t+ 1
5: extract low level features xt from the current data samples {(see Sec. 4.3)}
6: if ALE = 1 {active learning is activated} then
7: if b̂t < Bd{enough budget, Eq. (2.44)} then
8: a = ∆̂(xt, yt|Dt−1, qt = 1) {(see Eq. (4.28))}
9: if a>τ then

10: Labt = 1
11: yt ← query(xt)
12: τ = τ(1 + s)
13: else
14: Labt = 0
15: τ = τ(1− s)
16: end if
17: else
18: Labt=0
19: end if
20: else
21: Receive (Labt)
22: if Labt = 1 {instance xt label is known} then
23: yt ← reveal(xt)
24: end if
25: end if
26: if Labt = 0 then
27: predict the label of xt {(see Eq. (4.2))}
28: update OSC model with instance xt {(see Eq. (4.14), Eq. (4.17) and

Eq. (4.18))}
29: else
30: update OSC model with instance xt and label yt {(see Eq. (4.12) and

Eq. (4.14))}
31: end if
32: sample new precision parameters {α2, α1i}m2

i=1 {(see Alg. 4 in App. C.2)}
33: compute f̂t+1 {(see Eq. (2.45))}
34: end while
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4.6 Experiments

In this section, we evaluate CRBM-OSC-BSAL in two steps. In the first step,

the active learning (AL) strategy is deactivated (ALE = 0) while the classifica-

tion performance of CRBM-OSC is evaluated on the opportunity human activity

recognition (HAR) dataset (see below). The data comes as a stream through

CRBM which reduces its dimensions, then OSC classifies the currently performed

activity and updates its particles set. To show the efficiency of the classification,

we compare against static offline classification methods: Hoeffding decision tree

(DT) and support vector machine (SVM). We also compare against the online

method STAR [144] already discussed in Sec. II. In the second step, the ac-

tive learning strategy, proposed in Sec. 4.5, is activated (ALE = 1) to evaluate

the whole framework CRBM-OSC-BSAL on the same dataset. The classification

performance is measured according to the average accuracy (AA) which is the cor-

rectly classified data samples divided by the total testing data samples. We also

compute the average class accuracy (ACA) which is the average of the average

accuracies across different activities (classes). This measurement manifests BSAL

performance consistency across all activities by implicitly penalizing the accuracy

when there are misclassifications of infrequent activities. Hence, it illustrates the

class discovery performance of BSAL.

The Opportunity (Opp) dataset was the basis of the activity recognition chal-

lenge (http://www.opportunity-project.eu/challenge) proposed in the context of

the European research project OPPORTUNITY [154]. Opp is a high-dimensional

HAR dataset labelled for modes of locomotion, gestures and high-level activities.

The data is acquired from four human subjects. In this work, we use a subset of

the dataset corresponding to 3 subjects, denoted by Si and focus on recognition

of gesture and modes of locomotion in order to show CRBM-OSC-BSAL high per-

formance. Details of Opp are presented in Tab.4.1, Tab.4.3 and Tab.4.2, where

N is the number of instances, d is the number of features/attributes, Nc is the

number of classes. Opp was collected from subjects while performing daily activ-

ities in a sensor-rich environment of a room akin to an apartment with kitchen,

deckchair, and outdoor access. 112 wearable and pervasive sensors with different

sensing modalities were used. Each subject executed 4 motion activities and 17

gestures (e.g., sitting, walking, standing, open fridge, clean table, move cup, etc.).

The task is to recognise the currently performed activity. Further details can be

found in [154].
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Table. 4.1 Real AR Dataset propreties used for evaluating CRBM-OSC-BSAL

Opp data N d Nc

S2 133023 113 4 Locomotions and 17 Gestures
S3 124320 113 4 Locomotions and 17 Gestures
S4 105082 113 4 Locomotions and 17 Gestures

Table. 4.2 Class proportions for gesture activities

Subject Open Open Close Close Open Close Open Close Open
Door1 Door2 Door1 Door2 Fridge Fridge Dishwasher Dishwasher Drawer1

S2 (%) 5.1030 2.2899 1.3897 2.4755 2.3124 1.9242 7.0552 4.7204 6.3576
S3 (%) 3.9660 3.8557 3.0104 4.6303 5.1269 3.2421 6.5879 5.0188 3.3856
S4 (%) 3.9444 3.7998 3.3823 4.4454 4.0215 2.5503 5.8266 4.9208 3.7099

Close Open Close Open Close Clean Drink Toggle
Drawer1 Drawer2 Drawer2 Drawer3 Drawer3 Table Cup Switch
2.6724 1.3278 2.9481 3.4151 2.0029 10.0259 40.2892 3.6908
3.9770 3.5511 5.5507 6.8153 3.3017 7.1000 27.1927 3.6879
4.0118 3.1446 7.1050 4.8566 3.9283 7.5450 29.3643 3.4433

Table. 4.3 Class proportions for locomotion activities

Subject Stand Walk Lie Sit
S2 (%) 36.13 24.43 3.71 35.74
S3 (%) 58.83 27.24 2.41 11.48
S4 (%) 52 25.16 5.53 17.32

Table. 4.4 Real AR Dataset propreties used for evaluating CRBM-OSC-BSAL

CRBM layers input dimension output dimension temporal order
layer 1 113 150 8
layer 2 150 200 0
layer 3 200 10 0

4.6.1 Feature extractor

Before running experiments, we set up CRBM by training it on the Opp data. To

ensure the independence between the online learning and feature extraction, the

CRBM model for each subject is built from unlabelled data of all other subjects

(all subjects except the one on which the current online learning is evaluated). We

study the impact of different CRBM’s parameter settings. The number of layers

is fixed to 3 with the dimension of the last layer is set to 10 (dim3 = 10). The

effect of the CRBM parameters effect (number of layers, dimensions and temporal

orders) is studied and the parameters that give the best performance are chosen.

The first and second layers’ dimensions are set to dim1 = 150 and dim2 = 200

respectively, the temporal orders are set to r1 = 8, r2 = 0 and r3 = 0 (see
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Tab. 4.4). In order to demonstrate what CRBM has learned about the structure

of the data, we feed the trained CRBM with a data segment consisting of 22000

samples from subject 3 (S3) and plot the results.

Figure 4.4 is a gray-scale image showing the probability of the binary features

extracted by the first layer. In Figure 4.5, the features extracted by the second

layer is shown with a ribbon of different colours which illustrates some class labels

of the activities through time. We can notice a regular output pattern for each

activity. It can also be seen that the regularity of the features obtained by the

second layer (Fig. 4.5) is sharper and less noisy than those obtained by the first

layer (Fig. 4.4). Hence, features become more discriminative. To visualize the

data samples in the features space, we set the last layer’s dimensions to 2 and

plot the output in Fig. 4.6. The data samples representing standing activity often

overlap with the other activities especially walking. A potential explanation is

that most transitions are from standing to walking. Besides, the gesture activities

(not plotted) are usually performed while the user is standing. Thus, the standing

activity region in the feature space gets expanded towards other activities’ regions.

Figure. 4.4 Layer 1
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Figure. 4.5 Layer 2

4.6.2 Classification performance

In this set of experiments, we evaluate the classification performance of CRBM-

OSC while active learning (AL) is not considered. The experiments are carried

out on three subjects’ Opp data with the goal of recognising user’s modes of

locomotion/gestures. CRBM parameters are set as explained in Sec. 4.6.1 (see

Tab. 4.4). Hyper-prior can be put over the hyper-parameters of the Normal-

Inverse-Wishart prior on cluster parameters (G0). In [155], we propose a novel

approach to use a non-parametric prior over the base distribution G0 allowing

for more flexible model which is much less sensitive to parameters (i.e., hyper-

hyper-parameters). Alternatively, online non-parametric empirical Bayes can be

proposed to find a point estimate of G0 [156]. However, to keep the computation

simple, we chose these hyper-parameters by hand, based on prior knowledge about

the scale of the data. The mean u0 is set to 0. The covariance matrix Σ0 is roughly

set to be large relative to the data. We set them to the identity matrix times the

distance between the two farthest points in the data. The degree of freedom, v0,

must be greater than the number of dimensions d. We set it to d+ 2. The hyper-

parameter k0 is empirically set to 0.01. The forgetting factor λ in Eq.(4.14) is
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Figure. 4.6 Layer 3

empirically set to 0.95.

4.6.2.1 Locomotion

In order to show the efficiency of the proposed online algorithm, we compare it

to well known offline classification models. DT (hoeffding decision tree) and SVM

(support vector machines with polynomial kernel) have been efficiently applied for

HAR in static environment [120]. We run two experiments with DT and SVM

using two different training settings. In setting 1, SVM and DT are built from the

datasets of all subjects excluding the one whose data is used for the evaluation.

The results are presented in Tab. 4.5. In setting 2, training and testing are done

using the data of the same subject with two-fold cross-validation. The results for

each subject are averaged over 15 runs (see Tab. 4.6). We run SVM and DT with

Weka 3.8 [157]. Although, DT and SVM are trained with more data in setting 1,

all the results shown in setting 2 are better. This variance may be explained by

the distinct motion styles of the subjects. We adopt setting 2 in the upcoming

comparison. Next, we train our model CRBM-OSC online using setting 2 (see

Tab. 4.6). It can be seen that CRBM-OSC performs better on all subsets of the
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Table. 4.5 Classification performance for locomotion activities under setting 1

Subject Method AA Stand Walk Lie Sit ACA
S2 DT(%) 64.3 40 81.4 0 83.8 51.3

SVM(%) 64.7 29.7 97.8 1.2 84 53.2
S3 DT(%) 41.9 27 95.6 0 0 41.1

SVM(%) 73.6 84 59.7 0 68.4 53
S4 DT(%) 56.6 37.8 89.8 0 83.2 52.7

SVM(%) 72.5 92 10.8 96.5 96.3 73.9

Table. 4.6 Classification performance for locomotion activities under setting 2

Subject Method AA Stand Walk Lie Sit ACA
CRBM-OSC(%) 96 95.7 91.4 98.4 99.8 96.3

S2 DT(%) 89.5 89.8 78.9 89.7 96.5 88.7
SVM(%) 91.2 90.1 79.6 99.3 99.6 92.2
CRBM-OSC(%) 95.2 96.2 92.1 98.3 96.5 95.8

S3 DT(%) 83.6 86.1 74.8 97.9 89.3 87
SVM(%) 85 93.7 60.4 99.9 96.4 88.1
CRBM-OSC(%) 94.2 94.1 90.2 99.3 98.5 95.5

S4 DT(%) 87.2 87.8 81.1 96 91.9 89.2
SVM(%) 88 93.4 67.1 99.9 98.3 89.7
CRBM-OSC(%) 96 95.7 94 98.7 98.4 96.7

All DT(%) 83.3 94 56.6 96.9 88.6 84
SVM(%) 84.5 92 60.7 99.1 96.6 87.2

data and for almost all activities. A reason for CRBM-OSC superiority may be

explained by the ability of the algorithm to cope with dynamic changes in the

individual activities. Based on this analysis and the previous one regarding the

difference motion styles among the subjects, we can expect that the performance

superiority of CRBM-OSC will increase if training is done on the datasets of all

subjects. Thus, we run an experiment on the datasets of all subjects together using

setting 2 (see Tab. 4.6). It can be clearly seen that CRBM-OSC outperforms SVM

and DT by far when all-subject data is considered compared to the case where

only one-subject data is used.

Note that the performance of CRBM-OSC is consistent across all activities as its

average class accuracy (ACA) is high. However, ACA is slightly better than the

average accuracy (AA) for all methods. This is due to the plenty of available

labels. In fact, the challenge lies in maintaining high ACA with few labels. Such

challenge can be met by BSAL (to be discussed in the next section).

In order to show the effect of the feature extractor, we train OSC online using
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Table. 4.7 Classification performance for locomotion activities

Subject Method AA Stand Walk Lie Sit ACA
CRBM-OSC(%) 96 95.7 91.4 98.4 99.8 96.3

S2 OSC(%) 93.52 98.7 77.8 99 89.7 91.3
CRBM-OSC(%) 95.2 96.2 92.1 98.3 96.5 95.8

S3 OSC(%) 94.3 99.1 82.2 98.1 97.7 94.3
CRBM-OSC(%) 94.2 94.1 90.2 99.3 98.5 95.5

S4 OSC(%) 92.6 98.9 74.9 96.5 98.2 92.1
CRBM-OSC(%) 96 95.7 94 98.7 98.4 96.7

All OSC(%) 93.8 80.3 98.2 88.6 97.1 91

setting 2, where CRBM is not considered (see Tab. 4.7). Generally, CRBM-

OSC performs better in terms of average accuracy and average class accuracy. In

addition, CRBM reduces the feature dimension from 113 to 10 which requires less

computation and memory resources to process the streaming samples. We believe

that with less discriminative low level features and more complex activities, CRBM

will play more prominent role.

4.6.2.2 Gestures

Like the previous section (Sec. 4.6.2.1), we compare the performance of DT and

SVM under the two training settings. SVM and DT are run with Weka 3.8 [157]

and the results for each subject are averaged over 15 runs. The results obtained

under both settings are presented in Tab. 4.8 and Tab. 4.9. Like in Sec. 4.6.2.1,

DT and SVM, trained with less data under setting 2, show better performance

than that of DT and SVM trained under setting 1. This variance confirms the

assumtion drawn in Sec. 4.6.2.1 that there are changes in the data across different

subjects. We will adopt setting 2 in the upcoming comparisons.

Next, we train our model CRBM-OSC online with two-fold cross-validation. The

results for each subject are averaged over 15 runs (see Tab. 4.9). CRBM-OSC

average accuracy is better than SVM and DT’s one on all the datasets. In addition,

CRBM-OSC average accuracies are the best for the majority of the activities.

Interestingly, the performance of CRBM-OSC increases when training is done on

the datasets of all subjects. Hence, the analysis regarding the importance of

adaptive learning is demonstrated for gesture activities too.

Unlike the case with the locomotion activities, we can notice that ACA is slightly

lower than the average accuracy (AA) for all methods. This can be explained by
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Table. 4.8 Classification performance for gesture activities under setting 1

Subject Method AA Open Open Close Close Open Close Open Close
Door1 Door2 Door1 Door2 Fridge Fridge Dishwasher Dishwasher

S2 DT(%) 34 3.3 17.9 0 3.6 6.3 0 3.4 0.6
SVM(%) 40 7.2 1 5.7 59.3 11.2 5.3 24 60.5

S3 DT(%) 51.3 11.1 2.2 8.7 67.4 6.8 43.3 45.9 10.7
SVM(%) 40 18.5 7 0 66.1 1.1 1.1 28.3 0.7

S4 DT(%) 36.1 0 0 0 0 1.4 0 1.2 39.4
SVM(%) 45 1.6 60.6 1.5 56.5 40.9 33.4 24.9 42.2

Open Close Open Close Open Close Clean Drink Toggle ACA
Drawer1 Drawer1 Drawer2 Drawer2 Drawer3 Drawer3 Table Cup Switch
13.3 0 0 27.5 75.1 0 27.8 64.3 0 18.1
9.8 0 25.8 69.5 72.8 7.6 24.6 61.1 5.5 26.5
57.6 65 62.2 17 77.8 0.3 59.7 78.7 92.3 37.8
12 16.7 0.2 3 92.9 0 64.2 67.1 93.8 27.8
39.5 0.1 0.5 0 0 0 59.4 88.7 59.5 17
0 36.3 36.7 59.9 62.2 46.5 6 63.6 94.6 39.3

the increase in the number of activities meaning that the same number of labels

is distributed on larger number of classes. Thus, the risk of misclassifying the

least frequent activities may increase. Noticeably, ACA values for SVM and DT

decrease more significantly than that for CRBM-OSC. Such behaviour may be

explained by the fact that OSC is a semi-supervised learning algorithm. That is,

it uses both unlabelled and labelled data which curbs the consequence of scarce

labels for certain activities.

4.6.3 Active learning performance

In this section, we evaluate the performance of the whole model including the active

learning strategy. The evaluation of CRBM-OSC-BSAL is based on a prequential

methodology: each time we get an instance, if its class label is revealed then it

is used to train the learner. Otherwise, it is used for testing the classifier. The

results are average over 30 runs. The parameters are set as in Sec. 4.6.2. Results

obtained in the previous section (Tab. 4.6 and Tab. 4.9) are used for performance

comparison.

4.6.3.1 Locomotion

We compare the results obtained in Sec. 4.6.2.1 (Tab. 4.6) to the ones of CRBM-

OSC-BSAL with few queried data samples, around 5% for each subject. We also
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Table. 4.9 Classification performance for gesture activities under setting 2

Subject Method AA Open Open Close Close Open Close Open Close
Door1 Door2 Door1 Door2 Fridge Fridge Dishwasher Dishwasher

CRBM-OSC(%) 95 93.6 96 94.7 94.8 93.6 96.1 93.6 90.1
S2 DT(%) 72.2 47.3 80.1 58.3 76.1 85.2 63.5 71.8 89.9

SVM(%) 95 91.8 82.3 83 94.4 95.9 74 90.5 99.2
CRBM-OSC(%) 94.4 93.3 95.4 92.3 92.3 94.6 94.2 93.9 94.2

S3 DT(%) 66.6 33.5 19.3 73.3 89.1 86.3 35.2 77.8 84.7
SVM(%) 90.3 90.9 77.6 80.9 88.9 88.9 71.4 88.6 98.2
CRBM-OSC(%) 94.5 93.6 93.9 94 93.3 93.7 94.2 92.5 92.3

S4 DT(%) 68.7 53.5 43.9 41.3 87.6 91.1 41.6 51 86.7
SVM(%) 91.8 93.2 91.4 82.6 85.4 91.1 83.1 79.7 98.5
CRBM-OSC(%) 94.9 92.5 93.9 94.6 94.1 94.6 94.7 93.3 93.5

All DT(%) 57.1 24.2 18.9 61.6 81.8 86.6 46.4 46.4 43
SVM(%) 84.5 79.3 74.1 64.9 82.2 82.9 66.2 75.8 94.3

Open Close Open Close Open Close Clean Drink Toggle ACA
Drawer1 Drawer1 Drawer2 Drawer2 Drawer3 Drawer3 Table Cup Switch
92.1 94.9 93.6 91.6 93.4 91.3 95 97.1 93.4 93.8
41.6 52.8 42.4 70.6 64.1 52 56.1 84 91.2 66.3
90.9 94.7 81.4 82.7 98.4 93 97.6 99 97 90.9
94 95 93.2 92.5 93.9 95.2 92.5 96.2 92.8 93.9
58.3 81 4.5 37.1 62.3 73.9 60.5 79 97.6 65.5
85.5 83.6 77.1 87.3 91.8 78.2 90 98.7 99 86.9
93.2 95.5 93.9 93.4 94.8 92.7 93.4 96.7 93.2 93.8
56.9 85.5 83.4 49 42.2 42.2 59.1 83.7 97.1 64.5
88.9 89.6 86.4 87.6 90.2 92.5 84.6 99.5 99.5 89.6
93.2 94.7 94.7 93.7 94.8 95.2 93.6 93.9 97.2 94.3
21.6 84.7 33.1 42.2 30 38.4 47.8 75.9 85.7 51.1
70.3 76.3 73.2 80.4 79.7 75.7 82.9 97 92.1 79.3

compare against the online method STAR [144] (already discussed in Sec. 4.2)

which also queries 5% of the processed data. The results are shown in Tab. 4.10.

CRBM-OSC-BSAL shows better average accuracy (AA) than all competitors ex-

cluding CRBM-OSC. However, the AL strategy BSAL has reduced the number

of labelled samples from 50% to around 5% while leading to an average (over

all datasets) of arround 4.3% less accuracy compared to CRBM-OSC. CRBM-

OSC-BSAL significantly outperforms STAR which also employs an AL strategy

to query 5% of the data. Moreover, CRBM-OSC-BSAL outperforms SVM and

DT even though the percentage of labels used for training is 45% higher. Similar

to the results presented in Sec. 4.6.2, the performance of CRBM-OSC-BSAL is

more significant when training is done on the datasets of all subjects. Hence, the

proposed AL is capable of maintaining high performance when data evolves more

substantially. Note that BSAL is able to maintain consistent performance across

all activities. Indeed, the average class accuracy (ACA) is still high even though

number of labels is 45% less than the one for CRBM-OSC. However, we can notice

that ACA is not as better than AA as it is for CRBM-OSC. Though, this is normal
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Table. 4.10 Classification performance for locomotion activities (5%)

Subject Method AA Stand Walk Lie Sit ACA
CRBM-OSC-BSAL(%) 93 88 90.1 93.2 99.3 92.7
CRBM-OSC(%) 96 95.7 91.4 98.4 99.8 96.3

S2 STAR(%) 74.9 82.5 50.1 89.9 47.3 67.5
DT(%) 89.5 89.8 78.9 89.7 96.5 88.7
SVM(%) 91.2 90.1 79.6 99.3 99.6 92.2
CRBM-OSC-BSAL(%) 86 88 81.5 98.3 84.2 88
CRBM-OSC(%) 95.2 96.2 92.1 98.3 96.5 95.8

S3 STAR(%) 68.6 87 44.3 86.1 7.2 56.2
DT(%) 83.6 86.1 74.8 97.9 89.3 87
SVM(%) 85 93.7 60.4 99.9 96.4 88.1
CRBM-OSC-BSAL(%) 91.4 91.8 85.4 92.9 97.9 92
CRBM-OSC(%) 94.2 94.1 90.2 99.3 98.5 95.5

S4 STAR(%) 71.1 84.2 43.6 90 30.3 62
DT(%) 87.2 87.8 81.1 96 91.9 89.2
SVM(%) 88 93.4 67.1 99.9 98.3 89.7
CRBM-OSC-BSAL(%) 93.6 93.6 90.8 96.5 97.6 94.6

All CRBM-OSC(%) 96 95.7 94 98.7 98.4 96.7
DT(%) 83.3 94 56.6 96.9 88.6 84
SVM(%) 84.5 92 60.7 99.1 96.6 87.2

as the number of labels has dramatically decreased. Therefore, it is a strong point

of BSAL to keep the ACA high (even higher than AA) with few labels.

In order to visualize the behaviour of BSAL, we draw the prequential labelling

rate as the data streams pass though CRBM-OSC-BSAL (see Fig. 4.7, Fig. 4.8

and Fig. 4.9). To smooth the curve, a fading factor of 0.999 is used to compute the

learning rate. Some observations on BSAL behaviour can be deduced from Fig. 4.7,

Fig. 4.8 and Fig. 4.9. First, BSAL tends to query the activities appearing for the

first time, then the labelling rate falls down. For instance, the labelling rate across

lying and sitting activities is high when the activities first appear. In the second

appearance of the same activities, the labelling rate is not triggered. Second,

long lasting activities are infrequently queried which maintains the performance

over evolving streams. Third, we notice that sometimes the labelling rate across

standing activity suddenly grows. Such behaviour may be caused by the gesture

activities which are usually performed while the user is standing. Hence, BSAL

expects change or emergence in the activities leading to an increase in the labelling

rate. Walking activity is peculiar because it is the most frequent and prone to

change more than the others. However, when it lasts for considerable duration,

labelling rate decreases.
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Figure. 4.7 Labelling rate along the stream of subject 2 (S2)

Figure. 4.8 Labelling rate along the stream of subject 3 (S3)

4.6.3.2 Gestures

We compare the results obtained in Sec. 4.6.2.2 to the ones of CRBM-OSC-BSAL

with few queried data samples, around 5% for each subject (see Tab. 4.11).

Although, CRBM-OSC-BSAL uses only 5% labels for a relatively high number of

activities, its AA for S3 is better than the one of SVM and DT which use 50%

labels. SVM outperforms CRBM-OSC-BSAL for S2 and S4, but at the cost of
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Figure. 4.9 Labelling rate along the stream of subject 4 (S4)

high labelling (45% more labels). Nevertheless, CRBM-OSC-BSAL shows better

AA results when the datasets of all subjects are used. This highlights BSAL’s

ability to maintain high performance under more aggressive changes.

Predictably, CRBM-OSC-BSAL’s ACA drops in comparison with CRBM-OSC’s

ACA as the number of labels has dramatically decreased. In addition, the rel-

atively large number of activities makes it harder to maintain consistent high

accuracy across all activities. Thus, we run another experiment with 10% of the

data samples queried (see Tab. 4.12). It can be seen that CRBM-OSC-BSAL’s

ACA surpasses the one of SVM and DT that are trained with 40% more data.

Furthermore, CRBM-OSC-BSAL’s ACA becomes comparable to CRBM-OSC’s.

We can also notice that AA has improved and CRBM-OSC-BSAL outperforms

SVM and DT for all subjects and has almost the same AA as CRBM-OSC trained

with 40% more data.

4.7 Conclusion

In this chapter, we propose a novel online AL algorithm (BSAL) that can han-

dle concept evolution in data stream involving classes of unbalanced proportions.

BSAL is an information-based AL algorithm that selects data instances leading to

more information gain. We also propose a new learning model equipped with BSAL

to process data streams with sequential temporal dependency. This model com-

posed of a feature extractor (CRBM), an online semi-supervised classifier (OSC)
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Table. 4.11 Classification performance for gesture activities (5%)

Subject Method AA Open Open Close Close Open Close Open Close
Door1 Door2 Door1 Door2 Fridge Fridge Dishwasher Dishwasher

CRBM-OSC-BSAL(%) 85.2 81.3 55.8 77.1 96 96.8 76.5 89.7 90.9
S2 CRBM-OSC(%) 95 93.6 96 94.7 94.8 93.6 96.1 93.6 90.1

DT(%) 72.2 47.3 80.1 58.3 76.1 85.2 63.5 71.8 89.9
SVM(%) 95 91.8 82.3 83 94.4 95.9 74 90.5 99.2
CRBM-OSC-BSAL(%) 91.1 87.6 84.2 72.7 95.8 94.1 80.1 88.6 92.3

S3 CRBM-OSC(%) 94.4 93.3 95.4 92.3 92.3 94.6 94.2 93.9 94.2
DT(%) 66.6 33.5 19.3 73.3 89.1 86.3 35.2 77.8 84.7
SVM(%) 90.3 90.9 77.6 80.9 88.9 88.9 71.4 88.6 98.2
CRBM-OSC-BSAL(%) 85.6 77.7 53.9 57.5 91.7 92 53.5 85.1 87.5

S4 CRBM-OSC(%) 94.5 93.6 93.9 94 93.3 93.7 94.2 92.5 92.3
DT(%) 68.7 53.5 43.9 41.3 87.6 91.1 41.6 51 86.7
SVM(%) 91.8 93.2 91.4 82.6 85.4 91.1 83.1 79.7 98.5
CRBM-OSC-BSAL(%) 89.6 82.4 82.4 66 64.8 95.4 93.4 73.1 86.8

All CRBM-OSC(%) 94.9 92.5 93.9 94.6 94.1 94.6 94.7 93.3 93.5
DT(%) 57.1 24.2 18.9 61.6 81.8 86.6 46.4 46.4 43
SVM(%) 84.5 79.3 74.1 64.9 82.2 82.9 66.2 75.8 94.3

Open Close Open Close Open Close Clean Drink Toggle ACA
Drawer1 Drawer1 Drawer2 Drawer2 Drawer3 Drawer3 Table Cup Switch
95.7 86.7 95 96.8 96.6 95.4 94.4 77.9 97.9 82.6
92.1 94.9 93.6 91.6 93.4 91.3 95 97.1 93.4 93.8
41.6 52.8 42.4 70.6 64.1 52 56.1 84 91.2 66.3
90.9 94.7 81.4 82.7 98.4 93 97.6 99 97 90.9
93.7 88.7 84.5 93.9 95.4 88.2 95.1 93 94.7 89.5
94 95 93.2 92.5 93.9 95.2 92.5 96.2 92.8 93.9
58.3 81 4.5 37.1 62.3 73.9 60.5 79 97.6 65.6
85.5 83.6 77.1 87.3 91.8 78.2 90 98.7 99 86.9
84.3 73 62.7 88.9 83 84.8 91.9 97 90.5 79.7
93.2 95.5 93.9 93.4 94.8 92.7 93.4 96.7 93.2 93.8
56.9 85.5 83.4 49 42.2 42.2 59.1 83.7 97.1 64.5
88.9 89.6 86.4 87.6 90.2 92.5 84.6 99.5 99.5 89.6
87.9 91 84 80.5 90 92.3 87 93.9 98 80.9
93.2 94.7 94.7 93.7 94.8 95.2 93.6 93.9 97.2 94.3
21.6 84.7 33.1 42.2 30 38.4 47.8 75.9 85.7 51.1
70.3 76.3 73.2 80.4 79.7 75.7 82.9 97 92.1 79.3

and BSAL to cope the challenges of sequential data streams. CRBM helps over-

come the weary features hand-crafting by learning generic features from unlabelled

high-dimensional input. OSC online learns from stream of generic features. BSAL

queries the samples that are expected to bring crucial information for OSC. Know-

ing that the proposed approach is generic and not dedicated to specific application,

human activity recognition (HAR) is used as a real-world application.

Experimental results on real-world activity recognition datasets show the effective-

ness of the proposed model. Although, the classifier and the active learning work

online, the feature extractor pre-training step needs further attention in order to

accommodate it into the online setting. Another future work is to compare SAL

and BSAL on the same datasets that show multiple classes of severely unbalanced

proportions.
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Table. 4.12 Classification performance for gesture activities (10%)

Subject Method AA Open Open Close Close Open Close Open Close
Door1 Door2 Door1 Door2 Fridge Fridge Dishwasher Dishwasher

CRBM-OSC-BSAL(%) 97.2 86.5 81.1 87.8 98.8 98.1 91.9 95.3 96.2
S2 CRBM-OSC(%) 95 93.6 96 94.7 94.8 93.6 96.1 93.6 90.1

DT(%) 72.2 47.3 80.1 58.3 76.1 85.2 63.5 71.8 89.9
SVM(%) 95 91.8 82.3 83 94.4 95.9 74 90.5 99.2
CRBM-OSC-BSAL(%) 94 90.2 86.8 75.6 95.7 95.5 82.4 91 94

S3 CRBM-OSC(%) 94.4 93.3 95.4 92.3 92.3 94.6 94.2 93.9 94.2
DT(%) 66.6 33.5 19.3 73.3 89.1 86.3 35.2 77.8 84.7
SVM(%) 90.3 90.9 77.6 80.9 88.9 88.9 71.4 88.6 98.2
CRBM-OSC-BSAL(%) 94.2 88.2 86.9 82.3 96.3 95.1 84.8 93.9 93.9

S4 CRBM-OSC(%) 94.5 93.6 93.9 94 93.3 93.7 94.2 92.5 92.3
DT(%) 68.7 53.5 43.9 41.3 87.6 91.1 41.6 51 86.7
SVM(%) 91.8 93.2 91.4 82.6 85.4 91.1 83.1 79.7 98.5
CRBM-OSC-BSAL(%) 91.4 84.6 87.6 69 74 96 95.4 76.7 90.5

All CRBM-OSC(%) 94.9 92.5 93.9 94.6 94.1 94.6 94.7 93.3 93.5
DT(%) 57.1 24.2 18.9 61.6 81.8 86.6 46.4 46.4 43
SVM(%) 84.5 79.3 74.1 64.9 82.2 82.9 66.2 75.8 94.3

Open Close Open Close Open Close Clean Drink Toggle ACA
Drawer1 Drawer1 Drawer2 Drawer2 Drawer3 Drawer3 Table Cup Switch
97.8 97.9 98.2 98.7 98.5 95.4 97.7 99.6 100 95.3
92.1 94.9 93.6 91.6 93.4 91.3 95 97.1 93.4 93.8
41.6 52.8 42.4 70.6 64.1 52 56.1 84 91.2 66.3
90.9 94.7 81.4 82.7 98.4 93 97.6 99 97 90.9
94.5 92.1 83.4 95.1 96.5 91 95.4 98.8 94.9 91.4
94 95 93.2 92.5 93.9 95.2 92.5 96.2 92.8 93.9
58.3 81 4.5 37.1 62.3 73.9 60.5 79 97.6 65.6
85.5 83.6 77.1 87.3 91.8 78.2 90 98.7 99 86.9
93 89 85.7 96.1 94.5 96.2 94.8 98.9 94.4 92
93.2 95.5 93.9 93.4 94.8 92.7 93.4 96.7 93.2 93.8
56.9 85.5 83.4 49 42.2 42.2 59.1 83.7 97.1 64.5
88.9 89.6 86.4 87.6 90.2 92.5 84.6 99.5 99.5 89.6
92.4 93.4 83.2 83.9 91.8 94.3 87.7 94.6 98.4 88
93.2 94.7 94.7 93.7 94.8 95.2 93.6 93.9 97.2 94.3
21.6 84.7 33.1 42.2 30 38.4 47.8 75.9 85.7 51.1
70.3 76.3 73.2 80.4 79.7 75.7 82.9 97 92.1 79.3



Chapter 5

Conclusions and Future Work

This chapter summarizes the contributions of this dissertation and discusses the

future directions.

5.1 Conclusion

The research questions that this thesis revolves around whether online AL can

improve performance of classification with less resources, compared to commonly

used online passive learning (classification). Many similar studies have been done

in offline setting, where AL has been shown to reduce the amount of data that

needs to be actively labelled, while at the same time, increasing the quality of the

resulting classifiers. Moving from offline to online setting is not straightforward.

In online setting, data comes as an unbounded stream, where concept drift and

concept evolution can occur at any time. Furthermore, the sampling bias problem

emerges as a side effect of AL which is more severe in online setting under the

presence of concept drift and concept evolution. In this thesis, we have demon-

strated that AL can improve learning from data streams. We have also shown that

AL can be harnessed to handle concept drift and concept evolution. Furthermore,

sampling bias has been attenuated, while maintaining AL advantages. Finally, we

have shown that AL can also improve learning even for sequential data steams in

the presence of concept drift and concept evolution.

These contributions have been the result of three algorithms proposed in three

chapters. The core idea of these algorithms is to query samples that give the largest

104
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reduction of an expected loss function that measures the learning performance.

Two types of AL have been proposed: decision theory based AL whose losses

involve the prediction error and information theory based AL whose losses involve

the model parameters. The summary of each chapter contribution and limitation

can be presented as follow:

• Chapter 2 proposes an active learning algorithm, BAL, for data streams ca-

pable of dealing with changes of the data distribution. The algorithm labels

the samples with high uncertainty and representativeness in a completely

online scenario. It also tackles the sampling bias of active learning with

potentially adversarial concept drift.

Experimental results on real-world data showed the limitation of the pro-

posed approach when the budget is high or the drift occurrence is rare and

smooth. However, the main goal of reducing the labelling cost in presence

of concept drift, while maintaining good accuracy, has been achieved.

To sum up, this chapter shows that AL can improve binary classification of

drifting data streams coping well with the problem of sampling bias.

• Chapter 3 proposes an active learning algorithm, SAL, for data streams to

deal with data streams challenges: infinite length, concept drift and concept

evolution. SAL labels samples that reduce the future expected error in a

completely online setting. It also tackles the sampling bias problem of active

learning.

Experimental results on real-world data are very good in general. Unfor-

tunately, SAL shows some limitations for class discovery when applied to

highly unbalanced data. However, the main goal of the proposed algorithm

is for classification in presence of unknown number of classes not specifically

for unbalanced data. Furthermore, the performance of SAL with respect to

class discovery is comparable to the state-of-the-art and is even better when

the classes are not severely unbalanced.

To sum up, this chapter shows that AL is capable of dealing with both

concept drift and concept evolution together despite the problem of sampling

bias.

• Chapter 4 proposes a novel online AL algorithm (BSAL) that can handle

concept evolution in data stream involving classes of unbalanced propor-

tions. BSAL is an information theory based AL algorithm that selects data
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instances leading to more information gain. This chapter also proposes a new

learning model equipped with BSAL to process data streams with sequential

temporal dependency. This model composed of a feature extractor (CRBM),

an online semi-supervised classifier (OSC) and BSAL to cope the challenges

of sequential data streams. CRBM helps overcome the weary features hand-

crafting by learning generic features from unlabelled high-dimensional input.

OSC online learns from stream of generic features. BSAL queries the sam-

ples that are expected to bring crucial information for OSC. Knowing that

the proposed approach is generic and not dedicated to specific application,

human activity recognition (HAR) is used as a real-world application.

Experimental results on real-world activity recognition datasets show the

effectiveness of the proposed model. Although, the classifier and the active

learning work online, the feature extractor pre-training step needs further

attention in order to accommodate it into the online setting.

To sum up, this chapter shows that AL can deal with sequential data streams

in presence of concept drift and concept evolution, even when data streams

involve classes of unbalanced proportions. It also presents a real-world ap-

plication of AL, namely human activity recognition (HAR).

5.2 Future Work

This thesis opens up many avenues for future research, some of which are listed

below. In short terms, we foresee several directions for research on dealing with

the shortcomings of the present version of the proposed algorithms.

• Extending BAL: the two criteria of BAL can be dynamically combined

yielding better result under any kind of drift over the whole budget line.

• Extending SAL: the performance of class discovery from severely unbal-

anced datasets can be improved by increasing the importance of rare classes

resulting in sampling bias towards rare classes. Developing online AL-based

novelty detection algorithm inspired by SAL can be another future work.

• Extending CRBM-OSC-BSAL: A potential improvement of this algo-

rithm is to upgrade it to cope with sampling bias. Exploiting the model

in other applications such as industrial maintenance can also be a potential
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future investigation. Another future work is to eliminate the pre-training

step by accommodating the feature extractor into the online setting.

• Scalability: An interesting and novel development of the proposed algo-

rithms is to make them scalable by distributing them on many machines.

Performing machine learning algorithms in a distributed environment first

involves conceptually converting single-threaded algorithms to parallel algo-

rithms. The second step involves implementing the parallel algorithms.

The distributed architecture which we proposed in [158] could be employed

to convert the proposed algorithms to parallel ones. Integrating these paral-

lel algorithms into SOLMA1, which is implemented on top of Apache Flink,

allows sort of high level distributed implementation with no need to under-

stand the system configurations.

In long terms, many open questions regarding online active learning need be ad-

dressed to make it possible to apply AL for data streams in more realistic scenarios,

in particular, relaxing the assumptions related to the annotators (oracles):

• Labelling delay: An assumption in this thesis is that the oracle provides the

label of the queried samples in no time. In reality, delayed labelling occurs

and does affect the performance when the stream velocity is higher than

the labelling speed. This makes the adaptation of the learning algorithm

more challenging. However, for some real-world applications, labelling delay

and its effect can be diminished. In these applications, the oracle feeding

the labels is the same as that controls the data. To curb the delay more,

offering label choices instead of asking about the labels could be easily done.

Furthermore, choices could be limited to specific set of the labels according

to some criteria.

• Noisy oracles: Another strong assumption taken in this thesis is that the

oracle always gives correct labels. However, uncertainty arises whether the

labels come from human experts (one or multiple experts) or as a result of

an empirical experiment. The instrumentation of experimental setting may

produce some noise. Human experts may not always be reliable, for several

1Solma is a scalable online machine learning algorithms (including classification, cluster-
ing, regression, ensemble algorithms, graph oriented algorithms, linear algebra operations, and
anomaly and novelty detection. https://github.com/proteus-h2020/proteus-solma) implemented
on top of Apache Flink using the hybrid processing capabilities.
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reasons. First, some instances are implicitly difficult for people and machines

and second, people can become distracted or tired over time. The question

remains about how to use noisy oracles in active learning. In particular,

when should the learner decide to query for the (potentially noisy) label of

a new unlabelled instance? or querying for repeated labels to de-noise an

existing training instance that seems a bit off?

• Multiplicity of oracles: The recent introduction of Internet-based ”crowd-

sourcing” tools such as Amazons Mechanical Turk2 and the clever use of

online annotation games3 have enabled some researchers to attempt to ”av-

erage out” some of this noise by cheaply obtaining labels from multiple non-

experts. Such approaches have been used to produce gold-standard quality

training sets and also to evaluate learning algorithms on data for which no

gold-standard labelling exists.

• Labelling costs: In many applications there is variance in the cost of ob-

taining labels. If our goal in active learning is to minimize the overall cost

of training an accurate model, then simply reducing the number of labelled

instances does not necessarily guarantee a reduction in overall labelling cost.

Active learning approaches which ignore cost may perform no better than

random selection (i.e., passive learning). The cost of labelling data samples

could be expressed as different weights attached to each sample to represent

its labelling cost. Then, existing AL approaches could be simply applied.

One of the future directions is to develop online AL for other machine learning

problems such as parameter estimation and regression. In such problems, queries

do not have to be about revealing the labels, but rather other type of information

feedback such as group assignment and relation between instances.

Finally, finding theoretical guarantees for online AL is an important and chal-

lenging future work. Online AL relation to bandit problems and reinforcement

learning can be key for such a direction.

2https://www.mturk.com/mturk/welcome
3http://www.gwap.com/



Appendix A

A.1 Parameters setting of Growing Gaussian Mix-

ture Model

To find the parameters giving the best performance, we need to maximize the

accuracy of BAL for each dataset. Here, we have three variables: variance, learning

rate, and number of clusters. Obviously, carrying out many experiments with three

degrees of freedom is time costly. In order to estimate these parameters with less

time, we use prior knowledge about the dynamicity of the model. We already

know from the previous experiments that the accuracy increases as the number of

clusters increases (Fig. 2.11).

Thus, we can set the maximum number of clusters to 50 and maximize the accuracy

of BAL with respect to variance, and learning rate. The removal and creation of

clusters depend on the coverage of the input by the existing clusters. Thus, small

variance with insufficient number of clusters results in instability and inaccurate

density estimation. On the other hand, small variance covers thoroughly the input

space as long as the number of clusters is enough.

We empirically set the variance to 0.1. We can now estimate the maximum accu-

racy of BAL for each variable separately. Figures A.1a, A.2a, A.3a, and A.4a

show the possible optimal values of the learning rate for each dataset. Fig-

ures A.1b, A.2b, A.3b, and A.4b show the effect of the variance on the accuracy

while keeping the learning rate set to the optimal values obtained from the previ-

ous experiment. Finally, Fig. A.1c, A.2c, A.3c, and A.4c depict the accuracy when
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the number of clusters increases. As the number of clusters increases, the com-

putational time increases also, while the accuracy does not change substantially.

Thus we set the number of clusters to 50 for all datasets. Table 2.1 summarizes

the obtained optimal values of the parameters.
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(a) Learning rate (b) Variance (c) Number of clusters

Figure. A.1 Gradual drift

(a) Learning rate (b) Variance (c) Number of clusters

Figure. A.2 Mixture drift

(a) Learning rate (b) Variance (c) Number of clusters

Figure. A.3 Electricity

(a) Learning rate (b) Variance (c) Number of clusters

Figure. A.4 Airlines



Appendix B

B.1 Compute Eq. (3.22):

• If zt refers to a new component:

p(xt|zt, Xt−1) =

∫
θ

p(xt|θ)p(θ|G0) = tv1(xt|µ1,Σ1) (B.1)

where t refer to student’s t-distribution which we end up with as a result

of using a conjugate prior (i.e., the Normal Inverse Wishart prior) over the

normal distribution parameter θ.

µ1 = µ0 (B.2)

Σ1 =
Σ0(k0 + 1)

k0(v0 − d+ 1)
(B.3)

v1 = v0 − d+ 1 (B.4)

where d is the dimension of the data.

• If zt refers to an already seen component:

p(xt|z1:t, Xt−1) =

∫
θ

p(xt|θ)p(θ|szt,t−1(z1:t−1), nzt,t−1)

= tv2(xt|µ2,Σ2) (B.5)

µ2 =
k0

k0 + nzt,t−1

µ0 +
nzt,t−1

k0 + nzt,t−1

suzt,t−1 (B.6)
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Σ2 =
1

(k0 + nzt,t−1)(v0 + nzt,t−1 − d+ 1)(
Σ0 + sczt,t−1 +

k0nzt,t−1

k0 + nzt,t−1

(suzt,t−1 − µ0)

(suzt,t−1 − µ0)T
)
(k0 + nzt,t−1 + 1) (B.7)

v2 = v0 + nzt,t−1 − d+ 1 (B.8)

B.2 Compute the first term of Eq. (3.31):

Given zt, yt is independent of the observations x1:t−1. Hence,

p(yt|zt, Dt−1) = p(yt|zt, yt−1) (B.9)

As zt selects the stick breaking component generating yt, the distribution of yt

depends only on the label of the data assigned to components zt. By marginalizing

the selected stick breaking component the same way as in Eq. (3.19), we end up

with the following equations:

p(yt|zt, Dt−1) =


nzt,yt,t

α1+n′zt,t−1
∝ n′zt,yt,t yt is an existing class

α1

α1+n′zt,t−1
∝ α1 yt is a new class

(B.10)



Appendix C

C.1 Computation of Eq. (4.28)

After marginalizing out the Gaussian and the stick-breaking components, ψt be-

comes equivalent to z1:t. Thus, the discrepancy between the current risk and the

current expected risk can be written as follows:

∆̂(xt, yt|Dt−1, qt) = R(p(z1:t|Dt−1,xt), ẑ1:t)− R̂(p(z1:t|Dt−1,xt, yt), ẑ1:t; qt) (C.1)

R(p(z1:t|Dt−1,xt), ẑ1:t) = Ez1:t∼p(z1:t|Dt−1,xt)[L(z1:t, ẑ1:t)]

=
∑
z1:t

p(z1:t|Dt−1,xt)L(z1:t, ẑ1:t) (C.2)

Given that the data instance at time t is queried (qt = 1), the current expected

risk can presented as follows:

R̂(p(z1:t|Dt−1,xt, yt), ẑ1:t; qt = 1) =
∑
yt

p(yt|Dt−1,xt)R(p(z1:t|Dt−1,xt, yt), ẑ1:t)

(C.3)

To compute Eq. (C.1), both Eq. (C.2) and Eq. (C.3) must be solved. Given that

the loss function in Eq. (C.2) is solved, the computation of Eq. (C.2) and Eq. (C.3)

is straightforward. Thus, we start by the loss function which can be written as

follows:

L(z1:t, ẑ1:t) = A−B (C.4)
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where:

A =
∑
y

∫
x

p(x, y|Dt, z1:t) log
(
p(x, y|Dt, z1:t)

)
dx (C.5)

B =
∑
y

∫
x

p(x, y|Dt, z1:t) log
(
p(x, y|Dt, ẑ1:t)

)
dx (C.6)

A = A1 + A2 (C.7)

where

A1 =
∑
y

log
(
p(y|Dt, z1:t)

)
p(y|Dt, z1:t)

∑
z

p(z|y, z1:t, Dt)

∫
x∫

θ

p(x|z,θ)p(θ|z,Dt, z1:t)dθdx (C.8)

The integral over θ leads to a t-student distribution as shown in Eq. (4.7). Hence,

A1 =
∑
y

log
(
p(y|Dt, z1:t)

)
p(y|Dt, z1:t) (C.9)

where the terms of Eq. (C.9) are already computed in Eq. (4.3).

A2 =
∑
y

p(y|Dt, z1:t)
∑
z

p(z|y, z1:t, Dt)

∫
x

∫
θ

p(x|z,θ)p(θ|z,Dt, z1:t)dθ log

(
∑
z

p(z|y, z1:t, Dt)

∫
θ

p(x|z,θ)p(θ|z,Dt, z1:t)dθ

)
dx

(C.10)

Similarly, we compute B:

B = B1 +B2 (C.11)

B1 =
∑
y

log
(
p(y|Dt, ẑ1:t)

)
p(y|Dt, z1:t)

∑
z

p(z|y, z1:t, Dt)

∫
x∫

θ

p(x|z,θ)p(θ|z,Dt, z1:t)dθdx (C.12)

B1 =
∑
y

log
(
p(y|Dt, ẑ1:t)

)
p(y|Dt, z1:t) (C.13)
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B2 =
∑
y

p(y|Dt, z1:t)
∑
z

p(z|y, z1:t, Dt)

∫
x

∫
θ

p(x|z,θ)p(θ|z,Dt, z1:t)dθ log

(
∑
z

p(z|y, ẑ1:t, Dt)

∫
θ

p(x|z,θ)p(θ|z,Dt, ẑ1:t)dθ

)
dx

(C.14)

Given that

Q1(x) =
∑
z

p(z|y, z1:t, Dt)

∫
θ

p(x|z,θ)p(θ|z,Dt, z1:t)dθ

Q2(x) =
∑
z

p(z|y, ẑ1:t, Dt)

∫
θ

p(x|z,θ)p(θ|z,Dt, ẑ1:t)dθ

g(x) = log
Q1(x)

Q2(x)
(C.15)

A2 −B2 can be written as follows:

A2 −B2 =
∑
y

p(y|Dt, z1:t)

∫
x

Q1(x)g(x)dx

=
∑
y

p(y|Dt, z1:t)
∑
z

∫
x

p(z|y, z1:t, Dt)t(x|z,Dt, z1:t)g(x)dx (C.16)

where t(x|.) refers to student’s t-distribution. We can approximate each tern in

this sum with a second order Taylor series expansion of g(x) around the means

µz ≡ µ(z,z1:t,Dt) of the student’s t-distribution’s components:

g(x) ≈ ĝµz
(x) = g(µz) +∇g(µz)(x− µz) +

1

2
(x− µz)T∇2g(µz)(x− µz)

(C.17)

where ∇g and ∇2g are the gradient and the Hessian matrix of the second deriva-

tives. Hence, Eq. (C.16) can be written as follows:

A2 −B2 =
∑
y

p(y|Dt, z1:t)
∑
z

p(z|y, z1:t, Dt)

(
g(µz) +

1

2
tr
(
∇2g(µz)

vz
vz − 2

Σz

))
(C.18)

where vz and Σz are the degree of freedom and the covariance matrix of the stu-

dent’s t-distribution’s component determined by z. This approximation is known

as the multivariate delta method for moments [159]. Finally, the loss function in
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Eq. (C.4) can be written as follows:

L(z1:t, ẑ1:t) =
∑
y

p(y|Dt, z1:t)

[
log

p(y|Dt, z1:t)

p(y|Dt, ẑ1:t)
+

∑
z

p(z|y, z1:t, Dt)

(
g(µz) +

1

2
tr
(
∇2g(µz)

vz
vz − 2

Σz

))]
. (C.19)

The current risk in Eq. (C.2) can be easily computed by replacing the loss function

with its solution in Eq. (C.19). Thus, the current expected risk in Eq. (C.3) can be

computed by replacing the current risk with its solution. Hence, the discrepancy

between the current risk and the current expected risk in Eq. (C.1) is solved.

C.2 Sampling precision hyper-parameters

Algorithm 4 Precision Parameters Sampling

1: HypSamp({H i
t , w

i
t}Pi=1, {α2, α1i}m2

i=1a, b)

2: Sample a particle: h ∼
∑P

i=1 w
(i)
t δ(Ht −H(i)

t )
3: Derive {m2,m11, ...,m1m2} from h
4: Sample {η2, η11, ..., η1m2}

(
Eq. (C.23)

)
5: Sample {αnew2 , αnew11 , ..., αnew1m2

}
(
Eq. (C.22)

)
6: Return {αnew2 , αnew11 , ..., αnew1m2

}

Authors in [153] show that the precision parameter in a DP mixture model α is

conditionally independent of the data given the number of distinct components m

and the size of the data, n = eTne. Let α ∼ G(a, b), a gamma prior with shape

a and scale b which are both fixed to 1. The posterior distribution of α can be

written as follows:

p(α|m,n) ∝ p(α)p(m|α, n) (C.20)

According to [160], the likelihood in Eq. (C.20) may be written as:

p(m|α, n) = cn(m)n!αk
Γ(α)

Γ(α + n)
(C.21)
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where cn(m) = p(m|α = 1, n) does not involve α. In this case, Eq. (C.20) can be

expressed as mixture of two gamma posteriors [153].

(α|η,m) ∼ πηG(a+m, b− log(η)) + (1− πη)G(a+m− 1, b− log(η)) (C.22)

(η|α,m) ∼ B(α + 1, n) (C.23)

πη
1− πη

=
a+m− 1

n(b− log(η))

where B denotes the beta distribution, η is an auxiliary variable used in the

sampling. To infer the distribution over α, Gibbs sampling iterations go as follows;

First η is sampled from Eq. (C.23) conditional on the most recent value m and α.

Second, α is sampled from Eq. (C.22) conditional on the already sampled η and

the same m. The number of components can be deduced from the configuration

variables.

To apply this sampling approach online on OSC model, we must sample for each

class-specific mixture model, c, its corresponding, precision parameter α1c, number

of components m1c and auxiliary variable η1c. The set of parameters related to

the class distribution, α2, m2 and η2 must be sampled too. Furthermore, sampling

must be done online. That is, once the data is processed, it is discarded. Thus,

unlike offline Gibbs sampling, one set of precision parameters {αnew2 , αnew11 , ..., αnew1m2
}

is sampled in each iteration. The precision parameters are independent given the

class label. Hence, they can be sampled independently using the same sampling

routine described in [153].
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