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Abstract 

The stable-carbon kinetic isotope effects (KIEs) for the gas-phase reactions of isoprene, methacrolein 

(MACR), and methyl vinyl ketone (MVK) with ozone were studied in a 25 L reaction chamber at (298 

± 2) K and ambient pressure. The time dependence of both the stable-carbon isotope ratios and the 

concentrations was determined using a gas chromatography combustion isotope ratio mass spectrometry 

(GCC-IRMS) system. The volatile organic compounds (VOCs) used in the KIE experiments had 

natural-abundance isotopic composition thus KIE data obtained from these experiments can be directly 

applied to atmospheric studies of isoprene chemistry. All 13C/12C KIEs reported herein are as per mille ε 

values, where ε = (KIE – 1) × 1000‰, and KIE = k12/k13. The following average stable-carbon KIEs 

were obtained: (8.40 ± 0.11) ‰ (isoprene), (7.67 ± 0.28) ‰ (MACR), and (7.87 ± 0.08) ‰ (MVK). The 

stable-carbon KIE values of three 1-alkenes, which were used as reference compounds for relative rate 

experiments, were also determined: (5.48 ± 0.09) ‰ (1-heptene), (4.67 ± 0.17) ‰ (1-octene), and (4.59 

± 0.56) ‰ (1-nonene). The ε values for the reactions of isoprene and 1-heptene with ozone agree with 

measurements in a previous study, but the values presented here have a substantially improved 

accuracy. The ε values for 1-octene and 1-nonene reactions with ozone have not been measured before 

and closely follow the 1/NC dependence (where NC represents the number of carbon atoms in the alkene) 

observed in previous studies. MACR and MVK had ε values that were somewhat below the expected 

range of values predicted by the 1/NC dependence found for alkenes. 

 

Keywords: Kinetic isotope effect; Isoprene; Methacrolein; Methyl Vinyl Ketone; GC-IRMS 
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1. Introduction 

 

Isoprene, C5H8, is the single most important volatile organic compound (VOC) emitted by vegetation. 

Estimated global annual biogenic emissions of isoprene are ~500 Tg yr–1, roughly four times that of 

monoterpenes and comparable to the sum of all other non-methane hydrocarbons (NMHCs) (Guenther, 

1999). Furthermore, the emission rate of isoprene exceeds that of all anthropogenic non-methane 

hydrocarbons and is, on a global average, of a magnitude comparable to that of methane. 

The atmospheric oxidation of isoprene is initiated by reaction with OH radicals, ozone, NO3, or Cl 

atoms. During daytime hours, when isoprene emissions from plants are at their highest levels, the 

reaction with OH radicals dominates. Isoprene is also present in the troposphere during nighttime hours 

and undergoes reaction with ozone and NO3, important nighttime oxidants (Stroud et al., 2002). 

Methacrolein (MACR, 2-methyl-2-propenal), methyl vinyl ketone (MVK, 3-buten-2-one), 

formaldehyde, and 3-methylfuran have been shown to be the main reaction products of both the OH- 

and O3-initiated oxidation of isoprene, and are measured in significant quantities in forested areas 

(Montzka et al., 1993, 1995; Warneke et al., 2001). MACR and MVK are subsequently removed from 

the atmosphere through their reactions with OH radicals (Chuong and Stevens, 2004) and ozone. Lower 

rate constants for MACR and MVK removal result in longer atmospheric lifetimes compared with 

isoprene, which allows for the accumulation of MVK and MACR, formed by the oxidation of isoprene, 

in the atmosphere. Combined with the time dependence of isoprene emissions and atmospheric mixing, 

this results in a complex dependence between isoprene and MVK and MACR mixing ratios, which is 

difficult to understand based on measurements of mixing ratios alone.  

Recently it has been shown that studies of stable carbon isotope ratios of atmospheric volatile organic 

compounds (VOCs) can be used to obtain additional constraints on the processes determining the 

atmospheric VOC concentrations (Rudolph et al., 2000; Goldstein and Shaw, 2003; Rudolph and Czuba, 

2000; Saito et al., 2002). However, quantitative applications of stable isotope ratio measurements 

require knowledge of the isotope fractionation effects associated with the key reactions. To our 
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knowledge, there are no published measurements of the KIEs for reaction of MVK and MACR with 

ozone and only one publication which presents KIE measurements for the reaction of isoprene with 

ozone (Iannone et al., 2003). 

In this paper, we present and discuss measurements of the stable carbon KIEs for the gas-phase 

reactions of isoprene, MACR and MVK and some 1-alkenes with ozone. The measurements were made 

using VOCs without artificial enrichment or depletion of 13C and thus are directly applicable to 

atmospheric reactions. 
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2. Experimental 

 

The experimental techniques used in this study are similar to the methods to measure stable carbon 

isotope KIEs described previously in the literature (Anderson et al., 2003, 2004; Rudolph et al., 2000; 

Iannone et al., 2003). KIE experiments are similar in concept to relative rate (RR) experiments. In 

typical RR experiments, a reaction is carried out in a chamber and reactant concentrations are measured 

as a time series. Rate constants are determined through comparison of the relative loss rates of two 

reacting compounds and previously reported rate constants for one of the compounds, the reference 

compound. KIE experiments use a similar experimental procedure except that, in addition to 

concentration measurements, stable isotope ratios are obtained in each measurement. In the case of 

carbon KIE experiments, the procedure is a measurement of the relative rate for the reaction of 

molecules containing only 12C atoms over the reaction of molecules containing a 13C atom. 

In this study two types of experiments were performed: (1) RR experiments measuring concentration 

only, and (2) KIE experiments measuring concentration and stable carbon isotope ratios. Several 

common components were shared amongst the RR and KIE experiments: a reaction chamber kept in the 

dark, an ozone generator, a sampling system which obtains samples of reaction mixture and transfers 

them to the GC, and a detection system. For the RR experiments a GC-FID instrument was used for 

VOC measurements, for the KIE studies a GCC-IRMS system. The 25 L reaction chamber was made of 

a fluorinated ethylene propylene (FEP) Teflon film of 0.05 mm thickness (DuPont Polymer Products 

Department, Wilmington, Delaware). Several Teflon ports integrated into the chamber walls allowed for 

the injection of VOCs and the transfer of gases to and from the chamber via 1/8 inch Teflon lines. A fan 

inside the chamber ensured that compounds were well-mixed. The ozone generator consisted of a 7 cm 

length, 3 mm i.d. quartz tube irradiated by an Hg-discharge (Pen-ray) lamp (Ultra Violet Products, 

Upland, CA) attached to the reaction chamber via a 1/8 inch Teflon tubing. The reaction of alkenes in 

the reaction chamber with O3 was carried out by flowing synthetic air through the ozone generator and 

admitting the O3/air mixture into the reaction chamber at rates between 5.0–15 mL min–1. Any radical 
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species formed during the photolysis were scrubbed from the O3/air mixture using an in-line 16 cm long 

Pyrex tube filled with Raschig rings, which was placed between the ozone generator and the reaction 

chamber. 

The reaction chamber was placed in a temperature controlled housing maintained at (298 ± 2) K that 

allows for reactions to take place in the dark. Sampling was performed through the use of a six-port 

switching valve equipped with a 10 mL sampling loop. A pump downstream of the six-port valve was 

used to fill the sample loop with air from the reaction chamber mixture after flushing the transfer lines 

and the sample loop at a rate of 100 mL min–1 for 30 s. Upon valve-switching, the helium carrier gas 

transferred the 10 mL sample to the GC column. 

All liquid VOCs were obtained from Sigma-Aldrich with the following stated purities: isoprene 

(99%), MACR (95%), MVK (99%), 1-heptene (97%), 1-octene (98%), 1-nonene (98%), and 1-decene 

(94%). Pure gases had the following stated purities: synthetic air (99.96%, Praxair) and CO (99.997%, 

Messer). 

The GC-FID measurements were performed with a SiCHROMAT gas chromatograph (Siemens AG, 

Munich, Germany) equipped with a 15 m × 5.0 μm film × 0.53 mm i.d. RTX-5 column (Restek 

Corporation, Bellefonte, PA). The GC temperature started with an isothermal period of 303 K held for 

5.00 min, then the temperature was increased at a rate of 5.00 K min–1 until the final temperature of 393 

K was reached, which was held for 7.00 min. Helium carrier gas (99.9995%, Messer) was split at a ratio 

of 1:20 before entering the GC column. The flow rate through the column was 7 mL min-1. A PE Nelson 

900 Series Interface (PerkinElmer Life and Analytical Sciences, Inc., Boston, MA) connected to a PC 

with dedicated PE Nelson software was employed for peak evaluation. Each VOC peak was integrated 

by manually defining the peak boundaries. 

The GCC-IRMS system consisted of: (1) a cryofocussing system, (2) an Agilent 6890 Gas 

Chromatograph equipped with a 60 m × 5 μm film × 0.32 mm i.d. DB-1 column (Agilent Technologies), 

(3) a combustion interface, (4) a water trap, and (5) an Isoprime Isotope Ratio Mass Spectrometer 
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(IRMS) (GV Instruments, Manchester, UK; formerly Micromass). A schematic of the system is 

provided as Figure 1. 

A cryotrap (Gerstel GmbH & Co. KG, Mülheim an der Ruhr, Germany) was used to concentrate the 

VOCs at 163 K prior to injection onto the GC column. After injection, a capillary trap was used to focus 

the VOCs at the top of the column at 213 K. The GC temperature program used was: 303 K held for 

7.50 min, increased at a rate of  4.00 K min–1 until the final temperature of 373 K was reached, and held 

for 35 min. 

The organic compounds eluting from the column were converted to carbon dioxide and water in an 

oxidation interface. This interface consisted of a quartz tube packed with CuO particles (0.1–0.5 mm) 

held at 1123 K. The water resulting from VOC combustion was removed by a water trap which 

consisted of a coiled capillary cooled with liquid nitrogen to 173 K. The He gas stream containing 

12CO2 and 13CO2 enters the source of the IRMS through an open split. Reference gas (CO2 with δ13CV-

PDB = –4.62‰) was injected at the beginning and end of every measurement. 

A series of measurements was carried out to determine the effect of wall losses on MACR and MVK 

mixing ratios. A mixture of MACR and MVK in synthetic air was generated inside the chamber via 

syringe-injection of the liquid VOCs. Over a period of 45.5 h, samples were taken at intervals of 1.5 h 

from the reaction chamber and analyzed by GC-FID. 

Two sets of reactions were studied in the relative rate experiments: (1) the reactions of O3 with 

MACR and MVK, and (2) the reaction of O3 with isoprene. In one set of experiments, MACR, MVK, 

and the reference compounds 1-heptene and 1-decene were introduced into the reaction chamber 

containing a 1 × 104 ppm mixture of CO gas in synthetic air. In another set of experiments, isoprene was 

studied; here, the reference compounds were 1-heptene, 1-octene, and 1-decene. Initial VOC mixing 

ratios were in the range of 10–18  ppmV. Reaction chambers were replaced after every two experiments 

to avoid interference due to contaminating species which can accumulate on the chamber walls. 

Before initiating the O3 reaction, 2–4 measurements were conducted in order to monitor the stability 

of the VOC mixing ratios and for the KIE experiments also the stable carbon isotope ratios in the 
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absence of ozone. If the relative change of the peak areas between individual measurements for each 

compound was below 2%, the system was considered adequately stable and the reaction with O3 was 

then carried out. In the KIE studies, an additional requirement for stability was a change in stable 

carbon delta value no greater than 1‰. The air/O3 stream was admitted to the chamber for defined 

periods depending upon the desired rate of reactant depletion. RR and KIE measurements were taken at 

regular intervals of ~1 h and continued until the reactant VOCs were depleted to <25% of their initial 

concentrations. 

In the analysis of RR experiments, the change in reactant concentration, ln([HC]0/[HC]t), is plotted 

against the change in concentration of a reference compound, ln([ref]0/[ref]t). Such plots are linear, with 

the slope determined by the ratio of the reaction rates kHC/kref. Slopes obtained from linear regression 

analyses are multiplied with the literature rate constants of the reference compound, kref, to obtain rate 

constants, kRR. 

For the KIE experiments, IRMS traces were evaluated using MassLynx v4.0i software (GV 

Instruments). From integrated peak data, concentrations and isotope ratios of the reactant alkenes were 

obtained. Stable carbon isotope ratios are expressed as the ratio 13C/12C. Carbon isotope ratios are 

usually presented as per mille difference values, δ13C(‰), relative to the absolute ratio of the 

internationally accepted reference standard V-PDB (Vienna Pee Dee Belemnite): 

13 12 13 12
13 s V-PDB

13 12
V-PDB

([ C] [ C]) ([ C] [ C])C 1000‰
([ C] [ C])

⎛ ⎞−
δ = ⎜

⎝ ⎠
⎟ .      (1) 

The KIE value is the ratio of rate constants for two isotopologues participating in the same reaction. 

For the studies presented here, the KIE is defined as, 

12

13

KIE k
k

=             (2) 

where k12 is the rate constant for the reaction of a studied compound (i.e. isoprene, MACR, or MVK) 

containing solely 12C species and k13 is the rate constant for the same reaction if the compound has one 

13C atom. It should be noted that in the absence of artificial 13C enrichment, due to the low natural 
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abundance of 13C, for NMHCs with a low number of C atoms, the fraction of isotopologues with more 

than one 13C atom is very small and can be neglected without creating measurable bias. KIE values were 

obtained from the slope of a linearized dependence between isotope ratios and concentrations (or peak 

areas) at different times: 

  
ln

[12C]s,t

[12C]s,0

⎛

⎝
⎜

⎞

⎠
⎟ =

k12 k13

1− k12 k13

ln
δ13Ct +1000
δ13C0 +1000

⎛

⎝
⎜

⎞

⎠
⎟ .        (3) 

The KIE can be calculated from the slope as 

  
KIE =

slope
1+ slope

.           (4) 

For the sake of convenience, KIE values are presented as per mille epsilon values, ε(‰): 

( )12 13 1 1000‰k kε = − .          (5) 

Due to the low abundance of 13C and the small change of isotope ratios within the experiments the ratios 

of the peak areas for the mass-44 signal of the IRMS are valid approximations for the ratios of the 12C 

isotopologue concentrations in Equation (3). 
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3. Results and Discussion 

 

3.1. Wall loss and relative rate experiments 

 

GC peak area analyses over a 45.5 h period indicated first-order loss rates of (1.25 ± 0.07) × 10–6 s–1 

and (7.86 ± 0.07) × 10–7 s–1 for MACR and MVK, respectively.  Since the difference between the loss 

rates of (0.46 ± 0.1) × 10–7 s–1 is substantial, these decreases in concentration are most likely primarily 

due to wall losses and not leaks of the reaction chamber. For the typical duration of the RR and KIE 

experiment of 8–10 hours, such wall losses would contribute about 4% and 2.5% to the loss of MACR 

and MVK, respectively. Since these changes in concentration due to wall loss are much smaller than 

that due to reaction with ozone, the bias from these loss reactions is small compared to other sources of 

uncertainty. Therefore no corrections for wall losses were made. 

From several experiments using GC-FID and GCC-IRMS detection, relative rate constants were 

evaluated relative to the 1-alkenes, using rate constants reported by Grosjean and Grosjean (1995) and 

Protczak and Trzeszczynski (2002). Uncertainties for the experimental rate constants were determined 

through error analysis using Gaussian error propagation, taking into account both the errors of the 

literature rate constants and the errors in linear regression slopes from the experimental data. Table 1 

provides a comparison between the average experimentally-determined (kRR) and published (klit) rate 

constants. Examples for relative rate plots from an experiment studying isoprene are given in Figure 2. 

Linear regressions of all RR plots yielded high r2 values, most of which were above 0.99. 

With the exception of MACR, all of our rate constants are well within the range of published rate 

constants and their uncertainties. The average kRR value for MACR, (1.9 ± 0.12) × 10–18 cm3 molecule–1 

s–1, is about 50–75% higher than the four rate constants for this reaction reported by Grosjean et al. 

(1993) [(1.02 ± 0.05) × 10–18], Grosjean and Grosjean (1998) [(1.08 ± 0.21) × 10–18], Atkinson et al. 

(1981) [(1.12 ± 0.13) × 10–18], and Neeb et al. (1998) [(1.30 ± 0.14) × 10–18], all in units of cm3 

molecule–1 s–1. That our experimental rate constant for MACR is higher than other reported values, with 
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rate constants for all other VOCs in agreement with literature, suggests that there are additional 

processes removing MACR. It has been reported that OH radicals can be produced at significant yields 

from the reaction of O3 with alkenes (Paulson et al., 1999; Atkinson et al., 1992; Atkinson et al., 1995). 

Although the addition of 1 × 104 ppmV CO to the chamber reduces the steady state OH radical 

concentration (Gutbrod et al., 1997), there still will be competitions between VOCs and CO for reaction 

with OH radicals since for practical reasons we limited the concentration of CO. A comparison of rate 

constant ratios O3k/OHk for the studied VOCs (Table 2) reveals that MACR has the lowest ratio, and thus 

experiences the highest relative contribution to VOC loss due to OH radicals.  

 

3.2. Correction of KIEs for interfernce by OH-reactions 

 

The carbon delta values and peak areas from each measurement were plotted according to Equation (3). 

From the slope of this linear dependence, the KIE values were determined according to Equation (4).   

Figure 3 provides an example for one experiment studying the MVK + O3 reaction. Typically, 4–5 

GCC-IRMS measurements were conducted after the introduction of ozone to the reaction chamber. All 

r2 values for the slope determined by Equation (3) were above 0.995. 

As mentioned previously, there is strong evidence that at least for one of the studied VOCs the loss 

rate is influenced by reaction with OH radicals. Therefore all O3ε values derived from the slope 

according to Equation (3) were corrected for interferences with OH radicals by using the following 

equation:  

  

O3 εi =
O3 εi,obs −

OH Fi ⋅
OH εi

1− OH Fi

          (6) 

where O3εi,obs represents KIEs for the particular reaction of VOC i with O3 determined from Equation 

(5), OHεi represents the KIE for the corresponding VOC + OH reaction, and OHFi is the fraction of VOC i 

consumed by OH radicals. 

The determination of OHFi requires knowledge of the OH-radical and O3 concentrations. Since both 
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the OH-radical and the O3 concentration can vary with time during the experiments, [OH] and [O3] were 

determined for each measurement interval. Values for [O3] were determined indirectly through the loss 

of 1-octene, the VOC with the highest O3k/OHk value (Table 2) and thus the least amount of interference 

due to OH of all VOCs studied.  The average ozone [O3]n concentration for the interval between two 

measurements was calculated from the following equation.  

( )
3

1
3 O

1-octene

ln [1-octene] [1-octene]
[O ] n

n k t
−−

=
Δ

n          (7) 

Where [1-octene]n represents concentrations for measurement point n, [1-octene]n–1 is the concentration 

for the previous measurement, O3k1-octene is the rate constant for the 1-octene + O3 reaction and Δt 

represents the difference in times between the measurement n and n–1.  

Estimates of OH-radical concentrations were determined in two ways: (1) a steady-state 

approximation based on the formation of OH due to ozone-alkene reactions and loss of OH from 

reactions with CO and VOCs; and (2) differences between the loss rates of VOCs calculated from the 

ozone concentration and observations for the VOCs with lowest O3k/OHk ratio and thus the largest 

impact of OH interference.  

The steady-state calculations used the following equation: 

  

[OH]n =
[O3]n

O3 ki ⋅
OH yi ⋅[VOCi ]n

i
∑

OHkCO ⋅[CO] OHki ⋅[VOCi ]n
i
∑

.         (8) 

Here, O3ki, OHyi, and [VOCi]n represent the O3 rate constant, OH yield, and concentration, respectively, 

for every VOC undergoing reaction; OHkCO and [CO] represent the CO + OH rate constant and CO 

concentration; and, OHki represents the rate constant for the reaction of VOC i with OH radicals.  

The second estimate of OH was calculated using, 

  
[OH]n =

1
Δt

O3 kMACR
OHkMACR

ln [1-octene]n [1-octene]n−1( )
O3 k1-octene

−
ln [1-octene]n [1-octene]n−1( )

O3 kMACR

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   (9) 

where [1-octene]n/[1-octene]n–1 and [MACR]n/[MACR]n–1 represent ratios of 1-octene and MACR 

concentrations at the current sampling time over that of the previous; O3kMACR, OHkMACR, and O3k1-octene 
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represent rate constants for the reactions of MACR with O3 and OH and 1-octene with O3, respectively. 

With the exception of the first time interval in each experiment, both methods for OH estimation 

agreed to within 10% of each another. Since MACR was not included in some of the experiments, [OH] 

concentrations based on Equation (8) were used to determine OHFi,n, the relative contribution of OH-

reactions to the loss of compound i for interval n: 

  

OH Fi,n =
OHki[OH]n

OHki[OH]n + O3 ki[O3]n

.          (10) 

Using the correction given in Equation (6), O3εi was calculated for every VOC i using the mean of all 

OHFi,n values determined from Equation (10) for each experiment. Uncertainties for O3εi were 

determined from propagated errors of OHFi, O3εobs, and OHεi. Table 3 provides a summary of O3εi values 

for all studied VOCs and data used for the corrections. 

 

3.3. Comparison with previously published data 

 

To our knowledge there are no previously published KIE values for the reactions of MVK, MACR, 1-

octene, and 1-nonene with ozone, only for isoprene and 1-heptene are literature data available for 

comparison. The new KIE for isoprene is with (8.40 ± 0.11) ‰ somewhat higher than the previously 

reported value of (6.1 ± 1.0) ‰ (Iannone et al, 2003). This value is an average of four measurements 

ranging from 4.0–7.8‰, resulting in a 95% confidence interval of 2.84–7.79‰. The measurements 

reported here have a 95% confidence interval of 7.96–8.84‰. Although statistically the difference 

between the two measurements is not highly significant, the new results have important implications. It 

has been mentioned previously that KIE values are important for the quantitative interpretation of 

atmospheric isotope ratio measurements. The new KIE does not only increase the predicted change of 

the δ13C values of atmospheric isoprene resulting from reaction with ozone, the substantially reduced 

uncertainty also reduces the uncertainties of these predictions.  There is also a more theoretical 

implication. While the previously reported value suggested that the KIE for the reaction of isoprene fits 
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well into the semi-empirical relationship between KIE and number of carbon atoms derived by Iannone 

et al. (2003) for reactions of alkenes with ozone, the new KIE is (1.4±0.3) ‰ higher than the prediction.    

Similar to the new KIE for isoprene reaction, the KIE measured for n-heptene in this study is 

somewhat higher than a previously reported value. Iannone et al. (2003) reported a stable carbon O3ε 

value for 1-heptene of (4.3±0.7) ‰. Although the new value is within the range of the 95% confidence 

limit of the previously published value (2.41‰–5.65‰), the newer average value of (5.48 ± 0.09) ‰, 

which was based on 10 experiments, has a substantially lower uncertainty with a smaller 95% 

confidence interval (4.93–6.03‰). 

 

3.4. Dependence of KIEs on carbon number and molecular mass 

 

Iannone et al. (2003) have fitted their alkene + O3 KIE data to a simple inverse dependence on carbon 

number which requires determination of only one parameter from the experimental data: 

 ( )
3O

C

34.3 1.7 ‰
N
±

ε =            (12) 

where NC represents the number of carbon atoms of the individual 1-alkene. Replacing the 1-heptene 

and adding the 1-octene and 1-nonene O3ε values from this investigation to the previously published C2–

C6 1-alkene data, changes the parameter in the NC
-1

 dependence to (34.9±1.5) ‰. Including all available 

KIE data for reactions of unsaturated VOC with ozone results in a value of (34.0±1.0) ‰. Excluding 

MVK and MACR gives a value of (34.4±1.0) ‰ and excluding dienes as well as MVK and MACR 

results in a fit parameter of (34.5±1.0) ‰. Using only the data from this paper a fit parameter of 

(34.9±2.1)‰ is obtained. Thus overall our new measurements support the findings of Iannone et al. 

(2003) that a NC
-1

 dependence presents a robust first order estimate of the KIEs, with experimental data 

and predictions generally in agreement within the uncertainty of the measurements.   

However, as has been mentioned above, the KIE measurements presented in this paper have in 

general a substantially better reproducibility than the previously reported measurements. Therefore 
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these new data can be used to look at the minor differences between measurements and predictions in 

more detail. Figure 4 shows a comparison between observations and predictions. The differences are 

small, but nevertheless statistically significant at the 2σ level. Overall, predictions based on an inverse 

carbon number dependence underestimate the KIEs for alkenes and overestimate the KIEs for MVK and 

MACR.  Increasing the fit parameter in Equation (12) to a value of 40‰ would decrease the 

discrepancy between measurement and prediction to less than 0.5‰ for isoprene and the heavy alkenes. 

However, this increases the discrepancy between prediction and observation for MVK and MACR to 

about 2‰. Figure 4 shows a comparison between observations and a fit of the measurements to an 

inverse molecular mass dependence.   

( )
3O 550 8 ‰

MM
±

ε =            (13) 

The theoretical basis for the dependence of KIEs on NC
-1 is based on the simplification that the isotope 

effect resulting from substitution of one carbon atom in a C=C double bond is independent of the 

functional groups which are connected to the double bond. Among other simplifications, this does not 

explicitly consider isotope effects depending only on molecular mass, such as changes in translational 

degrees of freedom or, in the framework of collision theory, the collision frequency. However, it should 

be noted that due to the proportionality of carbon number and molecular mass for alkenes, any function 

based on a dependence on carbon number will to some extent also be able to describe a dependence on 

molecular mass. MVK and MACR have a larger molecular mass than alkenes with the same carbon 

number. Molecular mass dependent isotope effects based on changes in collision frequency or 

translational partition functions decrease with increasing molecular mass. Qualitatively this is consistent 

with the observation that an inverse carbon number dependence derived for alkenes will overestimate 

the KIEs for reactions of MVK and MACR. Only considering the mass dependence of the collision 

frequency, or the loss of one translational degree of freedom in the transition state, predicts that the KIE 

for reaction of MVK and MACR with ozone will be 1.2‰ lower than the KIE for an alkene with the 

same carbon number as MVK or MACR. This is a small effect, but similar in magnitude to the 
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differences between the KIEs for MACR or MVK and predictions derived from the alkene reaction 

KIEs. 

The predictions based on Equation (13) agree extremely well with the experimental data (Figure 4).  

To some extent this may be fortuitous since the number of data points is small. The values for inverse 

molecular mass only cover a small range. In this case a simple one parameter fit often results in a very 

good approximation for more complex dependencies.  It also has to be considered that for 1-alkenes 

and, with a marginal deviation also for isoprene, molecular mass is proportional to carbon number. Thus 

the good agreement between fit to an inverse molecular mass dependence and observations does not 

imply the existence of a generally valid inverse molecular mass dependence of the KIEs. It is more 

realistic to interpret Equation (13) as a function which combines the established inverse carbon number 

dependence  with some smaller mass dependent contributions into a simple parameterization, which 

provides a good approximation for a limited range of data. 

A comparison of predictions based on Equation (13) with the data of Iannone et al. (2003) shows a 

small, but consistent over-prediction of the measurements. Since the inverse carbon number dependence 

of the KIE derived by Iannone et al. (2003) was based on studies of alkenes and a few dienes and 

cycloalkenes it can be converted into an inverse mass dependence using the approximation MM=14·NC: 

( ) ( )
3O 14 34.3 14 1.7 ‰ 480 24 ‰

MM MM
⋅ ± ⋅ ±

ε = =         (13) 

This function under-predicts the results from this paper by 0.6‰ to 1‰ (Figure 5). Although these 

differences are close to the combined uncertainties of measurements and predictions, the consistent 

under-prediction of all observations indicates the existence of a small, but nevertheless systematic bias 

between the two data sets for ozone-alkene reaction KIEs. 
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4. Conclusions 

 

The results of this new data set of KIEs for gas-phase reactions of unsaturated VOC with ozone 

support the findings of Iannone et al. (2003) that a dependence on the inverse of carbon number allows 

a useful, first order estimate of KIEs. However, a more detailed comparison shows some discrepancies 

between predictions based on the inverse carbon number dependence derived by Iannone et al. (2003) 

and our new measurements. The new measurements of the KIEs for reactions of isoprene and heavy 1-

alkenes are consistently higher than the predictions. Similarly, the new KIEs for the reactions of 

isoprene and 1-heptene, are slightly higher than the previously reported values. These findings indicate 

that there is a small, but consistent bias between the two data sets.  

In contrast to this, the KIEs for reaction of MVK and MACR are lower than the values predicted by 

the inverse carbon number dependence. In view of the positive deviation for alkenes and the very good 

reproducibility of the measurements, it is very unlikely that this is due to experimental errors.  MVK 

and MACR have a molecular mass, which is 25% larger than that of alkenes with four carbon atoms. 

Molecular mass dependent contributions to isotope effects are smaller for molecules of higher mass. 

Therefore qualitatively the findings are consistent with a small, but measurable contribution from 

molecular mass dependent effects to the overall KIE. However, since for all VOCs studied to date 

(except MACR and MVK) the molecular mass is effectively proportional to the number of carbon 

atoms, a quantitative separation of mass dependent and carbon number dependent contributions to the 

KIEs is not yet possible. Nevertheless, the results of this study strongly suggest that the molecular mass 

dependent effects are of sufficient magnitude to be studied with the presently available experimental 

methods. 

The presently published carbon KIE measurements for gas-phase reactions of VOC were 

predominantly motivated by their usefulness for the interpretation of measurements of isotope ratios of 

atmospheric VOCs. Although the tropospheric oxidation of isoprene, MACR, and MVK via O3 in most 

cases is a less significant loss process than OH-radical oxidation, the studied VOCs are sufficiently 

17

 



long-lived to survive into nighttime hours where mixing ratios of O3 are significantly large and OH is 

minimal. For daytime hours, where isoprene emissions from vegetation are at peak levels, the reaction 

of these VOCs with OH radicals will be the dominant loss processes, and, the dominant production 

process for MACR and MVK. For this reason, a more complete picture of the isotopic fractionation of 

isoprene, MACR and MVK would require both their KIE measurements for the OH-radical reaction and 

concurrent measurements of mixing ratios and carbon isotope ratios of these VOCs in ambient samples. 
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Fig. 1. Schematic of the system used for carbon kinetic isotope effect (KIE) experiments. Shut-off 

valves are denoted by the  symbol. The heartsplit valve in the open position can be used to divert 

column eluate to the FID; for all experiments this valve remained closed (i.e. all column flow proceeded 

toward the combustion furnace).     
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Fig. 2. Example of relative rate plot for the reaction of isoprene, 1-heptene and 1-decene with O3 using 

1-octene as the reference compound. 
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Fig. 3. Example plot for the determination of the O3εobs value of the MVK + O3 reaction from the 

dependence between concentration and stable carbon isotope ratio formulated in Equation (3). 
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Fig. 4. Comparison between measured O3ε values and calculations. Grey bars are based on a fit of the 

data from this paper to a NC
–1 dependence (O3ε = ((34.9±2.1) ‰ · NC

–1). The open bars are based on a 

dependence of the KIE on the inverse of molecular mass (O3ε = (550±8) ‰ · MM–1). The error bars 

show the uncertainties resulting from the errors of the measurements and the fit parameters. 
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Fig. 5. Dependence of KIEs for reaction of ozone with unsaturated VOC on molecular mass. Data from 

this paper are shown as triangles, data from Iannone et al. (2003) are presented as circles. The solid line 

shows the dependence O3ε = (550±8) ‰ · MM–1 and the broken line shows an inverse mass dependence 

derived from the inverse carbon number dependence by Iannone et al. (2003) by using MM = 14· NC. 
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Table 1 

Comparison between mean ozone-alkene relative rate constants from the GC-FID and GCC-IRMS 
studies of this investigation and literature rate constants (298 K) 

Studied 
Alkene 

Rate Constant, 10–18 cm3 
molecule–1 s–1

Reference 

MACR 1.02 ± 0.05 Grosjean et al., 1993. 
 1.08 ± 0.21 Grosjean and Grosjean, 1998. 
 1.12 ± 0.13 Atkinson et al., 1981. 
 1.30 ± 0.14 Neeb et al., 1998. 
 1.15 ± 0.18 Treacy et al., 1992. 
 1.95 ± 0.35 This work, GC-FID 
 1.96 ± 0.23 This work, GCC-IRMS 
MVK 4.72 ± 0.09 Grosjean et al., 1993. 
 5.84 ± 0.41 Grosjean and Grosjean, 1998. 
 5.40 ± 0.60 Neeb et al., 1998. 
 4.77 ± 0.57 Atkinson et al., 1981. 
 4.22 ± 0.63 Treacy et al., 1992. 
 4.37 ± 0.76 This work, GC-FID 
 4.88 ± 0.10  This work, GCC-IRMS 
Isoprene 11.9 ± 0.9 Klawatsch-Carrasco et al., 2004. 
 12.1 ± 0.3 Avzianova and Ariya, 2002. 
 12.2 ± 0.3 Greene and Atkinson, 1992. 
 12.5 ± 1.2 Treacy et al., 1992. 
 10.1 ± 1.3 This work, GC-FID 
 12.1 ± 0.4  This work, GCC-IRMS 
1-Heptene 9.4 ± 0.4 Grosjean and Grosjean, 1995. 
 8.5 ± 1.0 This work, GC-FID 
 11.7 ± 0.4 This work, GCC-IRMS 
1-Octene 12.5 ± 0.4 Grosjean and Grosjean, 1995. 
 8.4 ± 0.8 This work, GC-FID 
 10.1 ± 0.4 This work, GCC-IRMS 
1-Nonene 11.5 ± 3.9  Protczak and Trzeszczynski, 2002. 
 11.2 ± 0.5 This work, GCC-IRMS 
1-Decene 8.0 ± 1.4 Protczak and Trzeszczynski, 2002. 
 11.4 ± 0.5 This work, GC-FID 
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Table 2 

Rate constants and OH yields for the studied VOCs 

Compound 
O3k, 10–18 cm3 
molecule–1 s–1

OHk,a 10–11 cm3 
molecule–1 s–1

O3k/OHk, 10–7 OHy 

Isoprene 12.8 ± 3.2 10.1 ± 2.5 1.27 0.35b

MACR 1.08 ± 0.21 3.35 ± 0.84 0.32 0.82c

MVK 5.84 ± 0.41 1.88 ± 0.47 3.11 0.36c

1-Heptene 9.40 ± 0.38 3.95 ± 0.16 2.38 0.27d

1-Octene 12.5 ± 4.0 3.80e 3.29 0.18d

1-Nonene 11.5 ± 3.9 3.65f 3.11 0.17g

 

aAll VOC + OH rate constants taken from Atkinson (1997) unless noted otherwise. 
bAverage of 7 values reported in the literature by Gutbrod et al., 1997; Lewin et al., 2001; Rickard et al., 
1999; Marston et al., 1998; Paulson et al., 1998; Neeb and Moortgat, 1999; and Zhang et al., 2002. 
cValue taken from the Master Chemical Mechanism (MCMv3) (Jenkin et al., 2003). 
dAtkinson et al. (1995). 
eGrosjean and Williams (1992). 
fRate constant estimated by extrapolation from C7–C8 1-alkene literature rate constants. 
gEstimated from a linear dependence of C4–C7 1-alkene yOH values taken from Atkinson et al. (1995) 
against carbon number. 
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Table 3 

Summary of stable carbon O3δ values for the reactions of isoprene, MACR, MVK, and C7–C9 1-alkenes 
with ozone at (298 ± 4) K 

Compound 
and 

Experiment 

VOC Loss 
During 

Experiment, 
%a

Mean 
OHFi Valueb

Correction for 
O3εi, ‰ 

O3εi, ‰c

Isoprened     
KIE-04 74.5 0.14 ± 0.01 +0.23 8.17 ± 0.19 
KIE-05 94.3 0.10 ± 0.02 +0.22 8.72 ± 0.23 
KIE-06 84.8 0.10 ± 0.02 +0.16 8.22 ± 0.26 
KIE-17 74.3 0.14 ± 0.01 +0.25 8.38 ± 0.21 
KIE-18 75.1 0.12 ± 0.01 +0.23 8.51 ± 0.16 
  Mean: 8.40 ± 0.11e

  95% Confidence Interval: 7.96–8.84 
MACRd     
KIE-11 71.8 0.37 ± 0.05 +0.81 8.06 ± 0.41 
KIE-13 60.1 0.36 ± 0.04 +0.79 8.10 ± 0.37 
KIE-14 41.7 0.37 ± 0.04 +0.48 7.17 ± 0.21 
KIE-21 66.1 0.41 ± 0.02 +0.74 7.36 ± 0.30 
  Mean: 7.67 ± 0.28e

  95% Confidence Interval: 6.74–8.61 
MVKd     
KIE-11 92.1 0.10 ± 0.02 +0.10 7.79 ± 0.68 
KIE-12 96.9 0.09 ± 0.02 +0.12 8.15 ± 0.30 
KIE-13 93.3 0.09 ± 0.02 +0.10 7.83 ± 0.18 
KIE-14 75.4 0.10 ± 0.01 +0.10 7.74 ± 0.24 
KIE-21 96.0 0.12 ± 0.01 +0.12 7.86 ± 0.15 
  Mean: 7.87 ± 0.08e

  95% Confidence Interval: 7.56–8.19 
1-Heptenef     
KIE-04 70.0 0.08 ± 0.01 +0.01 5.16 ± 0.55 
KIE-05 91.7 0.06 ± 0.01 +0.02 5.37 ± 0.48 
KIE-06 97.7 0.05 ± 0.01 +0.02 5.33 ± 0.42 
KIE-17 69.4 0.08 ± 0.01 +0.03 5.44 ± 0.63 
KIE-18 70.6 0.07 ± 0.01 +0.02 5.18 ± 0.62 
KIE-11 93.2 0.08 ± 0.01 +0.08 6.04 ± 0.39 
KIE-12 97.9 0.07 ± 0.01 +0.02 5.35 ± 0.35 
KIE-13 95.8 0.07 ± 0.01 +0.03 5.49 ± 0.38 
KIE-14 92.9 0.08 ± 0.01 +0.04 5.55 ± 0.43 
KIE-21 74.4 0.09 ± 0.01 +0.05 5.87 ± 0.45 
  Mean: 5.48 ± 0.09e

  95% Confidence Interval: 4.93–6.03 
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Table 3 (Continued) 

Compound 
and 

Experiment 

VOC Loss 
During 

Experiment, 
%a

Mean 
OHFi Valueb

Correction for 
O3εi, ‰ 

O3εi, ‰c

1-Octenef     
KIE-06 82.9 0.04 ± 0.01 –0.02 3.98 ± 0.60 
KIE-17 71.5 0.06 ± 0.00 –0.01 4.28 ± 0.38 
KIE-18 72.5 0.05 ± 0.01 0.02 4.74 ± 0.32 
KIE-11 94.1 0.06 ± 0.01 +0.06 5.44 ± 0.36 
KIE-12 97.5 0.05 ± 0.01 +0.02 4.84 ± 0.37 
KIE-13 96.4 0.06 ± 0.01 +0.01 4.56 ± 0.33 
KIE-14 93.8 0.05 ± 0.01 +0.01 4.53 ± 0.36 
KIE-21 76.4 0.06 ± 0.01 +0.02 4.98 ± 0.34 
  Mean: 4.67 ± 0.17e

  95% Confidence Interval: 3.80–5.54 
1-Nonenef    
KIE-04 73.3 0.06 ± 0.01 +0.04 4.59 ± 0.56 
 
aInitial concentrations were (all in units of 1014 molecules cm–3) 3.6, 4.4, 4.5, 2.6, 2.3, and 2.1 for 
isoprene, MACR, MVK, 1-heptene, 1-octene, and 1-nonene. 
bAverage contribution of OH radicals to the overall reactant VOC loss determined by mean value of 
Equation (10), using the Equation (8) estimate of [OH] for every time interval. 
cUncertainty estimates for individual O3εi values were determined by the propagated errors of OHFi, 
O3εobs,i, and OHεi. 
d OHεi values of (6.56 ± 0.12) ‰ (isoprene), (5.88 ± 0.08) ‰ (MACR), and (6.78 ± 0.14) ‰ (MVK), 
required for the corrections of O3εobs,i using Equation (11), were unpublished results from a similar 
study. 
eUncertainty was determined by the standard error: σ(n – 1)–0.5, where σ represents the standard 
deviation of the averaged O3εi values, and n represents the number of O3ε values included in the 
calculation of the mean. 
f OHεav values of (5.04 ± 0.23) ‰ (1-heptene), (4.41 ± 0.20) ‰ (1-octene), and (3.92 ± 0.18) ‰ (1-
nonene) were estimated from the following inverse dependence of 1-alkene + OH KIEs (Rudolph et al., 
2000; Anderson et al., 2004) toward carbon number (NC): OHε(1-alkene) = (35.3 ± 1.6)NC

–1. 
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