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Power Control and Resource Allocation for
QoS-Constrained Wireless Networks

Ziqiang Feng

Developments such as machine-to-machine communications and multimedia services are
placing growing demands on high-speed reliable transmissions and limited wireless spec-
trum resources. Although multiple-input multiple-output (MIMO) systems have shown the
ability to provide reliable transmissions in fading channels, it is not practical for single-
antenna devices to support MIMO system due to cost and hardware limitations. Cooper-
ative communication allows single-antenna devices to share their spectrum resources and
form a virtual MIMO system where their quality of service (QoS) may be improved via
cooperation. Most cooperative communication solutions are based on fixed spectrum ac-
cess schemes and thus cannot further improve spectrum efficiency. In order to support more
users in the existing spectrum, we consider dynamic spectrum access schemes and cognitive
radio techniques in this dissertation.

Our work includes the modelling, characterization and optimization of QoS-constrained
cooperative networks and cognitive radio networks. QoS constraints such as delay and data
rate are modelled. To solve power control and channel resource allocation problems, dy-
namic power control, matching theory and multi-armed bandit algorithms are employed in
our investigations. In this dissertation, we first consider a cluster-based cooperative wire-
less network utilizing a centralized cooperation model. The dynamic power control and
optimization problem is analyzed in this scenario. We then consider a cooperative cogni-
tive radio network utilizing an opportunistic spectrum access model. Distributed spectrum
access algorithms are proposed to help secondary users utilize vacant channels of primary
users in order to optimize the total utility of the network. Finally, a noncooperative cognitive
radio network utilizing the opportunistic spectrum access model is analyzed. In this model,
primary users do not communicate with secondary users. Therefore, secondary users are
required to find vacant channels on which to transmit. Multi-armed bandit algorithms are
proposed to help secondary users predict the availability of licensed channels.

In summary, in this dissertation we consider both cooperative communication networks
and cognitive radio networks with QoS constraints. Efficient power control and channel
resource allocation schemes have been proposed for optimization problems in different sce-
narios.





Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This dis-
sertation contains fewer than 60,000 words including appendices, bibliography, footnotes,
tables and equations and has fewer than 150 figures.

Ziqiang Feng
October 2017





Acknowledgements

First and foremost, I would like to thank my supervisor, Dr Ian Wassell, for his kind support
and guidance throughout my PhD study. His patience, enthusiasm and encouragement have
been a source of great inspiration to me. I also thank him for giving me the freedom to
pursue my own research interests while keeping me on the right track. This work would not
have been possible without his invaluable advice.

My sincere thanks go to my friends and labmates that have made my life memorable
and enjoyable at Cambridge. Thanks to Hongfei Li, Shaoran Hu, Xiaoming Yu and Bingyan
Yang, for the wonderful time and happiness we shared. Thanks to Chao Gao, Yu Wang, Xing
Ding, Yang Liu, David Turner and Oliver Chick, for their kind help and valuable discussions
in the research group.

I am also grateful to the Cambridge Overseas Trust, the China Scholarship Council and
the Computer Laboratory, for sponsoring my research in the past four years.

Finally, I am greatly indebted to my family, who have always supported me and believed
in me. I would like to thank my mom and dad, for their love and encouragement in my life
since the day I was born. I would like to thank my wife, Menglin, for her great sacrifice and
support during my PhD. I wouldn’t have made it this far if it hadn’t been for her.





Table of contents

List of figures 13

List of tables 15

List of acronyms 17

1 Introduction 21
1.1 Cooperative Communication . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2 Cognitive Radio Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3 Main Contributions and Dissertation Outline . . . . . . . . . . . . . . . . . 23

2 Background 27
2.1 Wireless Channel Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 SISO Channel Capacity . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.2 MIMO Channel Capacity . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Delay Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.1 Queueing Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.2 Delay Model with Queueing theory . . . . . . . . . . . . . . . . . 36

2.3 QoS Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4 Power Control Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.1 Power Consumption Analysis . . . . . . . . . . . . . . . . . . . . 37
2.4.2 Power Control Methods . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Resource Allocation Methods . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5.1 The Assignment Problem . . . . . . . . . . . . . . . . . . . . . . . 41
2.5.2 The Hungarian Algorithm . . . . . . . . . . . . . . . . . . . . . . 42
2.5.3 The Matching Algorithm . . . . . . . . . . . . . . . . . . . . . . . 43

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



10 Table of contents

3 Dynamic Power Control and Optimization for QoS-Constrained Wireless Net-
works 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Multi-Hop QoS Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4 Dynamic Power Control and Optimization . . . . . . . . . . . . . . . . . . 54

3.4.1 Dynamic Power Control Algorithm . . . . . . . . . . . . . . . . . 55
3.4.2 Outage Capacity Approximation . . . . . . . . . . . . . . . . . . . 56

3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Competitive Distributed Spectrum Access for QoS-Constrained Wireless Net-
works 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 System Model and Problem Formulation . . . . . . . . . . . . . . . . . . . 70

4.2.1 QoS Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.2 Utility Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Optimal Solution and Matching Theory . . . . . . . . . . . . . . . . . . . 73
4.3.1 Optimal Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.2 Matching Definition . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.3 Stable Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Competitive Distributed Spectrum Access . . . . . . . . . . . . . . . . . . 74
4.4.1 Distributed Spectrum Access Scheme . . . . . . . . . . . . . . . . 74
4.4.2 Distributed Matching Algorithm . . . . . . . . . . . . . . . . . . . 76
4.4.3 Fast Distributed Spectrum Access Scheme . . . . . . . . . . . . . . 78

4.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Joint Channel Sensing and Power Control for QoS-Constrained Wireless Net-
works 87
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 System Model and Problem Formulation . . . . . . . . . . . . . . . . . . . 89

5.2.1 Channel Sensing with Availability Constraints . . . . . . . . . . . 91
5.2.2 Power Control with Rate Constraints . . . . . . . . . . . . . . . . 93

5.3 Probably Approximately Correct Channel Sensing Algorithms . . . . . . . 94
5.3.1 Passive Rejection Algorithm . . . . . . . . . . . . . . . . . . . . . 95
5.3.2 Active Elimination Algorithm . . . . . . . . . . . . . . . . . . . . 97



Table of contents 11

5.4 Joint Channel Sensing and Power Control Scheme . . . . . . . . . . . . . . 100
5.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Conclusions and Future Work 111
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.1 Dynamic Power Control for Virtual MIMO Wireless Networks . . . 112
6.2.2 Efficient Distributed Spectrum Access . . . . . . . . . . . . . . . . 113
6.2.3 Optimal Channel Tracking . . . . . . . . . . . . . . . . . . . . . . 113
6.2.4 Applications in Other Scenarios . . . . . . . . . . . . . . . . . . . 113

References 115





List of figures

2.1 A SISO channel model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Normalized outage capacity versus outage probability. . . . . . . . . . . . 30
2.3 Normalized average outage capacity versus outage probability. . . . . . . . 31
2.4 A MIMO channel model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 A basic queueing model of a wireless source. . . . . . . . . . . . . . . . . 34
2.6 State space diagram of M/D/1 queueing model. . . . . . . . . . . . . . . . 35
2.7 A transmitter block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.8 A receiver block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.9 The tradeoff between the transmission energy and the circuit energy con-

sumption with different transmission time per bit. . . . . . . . . . . . . . . 39
2.10 The tradeoff between the transmission energy and the circuit energy con-

sumption with different number of cooperative nodes. . . . . . . . . . . . . 40

3.1 Multi-hop cluster-based CRN. . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Transmission scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Performance of the DPC and ADPC algorithm with different values of nt . . 60
3.4 Average outage capacity with different pout for nt = 4. . . . . . . . . . . . 61
3.5 Average outage capacity with different pout and Pcp for nt = 4. . . . . . . . 62
3.6 Optimal outage probability with different values of nt . . . . . . . . . . . . . 63
3.7 Total power consumption of the DPC and ADPC algorithm with different

values of nt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.8 Optimal number of cooperative nodes with different transmission distances. 64
3.9 Optimal total power consumption with different transmission distances. . . 65
3.10 Optimal number of cooperative nodes with different α . . . . . . . . . . . . 66
3.11 Optimal total power consumption with different α . . . . . . . . . . . . . . 66

4.1 A cooperative cognitive radio network. . . . . . . . . . . . . . . . . . . . . 71
4.2 Typical message exchanges of the distributed spectrum access scheme. . . . 75



14 List of figures

4.3 Total utility with different number of active SUs in a small-scale CRN. . . . 81
4.4 Total utility with various levels of QoS requirements. . . . . . . . . . . . . 82
4.5 Total utility with different number of active SUs in a large-scale CRN. . . . 83
4.6 Average message exchanges per SU with different number of active SUs. . 84
4.7 Total utility with various probability of channel availability. . . . . . . . . . 85

5.1 A cluster-based cognitive radio wireless sensor network. . . . . . . . . . . 90
5.2 Models for block fading channels and time slots. . . . . . . . . . . . . . . 90
5.3 A model for channel sensing and data transmission. . . . . . . . . . . . . . 91
5.4 An example of the AE algorithm. . . . . . . . . . . . . . . . . . . . . . . . 99
5.5 Channel sensing accuracy (1− ε) of various channel sensing algorithms. . . 103
5.6 Channel sensing accuracy (1− ε) with various minimum channel availabili-

ty gap (∆m
m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.7 Maximum transmitted bytes in the cluster vs. various numbers of sensors
with data transmission requests, for one fading block. . . . . . . . . . . . . 105

5.8 Maximum transmitted bytes in the cluster vs. different number of sensors
with data transmission requests, averaged over 1000 fading blocks. . . . . . 108

5.9 Maximum transmitted bytes in the cluster vs. different N. . . . . . . . . . . 108



List of tables

3.1 Parameters for simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Parameters for simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2 QoS requirements of SUs in different type . . . . . . . . . . . . . . . . . . 81

5.1 Parameters for simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 The normalized channel gain . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3 The optimal transmission power given by the JCSPC scheme . . . . . . . . 106
5.4 The maximum number of transmitted bytes given by the JCSPC scheme . . 106
5.5 The optimal transmission power given by the optimal solution . . . . . . . 107
5.6 The maximum number of transmitted bytes given by the optimal solution . 107





List of acronyms

ACK Acknowledgement

ACK-A Acknowledgement of Acceptance

ACK-R Acknowledgement of Refusal

ADC Analog to Digital Converter

AE Active Elimination

ARQ Automatic Repeat Request

AT Algorithm Termination

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BP Broadcast Phase

CAR Channel Access Request

CDF Cumulative Distribution Function

CP Cooperation Phase

CR Cognitive Radio

CRN Cognitive Radio Network

CRWSN Cognitive Radio Wireless Sensor Network

CSI Channel State Information

D2D Device-to-Device



18 List of acronyms

DAC Digital to Analog Converter

DM Distributed Matching

DPC Dynamic Power Control

DPCO Dynamic Power Control and Optimization

FDM Fast Distributed Matching

FIFO First-In First-Out

IFA Intermediate Frequency Amplifier

IR Improved Reject

JCSPC Joint Channel Sensing and Power Control

LIFO Last-In First-Out

LNA Low Noise Amplifier

LO Local Oscillator

MIMO Multiple-Input Multiple-Output

MISO Multiple-Input Single-Output

PA Power Amplifier

PAC Probably Approximately Correct

PB Priority-Based

PER Packet Error Rate

PMF Probability Mass Function

PR Passive Rejection

PU Primary User

QoS Quality of Service

RA Random Access

RCA Random Channel Access



List of acronyms 19

RD Ready for Data

RFD Reduced-Function Device

SISO Single-Input Single-Output

SNR Signal-to-Noise Ratio

SR Simple Reject

STBC Space-Time Block Code

SU Secondary User

SVD Singular Value Decomposition

TD Threshold Detection

TDD Time Division Duplex

UCB Upper Confidence Bound

UPDA User-Proposing Deferred Acceptance

UWB Ultra-Wide-Band

WSN Wireless Sensor Network





Chapter 1

Introduction

Developments such as machine-to-machine communications and multimedia services are
placing growing demands for high data rate transmissions and are putting pressure on limit-
ed wireless spectrum resources. In order to improve the transmission quality and spectrum
efficiency, innovative techniques such as cooperative communication [1] and cognitive ra-
dio [2] have been proposed.

1.1 Cooperative Communication

Multiple-input multiple-output (MIMO) systems have shown the ability to provide reliable
transmissions in fading channels by exploiting spatial diversity with multiple antennas [3].
However, it is not practical for single-antenna devices to support MIMO systems due to cost
and hardware limitations [4]. Cooperative communication allows single-antenna devices
to share their spectrum resources and form a virtual MIMO system where their quality of
service (QoS) may be improved via cooperation [5–7]. There are two network models
proposed based on the concept of cooperative communication [1]:

1. Centralized Cooperation Model: In the centralized cooperation model, the cooper-
ative transmission is controlled by the cluster heads. In the multi-hop architecture, all
devices communicate through a cluster head. Each cluster head cooperatively trans-
mits the data with multiple cooperative devices to the next cluster which provides
cooperative gains compared to the noncooperative transmission. In this model, power
control and cooperative node selection algorithms in general aim to optimize the total
power consumption without violating QoS constraints.

2. Decentralized Cooperation Model: In the decentralized cooperation model, addi-
tional control information and channel parameters are carried in the transmission data.
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Devices in the network are responsible for inferring the channel conditions and the
transmission schedules through the additional information to form a random cooper-
ative cluster. In this model, it is important to have efficient clustering protocols for
reliable transmissions.

Both the centralized and decentralize models require cluster-based cooperation to form
a virtual MIMO system. In the cluster-based virtual MIMO system, the cluster-to-cluster
transmission in the time domain is divided into two phases, the broadcast phase and the
cooperation phase. In the broadcast phase, the cluster head broadcasts its data within the
cluster. In the cooperation phase, the cooperative devices decode the received data and
forward it to the next cluster.

In this dissertation, we mainly focus on the centralized cooperation model and propose
efficient algorithms for optimal power control and cooperative node selection subject to the
data rate and channel capacity constraints. Although cooperative communication provides
spatial diversity for single-antenna devices, most cooperative communication solutions are
based on fixed spectrum access scheme and thus cannot further improve spectrum efficiency.
In order to support more users in the existing spectrum, we also consider dynamic spectrum
access schemes and cognitive radio techniques in this dissertation.

1.2 Cognitive Radio Networks

Traditional fixed spectrum access schemes face spectrum scarcity due to the limited avail-
ability of wireless spectrum and the increasing number of high data rate wireless devices.
On the other hand, a large portion of the assigned spectrum experiences low utilization ac-
cording to spectrum utilization measurements [8, 9]. In a cognitive radio network, a part
of the spectrum is allocated to one or more primary users that have a higher priority to use
the spectrum. In contrast to the fixed spectrum access scheme, spectrum resources are not
allocated for exclusive use by the primary users. Secondary users, who have a lower priority
compared to primary users, can exploit the allocated spectrum as long as they do not cause
severe interference to primary users. In order to guarantee the performance of the primary
users and support the dynamic spectrum access scheme, secondary users are required to
monitor the spectrum usage using cognitive radio techniques. Such approaches may help
secondary users detect vacant spectrum not being used by primary users or estimate the
interference level at the primary user’s receiver. Different cognitive radio techniques may
have different cognitive capabilities available to monitor the spectrum. Depending on the as-
sumptions made about the cognitive capabilities of secondary users, there are two common
models employed in cognitive radio networks [10, 11]:
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1. Concurrent Spectrum Access Model: In the concurrent spectrum access model,
secondary users are allowed to transmit their data concurrently with primary users
without causing severe interference to primary users. Secondary users equipped with
cognitive radios should be able to monitor the spectrum and predict the interference
power level at a particular location. In order to manage the interference power level
and keep it below the interference threshold, secondary users can transmit their data
over a wide bandwidth with low power density using ultra-wide-band (UWB) technol-
ogy. In the concurrent spectrum access model, since the interference constraints are
quite restrictive, in most cases, this means that secondary users are limited to short
range communications.

2. Opportunistic Spectrum Access Model: In the opportunistic spectrum access mod-
el, secondary users seek transmission opportunities by detecting spectrum holes [12],
and in particular secondary users can only transmit data on identified spectrum holes.
Meanwhile, secondary users should monitor the spectrum and vacate it whenever the
primary users become active. The utilization of spectrum is improved by opportunis-
tic spectrum access in the spectrum holes [13]. In this model, secondary users should
be able to detect and predict the activity of primary users.

In this dissertation, we mainly focus on the opportunistic spectrum access model of cog-
nitive radio networks. We consider both the cooperative and noncooperative scenarios. In
the cooperative scenario, primary users lease their vacant spectrum to secondary users to
help secondary transmissions. Secondary users send their data transmission requirements to
primary users once they detect spectrum holes and primary users allocate their vacant spec-
trum to secondary users to improve the network throughput and spectrum efficiency. In the
noncooperative scenario, we assume no cooperation between primary users and secondary
users. Secondary users are responsible for monitoring the spectrum and to avoid interfering
excessively with primary users. The data of secondary users is opportunistically transmitted
in spectrum holes.

1.3 Main Contributions and Dissertation Outline

This dissertation focuses on the design of efficient power control and resource allocation
algorithms for QoS-constrained wireless networks for cooperative communication and cog-
nitive radio techniques:

• In Chapter 2, the concept of QoS constraints such as wireless channel capacity and
end-to-end delay are discussed in detail. We also introduce some methods on power
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control and resource allocation of wireless networks to facilitate understanding our
work. These concepts and methods are used in the various scenarios presented in this
study.

• In Chapter 3, we consider a cluster-based cooperative wireless network utilizing the
centralized cooperation model. In this network, cooperative devices in each cluster
help the cluster head to transmit its data to the next cluster. With the QoS constraints
on single-hop outage capacity and multi-hop delay, we propose a dynamic power
control algorithm that can minimize the total power consumption without violating
the QoS constraints. To reduce the computational complexity of the dynamic power
control algorithm, an approximate algorithm is proposed. The performance of the
dynamic power control algorithm and the approximate algorithm are evaluated by
simulation results. Most of the results in this chapter are published in the IEEE Inter-
national Conference on Communications (ICC) 2016 conference proceedings [14].

• In Chapter 4, a cooperative cognitive radio network utilizing the opportunistic spec-
trum access model is studied. In this cognitive radio network, secondary users can
send their data transmission requests to the primary users. Primary users allocate
their vacant channels to secondary users to help secondary transmissions. Differen-
t secondary users may have different QoS requirement. In order to maximize the
network throughput under the QoS constraints, we propose a distributed channel allo-
cation algorithm based on matching theory. The proposed algorithm can match up the
secondary users to the vacant channels of primary users which can meet the QoS re-
quirements. We prove that the proposed algorithm has near-optimal performance and
has a much lower computational complexity than the centralized solution. Most of the
results in this chapter are published in the IEEE Global Communications Conference
(GLOBECOM) 2016 conference proceedings [15].

• In Chapter 5, we investigate a noncooperative cognitive radio network utilizing the
opportunistic spectrum access model. In this scenario, primary users do not commu-
nicate with secondary users. Secondary users are required to monitor the channels of
primary users and opportunistically transmit their data through vacant channels. S-
ince one secondary user can only sense part of the spectrum due to cost and hardware
limitation, we propose a cooperative sensing method where secondary users share
their sensing results and predict the primary users behaviour by utilizing the historical
sensing results. In particular, three probably approximately correct (PAC) algorithms
are proposed to predict the primary users behaviour and channel availability. All the
algorithms can terminate in a finite time with a finite error rate. The performance of
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these algorithms are investigated via simulation results. Some of the results in this
chapter are published in the Wireless Days (WD) 2017 conference proceedings [16].

• In Chapter 6, we summarize the main results of the dissertation and discuss future
research directions.





Chapter 2

Background

2.1 Wireless Channel Capacity

In information theory, the channel capacity is the maximum data rate that can be reliably
transmitted over a particular wireless channel assuming no constraints on delay [17]. Un-
derstanding different wireless channel models and their capacity are key factors for solving
power control and resource allocation problems in wireless networks. In the following sec-
tions, the wireless channel models for single-input single-output (SISO) and for multiple-
input multiple-output (MIMO) systems are presented.

2.1.1 SISO Channel Capacity

A block-fading SISO channel model with time-varying gain and additive white Gaussian
noise (AWGN) is given in Fig. 2.1 [18].

Encoder
Power 

Control

Channel 

Estimator

Transmitter Channel Receiver

iyix

Decoder

is

ˆ
isiwih

ih

Fig. 2.1 A SISO channel model.

At time block i, the message si is encoded into the codeword xi and transmitted over
the time-varying channel with channel amplitude gain hi and additive white Gaussian noise
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(AWGN) wi. In the block-fading channel model, channel amplitude hi, also called the chan-
nel state information (CSI), is constant over some number of transmitted data blocks and
changes as an independent and identically distributed (i.i.d.) process over time. The re-
ceived signal yi at time block i of the block-fading SISO channel is given by

yi = hixi +wi. (2.1)

Let Pi denote the average transmit signal power at time block i. The instantaneous signal-to-
noise ratio (SNR) at time block i is then given by

γi =
Pi|hi|2

N0B
=

Pigi

N0B
, (2.2)

where N0
2 is the noise power spectral density of wi, gi = |hi|2 is the channel power gain and

B is the received signal bandwidth. According to Shannon’s theory [19], the instantaneous
channel capacity of the block-fading channel at time block i is given by

Ci = Blog2 (1+ γi) . (2.3)

In the block-fading SISO channel model, the CSI is assumed to be known at the receiver.
The transmitter may obtain the CSI from the receiver if a feedback link exists between the
transmitter and the receiver. We also assume that both the transmitter and receiver know
the distribution of CSI. There are two channel capacity definitions that we are interested in,
namely the ergodic capacity and the outage capacity.

Ergodic Capacity of SISO Channel Model

The ergodic capacity of a block-fading SISO channel is defined as the channel capacity aver-
aged over the distribution of the instantaneous SNR γ [20]. Let f (γ)= Pr(γi = γ) denote the
probability density function (PDF) of the SNR at the receiver. According to Equation (2.3),
the ergodic capacity is expressed as

CSISO
erg = Eγ [Blog2 (1+ γ)] =

∫ ∞

0
Blog2 (1+ γ) f (γ)dγ . (2.4)

Let f (g) = Pr(gi = g) denote the PDF of the channel power gain. With the average
power constraint E [P] ≤ P̄ where P̄ is the power constraint, the channel capacity depends
upon the assumptions concerning the transmitter CSI.
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When no CSI is available at the transmitter, constant maximum power is allocated at any
time to maximize the channel capacity. The ergodic capacity is thus given by

CSISO
erg = Eg

[
Blog2

(
1+

gP̄
N0B

)]
=
∫ ∞

0
Blog2

(
1+

gP̄
N0B

)
f (g)dg. (2.5)

If perfect CSI is available at the transmitter, power is allocated adaptively according
to the channel condition. With the average power constraint P̄, the ergodic capacity is
expressed as

CSISO
erg = max

E[P]≤P̄
Eg

[
Blog2

(
1+

gP
N0B

)]
. (2.6)

According to [18], the capacity in Equation (2.6) can be achieved if the message is properly
encoded and decoded according to the CSI. The optimal power allocation strategy for Equa-
tion (2.6) is called the water-filling strategy and is given by

P
N0B

=

(
1
g0
− 1

g

)+

, (2.7)

where (x)+ = max(0,x) and g0 is found from the power constraint

∫ ∞

g0

(
1
g0
− 1

g

)
f (g)dg =

P̄
N0B

. (2.8)

From Equation (2.7), we know that the transmitter allocates more power to the good
channel blocks and less power to bad channel blocks. The ergodic capacity based on the
optimal power allocation is given by

CSISO
erg =

∫ ∞

g0

Blog2

(
g
g0

)
f (g)dg. (2.9)

More work on the ergodic capacity can be found in [21] and [22].

Outage Capacity of SISO Channel Model

The outage capacity is considered in slow-fading channels, where SNR γ remains constant
over a long period of time before changing to a new value. When there is no CSI available at
the transmitter, the transmission data rate is fixed and independent of the instantaneous SNR
at the receiver. Therefore, messages received with poor SNR may be decoded incorrectly.
Specifically, the outage capacity is defined as a fixed transmission data rate with minimum
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SNR requirement which is expressed as

CSISO
out = Blog2 (1+ γout) , (2.10)

where γout is the minimum SNR requirement. Any bits received having an SNR lower than
γout cannot be decoded correctly with a sufficiently high probability. The outage probability
pout is thus defined as pout = Pr(γ < γout). Given the definitions of outage capacity and
outage probability, the average data rate that can be correctly received over time is obtained
by

C̄SISO
out = (1− pout)CSISO

out = (1− pout)Blog2 (1+ γout) . (2.11)

For a Rayleigh fading channel with average SNR γ̄ = 10, the outage capacity versus
outage probability is given in Fig. 2.2.
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Fig. 2.2 Normalized outage capacity versus outage probability.

As shown in Fig. 2.2, the outage capacity increases as the outage probability increases.
However, large outage capacity also has high outage probability and a high error rate in
decoding received messages. Therefore, the average outage capacity in Equation (2.11) is
used to represent the average data rate.
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Fig. 2.3 Normalized average outage capacity versus outage probability.

The average outage capacity versus outage probability is given in Fig. 2.3. We see that
the average data rate can be maximized by finding the outage probability that maximizes the
average outage capacity. Existing work concerning the outage capacity can be found in [23]
and [24].

2.1.2 MIMO Channel Capacity

A block-fading MIMO channel model with time-varying gain and additive white Gaussian
noise (AWGN) is given in Fig. 2.4 [25]. We assume that the MIMO system has nt transmit

Fig. 2.4 A MIMO channel model.

antennas and nr receive antennas. Hk is an nr × nt MIMO channel matrix, in which the
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element h(k)i, j is the channel amplitude gain from transmit antenna j to receive antenna i at
time block k. The received signal yk at time block k of the MIMO channel model is given
by [26]

yk = Hkxk +wk (2.12)

where yk is an nr×1 vector of the received symbols, xk is an nt×1 vector of the transmitted
symbols and wk is an nr× 1 vector of noise. Elements in wk are assumed to be additive
white Gaussian noise (AWGN) and i.i.d. complex Gaussian variables with zero mean and
unit variance for normalization. Let Pk = xH

k xk denote the average transmit signal power at
time block k where xH

k is the conjugate transpose of xk.
In the block-fading MIMO channel model, the CSI is assumed to be known at the receiv-

er. A feedback link between the transmitter and the receiver may exist for the transmitter
to obtain the instantaneous CSI from the receiver. Both the transmitter and receiver are as-
sumed to know the distribution of CSI. The ergodic capacity and the outage capacity are
given respectively in the following sections.

Ergodic Capacity of MIMO Channel Model

We assume that the transmitter is subject to an average power constraint of E
[
xHx

]
≤ P̄.

By definition, the ergodic capacity depends upon the assumptions made concerning the
transmitter CSI [27].

With no CSI available at the transmitter, the optimum transmit strategy is to transmit in
all spatial directions with equal power allocated in each transmit antenna [28, 29]. Thus the
ergodic capacity is given by

CMIMO
erg = EH

[
Blog2

∣∣∣∣Inr +
P̄HHH

ntN0B

∣∣∣∣] , (2.13)

where |X| is the determinant of matrix X. Further analyses of MIMO systems and MIMO
channel models can be found in [28].

We assume that nt ≥ nr in the MIMO channel model. Thus HHH is a nr × nr ran-
dom non-negative definite matrix with real, non-negative eigenvalues. The nr eigenvalues
(λ1,λ2, . . . ,λnr) of HHH can be obtained from the singular value decomposition (SVD) of
matrix H. Thus, the capacity in Equation (2.13) can be expressed as

CMIMO
erg = Eλ

[
nr

∑
i=1

Blog2

(
1+

P̄λi

ntN0B

)]
. (2.14)
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For the case of perfect CSI available at the transmitter, the ergodic capacity with power
constraint ∑nr

i=1 E [Pi]≤ P̄ is given by

CMIMO
erg = max

E[P]≤P̄
Eλ

[
nr

∑
i=1

Blog2

(
1+

Piλi

N0B

)]
. (2.15)

The adaptive power allocation strategy based on the water-filling policy is given in [26] as

Pi

N0B
=

[
1
λ0
− 1

λi

]+
, (2.16)

where λ0 satisfies the power constraint

∑nr

i=1 E

[(
1
λ0
− 1

λi

)+
]
=

P̄
N0B

. (2.17)

Outage Capacity of MIMO Channel Model

In slow-fading MIMO channels, H is random but remains constant over a long period of
time. With no CSI at the transmitter, the transmission data rate (outage capacity) CMIMO

out is
fixed and the receiver may incorrectly decode the messages having poor SNR. In this case,
the transmit power is equally allocated to all transmit antennas. The outage probability of
MIMO channel is defined as

pout = Pr
(

Blog2

∣∣∣∣Inr +
P̄HHH

ntN0B

∣∣∣∣<CMIMO
out

)
. (2.18)

We are interested in the outage performance of MIMO channels at different values of
SNR. Consider the i.i.d. Rayleigh fading channel as an example. At very low SNR, the
conjecture is given in [26] that only one transmit antenna should be used. On the other hand,
for high SNR cases, MIMO channels with i.i.d. Rayleigh fading are expected to yield a
diversity gain of ntnr in the outage performance. Similar to the SISO channel model, we
are also interested in minimizing the outage probability and maximizing the average outage
capacity of MIMO channel models. We will discuss these problems in detail in the following
chapters.

2.2 Delay Analysis

In wireless networks, the end-to-end packet delay D generally consists four parts [30]:
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1. Transmission delay D(t) is the time required for a packet’s bits to be transmitted at
the transmitter. D(t) is a function of the packet’s length and the transmission data rate.

2. Propagation delay D(p) is the time required for a packet to travel from the source to
the destination. D(p) is a function of the distance between the source and the destina-
tion.

3. Signal processing delay D(s) is the time for a packet to be processed at the receiver.
D(s) is related to the hardware performance of the receiver.

4. Queueing delay D(q) is the time required for a packet to wait in the queue (buffer)
until it can be sent by the transmitter. D(q) is related to the congestion level of the
transmitter.

Thus, the end-to-end packet delay is expressed as

D = D(t)+D(p)+D(s)+D(q). (2.19)

Since the propagation delay and the processing delay are not strongly related to the in-
frastructure of wireless networks and are generally very small compared to the transmission
delay and queueing delay, the end-to-end packet delay is usually expressed as

D = D(t)+D(q). (2.20)

In order to estimate the queueing delay and transmission delay of a packet, we analyze the
queueing delay using queueing theory.

2.2.1 Queueing Theory

Fig. 2.5 A basic queueing model of a wireless source.

Queueing theory [31] has been widely used for decades to analyze the delay in wireless
networks. A basic queueing model of a wireless source node is shown in Fig. 2.5. The



2.2 Delay Analysis 35

queueing model consists of a buffer and a transmitter. The queueing model is characterized
by four components [32]:

1. Arrival process describes how packets arrive at the buffer. The input process gen-
erally uses random variables to represent the number of arriving packets in a time
interval.

2. Service mechanism describes how packets are transmitted at the transmitter. Random
variables are used to describe the transmission time (delay) and the rate of a packet.

3. System capacity is the maximum number of packets that can wait at a time in the
buffer.

4. Queue discipline is the rule to choose the packets from the buffer when the transmitter
becomes free. The queue discipline can be "first-in, first-out" (FIFO), "last-in, first-
out" (LIFO), "priority-based" (PB), etc.

In queueing theory, Kendall’s notation [33] (A/S/c) is widely used to describe a queue-
ing model where A denotes the arrival process, S the service mechanism and c the number of
servers (transmitters). For example, using M for Poisson or exponential and D for determin-
istic, M/D/1 means that packets arrive according to a Poisson process and are transmitted
by a single transmitter with deterministic (fixed) time.

Fig. 2.6 State space diagram of M/D/1 queueing model.

By definition, an M/D/1 queueing model with FIFO discipline and infinite buffer size is
a stochastic process whose state space is the set {0,1,2, . . .} where the value is the number
of packets in the source node. We use λ to denote the packets arrival rate and µ to denote
the packets service (transmission) rate. The state space diagram is shown is Fig. 2.6.
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2.2.2 Delay Model with Queueing theory

The queueing model with a Poisson arrival process can be considered as a Markov process.
It is clear that the arrival rate λ should be less than the service rate µ to make the model
stable. With a stable model condition, the average number of packets in the source node,
namely the queue length L, is given by the Pollaczek-Khinchin formula [34, 35]

L = ρ +
ρ2 +λ 2σ2

2(1−ρ)
(2.21)

where ρ = λ
µ is the load factor and σ2 is the variance of the packet service (transmission)

time ( 1
µ ).

In the M/D/1 queueing model, the service time is constant and thus the total number of
packets in the source node is given by

L = ρ +
ρ2

2(1−ρ)
. (2.22)

The average waiting time of a packet in the source node is defined by W = W (q) +W (t)

where W (q) is the average waiting time in the queue (buffer) and W (t) = µ−1 is the packet
transmission rate. According to Little’s Law [32], we have

L = λW. (2.23)

Thus, the average time waiting time of a packet in the source node is given by

W =
1
µ
+

ρ
2µ (1−ρ)

. (2.24)

2.3 QoS Constraints

With the increasing number of delay and loss sensitive applications, it is important for wire-
less networks to provide reliable performance and to utilize limited wireless resources effi-
ciently.

The quality of service (QoS) of a wireless application is a measurement of the per-
formance of the application. Different applications may have different QoS requirements.
There are typically four of QoS requirements that are given as follows:
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1. Delay requirement is the maximum time allowed for a packet of data to travel from
the transmitter to the receiver. The delay requirement is usually expressed as the
end-to-end time delay.

2. Throughput requirement is the minimum amount of data required to be transmitted
from the transmitter to the receiver in some specified unit of time. The throughput
requirement is usually expressed as the required data rate.

3. Error rate requirement is the maximum fraction of packets that can be lost during
the transmission from the transmitter to the receiver. The error rate requirement is
usually expressed as the required bit error rate (BER) or the packet error rate (PER).

4. Jitter requirement is the maximum variation in the delay of the received packets.
The jitter requirement is usually expressed as the difference between the maximum
and the minimum end-to-end delay.

There are two types of QoS requirements, namely the hard requirements and the soft
requirements [36]. For applications such as real-time industrial control systems, it is critical
to guarantee the delay and error rate requirements of the packet transmissions. The QoS
requirements of such applications are stringent and thus called the hard QoS requirements.
On the other hand, applications such as multimedia streaming, web surfing and video ser-
vices can tolerate a small probability of QoS violation. The QoS requirements of these
applications can be flexible and are thus called the soft QoS requirements.

In this dissertation, we consider the soft QoS requirements in most scenarios as it is
easy to define and is applicable to many applications. The QoS requirements of the delay,
throughput and error rate are considered in various scenarios.

2.4 Power Control Analysis

2.4.1 Power Consumption Analysis

We now consider the power consumption of the transmitter and the receiver in detail. Ac-
cording to [37], the block diagrams of a typical transmitter and a receiver are given in Fig. 2.7
and Fig. 2.8 respectively.

For simplicity, we omit some blocks in the block diagrams such as the source coding
block, the modulation block and so on. We first consider the power consumption of the
transmitter.
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Filter Filter
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Digital to Analog

 Converter (DAC) Mixer

Local Oscillator (LO)

Fig. 2.7 A transmitter block diagram.

Filter Filter Filter

Intermediate Frequency 

Amplifier (IFA)

Analog to Digital 

Converter (ADC)Mixer

Low Noise 

Amplifier (LNA)

Local Oscillator (LO)

Fig. 2.8 A receiver block diagram.

The total power consumption of the transmitter is dominated by two parts: the power
consumption during transmission owing to the power amplifier (PA) PPA and the power
consumption owing to the remaining circuits, PT x,cir. The transmission power consumption
PPA is related to the transmission power Pt and can be expressed as

Pt = λPAP, (2.25)

where λ is the power amplifier efficiency constant related to the drain efficiency [38] and the
peak-to-average ratio [39]. The circuit power consumption contains the power consumption
of the rest parts of the transmitter which is expressed as

PT x,cir = PDAC +Pmixer +PLO +Pf ilter, (2.26)

where PDAC, Pmixer, PLO and Pf ilter are the power consumption of the digital to analog con-
verter (DAC), the mixer, the local oscillator (LO) and the filter, respectively.

The total power consumption of the receiver can be expressed as

PRx,cir = PADC +PIFA +Pmixer +Pf ilter +PLO +PLNA, (2.27)
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where PADC, PIFA and PLNA are the power consumption of the analog to digital converter
(ADC), the intermediate frequency amplifier (IFA) and the low noise amplifier (LNA), re-
spectively.

In general, we mainly consider the power consumption of the transmitter in different
wireless scenarios. For simplicity, we assume that the power amplifier efficiency is λ = 1 in
this dissertation. Thus the total power consumption of the transmitter is given by

PT x,total = PAP +PT x,cir = Pt +PT x,cir. (2.28)
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Fig. 2.9 The tradeoff between the transmission energy and the circuit energy consumption
with different transmission time per bit.

In a non-cooperative wireless network, given a data packet with a specified length in
bits, it is obvious that the transmission time increases with the increasing transmission time
per bit (namely the reciprocal of the data rate). Thus, the transmission energy consumption
decreases while the circuit energy consumption increases with the increasing transmission
time per bit. In [40, 41], the authors show that there is a tradeoff between the transmission
energy consumption and the circuit energy consumption with different transmission times
per bit. An example is given in Fig. 2.9.

In a cooperative wireless network, cooperative communication provides spatial diversity
for single-antenna devices. Therefore, the transmission energy required by a specified data
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Fig. 2.10 The tradeoff between the transmission energy and the circuit energy consumption
with different number of cooperative nodes.

rate decreases with the increasing number of cooperative nodes. However, the circuit energy
consumption increases with the increasing number of cooperative nodes. Thus, there is a
tradeoff between the transmission energy consumption and the circuit power consumption
with different numbers of cooperative nodes. This kind of tradeoff is analyzed in detail
in [37, 42, 43]. An example is given in Fig. 2.10.

2.4.2 Power Control Methods

In general, adjusting transmission power level is an effective way to provide QoS-constrained
data transmission via fading channels. Increasing the transmission power level in a timely
manner can avoid the temporary communication failure caused by deep fades. On the oth-
er hand, the energy consumption in wireless communication is considered as an important
issue due to the limited energy supply of wireless devices. Therefore, power control is
a key factor to maximize the lifetime of the wireless devices while maintaining the QoS
requirements of the wireless applications.

Classic power control methods such as the water-filling power control and the channel
inversion power control have been considered to improve the wireless system performance
in fading channels.
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The water-filling power control has been proved to be the optimal power control strategy
to maximize the ergodic channel capacity. The applications of the water-filling power con-
trol and its variants are given in [44–46]. The optimal ergodic channel capacity of the SISO
channel is given in Equation (2.9). Although the water-filling power control is optimal, it
requires perfect CSI on both the transmitter side and the receiver side.

The channel inversion power control is a suboptimal strategy compared to the water-
filling strategy. However, it has much simple encoder and decoder designs. The effec-
tiveness of channel inversion power control and its variants have been studied in [47–49].
Consider a SISO channel. With the channel state information (CSI), the channel inversion
power control inverts the channel fading and thus maintains a constant received power at
the receiver. Let γ be the instantaneous SNR and f (γ) = Pr(γi = γ) denote the probability
density function (PDF) of the SNR at the receiver. The fading channel capacity with channel
inversion is given by

CSISO
channel−inversion = Blog2 (1+ γ0) , (2.29)

where γ0 satisfies
∫ ( γ0

γ

)
f (γ)dγ = 1. In the Rayleigh fading models, γ0 is zero and thus

the channel capacity with channel inversion is zero. It is shown in [50] that the channel
inversion power control results in large channel capacity loss in deep fades. Therefore, the
channel inversion power control is not suitable for all channel fading models.

Although the water-filling power control and the channel inversion power control are
theoretically effective in some fading models, it still requires perfect channel state informa-
tion (CSI) which is hard to obtain in practice. Therefore, many existing works focus on
analyzing and improving the system performance with imperfect CSI [51–55].

2.5 Resource Allocation Methods

2.5.1 The Assignment Problem

The assignment problem is a combinatorial optimization problem of finding the optimal
assignment of a set of resources to a set of users, such as assignment of workers to jobs, ma-
chines to tasks and so on [56]. In wireless communications, allocating wireless resources
such as channels or transmission powers to users can be formulated as an assignment prob-
lem.

An instance of a wireless channel allocation problem that is formulated as an assignment
problem is generally described as follows:
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There are a number of users and a number of channels in the wireless network. Each
user can only access a channel at a time and achieves some utilities (e.g., channel throughput
or transmission power consumption). The total utility of the network varies with different
assignments of channels to users. At any time a channel can hold no more than one user.
We aim at finding an assignment that can optimize the total utility (e.g., maximize the total
channel throughput or minimize the total transmission power) of the network.

The mathematical statement of the channel allocation problem to maximize the total
channel capacity is given as follows:

We assume that there are M users denoted by U = {U1,U2, . . . ,UM} and N channels
denoted by CH = {CH1,CH2, . . . ,CHN} in the wireless network. Let the M×N matrix Π
be the assignment matrix where the element πi, j = 1 means that channel CH j is assigned to
user Ui and πi, j = 0 otherwise. We define the M×N matrix Ψ as the utility matrix where
the element ψi, j is the channel capacity of user Ui at channel CH j. The channel assignment
problem is given by:

Π∗ = argmax
Π

(
M
∑

i=0

N
∑
j=0

πi, jψi, j

)
s.t.

N
∑
j=0

πi, j ≤ 1,∀i ∈ {1,2, . . . ,M}
M
∑

i=0
πi, j ≤ 1,∀ j ∈ {1,2, . . . ,N}

(2.30)

The Hungarian algorithm can be used to find the optimal assignment of the problem
in Equation (2.30). The details of the Hungarian algorithm is given in the next section.

2.5.2 The Hungarian Algorithm

The Hungarian algorithm is a combinatorial optimization algorithm for the assignment prob-
lem. Variations of the Hungarian algorithm have been used to solve the resource allocation
problems in wireless networks [57–59].

Consider the channel allocation problem in Section 2.5.1 as an example. We will now
show how the Hungarian algorithm works. We further assume that M = N = n for the
channel allocation problem. Given the utility matrix Ψ, there are five steps to complete the
Hungarian algorithm which are described as follows:

1. Find the row minimum in each row. Subtract the row minimum from each row.

2. Find the column minimum in each column. Subtract the column minimum from each
column.
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3. Cover all zeros with a minimum number of horizontal and vertical lines.

4. Check the number of the horizontal and vertical lines. If the number of the lines is
greater or equal than the number of rows or columns, the algorithm terminates. Output
the set of zeros where each row or column has only one zero selected as the optimal
assignment. Otherwise go to Step 5.

5. Find the smallest element that is not covered in Step 3. Subtract it from each uncov-
ered row and add it to each covered column. Repeat Step 3 and Step 4.

The implementation of the Hungarian algorithm for the channel allocation problem is
given in Algorithm 2.1.

Examples and proof of the efficiency of the Hungarian algorithms can be found in [60]
and [61].

2.5.3 The Matching Algorithm

Auction algorithms are widely used to solve the resource allocation problems in wireless
networks [62–64]. Matching algorithms are typical variations of auction algorithms that can
find the best matching of two sets of agents where agents can either be wireless resources
or users in the wireless communication scenarios.

We consider the channel allocation problem in Section 2.5.1 as an example. We first
introduce a two-sided matching model [65, 66]. We then prove that the channel allocation
problem can be formulated as a two-sided matching problem of users and channels. Let
the set of users U and the set of channels CH be the two sets of agents of the two-sided
matching model. We assume that each user Ui has a strict preference relation ≻u,i over the
set of channels CH and the option to stay unmatched which is denoted by /0. The channel
CH j is acceptable to user Ui if CH j≻u,i /0. Similarly, we define the strict preference relation
≻ch, j of CH j over the set of users U and /0. We assume that a channel can be assigned to one
user at a time and vice versa.

A matching M is a mapping of channels and users. A matching is individually rational
if (i) no user is matched to a channel that is unacceptable to it and vice versa, (ii) no user
is matched with more than one channel and vice versa. We can also define a matching as a
function M : U∪CH→ U∪CH∪ /0 such that for all Ui ∈ U and CH j ∈ CH:

1. M (Ui) /∈ CH⇒M (Ui) = /0, for all Ui ∈ U.

2. M
(
CH j

)
/∈ U⇒M

(
CH j

)
= /0, for all CH j ∈ CH.

3. M (Ui) =CH j⇔M
(
CH j

)
=Ui, for all Ui ∈ U and CH j ∈ CH.
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Algorithm 2.1 Implementation of the Hungarian algorithm
Input n, Ψ.
Initialization: for any πi, j ∈ Π, let πi, j = 0. Define an n× n matrix Ω to mark the zero
element s during the execution of the algorithm. For any ωi, j ∈ Ω, let ωi, j = 0. Define
λ = 0 to indicate the termination of the algorithm. The algorithm terminates when we
have λ ≥ n.
for 1≤ i≤ n do

Find ψi,min = min
j=1,2,...,n

(
ψi, j
)
. Subtract ψi,min from each ψi, j in row i.

end for
for 1≤ j ≤ n do

Find ψmin, j = min
i=1,2,...,n

(
ψi, j
)
. Subtract ψmin, j from each ψi, j in column j.

end for
while λ < n do

for 1≤ i≤ n do
if ψi, j = 0,∀ j ∈ {1,2, . . . ,n} and ωi, j = 0 then

Let ωi, j = ωi, j +1, for any ψi, j = 0,∀ j ∈ {1,2, . . . ,n}. λ = λ +1.
end if

end for
for 1≤ j ≤ n do

if ψi, j = 0,∀i ∈ {1,2, . . . ,n} and ωi, j = 0. then
Let ωi, j = ωi, j +1, for any ψi, j = 0,∀i ∈ {1,2, . . . ,n}. λ = λ +1.

end if
end for
if λ ≥ n then

Let πi, j = 1 for any set of zeros where each row or column has only one zero selected.
else

Find ψmin = min
i, j

(
ψi, j
)
,∀i, j ∈ {1,2, . . . ,n} ,ωi, j = 0.

for 1≤ i≤ n do
if ωi, j = 0,∀ j ∈ {1,2, . . . ,n} then

ψi, j = ψi, j−ψmin,∀ j ∈ {1,2, . . . ,n} .
end if

end for
for 1≤ j ≤ n do

if ωi, j = 1,∃i ∈ {1,2, . . . ,n} then
ψi, j = ψi, j +ψmin,∀i ∈ {1,2, . . . ,n} .

end if
end for
Let λ = 0 and ωi, j = 0,∀ωi, j ∈Ω.

end if
end while
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We define a blocking pair to a matching M as a channel-user pair that prefer to be
matched with each other rather than being matched by M . A matching is stable if it is
individually rational and contains no blocking pairs.

Let the utility matrix Φ decide the preference order of users over channels and channels
over users. Given user Ui, channel CH j and channel CHk, we say that for the preference
order of user Ui, CH j≻u,iCHk if and only if ψi, j > ψi,k. Similar definitions are given for the
preference order of channels over users. The users and channels build their preference lists
based on the utility matrix Φ. According to the definition of matching, it is obvious that
a matching corresponds to a valid assignment matrix Π. Therefore, the problem in Equa-
tion (2.30) is equal to find a matching that can maximize the total utility of the network.

We then propose to use the user-proposing deferred acceptance (UPDA) algorithm. It
has been proved that the UPDA algorithm gives a stable matching and every user prefers this
stable matching over any other stable matching. The stable matching given by the UPDA
algorithm is referred as user-optimal stable matching. The proof of the above theorem can
be found in [67].

The UPDA algorithm is described as follows: In step 1, each user Ui requests the best
channel on its preference list. Each channel CH j keeps the best user and rejects the other
users. In step k, users that are rejected at step k−1 request their current best channels that
have not yet rejected them. The channels that receive requests from users keep the best users
on their preference list and reject the other users. The algorithm terminates when there are
no further channel request. Each channel is matched to the user (if any) that it will keep
until the last step. The other channels and users remain unmatched.

2.6 Summary

The wireless channel capacity model and the network delay model are two key factors for
power control and resource allocation in a QoS-constrained wireless network. In this chap-
ter, we have presented some background information concerning the wireless channel ca-
pacity, a delay analysis of wireless networks and the definition of various QoS metrics to
facilitate understanding our work. We also introduce some methods that we will employ
later when considering power control and resource allocation of wireless networks. In the
following chapters, cooperative and noncooperative models of PUs and SUs in CRNs are
proposed and analyzed. When QoS constraints such as delay and data rate are considered,
queueing theory and outage capacity are used to analyze the performance of the wireless
network.





Chapter 3

Dynamic Power Control and
Optimization for QoS-Constrained
Wireless Networks

3.1 Introduction

Energy efficiency is considered to be a major challenge in wireless sensor networks (WSNs)
where sensors are assumed to be able to work for years without battery replacement [68].
On the other hand, wireless applications with QoS requirements on delay and data rate re-
quire reliable transmissions such as those used for industrial control [69] and environment
monitoring. It has been proved that MIMO system consumes less energy for data trans-
mission in fading channels compared with a SISO system [3]. However, sensor nodes are
low-power, low-cost, single-antenna devices. It is thus difficult to build a MIMO system for
WSNs. Cooperative communication is considered as a promising method to achieve MIMO
communication among single-antenna devices [70].

In a cluster-based cooperative wireless sensor network, data can be transmitted from
cluster to cluster using virtual MIMO technique [42] where cooperative nodes in each clus-
ter use their resources to help the transmissions of the cluster heads. It has been proved
in [37] that cooperative communication and the virtual MIMO system is energy-efficient for
long-distance single-hop transmission. In [71], a multi-hop cooperative MIMO network is
analyzed. A transmission scheme that can minimize the end-to-end outage probability is
proposed. However, simply reducing the outage probability may not achieve the maximum
average outage capacity [17]. Furthermore, reducing the end-to-end outage probability may
increase the power consumption of the WSN.
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In this chapter, we investigate the outage capacity and power control problem for the
centralized cooperation model of a cooperative wireless network. Specifically, a cluster-
based cooperative wireless sensor network is considered where cluster nodes cooperatively
transmit with the cluster head to improve the transmission reliability and energy efficiency.
In contrast to much existing work, we focus on minimizing the power consumption of the
transmitters in each cluster of the WSN without violating the QoS constraints. We not on-
ly investigate the performance of cooperative transmissions in multi-hop scenario but also
solve the power control and optimization problems with QoS constraints. Most of the re-
sults in this chapter are published in the IEEE International Conference on Communications
(ICC) 2016 conference proceedings [14].

The rest of the chapter is organized as follows: Section 3.2 describes the system model of
the multi-hop cluster-based WSN, the single-hop transmission scheme and the definition of
the outage capacity. In Section 3.3, we express the QoS constraints on delay and data rate in
detail. In Section 3.4, we first propose the dynamic power control and optimization (DPCO)
scheme. We further propose an approximate algorithm to reduce the computational com-
plexity and storage cost of the DPCO scheme. Simulation results are given in Section 3.5.
Finally, we conclude the chapter in Section 3.6.

3.2 System Model

We consider a multi-hop cluster-based WSN as shown in Fig. 3.1. The transmission between
two adjacent clusters is defined as a single-hop transmission. In our model, we assume that
sensors are grouped into N clusters where each cluster contains one cluster head. For each
transmission, some sensors are assigned to cooperatively transmit with the cluster head to
improve the transmission reliability. We also assume that the cluster head is located near the
center of the cluster and sensors in each cluster are uniformly deployed. A practical scenario
of this model is the star network topology of IEEE 802.15.4 wireless network [72] where
full-function devices and reduced-function devices (RFD) are assumed to be the cluster
heads and normal sensor nodes, respectively. The clustering and routing protocols of the
multi-hop cluster-based wireless networks are beyond the scope of this chapter. However,
efficient protocols such as HEED [73] and LEACH [74] can be used.

The single-hop transmission has two phases, namely the broadcast phase (BP) and the
cooperation phase (CP) as given in Fig. 3.2. The time duration of the two phases are α and
1−α respectively. The total time duration of each transmission slot is normalized to be
1. Before the transmission start, the cluster head in the transmitter cluster first figures out
the number of cooperative nodes and the transmission power allocation in the BP (Pbp) and
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Fig. 3.1 Multi-hop cluster-based CRN.
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Fig. 3.2 Transmission scheme.
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CP (Pcp). Then, these configurations are carried in the control message and sent to other
cooperative nodes along with the transmission data in the BP.

1. Broadcast Phase: In the BP, the cluster head broadcasts the cluster configurations to
the other sensor nodes in the cluster with a transmission power Pbp. Sensors that suc-
cessfully decoded the data are selected to cooperatively transmit with the cluster head
in the next CP. It is assumed that the number of cooperative nodes is proportional to
Pbp. Thus, the cluster head can control the number of cooperative nodes by adjusting
Pbp.

2. Cooperation Phase: In the CP, the cooperative nodes and the cluster head jointly
transmit the data to the cluster head in the receiver cluster using orthogonal space-time
block codes (STBC). We assume that no CSI is available at the transmitter cluster. Let
nt denote the number of sensors transmitting data in the CP. The transmission power
Pcp is equally allocated among the cluster head and cooperative nodes for optimal
network performance.

We only consider long-range transmission between adjacent clusters since cooperative
transmission is more energy-efficient in that case [37]. The channels in the BP and the CP
are modeled using an AWGN channel and a slow flat Rayleigh fading channel with AWGN
respectively, since the inter-cluster distance of sensors is much larger than the intra-cluster
distance of sensors. Let ψ = βd−θ denote the inter-cluster path loss where d is the distance
between two adjacent clusters, β is the path loss constant related to the channel and θ is
the path loss exponent. Consider the transmission between cluster m and cluster m+ 1,
the received signal at the the cluster head of cluster m+ 1 is given by the multiple-input
single-output (MISO) channel model as

ym =
√

ψhxm +nm, (3.1)

where elements in the 1×nt channel vector h are i.i.d. complex Gaussian random variables
with zero mean and unit variance for normalization. xm is the nt× l transmitted signal where
l is the length of the STBC. nm ∼ N

(
0,σ2) is the 1× l AWGN at the receiver.

Since no CSI is available at the transmitter cluster, all sensors transmit with equal trans-
mission power Pcp

nt
. The outage capacity Cout of the CP is given by

Cout = B(1−α) log2 (1+ γout) , (3.2)

where B is the channel bandwidth and γout is the minimum SNR for successful message
decoding at the receiver. Let γ denote the instantaneous SNR at the receiver and pout =
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Pr(γ < γout) denote the outage probability. Based on the MISO channel model in Equa-
tion (3.1), γ is given by

γ =
ψPcp ∥h∥2

F
ntσ2 (3.3)

where ∥h∥2
F is the squared Frobenius norm of the 1×nt channel vector h. According to the

definition of h, ∥h∥2
F ∼ χ2 (2nt) is a chi-square variable with 2nt degrees of freedom. Given

pout , we have

γout =
ψPcpF−1 (pout |2nt )

ntσ2 (3.4)

where F−1 (p |n) is the inverse chi-square cumulative distribution function (CDF) with prob-
ability p and n degrees of freedom.

The average outage capacity is given as

C̄out = B(1−α)(1− pout) log2 (1+ γout) . (3.5)

3.3 Multi-Hop QoS Constraint

In the multi-hop transmission model, the QoS constraints (R,D) are considered where R is
the average transmission data rate and D is the average end-to-end delay. We assume that
the packet arrival rate is far less than the packet transmission rate. Therefore, the queueing
delay D(q) is negligible compared to the transmission delay D(t) and we only consider the
transmission delay for the average end-to-end delay analysis. An automatic repeat request
(ARQ) mechanism [75] is used for cluster-to-cluster communication where the senders re-
transmit their data to the next cluster if they do not receive an acknowledgement (ACK)
before the timeout expires.

The number of packet retransmissions k in the N− 1 hops network follows a general
distribution with the probability mass function (PMF) given as

Pr(X = k) =

(
k+N−2

k

)
N−1

∏
i=1

pai
out,i (1− pout,i) (3.6)

where pout,i is the outage probability of the single-hop transmission between cluster i and

cluster i+ 1, ai is a non-negative integer with ∑N−1
i=1 ai = k and

(
k+N−2

k

)
is the bino-
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mial coefficient expressed as(
k+N−2

k

)
=

(k+N−2)!
k!(N−2)!

=
(k+N−2)(k+N−3) . . .(N−1)

k!
(3.7)

For simplicity, we assume that the cluster-to-cluster channels are MISO channels with
i.i.d. parameters and identical configurations. Therefore, the outage probability of any
single-hop transmission is assumed to be pout and the number of packet retransmissions k in
the N−1 hops network follows the negative binomial distribution with the PMF expressed
as

Pr(k;N−1, pout) =

(
k+N−2

k

)
pk

out(1− pout)
N−1. (3.8)

Considering the QoS constraints on the average transmission data rate, we must have
R ≤ C̄out <Cout for network stability. For one packet transmission with L (bits) length, the
maximum packet transmission delay is thus given by

τ =
L
R
. (3.9)

The following proposition is given to characterize the end-to-end packet delay of the net-
work:

Proposition 3.3.1. The maximum average end-to-end delay of the N−1 hops is given by:

D̄ = E [(k+N−1)τ] =
(N−1)L
(1− pout)R

. (3.10)

Proof. We first prove that E [k] = (N−1)pout
1−pout

. Since k follows the negative binomial distri-
bution, we calculate the mean value of k based on the negative binomial distribution PMF
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in Equation (3.8) as

E [k] =
∞

∑
k=0

k Pr(k;N−1, pout)

=
∞

∑
k=0

k (k+N−2)!
k!(N−2)!

pk
out(1− pout)

N−1

=
(N−1) pout

1− pout

∞

∑
k=1

(k+N−2)!
(k−1)!(N−1)!

pk−1
out (1− pout)

N (3.11)

=
(N−1) pout

1− pout

∞

∑
k=0

(k+N−1)!
k!(N−1)!

pk
out(1− pout)

N

=
(N−1) pout

1− pout

∞

∑
k=0

Pr(k;N, pout)

=
(N−1) pout

1− pout

Since N is constant and the maximum packet transmission delay for one packet transmission
τ is given by Equation (3.9), the maximum average end-to-end delay of the N− 1 hops is
thus given by

D̄ = E [(k+N−1)τ] =
(
(N−1) pout

(1− pout)
+N−1

)
L
R
=

(N−1)L
(1− pout)R

. (3.12)

Considering the QoS constraints on the average end-to-end delay, we must have

D̄ =
(N−1)L
(1− pout)R

≤ D (3.13)

and thus

pout ≤ 1− (N−1)L
RD

(3.14)

where RD > (N−1)L is required since 0 < pout < 1. If we have RD ≤ (N−1)L, it is
impossible for reliable transmission under the QoS constraints (R,D).

Consider the transmission data rate in the CP (Rcp) and the BP (Rbp). In order to have
reliable transmissions, we must have

R≤ Rbp ≤ Rcp ≤ C̄out . (3.15)
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Now the QoS constraints are expressed by the outage probability constraint in Equation (3.14)
and the average outage capacity constraint in Equation (3.15). We first show that the average
outage capacity can always be maximized under QoS constraints where RD > (N−1)L.

Proposition 3.3.2. For any QoS constraints where RD > (N−1)L, there exists p∗out that
can maximize C̄out , which can be denoted as follows:

C̄∗out = max
pout
{B(1−α)(1− pout) log2 (1+ γout)} ,

s.t. C̄out ≥ R,0 < pout ≤ 1− (N−1)L
RD .

(3.16)

Proof. From Equation (3.4) we know that F−1 (pout |2nt ) increases with pout for any nt .
Given pout ∈

(
0,1− (N−1)L

RD

]
, we have

lim
pout→0

C̄out = 0 (3.17)

and

lim
pout→pmax

out

C̄out =
B(1−α)(N−1)L

RD
log2

(
1+

ψξ Pcp

ntσ2

)
(3.18)

where pmax
out = 1− (N−1)L

RD and ξ = F−1 (pmax
out |2nt ). Since lim

pout→pmax
out

C̄out > 0 and Equa-

tion (3.2) is continuous for pout ∈
(

0,1− (N−1)L
RD

]
, there exists p∗out that maximizes C̄out

according to the extreme value theorem.

3.4 Dynamic Power Control and Optimization

Let Pbp and Pcp be the transmission power consumption in the BP and the CP respectively.
The total power consumption in each hop is given by

Pt = αPbp +(1−α)Pcp +ntPc, (3.19)

where Pc is the average circuit power consumption of each sensor node.
In the BP, we assume the channel is AWGN with free space path loss ϕ = ζ r−2 where

ζ is the free space path loss constant and r is the intra-cluster transmission range. The
transmission data rate Rbp is given by

Rbp = αBlog2

(
1+

ϕPbp

σ2

)
= αBlog2

(
1+

ζ Pbp

r2σ2

)
. (3.20)
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Given the transmission data rate Rbp = C̄out , the transmission power Pbp is expressed as

Pbp =
r2σ2

ζ

(
2

Rbp
αB −1

)
=

r2σ2

ζ

(
2

C̄out
αB −1

)
. (3.21)

Let rmax denote the maximum intra-cluster transmission range and n is the total number of
sensors in each cluster. We assume that the cluster head is located in the center of the cluster
and sensors are uniformly distributed in each cluster. The approximate number of sensors
that can successfully receive and decode the message in the BP is given by

nt =

(
r

rmax

)2

n =
ζ Pbpn
r2

maxσ2

(
2

Rbp
αB −1

)−1

=
ζ Pbpn
r2

maxσ2

(
2

C̄out
αB −1

)−1
. (3.22)

In the CP, the channel is assumed to be a slow flat Rayleigh fading channel. Given the
transmission data rate Rcp = C̄out , the transmission power Pcp is given by

Pcp =
γoutntσ2

ψF−1 (pout |2nt )
=

2
C̄out

B(1−α)(1−pout ) −1
ψF−1 (pout |2nt )

ntσ2. (3.23)

3.4.1 Dynamic Power Control Algorithm

Given the QoS constraints (R,D) where RD > (N−1)L, we aim to find the optimal value of
Pcp and Pbp that minimize the total power consumption Pt . Given Rbp = C̄out , nt is directly
correlated to Pbp as shown in Equation (3.22). Thus, Pbp and nt are jointly optimized. Given

Rcp = C̄out and nt , for any pout ∈
(

0,1− (N−1)L
RD

]
, C̄out increases with Pcp|nt where Pcp|nt

denotes the Pcp for any specific nt . Under the QoS constraints, Pcp|nt is optimized when
pout = p∗out and C̄out = C̄∗out = R. The power optimization problem is denoted as{

P∗cp|n∗t ,n
∗
t

}
= argmin

Pcp|nt ,nt

Pt
(
Pcp|nt ,nt

)
. (3.24)

Note that P∗cp|n∗t
is related to n∗t . However, in order to determine n∗t , we need to figure out

P∗cp|nt
for every possible nt . Pcp|nt and nt are interrelated with each other in the optimization

problem.
We first find the conditional optimal P∗cp|nt

for all possible nt , which is expressed as

P∗cp|nt
= argmin

Pcp|nt

Pt
(
Pcp|nt |nt

)
,1≤ nt ≤ n

s.t. 0≤ Pcp|nt ≤ Pmax
cp

(3.25)
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where Pmax
cp is the maximum transmission power in the CP. Then we determine n∗t as

n∗t = argmin
nt

Pt

(
nt

∣∣∣P∗cp|nt

)
,1≤ nt ≤ n. (3.26)

Given n∗t and C̄∗out = R, P∗bp|n∗t
can be obtained from Equation (3.21) and Equation (3.22) as

P∗bp|n∗t =
n∗t r2

maxσ2

ζ n

(
2

R
αB −1

)
. (3.27)

The minimum total power consumption under QoS constraints is expressed by:

P∗t = αP∗bp|n∗t +(1−α)P∗cp|n∗t +n∗t Pc. (3.28)

We know that there is no closed-form solution for P∗cp|nt
in Equation (3.25) due to the

complexity of F−1 (pout |2nt ). However, we can still find a good estimate of P∗cp|nt
using the

dynamic power control (DPC) algorithm as shown in Algorithm 3.1.

Proposition 3.4.1. Given nt and the maximum number of iterations I in the DPC algorithm,
Pcp|nt ,i converges to P∗cp|nt

with a sufficient small difference δ in O(1) iterations.

Proof. If 0 < Pcp|nt ,I < Pmax
cp , P∗cp|nt

must fall into one of the M equally divided intervals of[
0,Pmax

cp
]

where M is a parameter that determines the value of π0, namely the convergence
speed of the DPC algorithm. In the DPC algorithm, πi will not halve its value until ηi−1ηi =

−1. We have M iterations at most before πi halves its value. After the first time πi halves
its value, πi can only stay unchanged for two iterations at most. We define δ as

δ =
π0

2V =
Pmax

cp

2V M
(3.29)

where V is a positive integer to adjust the value of δ . After πi halves its value, we have∣∣∣Pcp|nt ,i −P∗cp|nt

∣∣∣≤ πi. Let V =
⌊ I−M

2

⌋
where ⌊x⌋ is the greatest preceding integer of x. We

have
∣∣∣Pcp|nt ,I −P∗cp|nt

∣∣∣≤ δ in I iterations.

3.4.2 Outage Capacity Approximation

The DPC algorithm has high computational complexity since there in no closed-form solu-
tion for Equation (3.16). Every time a new value of Pcp|nt ,i−1 is given in Algorithm 3.1, the
DPC algorithm has to find out the maximum average outage capacity C̄∗out,i using a brute-
force search. Furthermore, in order to solve Equation (3.4) and Equation (3.16), we need to
store the inverse chi-square table in the wireless node which occupies a lot of storage space.
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Algorithm 3.1 DPC algorithm
Input: M, η0, Pmax

cp

Initialization: Popt
t = ∞

for 1≤ nt ≤ n do
Pcp|nt ,0 = Pmax

cp , η0 = 1, π0 =
Pmax

cp
M ,M ∈ Z+

for 1≤ i≤ I do
1) According to Equation (3.16), calculate C̄∗out,i using Pcp|nt ,i−1 .

2) ηi = sgn
(

C̄∗out,i−R
)

where sgn(·) is the signum function.

3) πi = min
{

3+ηi−1ηi
4 ,1

}
πi−1.

4) P̂cp|nt ,i = Pcp|nt ,i−1−ηiπi.
5) Pcp|nt ,i = max

{
min

{
P̂cp|nt ,i ,P

max
cp
}
,0
}

.
if Pcp|nt ,i = Pmax

cp then
break the current for loop

end if
end for
Calculate P∗t using Pcp|nt ,I and nt .
if 0 < Pcp|nt ,I < Pmax

cp and P∗t < Popt
t then

Popt
t = P∗t , n∗t = nt , P∗cp|n∗t

= Pcp|nt ,I
end if

end for
if P∗cp|n∗t

= Pmax
cp then

QoS constraints cannot be fulfilled.
end if
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Therefore, we are motivated to find out a suboptimal algorithm that can solve the problem
with less computational complexity and storage space. Inspired by the work in [76], we
propose a closed-form approximation for the slow flat Rayleigh fading MISO channel.

We first calculate the mean value of γ in Equation (3.3). Since ∥h∥2
F follows a chi-square

distribution, we have

µγ = E [γ ] =
ψPcp

ntσ2 E
[
∥h∥2

F

]
=

2ψPcp

σ2 . (3.30)

The variance of γ is thus given as

σ2
γ = var [γ] =

(
ψPcp

ntσ2

)2

var
(
∥h∥2

F

)
=

1
nt

(
2ψPcp

σ2

)2

. (3.31)

Using a Taylor series, we expand Equation (3.2) at µγ and have

Cout (γ) = B(1−α) log2
(
1+µγ

)
−

∞

∑
k=1

B(1−α)

k ln2

(
µγ − γ
1+µγ

)k

. (3.32)

We now calculate the mean value of the outage capacity µC. The second-order approxima-
tion for µC is given by

µC= E [Cout ]≈ B(1−α) log2
(
1+µγ

)
− B(1−α)

2ln2

(
σγ

1+µγ

)2

. (3.33)

By expanding C2
out in a Taylor series at µγ , we have the second-order approximation for σ2

C

given as

σ2
C= E

[
C2

out
]
− (E [Cout ])

2 ≈
(

B(1−α)

ln2

)2
(

σ2
γ(

1+µγ
)2 −

σ4
γ

4
(
1+µγ

)4

)
. (3.34)

We use a Gaussian approximation and assume that the approximate channel capacity
C̃out follows a normal distribution with a mean µC and standard deviation σC. The approxi-
mate outage probability p̃out is defined as

p̃out = Pr
(
C < C̃out

)
=

1
2
+

1
2

erf
(

C̃out−µC√
2σC

)
, (3.35)
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where erf(·) is the error function. Therefore the approximate outage channel capacity is
given by

C̃out = µC +
√

2σCerf−1 (2 p̃out−1) , (3.36)

where erf−1 (·) is the inverse error function, which can also be defined in terms of the
Maclaurin series.

erf−1 (z) =
√

π
2

(
z+

π
12

z3 +
7π2

480
z5 + · · ·

)
. (3.37)

By using the definition in Equation (3.37), the approximate average outage capacity Ĉout is
given by

Ĉout = B(1− p̃out)C̃out ≈
B(1− p̃)

2

(
µC +

√
π
2

σC

(
p̃+

π
12

p̃3 +
7π2

480
p̃5
))

, (3.38)

where p̃ = 2 p̃out−1.
Based on the channel approximation, we proposed an approximate dynamic power con-

trol (ADPC) algorithm. In the ADPC algorithm, we simply substitute Ĉout for C̄out and p̃out

for pout respectively. The optimization of Ĉout is denoted as

Ĉ∗out = max
p̃out

(
B(1− p̃out)C̃out

)
≈max

p̃

(
B(1−p̃)

2

(
µC +

√
π
2 σC

(
p̃+ π

12 p̃3 + 7π2

480 p̃5
)))

s.t. Ĉ∗out ≥ R,−1 < p̃≤ 1− 2(N−1)L
RD .

(3.39)

Compared with Equation (3.16), it is clear that Equation (3.39) is a polynomial function on
p̃ and thus has a closed-form solution for the optimization of Ĉout . The solution to Equa-
tion (3.39) is straightforward, so the ADPC algorithm can significantly reduce the computa-
tional complexity and storage cost.

3.5 Simulation Results

In this section, simulation results are given to show the efficiency of the DPC and the ADPC
algorithm. We also show that the ADPC algorithm provides accurate channel estimations.
The parameters used in the simulation are given in Table 3.1.

We first investigate the performance of the DPC and the ADPC algorithm. In Fig. 3.3,
we show that in the DPC algorithm Pct|nt converges to its optimal value P∗ct|nt

with a suffi-
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Table 3.1 Parameters for simulation

Symbol Description Value
α Fraction of time 0.25
β Path loss constant 1
θ Path loss exponent 2
ζ Free space path loss constant 1
n Number of sensors per cluster 10
d Transmission distance 100 m
B Channel bandwidth 1 MHz
rmax Cluster range 10 m
σ2 Noise power 5 µW
Pmax

cp Maximum of Pcp 200 mW
π0 Initial step in DPC algorithm 10 mW
M Parameter defining initial step π0 20
I Maximum number of iterations 30
Pc Circuit power consumption 10 mW
R Data rate requirement 1 Mbps
N Number of clusters 9
L Packet length 1000 bits

0 5 10 15 20 25 30

Iteration Number

90

100

110

120

130

140

150

160

170

180

190

T
ra

ns
m

is
si

on
 P

ow
er

 in
 C

P
, P

cp
 (

m
W

)

n
t
=2, DCP

n
t
=2, ADCP

n
t
=3, DCP

n
t
=3, ADCP

n
t
=4, DCP

n
t
=4, ADCP

Fig. 3.3 Performance of the DPC and ADPC algorithm with different values of nt .
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ciently small difference in a low number of iterations (e.g., 20 iterations in Fig. 3.3). We
also show that the ADPC algorithm has near-optimal performance compared with the DPC
algorithm. The cooperation of wireless nodes can provide spatial diversity and channel gain
to the receiver which improves the channel quality and thus reduces the transmission power
consumption. As we can see in Fig. 3.3, the optimal cooperative transmission power P∗ct|nt

decreases with increasing number of cooperative nodes nt .
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Fig. 3.4 Average outage capacity with different pout for nt = 4.

We then compare the accuracy of the ADPC algorithm with the DPC algorithm. We
set the number of cooperative nodes as nt = 4 and the maximum number of iterations as
I = 30. In Fig. 3.4, we show that under the QoS requirement on the data rate, there exists
an optimal outage probability p∗out that can maximize the average outage capacity C̄out . In
this case, by using the DPC algorithm, we get the optimal average outage capacity C̄∗out = 1
Mbps at p∗out = 0.21 where P∗ct|nt

= Pct|nt ,I = 94.91 mW. On the other hand, the ADPC
algorithm finds the optimal approximate average outage capacity Ĉ∗out = 1 Mbps at p∗out =

0.20 where P∗ct|nt
= Pct|nt ,I = 94.04 mW. Thus we have shown that the ADPC algorithm is

a good approximation for the outage channel capacity and gives a near-optimal solution for
the power control problem.

We further analyze the relationships between the average outage capacity, the outage
probability and the transmission power level. We set the number of cooperative nodes as
nt = 4. Fig. 3.5 shows that given any pout , Cout increases with Pcp. We can also see that
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given any Pcp, there exists a pout that maximizes Cout . For every Pcp, we mark the maximum
C̄∗out as a function of pout and Pcp with the red line l1 in Fig. 3.5. With the QoS requirement
(R,D), the optimal Pcp is given by the intersection of the average outage capacity surface
and the data rate requirement surface. The solution is where l1 cuts the previously identified
Pcp locus and has been marked with a red circle. Note that the value of the optimal Pcp and
other values match with those given previously in Fig. 3.4.

We also show that with the increasing number of cooperative wireless nodes nt , the
optimal outage probability p∗out decreases. The simulation result is shown in Fig. 3.6. Note
that for different values of nt , the optimal outage probability should also fulfill the QoS
constraints (R,D), namely 0 < p∗out ≤ 1− (N−1)L

RD .
The total power consumption of each cluster is given in Fig 3.7. While the transmission

power decreases with the increasing number of cooperative nodes, the total circuit power
consumption increases with the number of cooperative nodes, consequently, there exists
an optimal number of cooperative nodes that minimizes the total power consumption of
each cluster. In this case, we show that under the QoS data rate requirement R = 1 Mbps,
the minimum total power consumption is 109.40 mW with 3 cooperative wireless nodes.
Note that the optimal outage probability p∗out should fulfill the QoS constraints (R,D) as
discussed in Fig. 3.6. If for n∗t = 3, p∗out is out of range (p∗out > 1− (N−1)L

RD ), then the optimal
number of cooperative nodes n∗t should be the smallest nt that fulfills the QoS requirement.
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Fig. 3.6 Optimal outage probability with different values of nt .
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From Fig. 3.6, we can see that p∗out decreases with increasing nt . In this case, we set N = 9
and L= 1000 bits. For the QoS constraint R= 1 Mbps and D= 20 ms, we have 1− (N−1)L

RD =

0.6 and p∗out (nt = 3) = 0.25 < 0.6. Therefore, nt = 3 is the optimal number of cooperative
nodes. For the QoS constraint R = 1 Mbps and D = 10 ms, since we have 1− (N−1)L

RD = 0.2
and p∗out (nt = 3) = 0.25 > 0.2, nt = 3 cannot fulfill the QoS requirement. We find nt = 5
to be the optimal number of cooperative nodes which has the least total power consumption
without violating the QoS constraints.
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Fig. 3.8 Optimal number of cooperative nodes with different transmission distances.

Then we consider the effects of different transmission distances with QoS constraints
and show that long-range communication can benefit from our cooperative transmission
scheme. We use the settings given in Table 3.1 and vary the transmission distance d. Fig. 3.8
shows that for short-range cluster-to-cluster communication (d ≤ 40 m) the SISO trans-
mission scheme outperforms cooperative transmission scheme. As for long-range cluster-
to-cluster communication (d > 40 m), cooperative transmission scheme is more energy-
efficient compared with SISO transmission scheme under QoS constraint R = 1 Mbps and
D = 20 ms. Note that for extra long-range transmission (d > 160 m), there is no opti-
mal number of cooperative nodes as no cooperative scheme can fulfill the QoS require-
ments. The optimal total power consumption with different transmission distances is given
in Fig. 3.9. It is clear that the optimal total power consumption increases as the transmis-
sion distance increases. Note that the ADPC algorithm can achieve near-optimal results
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Fig. 3.9 Optimal total power consumption with different transmission distances.

compared with the DPC algorithm for reasonable transmission distance (d < 120 m). The
performance of the ADPC algorithm degrades as the the transmission distance increases.

Finally, the impact of the time fraction variable α is shown in Fig. 3.10 and Fig. 3.11. We
use the simulation parameters in Table 3.1 and vary the time fraction component α . Fig. 3.10
shows that the larger α gets the greater is the number of cooperative nodes required for the
optimal performance. This is because that the average outage channel capacity is inversely
correlated with α . Therefore, for larger alpha we need more cooperative nodes to achieve
the same average data rate. From Fig. 3.11, we notice that there exists an α∗ that can
minimize the total power consumption. In this case, we have α∗ = 0.15. If α is smaller
than α∗, the total power consumption increases dramatically as α decreases to zero since
the cluster head will need a lot of power to broadcast the transmission message in a very
limited time. When α is greater than α∗, the cluster head will need more cooperative nodes
to achieve the QoS requirements as α increases to one. Note that when α increases beyond
0.55, the cooperative transmission scheme may fail to achieve the QoS requirements due to
the limited number of nodes in each cluster.
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3.6 Summary

In this chapter, we considered the power control and optimization problems of a multi-hop
cluster-based wireless sensor networks with QoS constraints on average data rate and aver-
age delay. We first formulated the power control problem as a dynamic optimization prob-
lem. A cooperative transmission scheme was proposed to improve the energy efficiency and
minimize the total power consumption of the multi-hop transmission under QoS constraints.

In Section 3.4, the DPC was proposed to solve the power control and optimization prob-
lem under certain QoS constraints. We have proved that the DPC algorithm can converge
to the optimal solution with sufficiently small difference in O(1) iterations. To reduce the
computational complexity of the DPC algorithm, we further proposed an ADPC algorithm
that can achieve a near-optimal result. We showed that the ADPC algorithm has a closed-
form solution to the power control and optimization problem which significantly reduced
the computational complexity and storage cost.

The simulation results are shown in Section 3.5. We first compared and analyzed the per-
formance of DPC and ADPC algorithms in Fig. 3.3. We showed that both DPC and ADPC
converge to the optimal and near-optimal power level, respectively. Then we showed that
there exists a pout that can maximize the average outage capacity and both DPC and ADPC
are able to find the maximum average outage capacity. We also investigated the optimal
outage probability and the total power consumption with different number of cooperative
nodes in Fig. 3.6 and Fig. 3.7. Finally, the impact of the transmission distance and time
fraction variable α were presented in Figs. 3.8 to 3.11.





Chapter 4

Competitive Distributed Spectrum
Access for QoS-Constrained Wireless
Networks

4.1 Introduction

Cognitive radio has been considered as a method to enhance spectrum efficiency by allow-
ing secondary users (SUs) to utilize the vacant licensed channels of primary users (PUs)
without causing severe interference to the PUs [77]. In a large-scale cooperative cognitive
radio network (CRN), PUs voluntarily provide their vacant channels to SUs and allocate
the channels based on the channel quality and QoS requirements to improve the network
throughput. Since it is unlikely to have a central controller to manage the licensed channels
in a large-scale CRN, it is important to design efficient distributed dynamic spectrum access
methods for both PUs and SUs.

Dynamic spectrum access is an important issue in CRNs and has been studied previ-
ously on many occasions [78–80]. In existing work, game-theoretic algorithms have been
widely used to address spectrum access problems in wireless communication networks [81–
84]. In [82], the authors propose an equilibrium pricing scheme to solve the competitive
spectrum access problem for a cognitive radio network. The authors in [83] formulate the
dynamic spectrum access problem as a Stackelberg game and solve it by finding the Nash
equilibrium. In [84], two local interaction games are proposed to solve the dynamic spec-
trum access problem. All these classic game theory algorithms require knowledge of actions
of all participants and thus are not suitable for practical implementation. Matching theory
is considered as a promising method to solve distributed resource allocation problems be-
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cause some matching algorithms have near-optimal performance and can be implemented
in a distributed way [85]. In this chapter, we consider the dynamic spectrum access problem
for a QoS-constrained large-scale CRN. Two matching algorithms are proposed that pro-
vide near-optimal solutions to dynamic spectrum access problems. We also give distributed
implementation of our algorithms and verify their performance via simulations. Most of
the results in this chapter are published in the IEEE Global Communications Conference
(GLOBECOM) 2016 conference proceedings [15].

The rest of the chapter is organized as follows: In Section 4.2, we describe the sys-
tem model of a cooperative CRN and express the QoS requirements with a utility function.
In Section 4.3, we formulate the dynamic spectrum access problem as a matching problem
and give the definition of a stable matching. In Section 4.4, we propose the distributed spec-
trum access scheme. We give the implementation of the distributed matching algorithm at
both the SU and the PU. To reduce the number of message exchanges in the network dur-
ing the dynamic spectrum access procedure, a fast distributed spectrum access scheme is
proposed. We give the simulation results in Section 4.5. Finally, Section 4.6 concludes the
chapter.

4.2 System Model and Problem Formulation

We consider a cooperative cognitive radio network with an opportunistic spectrum access
model and QoS constraints as shown in Fig. 4.1. In this scenario, SUs are allowed to ac-
cess vacant channels of the PUs without interfering with the PUs. SUs with assigned va-
cant channels can communicate with their node receivers under specified QoS constraints.
We assume that there are M PUs and N SUs denoted by PU = {PU1,PU2, . . . ,PUM} and
SU = {SU1,SU2, . . . ,SUN} respectively. It is also assumed that there are a set of K licensed
channels denoted by CH = {CH1,CH2, . . . ,CHK}. Each PUi ∈ PU occupies a set of Ki

licensed channels denoted by CHi. Therefore, CH1,CH2 . . . ,CHM is a partition of CH
where ∑M

i=1 Ki = K. A time division duplex (TDD) scheme is used by the uplink and down-
link communications of all users (both the PUs and the SUs) and their corresponding node
receivers. When PUs occupy the licensed channels, all channels are used for their transmis-
sion. When the licensed channels are vacant, they can be allocated to different SUs by the
idle PUs. Each SU can only access one vacant channel of a PU in a time slot.
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Fig. 4.1 A cooperative cognitive radio network.

4.2.1 QoS Constraints

There are various QoS requirements for different applications. For each SUi ∈ SU, let Ri, Di,
εi denote the QoS constraints on the average data rate, delay and packet error rate respec-
tively. Consider the transmission between SUi and its node receiver. Let Ci, j be the channel
capacity of SUi on vacant channel CH j. The channel capacity Ci, j is denoted as

Ci, j = Blog2
(
1+ γi, j

)
, (4.1)

where B is the channel bandwidth and γi, j is the signal-to-noise ratio (SNR) at SUi’s node
receiver. The SNR γi, j is given by

γi, j =
Pi
∣∣hi, j

∣∣2
βdθ

i σ2
, (4.2)

where Pi is the transmission power of SUi,
∣∣hi, j

∣∣2 is the instantaneous fading channel gain
between SUi and its node receiver, di is the distance between SUi and its receiver, β is the
path loss constant, θ is the path loss exponent and σ2 is the noise power at the receiver.
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We take the average data rate and delay as the two most important factors contributing
to the QoS constraints. For SUi, its QoS constraints are expressed as (Ri,Di). The vacant
channel CH j is acceptable to SUi if and only if

Ri ≤Ci, j, (4.3)

and

Di ≥
L

p jRi (1− εi)
, (4.4)

where L is the packet length in bits and p j is the probability that CH j stays vacant during
the transmission. Therefore, we must have

Ci, j ≥ Ri ≥
L

p jDi (1− εi)
, (4.5)

for QoS constraints (Ri,Di). We also know that a channel CH j is acceptable to SUi if

p j ≥
L

RiDi (1− εi)
= p∗i , (4.6)

where p∗i is the threshold of the probability of channel availability.

4.2.2 Utility Function

We further propose a utility function to measure the network performance and QoS con-
straints. We define the utility function Ui, j for SUi with CH j as

Ui, j =Ci, j−λRi, (4.7)

where λ is the coefficient to adjust the weighting of the QoS constraints. Setting λ = 1
denotes a balanced QoS requirement in Equation (4.5). We can decrease λ to relax the
QoS requirement or increase it for a stricter QoS requirement. Since we have N SUs and K
licensed channels, we use an N×K matching matrix Π to denote the channel assignment.
The matrix element πi, j ∈Π is set to be 1 when CH j is assigned to SUi and 0 otherwise.

With QoS constraints (Ri,Di), we aim to find a spectrum access scheme for the SUs
that can maximize their utility without violating their QoS constraints. The optimization
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problem is thus expressed as:

Π∗ = argmax
Π

∑
SUi∈SU

∑
CH j∈CH

Ui, j

s.t. ∑
SUi∈SU

πi, j ≤ 1, ∀ j ∈ {1,2, . . . ,K}

∑
CH j∈CH

πi, j ≤ 1, ∀i ∈ {1,2, . . . ,N}

∑
SUi∈SU

∑
CH j∈CHk

πi, j ≤ Kk, ∀k ∈ {1,2, . . . ,M} .

(4.8)

4.3 Optimal Solution and Matching Theory

4.3.1 Optimal Solution

The optimization problem in Equation (4.8) is a typical assignment problem where the Hun-
garian algorithm [61] can provide the optimal solution. However, the Hungarian algorithm
is a centralized algorithm with O

(
n4) time complexity. For large-scale and densely de-

ployed wireless networks, a distributed algorithm is more practical to handle the distributed
access requests. Thus we propose the distributed matching algorithm to solve the assign-
ment problem in Equation (4.8).

4.3.2 Matching Definition

A matching is defined as an allocation between resources and users [85]. In this case, a
matching is a solution to the assignment problem in Equation (4.8) where SUs are matched
with the licensed channels of PUs. Based on this scenario, we give the definition of a
matching as follows:

Definition 4.3.1. We define a matching function M as: SU→CH∪{ /0}×PU∪{ /0}, PU→
SU∪{ /0} and CH→ SU∪{ /0}, such that for all SUi ∈ SU, CH j ∈ CH and PUk ∈ PU:

1. M (SUi) =
(
CH j,PUk

)
∈CH∪{ /0}×PU∪{ /0}, CH j ∈CHk and |M (SUi)| ∈ {0,1}.

2. M
(
CH j

)
= SUi ∈ SU∪ { /0}, and

∣∣M (
CH j

)∣∣ ∈ {0,1}, where M
(
CH j

)
= SUi ⇔

M (SUi) =
(
CH j,PUk

)
,∀CH j ∈ CHk.

3. M (PUk) ⊂ SU∪ { /0}, and |M (PUk)| ≤ Kk, where if M
(
CH j

)
= SUi ∈ SU and

CH j ∈ CHk, then SUi ∈M (PUk) ,∀SUi ∈ SU.

For all SUi ∈ SU, CH j ∈CHk and PUk ∈PU, if M (SUi) =
(
CH j,PUk

)
and |M (SUi)|=

1, we have πi, j = 1 and we say SUi is matched with CH j of PUk. If M
(
CH j

)
= SUi ∈ SU
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and
∣∣M (

CH j
)∣∣= 1, we have πi, j = 1 and we say CH j is matched with SUi. For PUk ∈ PU,

M (PUk) is matched with a set of SUs which contains zero, one or multiple SUs. We
say PUk is undersubscribed, full or oversubscribed according to whether |M (PUk)| =

∑
SUi∈SU

∑
CH j∈CHk

πi, j is less than, equal to or greater than Kk, respectively.

4.3.3 Stable Matching

We say a matching is stable if it contains no blocking pairs. We define a blocking pair as
follows:

Definition 4.3.2. A pair
(
SUi,CH j

)
is a blocking pair of matching M if:

1. CH j is acceptable to SUi (i.e., SUi prefers to be matched with CH j rather than staying
unmatched).

2. Either SUi is unmatched or SUi prefers
(
CH j,PUk

)
to its matched channel and PU

M (SUi).

3. Either CH j is unmatched, or CH j is matched and PUk prefers SUi to its matched SU
M
(
CH j

)
.

From the above definitions, we know that a matching M corresponds to a valid matching
matrix ΠM which is in accordance with the conditions in Equation (4.8). In the next section,
we propose a distributed spectrum access scheme that can help the SUs and PUs form a
stable matching with reasonable complexity. The distributed spectrum access scheme is
based on the idea of a greedy algorithm. Simulation results show that a stable matching
corresponds to at least a sub-optimal solution of Equation (4.8).

4.4 Competitive Distributed Spectrum Access

4.4.1 Distributed Spectrum Access Scheme

All SU node receivers monitor the PUs and their licensed channels in its vicinity. If there
is a vacant channel detected, the SU node receiver will send a ready for data (RD) message
along with the channel state information (CSI) to the corresponding SU through a separate
control channel. The CSI is obtained from either the training sequence or historical data.
The SU will build a preference list of the vacant channels based on the CSI after it receives
the RD message. The SU will wait for TSU = Tmax

1+γmax
where Tmax is the maximum waiting

time and γmax is the largest SNR of all available vacant channels. After the waiting period,
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the SU will send a channel access request (CAR) message to the PU that has the best channel
on its preference list. The PU will assign the requested channel to the SU if (i) the channel
has not been assigned, or (ii) if the SU has a larger utility than the previous SU holding the
channel, i.e., the PU will remove the previous SU from its assignment list and reassign the
channel to the new SU. The PU’s decisions of acceptance or refusal are sent to the SUs via
the acknowledgement of acceptance (ACK-A) and the acknowledgement of refusal (ACK-
R) messages respectively. If a channel is assigned to an SU, it will wait until it receives
an algorithm termination (AT) message or an ACK-R message. If an SU receives an AT
message, it starts its data transmission via the assigned vacant channel. Otherwise, the SU
will send a CAR message to the PU that has the next best channel in its preference list. The
AT message is sent by any PU if the PU doesn’t receive a CAR message for a pre-defined
period of time TPU .

RD CAR
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Fig. 4.2 Typical message exchanges of the distributed spectrum access scheme.

Typical message exchanges of the distributed spectrum access scheme is shown in Fig. 4.2.
Considering the scenario in Fig. 4.1, we assume that the node receiver of SU1 and SU2 mon-
itor the licensed channel of PU2. When the licensed channels (CH4−CH6) become vacant,
the node receivers of SU1 and SU2 send RD message through a control channel to their corre-
sponding SUs (SU1 and SU2) respectively. We assume that both SU1 and SU2 apply for CH5

of PU2 and we have γ1,5 > γ2,5 as well as U1,5 > U2,5. After receiving RD messages from
their node receivers, SU1 waits for TSU1 =

Tmax
1+γ1,5

and SU2 waits for TSU2 =
Tmax

1+γ2,5
. Since we

assume γ1,5 > γ2,5, SU1 sends its CAR first for CH5 to PU2. As this is the first CAR for CH5,
PU2 sends an ACK-A to SU1. Then PU2 receives a CAR for CH5 from SU2. Since CH5 has
been assigned to SU1 and we assume that U1,5 >U2,5, PU2 sends an ACK-R to SU2. After
being refused by PU2, SU2 keeps sending CARs to PUs for other vacant channels. It will
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not stop until it receives an ACK-A or AT. After sending the last ACK message (ACK-A
or ACK-R), PU2 will wait for TPU2 . If there is no new CAR sent to PU2 during that time
(TPU2), PU2 will send an AT message to all the SUs in its vicinity. Although the waiting
period can eliminate most contention among different SUs, we still need to consider the
possibility of collisions. If an SU fails to receive an ACK after sending CAR, it assumes
that its CAR has collided with other CARs. The SU will wait for a time period based on the
binary exponential backoff described in CSMA/CA [86] before retransmitting the CAR.

4.4.2 Distributed Matching Algorithm

We propose the distributed matching (DM) algorithm to implement the distributed spectrum
access scheme. The DM algorithm at the SU and the PU are given in Algorithm 4.1 and Al-
gorithm 4.2 respectively.

Algorithm 4.1 Distributed Matching Algorithm at the SU
Initialization for SUi:
Build SUi’s preference list list (CH) through message exchanges based on the utility func-
tion, state(SUi) = f ree, state(AT ) = f alse, M (SUi) = ( /0, /0).
while state(AT ) = f alse do

if state(SUi) = f ree and list (CH) ̸= /0 then
CH j = best (list (CH)), wait for TSUi ,
send

(
CAR,SUi,CH j

)
to PUk where CH j ∈ CHk.

else if get
(
MSG,CH j,PUk

)
= true then

if MSG = ACK−A then
M (SUi) =

(
CH j,PUk

)
, state(SUi) = occupied.

else if MSG = ACK−R then
Remove CH j from list (CH), M (SUi) = ( /0, /0), state(SUi) = f ree.

else if MSG = AT then
state(AT ) = true.

end if
end if

end while

We prove that the DM algorithm always generate a stable matching M ∗ that maximizes
the total utility among all stable matchings. We first give some lemmas as follows:

Lemma 4.4.1. With N SUs, M PUs and K licensed channels, the distributed matching
algorithm always generates a matching within O(NK) message exchanges.

Proof. For any SUi ∈ SU, it can apply for CH j at most once as it will remove CH j from
its preference list if it is refused. The total number of CARs SUi can send is limited by the
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Algorithm 4.2 Distributed Matching Algorithm at the PU
Initialization for PUk:
state(PUk) = f ree, state

(
CH j ∈ CHk

)
= f ree, M

(
CH j ∈ CHk

)
= /0, M (PUk) = /0,

timer (PUk) = TPU .
while state(PUk) = f ree and timer (PUk)> 0 do

timer (PUk) counts down.
if get

(
CAR,SUi,CH j

)
= true then

timer (PUk) = TPU .
if state

(
CH j

)
= f ree then

send
(
ACK−A,CH j,PUk

)
, state

(
CH j

)
= occupied, M

(
CH j

)
= SUi, add SUi to

M (PUk).
else if SUi has larger utility than M

(
CH j

)
then

send
(
ACK−A,CH j,PUk

)
to SUi.

send
(
ACK−R,CH j,PUk

)
to M

(
CH j

)
.

Remove M
(
CH j

)
from M (PUk), M

(
CH j

)
= SUi, add SUi to M (PUk).

else
send

(
ACK−R,CH j,PUk

)
to SUi.

end if
end if

end while
send

(
AT,CH j ∈ CHk,PUk

)
to all SUs.

length of its preference list. It is obvious that the maximum length of SUi’s preference list
is K. If no CAR is received by the PUs, the AT message will be sent by the PUs after the
pre-defined time TPU . Based on the Definition 4.3.1, it is obvious that the DM algorithm
generates a matching and terminates within O(NK) message exchanges.

Lemma 4.4.2. For any SUi ∈ SU, if CH j is deleted from SUi’s preference list during the
distributed matching algorithm, then

(
SUi,CH j

)
cannot be a blocking pair of the matching

generated by the distributed matching algorithm.

Proof. We assume that CH j is deleted from SUi’s preference list and
(
SUi,CH j

)
is a block-

ing pair of the matching generated by the DM algorithm. From Algorithm 4.1 and Algo-
rithm 4.2, we know that CH j is deleted from SUi’s preference list if and only if PUk that
holds CH j sends an ACK-R to SUi. This means that M

(
CH j

)
̸= /0 and M

(
CH j

)
is bet-

ter than SUi. The above property holds until the DM algorithm terminates. This property
contradicts condition 3 of the definition of blocking pairs since CH j is matched and PUk

prefers M
(
CH j

)
to SUi. Therefore, our assumption does not hold and

(
SUi,CH j

)
cannot

be a blocking pair of the matching generated by the DM algorithm.

The following theorems are proposed based on Lemma 4.4.1 and Lemma 4.4.2.
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Theorem 4.4.1. The DM algorithm always generates a stable matching within O(NK) mes-
sage exchanges.

Proof. From Lemma 4.4.1, we know that the DM algorithm always generates a matching
within O(NK) message exchanges. Suppose a blocking pair

(
SUi,CH j

)
exists in the gen-

erated matching. We assume that SUi is matched with CHt where t ̸= j. According to the
definition of DM algorithm, CHt must be the best channel in SUi’s preference list. However,
since

(
SUi,CH j

)
is a blocking pair, SUi must prefer CH j to CHt according to Definition 4.3.2.

Therefore, CH j has to be deleted from SUi’s preference list, which contradicts Lemma 4.4.2.
Therefore,

(
SUi,CH j

)
cannot be a blocking pair. Since no blocking pair exists, the generated

matching is stable according to the definition of stable matching.

Theorem 4.4.2. The DM algorithm generates the optimal stable matching in which each
SU is matched with the best channel that it can have in any stable matching.

Proof. Let M be the stable matching generated from the DM algorithm where SUi is
matched with CH j. We assume there exists another stable matching M ′ where SUi is
matched with CHt and prefers CHt to CH j. During the DM algorithm, SUi must be re-
fused by CHt as it is matched with CH j in the end. We assume that the refusal is caused
by the matching between SUr and CHt in M . Then for CHt , SUr must have larger utility
than SUi. Without loss of generality, we assume that this is the first refusal during the DM
algorithm. Thus, for SUr there is no channel better than CHt as SUr has not been refused
before. In the stable matching M ′, we know that SUr prefers CHt to its matched channel
and CHt prefers SUr to SUi. Thus, (SUr,CHt) is a blocking pair of M ′, which contradicts
that M ′ is a stable matching. Therefore, no stable matching exists where SUi is matched
with a better channel than the one in M .

According to the lemmas and theorems, we prove that the DM algorithm always gener-
ates an optimal stable matching M ∗ that maximizes the total utility.

4.4.3 Fast Distributed Spectrum Access Scheme

Note that although the DM algorithm can generate an optimal stable matching, it still need
O(NK) message exchanges. In a highly competitive CRN where N >K, the number of mes-
sage exchanges increases linearly with N given the value of K. We propose a fast distributed
matching (FDM) algorithm that can eliminate the impact of K in the algorithm complexity
and reduce the total number of message exchanges. In the FDM algorithm, the SU sends
a CAR to the PU that has the best average CSI (i.e., highest average utility).The SUs are
only matched with PUs instead of specific channels. PUs choose SUs in order to maximize



4.5 Simulation Results 79

the total utility. If a PU accepts an SU, a vacant channel is randomly assigned to the SU
after the FDM algorithm terminates. When a PU is oversubscribed, it refuses the SU with
the lowest average utility. In the DM algorithm, an SU can send at most Kk CARs to PUk

where Kk is the number of vacant channels of PUk. In the FDM algorithm, an SU can send at
most one CAR to a PU. Thus the number of CAR messages is greatly reduced. In addition,
an SU is refused only if a PU is oversubscribed and it is the ‘worst’ SU that has the low-
est average utility. Therefore, the number of ACK-R messages is also reduced. In general,
fewer message exchanges are expected in the FDM algorithm. However, since we only uti-
lize the average utility in the FDM algorithm, we expect suboptimal results compared with
the DM algorithm. The FDM algortihm at the SU and the PU are given in Algorithm 4.3
and Algorithm 4.4 respectively.

Algorithm 4.3 Fast Distributed Matching Algorithm at the SU
Initialization for SUi:
Build SUi’s preference list list (PU) through message exchanges based on the utility func-
tion, state(SUi) = f ree, state(AT ) = f alse, M (SUi) = ( /0, /0).
while state(AT ) = f alse do

if state(SUi) = f ree and list (PU) ̸= /0 then
PUk = best (list (PU)), wait for TSUi ,
send (CAR,SUi) to PUk.

else if get (MSG,PUk) = true then
if MSG = ACK−A then

M (SUi) = (T BD,PUk), state(SUi) = occupied.
else if MSG = ACK−R then

Remove PUk from list (PU), M (SUi) = ( /0, /0), state(SUi) = f ree.
else if MSG = AT then

state(AT ) = true.
end if

end if
end while

4.5 Simulation Results

In this section, we investigate the performance of the DM and FDM algorithms under var-
ious QoS constraints. We assume that the channels are independent identically distributed
(i.i.d.) Rayleigh fading channels and do not change over the distributed channel alloca-
tion phase. For simplicity, we assume that the transmission power is the same for all SUs.
PUs, SUs and the corresponding receivers are randomly distributed in the simulation area
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Algorithm 4.4 Fast Distributed Matching Algorithm at the PU
Initialization for PUk:
M (PUk) = /0, timer (PUk) = TPU .
while state(PUk) = f ree and timer (PUk)> 0 do

timer (PUk) counts down.
if get (CAR,SUi) = true then

timer (PUk) = TPU .
if |M (PUk)|< Kk then

send (ACK−A,PUk), add SUi to M (PUk).
else if |M (PUk)|= Kk and SUi has larger utility than worst (M (PUk)) then

send (ACK−A,PUk) to SUi.
send (ACK−R,PUk) to worst (M (PUk)).
Remove worst (M (PUk)) from M (PUk), add SUi to M (PUk).

else
send (ACK−R,PUk) to SUi.

end if
end if

end while
send (AT,PUk) to all SUs.

(100×100 m square). We also neglect the effect of message collisions. The detailed simu-
lation parameters are listed in Table 4.1.

Table 4.1 Parameters for simulation

Symbol Description Value
β Path loss constant 1
θ Path loss exponent 2
B Channel bandwidth 50 kHz
σ2 Noise power 5 µW
P Transmission power of the SU 200 mW

We also assume that there are three types of SUs with various QoS requirements as
follows: From Equation (4.6) and the specified value of R, D, L and ε , we give the QoS
requirement p∗ for different types of SUs in Table 4.2. In the following simulation, we
randomly choose p j of CH j from a uniform distribution on [0,1].

We first investigate the performance of the DM and FDM algorithms in a small-scale
CRN in low competition scenario for channel access. We assume there are M = 4 PUs and
N = 8 SUs randomly distributed in the simulation area (100× 100 m square). Each PUs
has 3 licensed channels so there are K = 12 licensed channels in total. We also assume
that all SUs have Type-I QoS requirements and the probability of channel availability can
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Table 4.2 QoS requirements of SUs in different type

Type R [kbps] D [ms] L [bit] ε p∗

Type-I 144 20 1024 0.05 0.374
Type-II 150 5 512 0.02 0.697
Type-III 200 1 128 0.1 0.711
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Fig. 4.3 Total utility with different number of active SUs in a small-scale CRN.
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fulfill the requirement (p j ≥ 0.374, ∀ j ∈ {1,2, . . . ,K}) in Table 4.2. For comparison, we
propose a random access (RA) algorithm. In the RA algorithm, SUs randomly apply for
vacant channels and channels are assigned on a first-come-first-serve basis. We also provide
the optimal result which is obtained by solving the optimization problem in Equation (4.8)
using the Hungarian algorithm. Fig. 4.3 shows the total utility we can achieve using the DM
and FDM algorithms with different numbers of active SUs. When the number of available
channels are more than the number of active SUs (K > N), the DM and the FDM algorithm
have near-optimal results. The simulation result also shows that the DM algorithm has a
better performance than the FDM algorithm since it utilizes more CSI during the channel
allocation process. Both the DM and the FDM algorithms outperform the RA algorithm
with different numbers of active SUs.
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Fig. 4.4 Total utility with various levels of QoS requirements.

We then show that our algorithms can effectively handle various QoS requirements. We
use the same settings and assumptions as the ones used to give the results given in Fig. 4.3
and change λ to adjust the weight of QoS requirements in the utility function. The value
of λ can express the strictness of the QoS requirements in different scenarios. For wireless
channels experiencing frequent deep fades, the applications require strict QoS constraints
(λ > 1). For applications with a high fault tolerance, looser QoS requirements (λ < 1) may
be used. We show the total utility of the DM algorithm for λ = 1.8 and λ = 0.8 respectively
in Fig. 4.4. Note that SUs only apply for channels with positive utility which means the QoS
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requirements can be fulfilled through these channels. For strict QoS requirements, the total
utility is zero for N = 1 which means there is no channel that can fulfill the QoS requirement
of that SU.
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Fig. 4.5 Total utility with different number of active SUs in a large-scale CRN.

In Fig. 4.5, we give the total utility with different number of active SUs in a large-scale
CRN. We assume there are M = 10 PUs and N = 100 SUs randomly distributed in the
simulation area (100× 100 m square). We also assume that the availability probability of
all channels can fulfill the delay requirement in Equation (4.4). Each PU has 3 licensed
channels and there are K = 30 licensed channels in total. We also assume that there are
30% Type-I, 30% Type-II and 40% Type-III SUs. The simulation result shows that the DM
algorithm can achieve in excess of 95% of the optimal total utility while the FDM algorithm
can achieve over 90% of the optimal total utility and 100% greater utility compared with the
random access (RA) algorithm.

We use the average number of message exchanges per SU as an indication of the algo-
rithm complexity. In Fig. 4.6, we give the average number of message exchanges per SU
with different number of active SUs in a large-scale CRN. The settings and assumptions are
the same as the ones in Fig. 4.5. We have proved that the DM algorithm terminates within
O(NK) message exchanges in Theorem 4.4.1. In a large-scale CRN where N > K, the total
number of message exchanges for SUs in the DM algorithm is upper bounded by O

(
N2).

Thus the average number of message exchanges per SU is upper bounded by O(N). Since
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Fig. 4.6 Average message exchanges per SU with different number of active SUs.

the FDM algorithm utilizes the average CSI and matches SUs to PUs instead of vacant chan-
nels, it requires far fewer message exchanges compared with the DM algorithm. We also
notice that when the number of active SUs is larger than the total number of vacant chan-
nels (N > K), the average number of message exchanges per SU is much higher for both
algorithms as SUs compete for the limited number of vacant channels and thus send more
channel access requests. From Fig. 4.5 and Fig. 4.6, we show that the DM algorithm has a
better performance than the FDM algorithm. However, for a highly competitive CRN, the
FDM algorithm may be a better choice considering the tradeoff of efficiency and algorithm
complexity.

We now consider the impact of the probability of channel availability on the total utility.
We assume there are M = 10 PUs and N = 30 SUs with an equal number in the three
different categories. Each PU has 3 licensed channels. For simplicity, we also assume
that all channels of PUs have the same probability of channel availability. We then vary
the probability of channel availability and investigate its impact on total utility. As shown
in Equation (4.4) and Equation (4.5), the delay constraints require the channels to have large
enough probability of channel availability to fulfill the QoS requirements. The minimum
probability of channel availability is given in Table 4.2 for each type of SUs. Fig. 4.7 shows
that the total utility is limited by the probability of channel availability of each PU. Since
we have three categories of SUs in the CRN, the total utility increases once the probability
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Fig. 4.7 Total utility with various probability of channel availability.

of channel availability gets larger than the probability threshold p∗ (i.e., p∗ = 0.374 for
Type-I SUs, p∗ = 0.697 for Type-II SUs and p∗ = 0.711 for Type-III SUs). As we can
see from Fig. 4.7, both the DM and the FDM algorithms achieve near-optimal results and
outperform the RA algorithm with different probability of channel availability.

4.6 Summary

In this chapter, we considered the distributed spectrum access problem in a QoS-constrained
cooperative CRN. We formulated the distributed spectrum access problem as an assignment
problem. In order to effectively solve the assignment problem in a distributed manner, we
further formulated the problem as a matching problem in Section 4.3.

We then proposed the DM algorithm and proved that the DM can always get a stable
matching of SUs and channels which corresponds to an optimal assignment solution among
all stable matchings. The implementation of the DM algortihm is given in Section 4.4. To
further reduce the message exchanges of the DM algorithm, we proposed the FDM algo-
rithm which can achieve a sub-optimal solution and terminates within far fewer message
exchanges compared to the DM algorithm.
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Simulation results are given in Section 4.5. We first investigated the performance of the
DM and FDM algorithms in a small-scale CRN. We showed that both the DM and FDM
algorithm achieves near-optimal result in a small-scale CRN and can handle various QoS
requirements. Then we gave the performance of both algorithms in a large-scale CRN. We
showed that the DM and FDM algorithm can still handle the spectrum access problems in a
large-scale CRN. However, the number of message exchanges increases dramatically when
there are severe access competitions among SUs for limited vacant channels. Considering
the tradeoff of algorithm efficiency and complexity, in large-scale CRN, it may be better to
use the FDM algorithm for the competitive distributed spectrum access problem. Finally,
the impact of the probability of channel availability on the total utility is analyzed.



Chapter 5

Joint Channel Sensing and Power
Control for QoS-Constrained Wireless
Networks

5.1 Introduction

Wireless sensors usually operate in the Industrial, Scientific and Medical (ISM) bands and
are deployed for applications such as industrial control systems and area monitoring. With
the increasing demand placed on unlicensed bands, it is challenging to deploy wireless sen-
sor networks (WSNs) only in unlicensed bands, especially for QoS-constrained application-
s. Cognitive radio (CR) has been considered as a method to improve spectrum efficiency.
However, the primary users (PUs) may not wish to actively allocate their vacant channels
to the secondary users (SUs) since the channel allocation process requires extra message
exchanges and hence additional power consumption. Therefore, the SUs, such as wireless
sensors in a heterogeneous network, are required to monitor the licensed channels and send
their data via vacant channels when it is possible. Such a cognitive radio wireless sensor
network (CRWSN) [87] is considered in this chapter.

In a CRWSN, wireless sensors are equipped with cognitive radios and usually have a
limited energy supply. A wireless sensor can only sense a part of the licensed channel at a
time. Therefore, cooperative sensing [88] is needed for joint channel sensing. In addition,
the available licensed channels need to be coordinated to avoid collisions on spectrum access
requests via control channels. Such licensed channels and control channels may not be
available to all sensors due to interference and the dynamic wireless environment. Instead,
common channels may exist in a local area [89, 90]. Therefore, a cluster-based heterogenous
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wireless network is a suitable design for a CRWSN. Sensors in each cluster cooperatively
sense licensed channels and report the results to the cluster head via control channels. The
cluster head of each cluster can coordinate and allocate available channels to the sensors
having data transmission requests.

Channel sensing is an important issue in CR and has been widely investigated. To avoid
the message exchanges between PUs and SUs, some previous work has modeled the channel
sensing as a learning problem where SUs predict the channel availability from the historical
sensing results. In [91], the authors proposed a distributed learning algorithm to minimize
the channel allocation regret, which is defined as the transmission loss of SUs due to the
imperfect learning of the unknown availability statistics. In [92], the channel sensing and
allocation problem is modeled as Markov chain and a restless bandit problem. An algorithm
utilizing the regenerative cycle of a Markov chain is proposed to track the best channel that
minimizes the learning regret. In [93], the channel sensing and spectrum access problem
is formulated as a decentralized multi-armed bandit problem. An algorithm based on the
upper confidence bound (UCB) policy [94] is proposed to minimize the online learning
regret. All this highlighted work that investigates online learning algorithms only consider
the learning regret and do not terminate in a finite time. Therefore, they are not suitable for
QoS-constrained WSNs where sensors cannot afford non-stop online learning algorithms
and do not necessarily have to access the best channel for data transmission (as long as the
QoS requirements are fulfilled).

In this chapter, we consider QoS-constrained applications in a cluster-based CRWSN.
For QoS-based applications, it is important that vacant channels are assigned in a timely
manner to users in need. Therefore, instead of tracking good channels with high channel
availability, sensors in each cluster keep sensing their pre-assigned channels and only stop
channel sensing when they have high confidence that the channels are bad channels with
low channel availability. We propose three channel sensing algorithms for wireless sensors
that can effectively detect licensed channels without message exchanges with the PUs. We
prove that the proposed algorithms can terminate in a finite time with a finite error rate. Con-
sidering the QoS constraints on delay and data rate, it is reasonable that the sensors transmit
their data with the maximum transmission power level. However, since wireless sensors
have limited energy supply, it is more energy-efficient for the sensors to transmit their data
at a lower power, but not so low that the QoS constraint is violated. We propose a joint
channel sensing and power control (JCSPC) scheme that can help sensors find the optimal
power level to transmit their data. We show that the total transmitted data is maximized with
the JCSPC scheme via simulation results. Some of the results presented in this chapter have
been published in the Wireless Days (WD) 2017 conference proceedings [16].
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The rest of the chapter is organized as follows: Section 5.2 describes the system model
of the cluster-based CRWSN, the channel sensing and power control problems with QoS
constraints are described in detail. In Section 5.3, we propose three probably approximately
correct (PAC) channel sensing algorithms to classify good channels and bad channels with
channel availability constraints. In Section 5.4, the joint channel sensing and power control
scheme is proposed to maximize the total number of transmitted bits of each cluster with
specified QoS constraints. We provide the simulation results and the performance analyses
of the proposed algorithms in Section 5.5. Finally, we conclude the chapter in Section 5.6.

5.2 System Model and Problem Formulation

Consider a cluster-based CRWSN as shown in Fig. 5.1. We assume there are K orthogonal
licensed channels allocated to M PUs (M ≤ K) for time-slotted transmission. For simplicity,
we assume that the number of PUs and channels are equal (M = K) so that each PU has only
one licensed channel. We also assume that each channel has the same bandwidth B and is
sensed by an active sensor in each cluster. Therefore, there are K active sensors responsible
for channel sensing in each cluster where each sensor monitors a pre-assigned licensed chan-
nel. Cognitive radio wireless sensors can send data to their cluster head via vacant licensed
channels in each time slot. Let S = {S1,S2, . . . ,SK} and CH = {CH1,CH2, . . . ,CHK} denote
the set of sensors and the corresponding licensed channels of one cluster respectively. We
use T = {T1,T2, . . .} to represent the set of time slots in the network. We assume that all
channels are Rayleigh block fading channels where the channel gains stay unchanged over
one block. Each block contains a certain number of time slots (e.g., V time slots per fading
block). We also assume that there are two phases in each time slot, the channel sensing
phase and the data transmission phase. The length of the channel sensing phase and the data
transmission phase are αT and (1−α)T respectively, where α is the fraction of time used
for channel sensing per time slot and T is the length of a time slot. The block fading chan-
nel model and time slot structure are shown in Fig. 5.2, where it can be seen that for each
fading block, the channel gains of all channels remain unchanged for V time slots. There
are two phases in each time slot. In the channel sensing phase, sensors in each cluster sense
their pre-assigned channels availability and report the results along with their transmission
requests (if any) to the cluster head via separate control channels. The cluster head then
assigns the available channels to the sensors that have sent transmission requests. Note that
the channel assigned for transmission is selected from the available channels and does not
necessarily have to be the same as the pre-assigned one. In the data transmission phase,
sensors with data transmission requests transmit their data via the assigned channels.
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We give an example of how channel sensing and data transmission works in Exam-
ple 5.2.1 and Fig. 5.3.

Example 5.2.1. We assume there are K = 4 licensed channels allocated to K = 4 PUs. In
this example, {CH1,CH2,CH3,CH4} are pre-assigned to {S1,S2,S3,S4} for channel sensing.
We only consider time slots {T1,T2,T3,T4} and assume that only SU1 has a data transmis-
sion request. In the channel sensing phase, sensors sense their pre-assigned channels and
send the sensing results along with their transmission data requests to the cluster head via
separate control channels. The cluster head assigns the available channels to the sensors
that have data to transmit. In this example, {CH4,CH3,CH1,CH2} are assigned to S1 for
data transmission at time slots {T1,T2,T3,T4} respectively.

Since the channel gain changes in every fading block, the channel sensing and assign-
ment algorithms shall run in the beginning of each fading block. In the following sections,
all of the proposed algorithms and most of the simulation results are discussed at the time
scale of one fading block.

5.2.1 Channel Sensing with Availability Constraints

At each time slot, a sensor is only allowed to send its data via a vacant licensed channel.
The availability of the licensed channel is completely determined by the behaviour of the
PU. For sensor Si sensing the pre-assigned channel CHi at time slot Tj, we use a random
variable θi, j to represent the availability of CHi. Let θi, j = 1 denote that CHi is available
and θi, j = 0 otherwise. Since channel sensing is energy and time consuming, we can reduce
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the energy consumption and improve the sensing efficiency if we could predict the channel
availability by utilizing the channel sensing history. We assume that the availability of all
channels follows independent identical Bernoulli distributions over different time slots with
parameters p = {p1, p2, . . . pK} which are the mean values of the Bernoulli distributions.
The mean values p are unknown to the sensors. However, the sensors can get the empirical
mean values from the sensing history. We define the empirical mean value of the availability
of channel CHi after the channel sensing in time slot Tn as

p̂i,n =
1
n

n

∑
j=1

θi, j. (5.1)

It is obvious that the availability of channels affects the delay of the data transmis-
sion since sensors cannot transmit their data consistently when the licensed channels are
frequently occupied. Therefore, the QoS delay requirements of applications can also be
expressed in terms of the channel availability requirements. For applications with spec-
ified QoS delay constraints, we aim at finding ‘good’ channels that can fulfill the chan-
nel availability requirements (i.e., satisfy the delay QoS constraints). Assuming that all
channels have the same availability requirement p∗, we define the set of good channels as
CG = {CHi ∈ CH : p≥ p∗} and the set of bad channels as CB = {CHi ∈ CH : p < p∗} re-
spectively. Note that the sensors do not know the mean values p but they can estimate the
mean values from Equation (5.1). Channel sensing algorithm starts in the beginning of each
fading block. Let Ei be the energy of sensor Si that can be used in one fading block and
ηi be the maximum fraction of energy used for channel sensing. We use ηiEi to denote the
energy constraint of sensor Si for channel sensing in each fading block. For simplicity and
without loss of generality, we assume that all sensors have the same value of E and η . The
relationship between η and other network parameters is given in Equation (5.18) and will
be detailed presently. To classify the channels into empirical good and bad channels, we
assume that we have a set of algorithms Ω. Assuming that the sensing energy constraint
is ηE and an arbitrary algorithm ω ∈ Ω is used to classify the channels, we use ĈG (ω,η)

and ĈB (ω ,η) to represent the set of empirical good channels and bad channels respectively.
The set of misclassified channels with algorithm ω and energy constraint ηE is defined as

Cε (ω,η) =
{

CHi ∈ ĈG : pi < p∗
}
. (5.2)

We also defined the classification error rate as

ε =
|Cε (ω ,η)|
|CH|

=
|Cε (ω ,η)|

K
. (5.3)
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With constraints on the channel availability and energy, we define the optimal algorithm
ω∗ ∈ Ω as the algorithm that can classify the good and bad channels with high confidence
and the minimum error rate in Ω. The optimal algorithm is given by

ω∗ = argmin
ω∈Ω

ε (ω,η) = argmin
ω∈Ω

(
|Cε (ω ,η)|

K

)
,

s.t. αT (Pi,s +Pi,c)Ni,max ≤ ηE,∀i ∈ {1,2, . . . ,K}
(5.4)

where Pi,s is the channel sensing power consumption of sensor Si, Pi,c is the circuit power
consumption of sensor Si and Ni,max is the maximum number of time slots that Si can spend
on channel sensing in one fading block. We define the maximum number of time slots N
used for channel sensing of each cluster in one fading block as

N = min
i

Ni,max = min
i

(⌊
ηE

αT (Pi,s +Pi,c)

⌋)
. (5.5)

5.2.2 Power Control with Rate Constraints

Apart from saving energy required for the channel sensing phase, we also need to consider
the energy efficiency of the data transmission phase in the long run. Although increasing
the transmission power level generally increases the data rate, it also increases the energy
consumption and thus decreases the lifetime of the sensor node. In order to improve the
energy efficiency of the CRWSN, we aim at finding the optimal transmission power that can
maximize the total number of transmitted bits under the data rate QoS constraints.

We assume that for any sensor Si, its transmission power Pi,t can only take on discrete
power levels. We also assume that all sensors have the same set of transmission power
levels denoted by P = {P1,P2, . . . ,PM} where M is the number of power levels. Without
loss of generality, we assume that P is in increasing order and 0≤ P1 < P2 < · · ·< PM. Let
Ri, j,k = f

(
Si,Pj,CHk

)
denote the maximum data rate of sensor Si with transmission power

Pi,t = Pj on channel CHk. For simplicity, we define Ri, j,k as

Ri, j,k = f
(
Si,Pj,CHk

)
= Blog2

(
1+Pjgi,k

)
, (5.6)

where B is the channel bandwidth of CHk and gi,k is the instantaneous channel power gain
to noise ratio of CHk for Si. We then define the number of transmitted bits of Si with
transmission power Pj on channel CHk as

Li, j,k =
(1−η)ERi, j,k

Pi,t +Pi,c
=

(1−η)EBlog2
(
1+Pjgi,k

)
Pj +Pi,c

. (5.7)
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Let R∗i be the minimum data rate requirement of Si and η∗ be the minimum fraction of
energy used for channel sensing. The optimal transmission power of Si on channel CHk is
defined as

P∗i,k = argmax
Pi,t∈P

Li, j,k = argmax
Pi,t∈P

(
(1−η)ERi, j,k

Pi,t+Pi,c

)
,

s.t. Ri, j,k ≥ R∗i ,∀Si ∈ S,CHk ∈ CH; η ≥ η∗.
(5.8)

Let L∗i,k denote the maximum total number of transmitted bits of Si on channel CHk. The
definition of L∗i,k is given as

L∗i,k = max
Pi,t∈P

Li, j,k = max
Pi,t∈P

(
(1−η)ERi, j,k

Pi,t+Pi,c

)
,

s.t. Ri, j,k ≥ R∗i ,∀Si ∈ S,CHk ∈ CH; η ≥ η∗.
(5.9)

We use a K×K matrix Π to denote the channel assignment where the matrix element
πi, j is set to be 1 if CH j is assigned to Si and 0 otherwise. The maximum total number of
transmitted bits in each cluster is given as

L∗ = max
K
∑

i=1

K
∑

k=1
πi,kL∗i,k

s.t.
K
∑

k=1
πi,k ≤ 1,∀i ∈ {1,2, . . . ,K}

K
∑

i=1
πi,k ≤ 1,∀k ∈ {1,2, . . . ,K} .

(5.10)

5.3 Probably Approximately Correct Channel Sensing Al-
gorithms

In this section, we propose three probably approximately correct (PAC) algorithms [95, 96]
to classify the good channels and bad channels with channel availability constraints. An
algorithm is an ε-PAC algorithm if it gets the correct result with probability at least 1− ε .
We first give two passive rejection (PR) algorithms that can identify bad channels with high
probability and low error rate. In order to improve the efficiency of the channel sensing and
classification process, an active elimination (AE) algorithm is also proposed. We prove that
the AE algorithm can identify numbers of good channels with a finite time horizon and low
error rate.
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5.3.1 Passive Rejection Algorithm

We first propose two PR algorithms. With a PR algorithm, a sensor Si keeps sensing its
pre-assigned channel CHi in each time slot until it has high confidence that pi is less than
the minimum channel availability requirement p∗. We prove that both PR algorithms are
ε-PAC algorithms.

The fist PR algorithm is called the simple reject (SR) algorithm and is denoted by ωSR.
The details of the SR algorithm are given in Algorithm 5.1.

Algorithm 5.1 Simple Reject (SR) Algorithm
Input the value of p∗, η and T . Calculate N based on Equation (5.5).
Initialization: ĈG (ωSR,η)← CH, ĈB (ωSR,η)← 0.
for 1≤ n≤ N do

for each CHi ∈ ĈG do
Calculate p̂i,n based on (5.1).

if γi,n = p∗− p̂i,n ≥
√

1
2n ln

(1
ε
)

then
ĈG← ĈG−{CHi}, ĈB← ĈB∪{CHi}.

end if
end for

end for
Output ĈG (ωSR,η).

We prove that SR algorithm is an ε-PAC algorithm as follows:

Theorem 5.3.1. The SR algorithm is an ε-PAC algorithm that can correctly identify a bad
channel with a probability that is at least 1− ε .

Proof. For any pi in p, we have pi ∈ [0,1]. According to Hoeffding’s inequality [97], we
have

Pr
(

pi ≥ p∗
∣∣∣CHi ∈ ĈB

)
= Pr

(
pi− p̂i,n ≥ p∗− p̂i,n ≥

√
1

2n
ln
(

1
ε

))
≤ e−2nγi,n. (5.11)

Let ε denote the error rate of the SR algorithm. For Si sensing CHi at Tn, if γi,n = p∗− p̂i,n ≥√
1
2n ln

(1
ε
)
, then we have Pr

(
pi ≥ p∗

∣∣∣CHi ∈ ĈB (ωSR,η)
)
≤ e−2nγi,n ≤ ε . Therefore, the

probability that CHi is correctly identified as a bad channel is expressed as

Pr
(

CHi ∈ CB

∣∣∣CHi ∈ ĈB

)
= Pr

(
pi < p∗

∣∣∣CHi ∈ ĈB

)
> 1− ε. (5.12)
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The second PR algorithm is called the improved reject (IR) algorithm and is denoted by
ωIR. The details of the IR algorithm are given in Algorithm 5.2.

Algorithm 5.2 Improved Reject (IR) Algorithm

Input the value of p∗, η and T . Calculate N based on Equation (5.5). Let Bε (n, p) denote
the quantile of order ε for the binomial distribution with parameter n and p.
Initialization: ĈG (ωIR,η)← CH, ĈB (ωIR,η)← 0.
for 1≤ n≤ N do

for each CHi ∈ ĈG do
Calculate p̂i,n based on (5.1).
if np̂i,n ≤ Bε (n, p∗) then

ĈG← ĈG−{CHi}, ĈB← ĈB∪{CHi}.
end if

end for
end for
Output ĈG (ωIR,η).

We prove that IR algorithm is an ε-PAC algorithm as follows:

Theorem 5.3.2. The IR algorithm is an ε-PAC algorithm that can correctly identify a bad
channel with a probability that is at least 1− ε

Proof. For Si sensing CHi at Tn, we have defined the channel availability θi,n as a random
variable having a Bernoulli distribution with parameter pi. Therefore, np̂i,n is a random
variable of a binomial distribution with parameters n and pi. We use np̂i,n as a test statistic
for hypothesis tests about the value of pi. We reject the null hypothesis H0 : pi ≥ p∗ and
accept the alternative hypothesis H1 : pi < p∗ if and only if np̂i,n≤Bε (n, p∗) where Bε (n, p∗)
is the quantile of order ε for the binomial distribution with parameters n and p∗. According
to the definition of binomial hypothesis test, the IR algorithm can correctly identify a bad
channel with probability at least 1− ε .

We prove that both SR and IR algorithm can correctly identify a bad channel with a
probability that is at least 1− ε . However, it is still non-trivial for the PR algorithms to
classify the channels with mean values close to p∗. It is also not energy-efficient to keep
all sensors sensing their pre-assigned channels when only a small number of sensors have
data transmission requests. In order to improve the energy efficiency of channel sensing, we
propose an active elimination (AE) algorithm that can identify the m best channels in CH
with a finite time horizon and low error rate.
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5.3.2 Active Elimination Algorithm

We first introduce some definitions before proposing the active elimination (AE) algorithm.
Without loss of generality, we assume that the mean values p are in strict increasing order
such that p1 < p2 < .. . < pK . To find the m best channels, we set p∗ = pm. We use
∆i, j = p j− pi to denote the gap between pi and p j. For the m best channels, we further
define ∆m

i as

∆m
i =

{
∆i,m+1,

∆m,i,

1≤ i≤ m
m+1≤ i≤ K.

(5.13)

Note that according to the definition in Equation (5.13), we have ∆m
m = ∆m

m+1 = min
i

∆m
i =

pm+1− pm.
Let ĈG,i denote the set of empirical good channels in round i. The AE algorithm denoted

by ωAE is given as follows:

Algorithm 5.3 Active Elimination (AE) Algorithm
Input the value of p∗, η , m and T . Calculate N based on Equation (5.5).
Initialization: ĈG,0← CH.
for 1≤ i≤ ⌈log2 (K/m)⌉ do

Sensing each channel CH j ∈ ĈG,i−1 for t =
⌊

N
⌈log2(K

m)⌉

⌋
time slots. Let ĈG,i be the set

of
⌈
|ĈG,i−1|

2

⌉
channels in ĈG,i−1 with largest empirical mean value.

end for
Output ĈG (ωAE ,η)← ĈG,⌈log2(K/m)⌉.

To prove that the AE algorithm is a ε-PAC algorithm, we first give a lemma as follows:

Lemma 5.3.1. In the AE algorithm, the probability that a good channel CHk ∈ CG is elimi-

nated in round i is at most 6exp
(
− (∆m

m)
2

2 t
)

where t =
⌊

N
⌈log2(K

m)⌉

⌋
.

Proof. Initially, we assume that all channels are empirical good channels and let ĈG,0 =CH.
In round i, the set of empirical good channels in the previous round is denoted by ĈG,i−1. Let

Gi−1 be the set of 3
4

∣∣∣ĈG,i−1

∣∣∣ channels that have the lowest empirical mean values in ĈG,i−1.

If CHk ∈CG is eliminated in round i, then at least half of the channels in ĈG,i−1 have larger
empirical mean values than CHk. By the definition of Gi−1, at least 1

3 |Gi−1| channels in
Gi−1 have larger empirical mean values than CHk. Let Xi be the number of channels in Gi−1

that have larger empirical mean values than CHk. According to Hoeffding’s inequality [97]
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and the union bound theory [98] we have

E [Xi] = ∑
CH j∈Gi−1

Pr
(

p̂k,t < p̂ j,t
)

= ∑
CH j∈Gi−1

Pr
(

p̂ j,t− p j + pk− p̂k,t > ∆k, j
)

≤ ∑
CH j∈Gi−1

Pr
(

p̂ j,t− p j >
∆k, j

2

)
+ ∑

CH j∈Gi−1

Pr
(

pk− p̂k,t >
∆k, j

2

)
(5.14)

≤ ∑
CH j∈Gi−1

2exp

(
−

∆2
k, j

2
t

)

≤ 2 |Gi−1| max
CH j∈Gi−1

exp

(
−

∆2
k, j

2
t

)

≤ 2 |Gi−1|exp

(
−(∆m

m)
2

2
t

)

where the last inequality holds because of the fact that ∆m
m = ∆m

m+1 = min
i

∆m
i = pm+1− pm.

From the definition of the AE algorithm, we know that CHk ∈ CG is eliminated in round i
if and only if Xi >

1
3 |Gi−1|. We further apply Markov’s inequality on Equation (5.14) and

have

Pr
(

Xi >
1
3
|Gi−1|

)
≤ 3E [Xi]

|Gi−1|
≤ 6exp

(
−(∆m

m)
2

2
t

)
, (5.15)

which proves the lemma.

An example of the AE algorithm in operation is given in Example 5.3.1, supported
by Fig. 5.4.

Example 5.3.1. We assume that there are K = 8 channels with the mean values p in strict
increasing order. We aim at finding the m = 2 best channels (i.e., CH1 and CH2) in N = 100
time slots. According to the definition in Algorithm 5.3, there are two rounds in this example.

Each round contains t =
⌊

N
⌈log2(K

m)⌉

⌋
= 50 time slots. In round 1, sensors sensing channel

CH j ∈ ĈG,0 for t = 50 time slots. At the end of round 1, we assume that channels in ĈG,0

and G0 are in strict ascending order according to their empirical mean values. Suppose
that the good channel CH2 is eliminated. From Fig. 5.4, we show that at least half of the
channels in ĈG,0 have larger empirical mean values than CH2 (i.e., CH1, CH3, CH4 and
CH5). In addition, at least 1

3 |G0| = 2 channels in G0 have larger empirical mean values
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Fig. 5.4 An example of the AE algorithm.

than CH2 (i.e., CH4 and CH5). Half of the channels with the smallest empirical mean values
in ĈG,0 are eliminated at the end of round 1 including the good channel CH2. Let ĈG,1 be
the remaining channels for channel sensing in round 2. We have a similar channel sensing
and elimination process in the next rounds as shown in Fig. 5.4. Finally, the AE outputs
ĈG,2 = {CH1,CH3} as the final result.

We then prove that the AE algorithm is a ε-PAC algorithm as follows:

Theorem 5.3.3. The AE algorithm is an ε-PAC algorithm that can correctly identify m best
channels with a probability that is at least 1− ε where ε = 6mN

t exp
(
− (∆m

m)
2

2 t
)

.

Proof. From Lemma 5.3.1, we know the probability that CHk ∈CG is eliminated during the
AE algorithm is expressed as

⌈log2(K/m)⌉

∑
i=1

Pr
(

Xi >
1
3
|Gi−1|

)
= 6

⌈log2(K/m)⌉

∑
i=1

exp

(
−(∆m

m)
2

2
t

)
≤ 6N

t
exp

(
−(∆m

m)
2

2
t

)
,

(5.16)
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where t =
⌊

N
⌈log2(K/m)⌉

⌋
. According to the union bound theory, the probability of incorrectly

identifying the m best channels is at most
m
∑

i=1

6N
t exp

(
− (∆m

m)
2

2 t
)
= 6mN

t exp
(
− (∆m

m)
2

2 t
)

which

proves the theorem.

Note that ε = 6mN
t exp

(
− (∆m

m)
2

2 t
)

is only an upper-bound of the error rate of the AE
algorithm. In practice, the error rate of the AE algorithm is much lower as shown in the
simulation results.

In this section, we propose two PR algorithms and one AE algorithm. With the availabil-
ity constraint p∗, all of the algorithms are proved to be ε-PAC algorithms that can identify
good and bad channels with a finite time horizon and low error rate.

5.4 Joint Channel Sensing and Power Control Scheme

In this section, we propose a joint channel sensing and power control (JCSPC) scheme that
can maximize the total number of transmitted bits of each cluster under channel availability
and data rate constraints. We use the AE algorithm for the channel sensing phase to find
the m best channels for n sensors (n ≤ m ≤ K) to regularly transmit their data. Let ε∗ be
the maximum error rate of the AE algorithm and t = N

log2(K
m)

for simplicity. According

to Theorem 5.3.3, we know that ε = 6mN
t exp

(
− (∆m

m)
2

2 t
)
≤ ε∗. Therefore, we have

N ≥
2log2

(K
m

)
(∆m

m)
2 ln

(
6mlog2

(K
m

)
ε∗

)
. (5.17)

We also assume that all sensors have the same sensing power consumption Ps and circuit
power consumption Pc. Therefore, according to Equation (5.5) and Equation (5.17), the
minimum fraction of energy used for channel sensing η∗ is given by

η ≥ αNT (Pc +Ps)

E
≥

2αT (Pc +Ps) log2
(K

m

)
(∆m

m)
2E

ln

(
6mlog2

(K
m

)
ε∗

)
= η∗. (5.18)

Next we prove that for sensor Si on channel CHk, there exists a P∗i,k that maximizes the
total number of transmitted bits. For sensor Si with transmission power Pj on channel CHk

we take the limits of Li, j,k in Equation (5.9) and have

lim
Pj→0

Li, j,k = lim
Pj→0

(1−η)EBlog2
(
1+Pjgi,k

)
Pj +Pc

= 0, (5.19)
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and

lim
Pj→PM

Li, j,k = lim
Pj→PM

(1−η)EBlog2
(
1+Pjgi,k

)
Pj +Pc

=
(1−η)EBlog2

(
1+PMgi,k

)
PM +Pc

> 0.

(5.20)

Since we have lim
Pj→PM

Li, j,k > lim
Pj→0

Li, j,k = 0 and Li, j,k in Equation (5.9) is finite for any

Pj ∈ P, according to the extreme value theorem, there exists a P∗i,k that maximizes the total
number of transmitted bits.

The JCSPC scheme is given in Algorithm 5.4, where the Hungarian algorithm is used
to solve the assignment problem in Equation (5.10). Although the Hungarian algorithm
has O

(
n4) complexity, this is usually not a problem in practice, since in the cluster-based

CRWSN, the number of sensors with data transmission requests in each cluster is often not
high, for example less than 10% of sensors are active in a cluster with 100 sensor nodes.

Algorithm 5.4 Joint Channel Sensing and Power Control Scheme
Input the value of n, m, K, T , ∆m

m and ε∗.
Initialization: Find the m best channels using the AE algorithm. Calculate η∗ according
to Equation (5.18).
for 1≤ i≤ n do

for 1≤ k ≤ m do
Calculate P∗i,k and L∗i,k based on Equation (5.8) and Equation (5.9).
L← L∗i,k.

end for
end for
Solve Equation (5.10) using the Hungarian algorithm [61].
Output Π∗ and L∗, where Π∗ is the K×K matrix with element π∗i,k that maximizes L∗

in Equation (5.10).

Note that for the AE algorithm, we need to know ∆m
m for calculating N and η∗. However,

this is not usually a problem in practice since we can set ∆m
m to a small value δ (e.g., δ =

0.05). If the actual ∆m
m is larger than δ , we will only have a tighter lower bound for N and η∗

which will not violate the QoS constraints. If the actual ∆m
m is smaller than δ , the difference

of pm and pm+1 is so small that it is not helpful to identify which channel is better. In other
words, either CHm and CHm+1 can be identified as a good channel when ∆m

m < δ .
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5.5 Simulation Results

In this section, we provide simulation results to show the performance of our channel sens-
ing algorithms and the JCSPC scheme. We assume that the channels are Rayleigh block
fading channels. The channel state information (CSI) is assumed to be known by both the
transmitter and receiver. For CHk assigned to Si, the normalized channel gain gi,k is random-
ly generated from an exponential distribution in each fading block. The transmission power
ranges from 0 to 100 mW and is equally divide into M = 10 power levels. The parameters
of used in the simulation are given in Table 5.1

Table 5.1 Parameters for simulation

Symbol Description Value
Pc Circuit power consumption 20 mW
Ps Sensing power consumption 30 mW
T Length of each time slot 1 s
α Fraction of time for channel sensing 0.1
E Total energy spent in one fading block 10 J
B Channel bandwidth 200 kHz
M Number of transmission power levels 10
R∗ Minimum data rate requirement 100 kbps

We first show the performance of channel sensing algorithms. We assume that there
are K = 8 licensed channels and each channel is sensed by an active sensor per cluster.
The mean values of channel availability p = {p1, p2, . . . pK} are in increasing order and
equally spaced in the interval [0.05, 0.95]. We set the channel availability constraint as
p∗ = 0.8 and the fraction of energy used for channel sensing as η = 0.05. We have N = 100
according to Equation (5.5) and we aim at finding m = 2 best channels within N time slots.
For performance comparison, we propose a threshold detection (TD) algorithm. In the TD
algorithm, the channel CHk is identified as a bad channel at any time slot Tn once we have
p̂k,n < p∗.

The simulation results of the channel sensing algorithms are averaged over 500 simu-
lation runs. In the beginning, all channels are assumed to be good channels. The SR and
IR algorithms gradually identify bad channels and eliminate them from the good channels
with high confidence. Unlike the SR and IR algorithms, the AE algorithm keeps sensing
the channels until it has a confidence high enough to eliminate at most half of the current
channels and keep the rest as good channels. In this example, according to the definition
in Algorithm 5.3, the channel sensing of the AE algorithm contains ⌈log2 (K/m)⌉= 2 round-

s and each round contains t =
⌊

N
⌈log2(K

m)⌉

⌋
= 50 time slots. The AE algorithm keeps sensing
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Fig. 5.5 Channel sensing accuracy (1− ε) of various channel sensing algorithms.

8 channels for 50 time slots (round 1). It eliminates 4 channels with the smallest empirical
mean value after the first round. Then in the second round, the AE algorithm keeps sens-
ing the remaining 4 channels for 50 time slots. It eliminates 2 channels with the smallest
empirical mean value after the second round and outputs the m = 2 best channels.

The channel identification accuracy of the channel sensing algorithms are given in Fig. 5.5.
We show that the three proposed algorithms achieve higher channel sensing accuracy (above
95%) than the TD algorithm which achieves 86% accuracy. For the final error rate, we have
ε (ωT D,η) > ε (ωSR,η) > ε (ωIR,η) > ε (ωAE ,η). We also find that for any algorithm the
error rate decreases with an increasing number of time slots (N). Eventually, the AE algo-
rithm achieves the highest channel sensing accuracy and the lowest error rate.

We then investigate the impact of ∆i, j on the error rate ε . Specifically, we choose ∆m
m as

a variable of the simulation. According to Equation (5.13), we have ∆m
m = ∆m

m+1 = min
i

∆m
i =

pm+1− pm. In this simulation, we assume that we have K = 16 licensed channels and each
channel is sensed by an active sensor per cluster. We aim at finding the m = 5 best channels
within N = 30 time slots. The variable ∆m

m is varied from 0.05 to 0.45. In Fig. 5.6, we show
that the error rate of our proposed algorithms decrease with increasing ∆m

m. On the other
hand, the value of ∆m

m has little impact on the performance of the TD algorithm. For the
same value of ∆m

m, the AE algorithm always achieves the lowest error rate. We also notice
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Fig. 5.6 Channel sensing accuracy (1− ε) with various minimum channel availability gap
(∆m

m).

that the SR algorithm has a lower error rate than the IR algorithm when ∆m
m is sufficiently

large (∆m
m > 0.32).

We consider the efficiency of the JCSPC scheme in one fading block. For performance
comparison, we propose a random channel access (RCA) scheme which randomly allocates
available channels to sensors having data transmission requests. We also give the optimal
channel access scheme by solving the optimization problem in Equation (5.10) using the
Hungarian algorithm, given that the channel availability information p is perfectly known.
We assume that we have K = 8 licensed channels and each channel is sensed by an active
sensor per cluster. We set the other parameters as N = 10, m = 4, ε∗ = 0.1, ∆m

m = 0.1 and
p∗ = 0.5. We vary the number of sensors with data transmission requests (n) from 1 to 4
and compare the performance of JCSPC scheme with the optimal solution and the RCA
scheme. For each fading block, the normalized channel gains gi are randomly generated
based on the Rayleigh fading channel models. An example of the mean values of channel
availability p and the normalized channel gains for one fading block (e.g., g1 in Fig. 5.2) are
given in Table 5.2.

The simulation result based on the channel availability p and the normalized channel
gains in Table 5.2 is given in Fig. 5.7. We first consider the JCSPC scheme. According
to Algorithm 5.4, the JCSPC scheme utilizes the AE algorithm for channel sensing and the
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Table 5.2 The normalized channel gain

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8
p 0.05 0.18 0.31 0.44 0.56 0.69 0.82 0.95
S1 22.81 30.60 14.78 4.93 27.49 1.31 17.97 5.09
S2 1.51 0.34 15.79 28.46 18.76 9.30 9.88 29.83
S3 22.31 38.19 18.70 71.28 51.15 1.59 4.39 20.41
S4 2.02 34.86 6.35 28.62 41.05 46.56 0.99 15.12
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Fig. 5.7 Maximum transmitted bytes in the cluster vs. various numbers of sensors with data
transmission requests, for one fading block.
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Hungarian algorithm for power control and channel assignment. The Hungarian algorithm
is an optimization algorithm that can solve the assignment problem in polynomial time [61].
Therefore, the performance of the JCSPC scheme relies heavily on the performance of the
AE algorithm. As the AE algorithm cannot perfectly identify the ‘good’ channels that sat-
isfy the channel availability constraints, the JCSPC scheme can only achieve near-optimal
results. We provide the optimal transmission power and the maximum number of transmit-
ted bytes given by the JCSPC scheme for n= 4 in Table 5.3 and Table 5.4 respectively where
n/a means that the channel availability requirement (p∗ = 0.5) or the data rate requirement
(R∗ = 100 kbps) is not fulfilled on that channel. We identify the channel assignment of the
JCSPC scheme using red backgrounds. The corresponding optimal transmission power and
the maximum number of transmitted bytes are marked with grey backgrounds in Table 5.3
and Table 5.4 respectively. In this example, for n = 4 channel {CH8,CH7,CH6} is assigned
to {S1,S2,S4} respectively by the JCSPC scheme. Note that no channel is assigned to S3 as
no channel can fulfill the channel availability or the data rate constraints.

Table 5.3 The optimal transmission power given by the JCSPC scheme

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8
S1 n/a n/a n/a n/a n/a 20 mW n/a 20 mW
S2 n/a n/a n/a n/a n/a 70 mW 60 mW 30 mW
S3 n/a n/a n/a n/a n/a n/a n/a 30 mW
S4 n/a n/a n/a n/a n/a 20 mW n/a 40 mW

Table 5.4 The maximum number of transmitted bytes given by the JCSPC scheme

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8
S1 n/a n/a n/a n/a n/a 3.36 MB n/a 6.71 MB
S2 n/a n/a n/a n/a n/a 0.71 MB 0.89 MB 2.47 MB
S3 n/a n/a n/a n/a n/a n/a n/a 1.85 MB
S4 n/a n/a n/a n/a n/a 2.48 MB n/a 1.46 MB

For comparison, the optimal transmission power and the maximum number of transmit-
ted bytes given by the optimal solution is provided in Table 5.5 and Table 5.6 respective-
ly. In Table 5.5 and Table 5.6, we mark the channels that fulfill the channel availability
requirements with yellow backgrounds. The corresponding optimal transmission power
and the maximum number of transmitted bytes of the optimal solution are identified with
green backgrounds. In this example, for n = 4 channel {CH8,CH7,CH5,CH6} is assigned to
{S1,S2,S3,S4} respectively by the optimal solution. From Table 5.4 and Table 5.6, we see
that the loss of the number of transmitted data in the JCSPC scheme is due to the misiden-
tification of CH4 as a good channel and CH5 as a bad channel compared with the optimal
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solution. The performance of the JCSPC scheme relies heavily on the performance of the
channel sensing algorithm (i.e., the AE algorithm).

Table 5.5 The optimal transmission power given by the optimal solution

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8
S1 n/a n/a n/a n/a n/a 20 mW n/a 20 mW
S2 n/a n/a n/a n/a 50 mW 70 mW 60 mW 30 mW
S3 n/a n/a n/a n/a 20 mW n/a n/a 30 mW
S4 n/a n/a n/a n/a 30 mW 20 mW n/a 40 mW

Table 5.6 The maximum number of transmitted bytes given by the optimal solution

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8
S1 n/a n/a n/a n/a n/a 3.36 MB n/a 6.71 MB
S2 n/a n/a n/a n/a 1.01 MB 0.71 MB 0.89 MB 2.47 MB
S3 n/a n/a n/a n/a 2.16 MB n/a n/a 1.85 MB
S4 n/a n/a n/a n/a 1.85 MB 2.48 MB n/a 1.46 MB

We then consider the performance of the JCSPC scheme over several fading blocks. In
each fading block, the normalized channel power gain is randomly generated from the same
Rayleigh fading channel model. The maximum transmitted bytes in each cluster that is
averaged over 1000 fading blocks (e.g., from g1 to gZ where Z = 1000 in Fig. 5.2) is given
in Fig. 5.8. The simulation result shows that the JCSPC scheme achieves near-optimal
results and outperforms the RCA scheme for various values of n in the long run.

Finally, we investigate the impact of N on the performance of the JCSPC scheme, where
N is defined as the maximum number of time slots for channel sensing of each cluster.
We assume that the value of Pc, Ps, T , α and E are the same as the ones used to yield
the results given in Fig. 5.7. We vary N and give the performance of the JCSPC scheme
in Fig. 5.9. The simulation result is averaged by 1000 simulation runs and shows that the
performance of the JCSPC converges to the optimal solution with increasing N. Clearly
the performance of the JCSPC scheme relies heavily on the accuracy of the AE channel
sensing algorithm. According to the definition of the AE algorithm in Algorithm 5.3, the
channel sensing and elimination process is divided into ⌈log2 (K/m)⌉ rounds and each round

contains t =
⌊

N
⌈log2(K

m)⌉

⌋
time slots. The AE algorithm will have more historical data to

identify and so better eliminate the ‘bad’ channels in each round as N increases. Thus the
accuracy of the AE algorithm increases with N which positively affects the performance of
the JCSPC scheme.
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Fig. 5.8 Maximum transmitted bytes in the cluster vs. different number of sensors with data
transmission requests, averaged over 1000 fading blocks.
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Fig. 5.9 Maximum transmitted bytes in the cluster vs. different N.
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5.6 Summary

In this chapter, we considered a cluster-based CRWSN. Unlike the scenarios where PUs
voluntarily allocate their vacant channels to SUs, in the CRWSN, the sensors with cognitive
radios must sense the vacant channels and find the good channels that are available and can
fulfill their QoS requirements on delay and data rate.

We first proposed three cluster-based channel sensing algorithms that can identify good
channels with high accuracy. We proved that given specified channel availability constraints,
all of the three algorithms are ε-PAC algorithms that terminate in a finite time with a finite
error rate. We then considered the transmission power and data transmission via the good
channels. A joint channel sensing and power control (JCSPC) scheme is proposed to maxi-
mize the total number of transmitted bits in each cluster.

We provided the simulation results in Section 5.5. We first considered the performance
of the proposed channel sensing algorithms. The simulation results showed that the AE algo-
rithm outperformed the other algorithms and achieved the highest channel sensing accuracy.
We then investigated the impact of the minimum channel availability gap (∆m

m) on the error
rate. The AE algorithm outperformed the other algorithms given the same simulation set-
tings. Finally, we showed that the JCSPC scheme can achieve near-optimal performance
compared to the optimal solution. The performance of the JCSPC scheme relies heavily on
the accuracy of the channel sensing algorithm, namely the AE algorithm.





Chapter 6

Conclusions and Future Work

6.1 Conclusions

This dissertation has focused on the power control and optimal resource allocation strate-
gies in cooperative communication networks and cognitive radio networks with QoS con-
straints. In various scenarios, QoS-constrained efficient power control and resource alloca-
tion schemes were proposed. Both the theoretical and simulation results are provided in this
dissertation.

In Chapter 1, we introduced the motivation and topics of our research. In Chapter 2, we
gave some background information on the wireless channel capacity, the end-to-end delay
and various QoS metrics such as delay, data rate and packet error rate. We also introduced
some power control and resource allocation methods that are used in our research.

We first investigated the power control and optimization problem of a cooperative com-
munication network. A cluster-based wireless sensor network was considered in Chapter 3,
where a cooperative transmission scheme for WSNs was presented. In this scenario, sensors
in each cluster cooperatively transmit data to the neighboring cluster [14]. With specified
QoS constraints on delay and data rate, we proposed a dynamic power control algorithm
that can minimize the total power consumption of the transmitters in each cluster. We al-
so gave an approximate algorithm that has a closed-form and near-optimal solution to the
power control and optimization problem.

In Chapter 4, we investigated the competitive spectrum access problem in a cooperative
cognitive radio network [15]. In this scenario, we assumed that the primary users are will-
ing to allocate their vacant licensed channels to secondary users for secondary transmissions.
The channel access problem was formulated as an assignment problem and further can be
expressed as a matching problem. We proposed a distributed matching algorithm that can
give near-optimal results to the assignment problem. Specifically, we gave the implementa-
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tion of the matching algorithms at the SU and the PU. We also developed a fast distributed
matching algorithm that achieves sub-optimal results with far fewer message exchanges
compared with the distributed matching algorithm.

Finally, channel sensing and power control in a cluster-based cognitive radio wireless
sensor network are analyzed in Chapter 5 [16]. In this scenario, the primary users do not
voluntarily allocate their vacant channels to the secondary users. As secondary users, wire-
less sensors with cognitive radios cooperatively sense the whole spectrum and periodically
report the sensing result to the cluster head. To facilitate the channel sensing process, we
proposed three probably approximately correct algorithms that utilize the historical sensing
data to predict the availability of the licensed channels. Based on the channel sensing algo-
rithms, we further developed a joint channels sensing and power control (JCSPC) scheme
to maximize the total number of transmitted bits in each cluster.

All of the power control and resource allocation algorithms in different scenarios are
designed under specified QoS constraints. We provided extensive theoretical proofs and
simulation results to establish the performance of our proposed algorithms.

6.2 Future Work

In this section, we point out several future research directions and possible extensions of our
work.

6.2.1 Dynamic Power Control for Virtual MIMO Wireless Networks

In Chapter 1, we have considered the dynamic power control problem under a coopera-
tive transmission scheme. The cooperative transmission scheme can be viewed as a virtual
multiple-input single-output (MISO) scheme where the the sensors in the transmitter cluster
achieve the diversity gain via cooperative transmission. To improve the cooperative trans-
mission performance, we can extend the virtual MISO scheme to a virtual MIMO scheme.
The diversity gain of the receiver cluster can be achieved by diversity combining techniques
such as selection combining [99] and max ratio combing [100]. More specifically, the clus-
ter head of the receiver cluster can enhance the SNR of the received message by selecting or
combining the received message of other sensors in the cluster. A new cooperation frame-
work and power control scheme would need to be developed for the virtual MIMO network.
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6.2.2 Efficient Distributed Spectrum Access

Although the distributed spectrum access algorithms achieve near-optimal results in Chap-
ter 4, it is still interesting to investigate whether the message exchanges in the spectrum
access process can be further reduced. One possible approach is to set the maximum length
of the preference list [101] of each secondary user or the maximum number of times it can
send the channel access requests. Another approach is that secondary users having data
transmission requests can jointly apply for a group of channels and take turns to send their
data. Efficient algorithms for group formation of secondary users require further investiga-
tion.

6.2.3 Optimal Channel Tracking

The channel sensing algorithms proposed in Chapter 5 can be used in various scenarios. For
example, although it is important to select the channels with large values of channel power
gain for data transmission, it is difficult track the ‘good’ channels in a fading environment.
Although the proposed channel sensing algorithms cannot predict the channel power gain in
every fading block, they can gradually find out the mean value of the channel power gain of
each channel, regardless of what distribution the channel power gain may follow. However,
the PAC algorithm cannot find accurate mean values with only a limited quantity of chan-
nel feedback (i.e., the channel power gain in previous fading blocks), so it has to transmit
through each channel and get as much channel feedback as possible. On the other hand,
it cannot efficiently track and utilize the ‘good’ channels if it only focuses on collecting
channel feedback. Thus, there is an exploration vs. exploitation tradeoff for any PAC chan-
nel sensing algorithm [102] and it is interesting to develop an efficient algorithm that can
expend the minimum number of explorations to find the best channel for data transmission.

6.2.4 Applications in Other Scenarios

In addition to the applications in WSNs, cooperative communication can also improve the
performance of other wireless networks with QoS constraints such as the device-to-device
(D2D) communication networks [103] and mobile ad-hoc networks [104] where wireless
devices are usually equipped with single antennas and have a limited energy supply. To
consider the power control and resource allocation problems in these scenarios, different
channel models involving user mobility need to be considered. Besides, cooperative com-
munication can do more than just provide transmission diversity. Control and other channel
information can also be shared via cooperation of different users in the wireless networks.
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The power control and resource allocation problems in scenarios such as cooperative spec-
trum sensing, cooperative routing and cooperative localization are worth investigating in the
future. Some of the possible research topics could be optimal cooperative spectrum sens-
ing with energy constraints, delay-tolerant cooperative routing and power management for
cooperative localization.
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