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STOCHASTIC PRIMAL-DUAL HYBRID GRADIENT ALGORITHM
WITH ARBITRARY SAMPLING AND IMAGING APPLICATIONS*

ANTONIN CHAMBOLLE!, MATTHIAS J. EHRHARDT?!, PETER RICHTARIKS, AND
CAROLA-BIBIANE SCHONLIEB?

Abstract. We propose a stochastic extension of the primal-dual hybrid gradient algorithm
studied by Chambolle and Pock in 2011 to solve saddle point problems that are separable in the dual
variable. The analysis is carried out for general convex-concave saddle point problems and problems
that are either partially smooth / strongly convex or fully smooth / strongly convex. We perform
the analysis for arbitrary samplings of dual variables, and obtain known deterministic results as a
special case. Several variants of our stochastic method significantly outperform the deterministic
variant on a variety of imaging tasks.
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1. Introduction. Many modern problems in a variety of disciplines (imaging,
machine learning, statistics, etc.) can be formulated as convex optimization prob-
lems. Instead of solving the optimization problems directly, it is often advantageous
to reformulate the problem as a saddle point problem. A very popular algorithm
to solve such saddle point problems is the primal-dual hybrid gradient (PDHG)
algorithm [37, 21, 13, 36, 14, 15]. It has been used to solve a vast amount of state-
of-the-art problems—to name a few examples in imaging: image denoising with the
structure tensor [22], total generalized variation denoising [11], dynamic regularization
[7], multi-modal medical imaging [27], multi-spectral medical imaging [43], computa-
tion of non-linear eigenfunctions [26], regularization with directional total generalized
variation [29]. Its popularity stems from two facts: First, it is very simple and there-
fore easy to implement. Second, it involves only simple operations like matrix-vector
multiplications and evaluations of proximal operators which are for many problems
of interest simple and in closed-form or easy to compute iteratively, cf. e.g. [33].
However, for large problems that are encountered in many real world applications,
even these simple operations might be still too costly to perform too often.
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We propose a stochastic extension of the PDHG for saddle point problems that
are separable in the dual variable (cf. e.g. [18, 50, 52, 34]) where not all but only a
few of these operations are performed in every iteration. Moreover, as in incremental
optimization algorithms [47, 31, 10, 9, 8, 45, 19] over the course of the iterations
we continuously build up information from previous iterations which reduces variance
and thereby negative effects of stochasticity. Non-uniform samplings [40, 38, 50, 39, 2]
have been proven very efficient for stochastic optimization. In this work we use the
expected separable overapproximation framework of [38, 39, 41] to prove all statements
for all non-trivial and iteration-independent samplings.

Related Work. The proposed algorithm can be seen as a generalization of the algo-
rithm of [18, 52, 50] to arbitrary blocks and a much wider class of samplings. Moreover,
in contrast to their results, our results generalize the deterministic case considered in
[37, 13, 36, 15]. Fercoq and Bianchi [23] proposed a stochastic primal-dual algorithm
with explicit gradient steps that allows for larger step-sizes by averaging over previous
iterates, however, this comes at the cost of prohibitively large memory requirements.
Similar memory issues are encountered by a primal-dual algorithm of [4]. It is re-
lated to forward-backward splitting [30] and averaged gradient descent [10, 20] and
therefore suffers the same memory issues as the averaged gradient descent. Moreover,
Valkonen proposed a stochastic primal-dual algorithm that can exploit partial strong
convexity of the saddle point functional [48]. Randomized versions of the alternating
direction method of multipliers are discussed for instance in [51, 25]. In contrast to
other works on stochastic primal-dual algorithms [35, 49], our analysis is not based
on Fejér monotonicity [16]. We therefore do not prove almost sure convergence of
the sequence but prove a variety of convergence rates depending on strong convexity
assumptions instead. For smooth / strongly-convex problems, our analysis implies
that the variance of the algorithm converges to zero which we will show empirically
to be a dividing factor between our work and [35].

As a word of warning, our contribution should not be mistaken by other “stochas-
tic” primal-dual algorithms, where errors in the computation of matrix-vector prod-
ucts and evaluation of proximal operators are modeled by random variables, cf. e.g.
[35, 16, 44]. In our work we deliberately choose to compute only a subset of a whole
iteration to save computational cost. These two notations are related but are certainly
not the same.

1.1. Contributions. We briefly mention the main contributions of our work.

Generalization of Deterministic Case. The proposed stochastic algorithm is a di-
rect generalization of the deterministic setting [37, 13, 36, 14, 15]. In the degenerate
case where in every iteration all computations are performed, our algorithm coincides
with the original deterministic algorithm. Moreover, the same holds true for our anal-
ysis of the stochastic algorithm where we recover almost all deterministic statements
(boundedness, convergence rates etc.) [13, 36] in this degenerate case. Therefore, the
theorems for both the deterministic and the stochastic case can be combined by a
single proof.

Better Rates. Our analysis extends the simple setting of [50] such that the strong
convexity assumptions and the sampling do not have to be uniform. In the special
case of uniform strong convexity and uniform sampling, the proven convergence rates
are better than the ones proven in [50].

Arbitrary Sampling. The proposed algorithm is guaranteed to converge under a
very general class of samplings [38, 39, 41] and thereby generalizes also the algorithm of
[50] which has only been analyzed for two specific samplings. As long as the sampling
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is independent and identically distributed over the iterations and all computations
have non-zero probability to be carried out, the theory holds and the algorithm will
converge with the proven convergence rates.

Acceleration. We propose an acceleration of the stochastic primal-dual algorithm
which accelerates the convergence from O(1/K) to O(1/K?) if parts of the saddle
point functional are strongly convex and thereby results in a significantly faster algo-
rithm.

Scaling Invariance. In the strongly convex case, we propose parameters for several
serial samplings (uniform, importance, optimal), all based on the condition numbers
of the problem and thereby independent of scaling.

2. General Problem. Let X Y;,i = 1,...,n be real Hilbert spaces of any di-
mension and define the product space Y := [],Y,. For y € Y, we shall write
y = (y1,Y2,---,Yn), where y; € Y;. Further, we consider the natural inner product
on the product space Y given by (y,2z) = > (i, z:), where y;, z; € Y;. This inner
product induces the norm |[jy[|> = >, [|yil[*>. Let A : X — Y be a bounded lin-
ear operator. Due to the product space nature of Y, we have (Azx); = A;x, where
A; : X = Y, are linear operators. The adjoint of A is given by A*y = >"" | Afy;.
Moreover, let f: Y — Ry := RU {400} and g : X — R, be convex functions. In
particular, we assume that f is separable, i.e. f(y) =>"1", fi(y:).

Given the setup described above, we consider the optimization problem

(1) min {q)(m) = Z filAz) + g(gc)} .

ex
v i=1

Instead of solving (1) directly, it is often desirable to reformulate the problem as a
saddle point problem with the help of the Fenchel conjugate. If f is proper, convex,
and lower semi-continuous, then f(y) = f**(y) = sup,ey(z,y) — f*(z) where f*: Y —
R U {—o00, +0o0}, and f*(y) = >_i—, f7(y;) is the Fenchel conjugate of f (and f** its
biconjugate defined as the conjugate of the conjugate). Then solving (1) is equivalent
to finding the primal part = of a solution to the saddle point problem (called a saddle
point)

(2) min sup {Z(Aix, vi) — fi(yi) + g(a:)} :

zeX yeY =1

We will assume that the saddle point problem (2) has a solution. For conditions
for existence and uniqueness, we refer the reader to [5]. A saddle point (2%, y*) =
(zf, yg, ..., yb) satisfies the optimality conditions

.= At edfi(yf), fori=1,...,n
gt = —A*yf € 9g(aF).

An important notion in this work is strong convezity. A functional g is called pg-
convex if g — &2 - ||? is convex. In general, we assume that g is pg-convex, f;
is p;-convex with nonnegative strong convexity parameters pg,u; > 0. The con-
vergence results in this contribution cover three different cases of regularity: i) no
strong convexity f,, #; = 0, ii) semi-strong convexity pg > 0 or p; > 0 and iii) full
strong convexity pi4, 1t; > 0. For notational convenience we make use of the operators
M; = I, My := pgI and My := diag(M;,...,M,,).
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A very popular algorithm to solve the saddle point problem (2) is the Primal-
Dual Hybrid Gradient (PDHG) algorithm [37, 21, 13, 36, 14, 15]. It reads (with
extrapolation on y)

zF 1 = prox

9 (xk — TA*yk)
Yt = prox%. (yk + crA:ckH)
ykJrl _ yk+1 + a(yk+1 _ yk> ,

where the proximal operator (or proximity / resolvent operator) is defined as

proxj (y) := arg glei;g{%l\w —yl3+ f(w)}
and the weighted norm by ||z||?2_, = (77'z,z). Its convergence is guaranteed if the
step size parameters o, 7 are positive and satisfy o7||A||*> < 1 and § = 1 [13]. Note
that the definition of the proximal operator is well-defined for a operator-valued step
size 7. In the case of a separable function f and with operator-valued step sizes the
PDHG algorithm takes the form

(3a) il = proxg (a:k - TA*y’“)

(3b) Yt = proxi’i (yiC + SiAika) , i=1,...,n

(3¢) g =Myt ).

Here the step size parameters S = diag(Sy,...,S,) (a block diagonal operator) and
Si,...,S, and T are symmetric and positive definite. The algorithm is guaranteed

to converge if ||SY/2AT!?|| <1 and 6 =1 [36].

3. Algorithm. In this work we extend the PDHG algorithm to a stochastic set-
ting where in each iteration we update a random subset S of the dual variables (3b).
This subset is sampled in an i.i.d. fashion from a fixed but otherwise arbitrary distri-
bution, whence the name “arbitrary sampling”. In order to guarantee convergence, it
is necessary to assume that the sampling is “proper” [42, 39]. A sampling is proper
if for each dual variable ¢ we have i € S with a positive probability p; > 0. Examples
of proper samplings include the full sampling where S = {1,...,n} with probability
1 and serial sampling where S = {i} is chosen with probability p;. It is important to
note that also other samplings are admissible. For instance for n = 3, consider the
sampling that selects S = {1, 2} with probability 1/3 and S = {2,3} with probability
2/3. Then the probabilities for the three blocks are p; = 1/3, po = 1 and p3 = 2/3
which makes it a proper sampling. However, if only S = {1, 2} is chosen with proba-
bility 1, then this sampling is not proper as the probability for the third block is zero:
p3 = 0.

The algorithm we propose is formalized as Algorithm 1. As in the original al-
gorithm, the stepsize parameters T, S; have to be self-adjoint and positive definite
operators for the updates to be well-defined. The extrapolation is performed with a
scalar 6 > 0 and an operator P := diag(p11,...,p,I) of probabilities p; that an index
is selected in each iteration.

REMARK 1. Both, the primal and dual iterates ¥t and y**+1 are random vari-
ables but only the dual iterate y**' depends on the sampling S¥+1.

REMARK 2 (Memory). For memory efficiency, the algorithm can be coded in a
different order, where the primal update follows the dual update. Our analysis obvi-
ously translates to this memory efficient algorithm.
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Algorithm 1 Stochastic Primal-Dual Hybrid Gradient algorithm (SPDHG). Input:
primal and dual variable x°,9%, step length parameters S = diag(Si,...,S,), T,¥,
selection rule k — S*, number of iterations K. Initialize: 7" = y°
for k=0,...,K—1do
e proxg (zk — TA*yk)
Select S¥+1 C {1,...,n}.
proxjscii (yF 4+ S;A;zh) if i € SFH

k+1 _
vi yr else
ykJrl _ yk+1 + HP—I(yk-H _ yk)
end for

REMARK 3 (Computation). Due to the sampling each iteration requires both A;
and A to be evaluated only for each selected index i € S¥*1. To see this, note that

*— * * — * 4 *
A yk-‘rl:A yk+1+A oP 1(yk+l_yk):A yk_|_ Z (1+p> Al(yf:—‘rl_ylk)

i€Sk+1
A*yF can be stored from the previous iteration (needs memory of the size of the primal

variable x) and update requires the operators A to be evaluated only for i € SK*1.

4. General Convex Case. We first analyze the convergence of Algorithm 1 in
the general convex case without making use of any strong convexity or smoothness
assumptions. In order to analyze the convergence for the large class of samplings
described in the previous section we make use of the expected separable overapproxi-
mation (ESO) inequality [39].

DEFINITION 4.1 (Expected Separable Overapproximation (ESO) [39]).

2 n
Zcfyi < szUzHysz
i=1

€S
Such parameters {v;} are called ESO parameters.

(4) Es

REMARK 4. Note that for any operator C* such parameters always exist but are
obviously not unique. For the efficiency of the algorithm it is desirable to find ESO
parameters such that (1) is as tight as possible; i.e., we want the parameters {v;} be
small. As we shall see, the ESO parameters influence the choice of the aggregation
parameter 6.

The ESO inequality was first proposed by Richtdrik and Taka¢ [42] to study
parallel coordinate descent methods in the context of uniform samplings, which are
samplings for which p; = p; for all ¢,j. Improved bounds for ESO parameters were
obtained in [24] and used in the context of accelerated coordinate descent. Qu et
al. [39] perform an in-depth study of ESO parameters. The ESO inequality is also
critical in the study mini-batch stochastic gradient descent with [28] or without [46]
variance reduction.

We will frequently need to estimate the expected value of inner products which
we will do by means of ESO parameters. Recall that we defined weighted norms as
||z == (T 'z, z).
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LEMMA 4.2. Let y* be defined as in Algorithm 1, v; be some ESO parameters of
C* = [Cy,...,Ck] with C; = Si/Qpi_l/QAiTl/2 and let 4> > max;v;. Denote the
expected value with respect to the sampling S* by E*. Then for any v € X and ¢ > 0

2
*— - c Y —
EF(z, A"P ' (y* — ")) > —EF {2||$||'2r1 + %Hyk —y" 1%sp)l} :

EXAMPLE 1 (Full Sampling). Let S = {1,...,n} with probability 1 such that p; =
P(i € S) = 1. Then v; = ||SY2ATY2||2 are ESO parameters of SY/?P~1/2ATY/2,
Thus, the deterministic condition on convergence ||SY2ATY2||2 < 1 implies that
there exist some ESO parameters v; (e.g. the above) that are uniformly bounded by
2 with v < 1.

EXAMPLE 2 (Serial Sampling). Let S = {i} be chosen with probability p; > 0.
Then v; = ||S;/2p;1/2AiT1/2H2 are ESO parameters of SY/?P~1/2AT/2.

For notational convenience we define” the function h* : Y — R, via h*(y) :=
(L - 1) f7(y;) and denote the subgradient as h* := > | (L - 1) 2 € on*(yh).

=1 \ p:i p
The Bregman distance of h* is then given by

i
i

(5) DY) =3 (5 —1) D).

i=1 v

THEOREM 4.3. Let (zf,y*) € X x Y be any saddle point, g, f; be convex and
the extrapolation parameter @ = 1. Let the step sizes T, S be chosen such that 0 <
~v% < 1 bounds some ESO parameters as defined by Lemma 4.2. Then, the iterates of
Algorithm 1 satisfy the following assertions.

1. The sequence (%, y*) is bounded in expectation in the sense that

1— 2 1 :
©  E{IST 0 B+ 310~ ey + DG < ¢
where the constant is given by
L. o #2 Lo P B0
(1) e=3l® =2 e+ s — ey + DRG0 ).

2. The Bregman distances between iterates (v, y®) and a saddle point are al-
most surely summable, i.e. Y 7, Df;jj (2%, %), > %, D}u* (y%,y*) < 0o al-
most surely. In particular, the Bregman distances converge to zero almost
surely.

3. The ergodic sequence (Tx,YyK) = %ZkK:l(x’“,yk) converges with rate 1/K
in an expected Bregman sense to a saddle point, i.e.

c

: :
(8) E{Dg (e, %) + Df- (yrc. )} <
where the constant is given by (7).

Proof of Theorem 4.3. The result of Lemma A.1 has to be adapted to the stochas-

tic setting as the next iterations takes the value of g}f“ only with a certain probability.

2h* is the convex conjugate of some function h, but this is not of importance in this manuscript.
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First, for the Bregman distance of f* we derive with the standard result of Lemma A.3

n
. ok 1 ¥i
DE.(7y Zp E*TIDL (yi ) - <p—1)D (yE,yb)
1

n #
}j(—Q(w“Df<“um Df@JM) FEMIDE (4 )

# #
= ELDY (44 o) — DY (v ) + EFFLDT. (54 )

where we used the Bregman distance of h* given by (5). Using this result and again
Lemma A.3 we can rewrite the estimate of Lemma A.1 as

1 1 #
LA £ S AL (AN N AT

1 1 # #
>E“1{ym“1—xW%l+m“l—wmﬁn1+D&wmaw>+D3m“%ﬂ>

2

# _ _ —
+ DL () — (AT —af), P - (P - Tyt - )
L1 kg2 Lookrr kg2
L e

where we have used the identity 3[ly* — y*|I3-1 + 3[v* — *lI3-. P11y = slly* —
yﬁ||%sp),1 to simplify the expression.

Plugging in the extrapolation 7* = y* + 6P~ 1(y* — y*=1), 6 = 1, taking the
expectations E¥ E*~! and denoting

(1 1 §
A%=WW"<ﬂﬁ—ﬂﬁl+ﬂw—wmm1+wmw¢0

leads to
1 1
AF > AR+ +Ek+1EkEk1{2|xk+1 _ xk||:‘_)p71 T 5||ylc+1 _ ka%sp)fl
o — _ # §
(9) + (@ =2k, AP —F ) + DY (M @) + DL (6 o)

+ <£Ek _ xﬁ’A*P—l(yk _ yk—1)> o <:L'k+1 _ Iﬁ,A*P_l(yk—H o yk)>} )
Summing (9) over k =0,..., K — 1 (note that y=! := ¢%) yields

k+1

K-1
1 1
K k kpk— k k k
A”> AK 4+ Y EME'E 1{2|x B o ] A T [T

2
k=0
+ <$k+1 _ LL’k,A*P_l(yk _ yk—1)> + Dgn($k+1,$u) + D;ﬁ* (yk-i-l,yﬁ)}
_ EKEK_1<JJK _ xﬁ’A*P—l(yK _ yK—1)> )
Moreover, estimating the inner products with Lemma 4.2

2
T _ Y 1 _
EF(z, AP (y" — 1)) > 3 EF||z)| 3 — ;E’“Ily’“ — " M fspy
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and taking expectations with respect to S!,...,S¥ (denoting this by E) yields
Lo #112 Lo #12 LI
Sla® — %y + 218 — 9Plsmy s + DY)

1-9" & 2 LK 2 bt K
ay 2 E{I I B+ 51— e + DY)

K 2

tok ook L=k ke

+EY { Dt af) + DL ) 4 L e - A
k=1

All assertions of the theorem follow from inequality (10). It is easy to see that the

sequence (z,y%) is bounded in the sense of Item 1 as Bregman distances and norms

are non-negative. For Item 2, note that it follows from (10) that E>"77 Dg11 (zF, 2%) <
¢
oo, E>22, D;*(yk,yﬁ) < oo which implies almost surely > .2, Df;ﬁ (zF,2%) < oo,
¢
o D;H (y*,y*) < oo and thus that the Bregman distance between the iterates and
any saddle point converges to zero almost surely. To see Item 3, note that Bregman
distances of convex functions are convex in the first argument. Thus, dividing (10)
by K yields

# #
E{D¥ (ac,0%) + DJf. (v, ) } < (a*,a%) + DI (" ) } <

N\ﬁ

H
\Mw
,—/a

which was to be shown. 0

5. Semi-Strongly Convex Case. In this section we propose two algorithms
that converge as O(1/k?) if either f; or g is strongly convex.

Algorithm 2 Stochastic Primal-Dual Hybrid Gradient algorithm with acceleration
on the primal variable (PA-SPDHG). The algorithm is only defined for scalar-valued
primal step sizes, i.e. T* = 7*I. Input: primal and dual variable 2°,1°, step length
parameters 70, S, selection rule k — S*, number of iterations K. Initialize: 7° = y°

1: for k=0,..., K —1do

2. okl = proxgk (z% — TF A*gF)

3 Select S**1 C {1,...,n}.

k
Y S prox?;’; (yF + SFA;zF 1) if i € SFH!
. ‘ yf else

5 0F = (1+42pu,7 )_1/2 rhtl = gkrk  Qk+1 = gk /gk

R L R L e (L)

7. end for

THEOREM 5.1 (Dual Strong Convexity). Let fF be strongly convex with strong
convexity constants pi; > 0,4 = 1,...,n, the step sizes 6, T® be chosen such that
0 < 2 <1 bounds some ESO parameters as defined by Lemma 4.2 and

Pi
11 7 < mlni
() 30— )

Let (z¥, ) be defined by Algorithm 3 and Y* := (S*P)~! +2M;(P~! —I). Then
there e:msts K €N such that for all K > K it holds

2
Elly™ — yl%0 < o5 {12 = 2¥3p0y-s + Iy = 1%}
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Algorithm 3 Stochastic Primal-Dual Hybrid Gradient algorithm with acceleration on
the dual variable (DA-SPDHG). The algorithm is only defined for scalar-valued dual

step sizes, i.e. Sf = Jfl,i =1,...,n. Input: primal and dual variable z°,°, step
length parameters T, 9, selection rule k — S*, number of iterations K. Initialize:
=0 0
y =y

1: for k=0,..., K —1do
2. ghtl = proxgk (zF — TFA*g")
3. Select S¥*1 C {1,...,n}.

K

. k__ & k+1
407 = pmsaope (€S
oF ko kA RFLY e - @kl
5 gt = PTOX ;= (yZ + oAt ) if i € Sk*
' yf else

6: 08 =(1+25%)"1/2 TE=TF/GF T =pk5H
7. gk+1 — g+l 4 ekP—l(yk—i-l _ yk)
8: end for

REMARK 5. As already noted in [13], K is usually fairly small so that the estimate
i Theorem 5.1 has practical relevance.

REMARK 6. In case of serial sampling and scalar primal step size 70 > 0, the
condition on the ESO parameters is equivalent to

2, .2
~0 . VT HiD;
o < min .
T 7O A%+ 292 i (1 — pi)

In particular, it implies condition (11) on G°.

REMARK 7. The convergence of Algorithm 2 with acceleration on the primal vari-
able is similar to the deterministic case, cf. Appendiz C.2 of [14], and omitted here for
brevity. It converges with rate O(1/K?) if there are ESO parameters that are bounded
by v < 1.

Proof of Theorem 5.1. The update on the step sizes in Algorithm 3 imply that

(122) I Wpeys = (657 Ifpesny, - and

N

(12b) || Ifskpy-rsana, 1 = (0) 7 Iseerpy-rona, -1ory = (0F) 7M1 5men -

To see the latter, note the inequality is satisfied if

14 2u0F S 1t 2(1 — p;) ot

(13) 0 >
pittio} piuiUfH
for all i € {1,...,n}. With the auxiliary sequence
~k . Piuiﬂf k "

= y g, = ~
1+2(1 — pi)piok Y plpi = 2(1 = pi)ak]
inequality (13) is satisfied as soon as

6?,§1+2&’€ 1
gk T ekt

(14)
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Note that the transformation from &% to oF is well-defined if &*

< min; 52—
v 2(1-pi)°

Under the additional assumption 5*+! = 9*G* (14) is solved with equality by 0¥ =

(1+ 25’“)*1/ 2. Moreover, the sequence of dual step sizes satisfies

k+1 _ 0 af gk ok

<
21— M) (1 - pi)pek T

which shows that the step size condition of Lemma 4.2 holds if it holds for the initial
step size parameters.
For the actual proof of the theorem, note that the inequalities (12) imply

1 1
E{ 5 12% = 2¥ll2ey + 518 = 0¥ sy son s

(15)
o <$k+1 o .’Eu,A*P_l(yk+1 o ylc)>} > (ak)—lEAk—H

with AF = 3la* — 220 + 3loF - 30 — 05Nk — of, ATPI(gF — i),
Moreover, combining Lemma A.2 and (15) yields

) ) . 1
B{A" 4 ZIt =y ey} 2 09 B{A 4 S = iy

where we used that SF*1 < 9FS* ~2(9*—1)2 < 1. Using this inequality recursively,

y~ ! =40, we arrive at

K-1 1 1
Il 0 { 512 = 2l12o) 1 + S8 = v¥l30 }
{fux — 2y + "~ e — (@8 — 2t ATPTI R — )

16 1 -
(16) 2||y ~ ¢ grp)s |

’VH K K-1

v —y ”%SKP)*l}

+

1-—
> B{ 22" a1 + 515 — e +
~0

> 7 SElY — vl

where the inner product for the second inequality is estimated by Lemma 4.2. The
third inequality is due to the non-negativity of norms and || - ||%(k = ;%k” ‘ ||%v[f =
k41

% || 12,0 which holds by the definition of G*. Moreover, by the definition of 6% = 2
(16) can be further simplified to

SN 2
o
Elly™ — vl < (50 ) {112° = 2120y + Iy” = 91l }

Finally, the assertion follows by Corollary 1 of [13]. 0

6. Strongly Convex Case. If both f and g are strongly convex, we may find
step size parameters such that the algorithm Algorithm 1 converges linearly.

THEOREM 6.1. Let (z%,4*) € Xx Y be a saddle point and g, fi be strongly convex
with constants pg, u; > 0,9 = 1,...,n. Let the step sizes S, T,0 < 6 < 1 be chosen
such that 42 bounds some ESO parameters as defined by Lemma 4.2, 20 < 1 and
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in a positive semidefinite sense for operators. Let X := T71 +2M,, Y := (S7! +
2Mf)P’1. Then the iterates of Algorithm 1 converge linearly to the saddle point, i.e.

E{(1=%0) " — o* 1% + Iy™ - 713 } < 0 {II° - 2% + Is” — v¥I% }

Proof. The requirements (17) on the step sizes S, T and ¢ imply |-[|% > 67*|-[|2.-.
and || - |3 > 6071 - ||%SP),1+2Mf(P,1_I). Thus, we directly get

1 1
IEA* > E{QHUUk — a3 + §||yk - yu||?sp)fl+2Mf(Pfl—1)
(18)
_ 9<1,k _ xﬁ’A*P—l(yk _ yk—1>} .

where we denoted A* := 1||z% — 2% + 3|y — of||3 — (2% — 2f, AP (yk — yF L),
Combining (18) and Lemma A.2 with constant step sizes yields

OEAF > | J Ak+! } k1 k)2 _9272 E_ k=12
Z +2||l/ Y l{sp)— 5 lv" =y lsp)-1 ¢ -

Multiplying both sides by ~**1 and summing over k = 0,..., K — 1 yields

K-1

3 1 _ 1—~%0 _ _

A" >0 K]E{AK + 5\\;/‘ —yK 1||§SP)71} +—5—E [T Vi [
k=1

_ 1 1 1 _

=y KIE{QHa:K =2l Gl = IR+ v v ey
— (2" — a2t AP (Y - yK1)>}
kg f1 Y 1

> 7B { 51" o = Tl = ol + 5 - o1

_ 1—+2%0 1
> o7 {1500 e+ 5 - R |

where we used again Lemma 4.2 and the non-negativity of norms for the second
inequality. Thus, the assertion is proven. 0

6.1. Invariant Analysis. A desirable property of an algorithm is scaling in-
variance, i.e. the algorithm behaves independent of the scale of all variables and
unknowns. If we rewrite problem (2) in terms of the scaled primal variable T := ax
and dual variables 7, := 3;;, then the corresponding operators A; := A;/(af3;) have
norm [|A;|| = [|A||/(af;), the function g(T) := g(T/a) is 7z, := pg/a® strongly con-
vex and the functions f: (y;) == fr(y;/Bi) are [i; := p;/B? strongly convex. Thus the
condition numbers x; := || A;[|?/(1ghti)

AP
R: =

3

Al A2
(D‘Bz)z — || 7,|| = K;

Hgfl; 2 ptg éﬂi Hgfbi

are scaling invariant.
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6.2. Scalar Parameters for Serial Sampling. This analysis is to optimize the
convergence rate 6 of Theorem 6.1 for three different serial sampling options where
exactly one block is chosen in each iteration. Other sampling strategies, including
multi-block, parallel, etc. [39] will be subject of future work. For the ease of exposition
we assume that T = 71,S; = 0,1, = 1,...,n are all scalar in the following. With
g; := o;pt; and T := Tpg, the conditions on the step size (17) become
1 JiDi

19 0> — . §>maxl—2
(19) = 1407 VoM 1+25,°

and max7To;k;0 < 0°p;i
1

for some p < 1. The last condition arises from the ESO parameters of serial sampling.
Finding optimal parameters is equivalent to equating the above inequalities. Note
that the first two conditions (with equality) are equivalent to 87 = (1 — 6)/2 and

;= %. With these choices, the third condition in (19) reads
pi—(1-0))

(20) (1 -0 <4pi(pi —(1—-0)) i=1,...,n.
where we denote & = r/p?. It follows from (20) that for any i = 1,...,n it holds

2p;
(21) g>1- — L

T 1+ VIt R

1. Serial uniform sampling: We first consider uniform sampling, i.e. every
block is sampled with the same probability p; = 1/n. Then it is easy to see
that the smallest achievable rate is given by

2
0. . =1l-—
uniform n+ nm

where Kmax 1= max; &; and the step sizes are then

(22)

-1

—1
0 I

VIF Fmax — 17 n—24nvVI+ Fmax

2. Serial importance sampling: Instead of uniform sampling we may sample

“important blocks” more often, i.e. we sample every block with a probability
1/2
J

proportional to the square root of its condition number p; = H; /2 /> j K
Then the smallest rate that achieves (21) is given by

2v

(23) Himportance =1- n =

Zj:l VKj
: N V Rmin e in . :
and with v := TVt Fmin := min; &; and the step sizes are
—1 -1
Vi vu
o; = Hi T g

T VE-w S A

3. Serial optimal sampling: Instead of a predefined probability we will seek
for an “optimal sampling” that minimizes the linear convergence rate . The
optimal sampling can be found by equating condition (21) fori=1,...,n

(24) 0 (14 V1+7) =1+ V1+5 — 2.
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Summing (24) from 1 to n and using that for serial sampling > ., p; = 1
leads to

(25) aoptimal =1-

with step size parameters

_ —1
pt Hg

0127 T =

VI+E =1’ n—2+3"0 \/1+E

and probabilities

14++1+K;
pi = n = N
n+d i VItE
REMARK 8 (Minibatches). All arguments above can easily be extended to sam-

plings where at each iteration not only one but a predefined number m of blocks are
chosen.

REMARK 9 (Better Sampling). It is easy to see that optimal sampling is better
than uniform sampling: if all condition numbers are the same, then the rates for
uniform sampling (22) and optimal sampling (25) are equal but if they are not, then
the rate of optimal sampling is strictly smaller and thus better.

Moreover, optimal sampling is better than importance sampling. To see this, note

that due to the monotonicity of H% we get

2
0importance =1~ =
(T4 VI + Fain) 20—y o
2
>1- = 00ptima1 .

_ 14+4/1+F;
(1+ VI + Fmin) > H\/W%

REMARK 10 (Comparison to Zhang and Xiao [50]). The algorithm of Zhang and
Xiao [50] is (almost®) a special case of the proposed algorithm where each block is
picked with probability p; = 1/n. Here m denotes the size of each block to be processed
at every iteration and n the number of blocks. Moreover, they only consider the
strongly convex case where g is pig-strongly convex and all f] are py-strongly convex.
Then with R being the largest norm of the rows in A they achieve

1

vmR
n+n TahT

If the minibatch size is m = 1, the blocks are chosen to be single rows and the proba-
bilities are uniform, then their rate is worse than ours
1 2 2
- 0 — Z 1 - a5 _ . _ S/ 2 1 - = = Huniform
N + 1y /Kmax 2n + N/ Fmax 2n 4+ n(v1+ Rmax — 1)

for any p > % For m > 1, the rates differ even more as the condition numbers
are conservatively estimated. Similarly, the rates can be improved by non-uniform
sampling if the row morms are not equal.

0=1-

=1

3In contrast to our work, they have an extrapolation on both primal and dual variables. However,
both extrapolations are related as our extrapolation factor is the product of their extrapolation
factors.
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7. Numerical Results. All numerical examples are implemented in python us-
ing numpy and the operator discretization library (ODL) [1]. The python code and
all example data will be made available upon acceptance of this manuscript.

7.1. Non-Strongly Convex PET Reconstruction. In this example we con-
sider positron emission tomography (PET) reconstruction with a total variation (T'V)
prior. The goal in PET imaging is to reconstruct the distribution of a radioactive
tracer from its line integrals [32]. Let X = R%*42(d;, dy = 250) be the space of tracer
distributions (images) and Y; = RIZ:l the data spaces where B; C {1,...,N},N =
250 x 354 (250 views around the object) are subsets of indices with B;NB; = 0 if i # j
and U™, B; = {1,...,n}. All samplings in this example divide the views equidistantly.
It is standard that PET reconstruction can be posed as the optimization problem

(26) fznelggl{Zfz(Azx) +9($)}
i=1

where the data fidelity term is given by the Kullback—Leibler divergence

(27) fl(y): {ZjEBi Yj +Tj7bj+bj10g (yf)TJT,) ifijrrj > 0,5 € B;

0 else,
Olog0 := 0. The operator A is a scaled X-ray transform where in each of 250
directions 354 line integrals are computed. The prior is the TV of x with non-
negativity constraint, i.e. g(z) = a||Vz||1,2 + x>0(x), with regularization parameter
a = 4 and the gradient operator Vo € R%*x92%2 ig discretized by forward differ-
ences, cf. [12] for details. The 1,2-norm of these gradients is defined as |z||12 :=

Z?;l ?2:1 (Viz; )2 + (Vaz; ;). The Fenchel conjugate of the Kullback-Leibler

divergence (27) is

(28)
£(2) = Z {—zjrj —bjlog(l —z;) ifz;<land(bj=0o0rz; <1),j€B;

)

‘ else
JjEB;

its proximity operator given by

1
[proxf. (2)]; = 5 {zj +1+or;— \/(zj —1+0rj)%2+40b;| .

2
The proximal operator for g is approximated with 5 iterations of the fast gradient
projection method (FGP) [6] with a warm start applied to the dual problem.

Parameters. In this experiment we choose v = 0.99, § = 1 and all samplings are
uniform, i.e. p = 1/n. The number of subsets varies between n = 1 (deterministic
case), 50 and 250. The other step size parameters are chosen as

e PDHG and Pesquet and Repetti: o, = v/[|A|, 7 = v/[|A|l
e SPDHG: 0; = v/||A;|l, 7 = v/(nmax; [|A;])

Results. Some example reconstructed images are found in Figure 1 and quanti-
tative results in Figures 2 and 3. It can be seen from the reconstructed images after
3 epochs in Figure 1 that both stochastic algorithms are much faster than the deter-
ministic PDHG. The statements of Theorem 4.3 are numerically validated in Figure 2
which shows that the distance to a saddle point is bounded and that the ergodic
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PSNR: 19.4

FIGURE 1. PET reconstruction with T'V prior solved as a non-strongly convex problem. Results
after 8 epochs with uniform sampling of 250 subsets. From left to right: approximate primal part
of saddle point, PDHG, Pesquet and Repetti [35] and SPDHG. With the same number of operator
evaluations both stochastic algorithms make much more progress towards the saddle point.

10%

10°F~ "2

o~ PDHG ..
v SPDHG (50 subsets) -~

distance to saddle point
2
ergodic Bregman distance
S
2

o PDHG —=— SPDHG (250)
) v SPDHG (50 subsets) 10t ---- O(l/KQ)
107 _=— SPDHG (250) — O(1/K)
107 107 107 100 107 107
iterations [epochs] iterations [epochs]

FIGURE 2. Numerical evaluations (solid line) of the results in Theorem 4.3. Both the distance
to a saddle point (6) (left) and the ergodic Bregman distance (8) (right) behave as predicted by the
analysis (dashed line), however, the bounds are not sharp for this example.

1047
10!
8
=1
R :
5 10 &
o uEB 10"
-E ) o PDHG
- 7 SPDHG (50 subsets) A v SPDHG (50 subsets)
h —a— SPDHG (250) E —=— SPDHG (250)
©— Pesquet and Repetti (50) o— Pesquet and Repetti (50)
107"F —— Pesquet and Repetti (250) —— Pesquet and Repetti (250)
—4
100 107 107 107 107 107
iterations [epochs] iterations [epochs]

FiGURE 3. Comparison of PDHG, SPDHG and the algorithm of Pesquet and Repetti [35]

Ky_pt #

% (left) and dual Bregman distance Df*(yK,yu) (right).
Both graphs agree that the proposed algorithm converges faster than the algorithm of Pesquet and
Repetti. Moreover, the graph of the relative objective function values (left) indicates that the proposed

algorithm has also a much smaller variance compared to the algorithm of Pesquet and Repetti.

in terms of relative objective

Bregman distance converges with rate 1/k. All five algorithms are compared quanti-
tatively in Figure 3. In both, objective function value and dual Bregman distances,
the stochastic algorithms are faster with SPDHG outperforming the algorithm of Pes-
quet and Repetti. In addition, two other observations can be made. First, SPDHG
has empirically less variance than the algorithm of Pesquet and Repetti seen by the
smoothness of the curves. Second, the stochastic algorithms differ a lot in terms of
the convergence speed of the dual Bregman distance.

7.2. TV denoising with Gaussian Noise (Primal Acceleration). In the
second example we consider denoising of an image that is degraded by Gaussian noise
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with the help of the anisotropic TV. This can be achieved by solving the optimization
problem

2
[ )
min {Mnx b3+ Y ||vzx|1}

i=1

where X = R4 %42 the data fit is the squared Euclidean norm and the prior the
(anisotropic) TV. The gradient is again discretized by forward differences, cf. e.g.
[12]. Instead of the isotropic TV as in the previous example we consider here the
anisotropic version as it is separable in the direction of the gradient. Dualizing the
anisotropic TV yields the saddle point problem

2
) 1
min sup {Z@/z‘, Vz'33> - ZB(yi) + ﬁllw - b||§} :

zeX yeY i—1

where Y = X? and 15 is the characteristic function of the unit ball with respect to
the co-norm, i.e.

(29) w(y) = oo else

{0 if y; ; € [—1,1] for all i, j
For the primal-dual algorithms we need the proximal operators of the characteristic
function and the squared 2-norm. These are given by the point-wise projection onto

the unit interval prox7, (z), ; = #@JI) and a shifted scaling prox‘;au__b”g (z) =
1

o35 (@z + ob). The regularization parameter is chosen to be av = 0.12.

Parameters. In this experiment we choose v = 1 and the sampling to be uniform,
ie. p =1/n. The number of subsets are either n = 1 in the deterministic case or
n = 2 in the stochastic case. The (initial) step size parameters are chosen as

e PDHG: o; = 1/||A|], 7 = 1/||A]|

e PA-PDHG: ¢¥ = 1/||A|, 7° = 1/||A||

e SPDHG: o; = 1/||A;||, 7 = 1/(nmax; ||A;||)

e PA-SPDHG: ¢ = 1/||A;|, 7° = 1/(n max; || A;]|)
For the accelerated version, the step sizes vary with the iteration with the primal step
size getting smaller and the dual step size getting larger. The extrapolation factor is
chosen to be 8 = 1 for the non-accelerated algorithms and converges to one for the
accelerated versions.

Results. By visual assessment of the denoised images in Figure 4, it is easy to
conclude that the accelerated algorithms are much faster than the non-accelerated ver-
sion. Moreover, it can be seen that the stochastic variant of the accelerated algorithm
is even faster than the deterministic version as the the sky is more uniform.

The quantitative results in Figure 5 confirm the visual conclusions. In addition,
they show that the accelerated SPDHG indeed converges as 1/K? in the norm of the
primal part.

7.3. Huber-TV Deblurring with Unknown Boundary (Dual Acceler-
ation). In the third example we consider the deblurring of an image with known
convolution kernel but we do not assume to have knowledge about the boundary of
the image [3]. The latter condition is very natural as no artificial boundary condi-
tion (zero, constant, periodic etc) will be met in a practical setting. Following the
mathematical model of [3] the forward operator is modeled as A : X — RV X =
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FIGURE 4. Results for TV denoising after 20 epochs with uniform sampling. Top: noisy input
data and approximate primal part of saddle point after 5000 PDHG iterations. Bottom: From
left to right: PDHG, primal accelerated PDHG (PA-PDHG), SPDHG, primal accelerated SPDHG
(PA-SPDHG).

10°

)
§ R 2
B ~ ooe
B 10'f —o— PDHG . N 0~ S
g —— PA-PDHG e & B
£ o SPDHG = o PDHG
—e— PA-SPDHG = —— PA-PDHG
-+ O(1/K?) o SPDHG
— O(1/K) —e— PA-SPDHG
—1 —5
107 10 107 107 107 107
iterations [epochs] iterations [epochs]

FIGURE 5. Primal acceleration for TV denoising. Left: primal distance to saddle point %HIK —
o(z5)—of

z#||2 Right: relative objective B0y —BF

R&xd2 g, dy = 612 where the image is first convolved with a motion blur of size 9 x 9
and then the outer 5 pixels of each boundary are clipped. Thereby we do not assume
any boundary condition on the inner part of the reconstructed image of size 602 x 602.
The noise is modeled to be Poisson with a constant background of 30 compared to the
approximate data mean of 478.96. We further assume to have the knowledge that the
reconstructed image should be non-negative and upper-bounded by 100. We want to
solve the following minimization problem

2
min § f1(Az) +a ) &(Vir) +10(z)

i=1

Here the data fidelity fy is the Kullback-Leibler divergence (27) where the sum is
taken over all pixels. The prior information is the anisotropic TV with Huberized
norm

|Yi.] if |yi | >n
§77(y) = Z ! n !

i %lyi,j? + 3 else

with Huber parameter n = 1, regularization parameter o = 0.1 and constraint set
C:{ZEGX : OSZL‘Z'J' S].OO}
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By the nature of the forward operator we have that Az > 0 whenever =z > 0.
Therefore the solution to the optimization problem remains the same if we replace
the Kullback—Leibler divergence by the differentiable

N b .
3 yi+7‘i—bi+bilog( ) ify; 20
i1 | o2y + (1 — 7) yi + 1 — b; + b;log (7) else

which has a (maxi b; /rf) Lipschitz continuous gradient. The Lipschitz constant is
well-defined and non-zero as both the data b; as well as the background r; are positive.

To obtain the saddle point problem we dualize data term and Huberized TV and
obtain the saddle point problem over X and Y = RY x X x X

3
. . U
min sup {(yh Az) = fr(n) + > (Wi Vi1z) — 1a(yi) — 2*||in|§ + ZC(CU)} :
zeX yeY i—2 «@

The convex conjugate of the modified Kullback-Leibler divergence (30) is

2 2 2
N ;gizf—l—(ri—%)zi—kgfgi—kggi—27‘i—bilog(ff—z> ifz,»<1—%
ff(z) :Z 7T,’Zifb1‘10g(lfzi) if 1 — % < z2; < 1

=1 if Zi Z 1

2
which can readily seen to be (mini Z—?)—strongly convex. Moreover, for the algorithm
we also need its proximal operator

bizifo'nbi+ari2 : i bi
T biter? ifz; <1—3%

%{zi +ori+1—/(zi+or; —1)2+ 40bi} else

[proxF, (2)]: =

Note that (a&,)*(y) = 1aB(Yi) — 5%|lill3 where 2,5 is the indicator function of the
¢ ball with radius v around 0, cf. (29).
The norms of the directional derivatives are 2 and the norm of the blurring oper-
ator was estimated to be 10.45 by the power method.
Parameters. In this experiment we choose v = 1 and consider both uniform
(pi = 1/n) and importance sampling (p; = [|4;/>_; [|A;]])- The latter will have
probabilities proportional to the norm of the operators. The number of subsets are
either n = 1 in the deterministic case or n = 3 in the stochastic case. The (initial)
step size parameters are chosen to be
e PDHG: o = 1/||A|, 7 = 1/||A]|
o DA-PDHG: ¢° = &y , 7° = 1/||A||
SPDHG (uniform sampling): o; = 1/||A;]|, 7 = 1/(nmax; || A;])
e SPDHG (importance): o; = 1/|| A4, 7 =1/, || As|l
2
DA-SPDHG (uniform): 5° = min; TOHAill?ﬁ;iiipi(l,pi), 7 = 1/(nmax; ||A;])

e DA-SPDHG (importance): ¢° = min; T0||Ai|\2jrb;ﬁpi(1,pi)7 0 =1/% 1A

Results. Figure 6 shows the data and reconstructed images from PDHG, PA-
PDHG and DA-SPDHG with importance sampling after 100 epochs. It is easy to see
that while PDHG has not restored the contrast yet and both deterministic variants
are still relatively blurry, DA-SPDHG with importance sampling yields a sharp re-
construction. The quantitative results in Figure 7 confirm the visual assessment. The
combination of importance sampling and acceleration yields a significant speed up in
both quality measures.
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FIGURE 6. Deblurring with total variation regularization with Poisson noise and unknown
boundaries. Results after 100 epochs. Top: From left to right: Blurry and noisy data with ker-
nel (magnified), PDHG, DA-PDHG and DA-SPDHG (importance sampling, 3 subsets). Bottom:
Close-ups of top row.

10°

10°

SPDHG (uniform)
—a— SPDHG (importance)

dual distance

7\ v SPDHG (uniform)

o~ DA-PDHG ' —8— SPDHG (importance)
10| —— DA-SPDHG (importance) wfy o~ DA-PDHG
---- O(1/K?) : —— DA-SPDHG (importance)
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iterations [epochs] iterations [epochs]

FIGURE 7. Quantitative results for deblurring. In both quality measures (left: distance to dual
part of the saddle point %HyK — 4|2 and right: peak signal-to-noise ratio (PSNR)) the accelerated
algorithms are faster than the non-accelerated counterparts. While uniform sampling does not speed
up the convergence for this example, the combination of importance sampling with acceleration yields
the by far fastest algorithm.

7.4. PET Reconstruction (Linear Rate). For the final example we turn back
to PET reconstruction but this time with linear rate. This means we want to solve the
same minimization problem as in the first example, but now we replace the Kullback—
Leibler functional by its modified version as in the previous example. We note again
that this does not change the solution of the minimization problem. Moreover, to
make the TV strongly convex we add another regularization 4||z[|3. Note that the
proximal operator of the TV (indeed any functional) with added squared ¢?-norm, i.e.
g(z) = aTV(z) + §||z||3, can be solved by means of the original proximal operator

prox] (z) = proxpy” (1 +Z<w>' The regularization parameters are chosen as a = 4
and p = 10.

We will consider two different settings. First, all views of the PET forward op-
erator are equally divided making it unnecessary to consider samplings other than
uniform. Second, to test the impact of sampling, we choose one subset to contain half
the number of views and divide the remaining views uniformly among the remain-
ing subsets. This imbalanced setting should make it crucial to consider non-uniform

sampling strategies.
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0000

FIGURE 8. PET reconstruction with a strongly convex TV prior and uniform sampling. Results
after 5 epochs. Left: approximate primal part of saddle point Right: From left to right: PDHG,
SPDHG (10 subsets) and SPDHG (250). It is clear that with more subsets, the reconstruction
becomes closer to the desired solution.
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FIGURE 9. Comparisons of PDHG and SPDHG with uniform sampling for PET reconstruction.
As can be seen in terms of distance to the saddle point (left) and the relative objective function value
(right) the stochastic variants are all much faster than the deterministic PDHG. Moreover, the graph
on the left numerically verifies the result of Theorem 6.1 as the empirical solid curves lie all below
their provable worst case upper bound (dashed).

o SPDHG (uniform, 10 subsets) - N
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distance to saddle point
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FIGURE 10. Comparison of different samplings for SPDHG with imbalanced subsets. As it
can be seen from either graph, non-uniform subset selections require a non-uniform sampling for
improved convergence speeds.

Parameters. In this experiment we choose p = 0.99 and the sampling to be
either uniform or optimal. The other step size parameters are chosen as derived in
subsection 6.2.

Results. The visual results in Figure 8 show that SPDHG is much faster than the
deterministic PDHG and that the speed increases by increasing the number of subsets.
This is quantitatively confirmed in Figure 9 in terms of distance to the saddle point
and objective function value. Moreover, the impact of optimal sampling is apparent
in Figure 10 which shows the performance of SPDHG in the imbalanced setting.
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8. Conclusions and Future Work. We proposed a natural stochastic general-
ization of the deterministic PDHG algorithm to convex-concave saddle point problems
that are separable in the dual variable. The analysis was carried out in the context
of arbitrary samplings which enabled us to obtain known deterministic convergence
results as special cases. We proposed optimal choices of the step size parameters with
which the proposed algorithm showed superior empirical performance on a variety of
optimization problems in imaging.

In the future, we would like to extend the analysis to include iteration dependent
(adaptive) probabilities [17] and strong convexity parameters to further exploit the
structure of many relevant problems. Moreover, the present optimal sampling strate-
gies are only for scalar-valued step sizes and serial sampling. In the future, we wish
to extend this to other sampling strategies such as multi-block or parallel sampling.

Appendix A. Auxiliary Results for the Proofs.

Proof of Lemma 4.2. Denote by ¥ the value of y* if it got updated (and thus is
not random with respect to S¥). Furthermore, as y¥ = yf‘l for i ¢ S¥ and yF = gF
if i € S¥ we have by completing the norm for any r € X

(@, AP (yF =y ) = (e, > Arp @ - b))

i€Sk
1/2
\/7T—1/2$ C* _yf? 1)
(31) < lezsk \/ p@
2
& ~
>~ Clellys — 5 |30 CHis) (0 - )
ieSk

Moreover, we now estimate the expectation of the second term of the right hand side

of (31)

E ch(pisl 1/2( yf 1) <ZP1U1|| piSi) I/Q(Ak yf_l)HQ
ieSk

(32) -
~ k—1
< 72 Zpl‘lyf - Y ”%51‘1?73)71
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= VE*|ly" — v 2spy

where the first inequality is due to the ESO inequality (4), the second inequality holds
by the definition of « and the last equation holds due to Corollary A.4. Combining
the expected value of inequality (31) with inequality (32) yields the assertion. 0

LeEMMA A.1 (Deterministic inequality). Let ¢! := proxgT (mk — TA*@k) and
g)f“ = proxii (yf + SiAia:kH). Moreover, let (zf,y*) be a saddle point. Then

1 1
§||$k —a¥|F + *||Z/k S
,j A e e 1
> DY (", a%) + Df @) — (A —ah), g =) + 5\\Ik+1 =

1 1 N
oI = B g, + gl — IR+ S~



22 A. CHAMBOLLE, M. J. EHRHARDT, P. RICHTARIK , AND C.-B. SCHONLIEB
Proof. Standard calculations for this type of algorithm lead to
- _ Iz
g(gjﬁ) > g(karl) + <T 1(xk . karl) - A*yk,xﬁ . xk+1> + 7g”xt:i . :Ck+1H2

_ N ~ y22; N
Wl = FEET + (ST - g + Aty - AR R e

(33)

for ¢ = 1,...,n. Summing the inequalities (33) and exploiting the identity 2(M(a —
b),c—b) = lla— b3y + [[b = cllyy — lla — cll3y yields

Lok Lok
Slle* =2l + 5y = ¥ ls-
1
> g(at+) +Zf ) = £ ) + Sl —
1 & k_ ok ~k
ol = B, + gl — IR 1~ 0B,
+ <‘Amk+17y’j - :gk+1> - <‘A(Z‘j:i - xk+l)ayk>

where we used the definition of the inner product and the norm on the product space Y.
It now suffices to complete the Bregman distances Dgu( kL gf) = g(aF 1) — g(at) —

(—A*yf,ab 1 —af) and DI (981, yf) = S0 f1 (00 — fr(F) — (Agat, gF T —yf) D

LEMMA A.2 (Stochastic inequality). Let z¥T1 g%+ be defined as in Lemma A.1,
y*tL G as in Algorithm Algorithms 2 and 3 and (2%, y*) be a saddle point. More-
over, let v bound some ESO parameters of (S¥)Y/?P~1/2A(T*)Y/2. Then

1)1 1
E*E" 1{2||xk B O ] A [ SR Ve S
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Proof. We adapt the result of Lemma A.1 to the stochastic setting suitable for
strongly convex functionals. In addition, all step size parameters may vary along the
iterations. First, by Lemma A.1 and the strong convexity of f and g, which implies

Dgﬁ(karl xﬁ) 1||mk+1 *xn”%v[ ,Df“ ( k+1’yﬁ) 1||Ak+1 :tH%/If it follows that

1 1
*||33k - xu”(QTk)fl + §||yk - yﬁ||fsk),1
R _ 1
—(AEH = 28), g = 7) + Sl = 2l

1 1 N 1.
+ 518 = 2y pon, + 518" = 90+ 519 = ¥ s -1 oney
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and invoking Corollary A.4 yields

1 1
§H9Uk - xﬂH%Tk)*l + §Hyk - yﬂH(2SkP)*1+2Mf(P*1—I)
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where we used the extrapolation 7* = y* + 0*~1P~1(y* — *~1) and the identity
k 2 k 2 k 2
ly* — y”||(sk),1 +ly" - yﬁ”((s’ﬂ)*l—i-QMf)(P*l—I) = [ly* - yﬁ”(SkP)*l—o—QMf(P*l—I)'

Taking the expectations E¥, E*~! and estimating the last inner product by Lemma 4.2

- 1o B gk—1.)2
as Oh—L{ahtl — b AP — il > ket gk, - O

yk_1||%skp)—1 yields the assertion. O
This next statement is trivial.

LEMMA A.3. Let S be a Bernoulli random variable that is 1 with probability p
and 0 with probability 1 — p. Let y* be a random vector that is updated to ) if S =1
and set to y° if S = 0. Then, for any y € Y and any mapping @ on Y the equality
Ese(y™) = pe() + (1 = p)p(y°) holds.

COROLLARY A4. Let S C {1,...,n} be a random set and denote the probability
that an index i is in' S by p; == P(i € S). Let y* € Y = [, Y; be a random
vector of a product space such that its ith component is updated to y; if i €S and set
to yY otherwise. Let P := diag(piL,...,p,I) be a block diagonal operator and M be
any other block-diagonal operator. Then for any y € Y we have the following three
identities:

19— yllie = Eslly™ — vliap-+ — 19° = yll}ap-11_p) »
19— 4°I3¢ = Bsllyt —¢°Iigp—1,  and §=P 'Esy™ — (P71 —T)y°.
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