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ABSTRACT. The stable-carbon kinetic isotope effects (KIEs) for the gas-phase reactions of isoprene, 

methacrolein (MACR), and methyl vinyl ketone (MVK) with OH radicals were studied in a 25 L 

reaction chamber at (298 ± 2) K and ambient pressure. The time dependence of both the stable-carbon 

isotope ratios and the concentrations was determined using a gas chromatography combustion isotope 

ratio mass spectrometry (GCC-IRMS) system. The volatile organic compounds (VOCs) used in the KIE 
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experiments had natural-abundance isotopic composition thus KIE data obtained from these 

experiments can be directly applied to atmospheric studies of isoprene chemistry. All 13C/12C KIE 

values are reported as ε values, where ε = (KIE – 1) × 1000‰, and KIE = k12/k13. The following average 

stable-carbon KIEs were obtained: (6.56±0.12)‰ (isoprene), (6.47±0.27)‰ (MACR), and 

(7.58±0.47)‰ (MVK). The measured KIEs all agree within uncertainty to an inverse molecular mass 

(MM) dependence of OHε(‰) = (487±18)MM–1,which was derived from two previous studies [J. 

Geophys. Res. 2000, 105, 29329–29346; J. Phys. Chem. A 2004, 108, 11537–11544]. Upon adding the 

isoprene, MACR, and MVK OHε values from this study, the inverse MM dependence changes only 

marginally to OHε(‰) = (485±14)MM–1. The addition of these isoprene OHε values to a recently 

measured set of O3ε values in an analogous study [Atmos. Environ. 2008, 42, 8728–8737] allows for 

estimates of the average change in the 12C/13C ratio due to processing in the troposphere. 
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Introduction 

 It is now well known that the predominant emissions of biogenic volatile organic compounds 

(VOC) hydrocarbons into the atmosphere are those of isoprene, where estimated annual emissions are 

410–600 Tg yr–1 (Guenther et al., 1995, 2006; Wang and Shallcross, 2000; Lathière et al., 2006; Müller 

et al., 2008). Isoprene emissions have significant effects on atmospheric chemistry such as their 

contribution toward ozone formation (Trainer et al., 1987; Fehsenfeld et al., 1992; Williams et al., 

1997; Biesenthal et al., 1997.) and aerosol formation (Claeys et al., 2004; Edney et al., 2005; Kroll et 

al., 2005, Henze and Seinfeld, 2006). Isoprene is synthesized by the action of isoprene synthase on 

dimethylallyl diphosphate (DMADP) produced by the methylerythritol 4-phosphate (MEP) pathway 

(Silver and Fall, 1991; Schwender et al., 1997). Isoprene emissions from leaves are light and 

temperature dependent (Sanadze, 1969, 2004; Tingey et al., 1979; Monson and Fall, 1989; Loreto and 

Sharkey, 1990), and use carbon taken directly from the Calvin-Benson-Bassham cycle in leaf 

 



 
 

chloroplasts (Delwiche and Sharkey, 1993; Affek and Yakir, 2003; Schnitzler et al., 2004; Ferrieri et al., 

2005). 

 In the atmosphere isoprene undergoes reactions with OH and NO3 radicals, ozone, and halogen 

atoms; however, the reaction with OH greatly dominates. This is due to a combination of two factors: 

the temperature- and light-induced emissions of isoprene from vegetation temporally coincide with OH-

radical formation, and the reaction rate for the isoprene + OH is several magnitudes higher than that for 

both O3 and NO3. Given the importance of the OH-initiated degradation pathway, a large number of  

studies dealing with kinetics (Paulson et al., 1992; Campuzano-Jost et al., 2000; Lee et al., 2005), 

reaction mechanisms (Miyoshi et al., 1994), and products (Tuazon and Atkinson, 1990; Kwok et al., 

1995; Benkelberg et al., 2000; Ruppert and Becker, 2000; Sprengnether et al., 2002) have been 

published over the past two decades. Methacrolein (MACR), methyl vinyl ketone (MVK), 3-

methylfuran, and formaldehyde are major products of the isoprene + OH reaction. Upon the formation, 

MACR and MVK are removed from the atmosphere through OH and O3 oxidations, albeit at lower rates 

than for isoprene. Again, reaction with OH is by far the dominant removal process for these isoprene 

products. Several studies have focused on ambient measurements of isoprene and its degradation 

products (Warneke et al., 2001; Stroud et al., 2001, 2002; Apel et al., 2002), however, given the 

complex dependence between isoprene, MACR, and MVK mixing ratios, it is difficult to estimate the 

sources or sinks of these volatile organic compounds (VOCs) through the use of atmospheric mixing 

ratio data alone. 

 Several recent studies have focused on the stable carbon isotope ratios of atmospheric VOCs in 

order to obtain additional constraints on the processes that determine atmospheric VOC mixing ratios 

(Rudolph et al., 1997, 2003; Tsunogai et al., 1999; Saito et al., 2002; Goldstein and Shaw, 2003; Nara 

et al., 2006, 2007; Iannone et al., 2007). The application of 13C/12C studies toward determining the 

photochemical history of the studied VOC requires knowledge of the isotopic fractionations associated 

with its chemical removal processes (Rudolph and Czuba, 2000). Several experimental studies have 

contributed toward the development of a database of 13C/12C kinetic isotope effect (KIE) values 

 



 
 

associated with key gas-phase reactions (Rudolph et al., 2000; Iannone et al., 2003, 2008; Anderson et 

al., 2004a,b, 2007a,b). All of the previous studies employed gas-chromatography combustion isotope 

ratio mass spectrometry (GC-IRMS) instrumentation to analyze gas-phase reaction mixtures from 

Teflon chambers. A detailed description of the KIE measurement technique can be found in Anderson et 

al. (2003). 

In this paper, we present and discuss measurements of the stable carbon KIEs for the gas-phase 

reactions of isoprene, MACR, and MVK with OH radicals. These KIE measurements complement the 

very recent analogous KIE study for these VOCs in reaction with ozone (Iannone et al., 2008). In both 

studies, measurements were made using VOCs without artificial enrichment or depletion of 13C and thus 

their results are directly applicable to atmospheric reactions. The combination of KIE values for OH- 

and O3-initiated oxidations of these VOCs will allow for quantitative evaluation of their photochemical 

histories from the combination of isotope ratio and concentration measurements. 

 



 
 

 
 
 
2. Experimental 

The gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS) technique used in 

this investigation is very similar to those described previously for the measurements of stable carbon 

isotope KIE values (Anderson et al., 2004a,b, 2007a,b; Iannone et al., 2003, 2008). KIE experiments are 

similar in concept to relative rate (RR) experiments. In RR experiments, several reactants undergo 

chemical loss and their concentrations are measured as a function of time. However, in addition to 

concentration measurements, stable isotope ratios are also required for the calculation of KIE values. 

Thus, KIE values and RR can be determined in the same experiment. Two types of experiments were 

performed in this study: (1) RR experiments measuring only concentration values, and (2) KIE 

experiments measuring both concentrations and 12C/13C carbon isotope ratios. For the RR experiments, 

a GC-FID instrument was used; the KIE studies used a GCC-IRMS system. Figure 1 provides a 

schematic for both systems, where the reaction chamber and the sample transfer system were common 

to both. 

Reaction chambers were made from 0.05 mm thick FEP Teflon film. Several PTFE Teflon ports 

containing 9.5 mm diameter GC septa were used for introducing gases, extracting samples through a 

vacuum line, and injecting liquid-phase VOCs with a microliter syringe. A rotary fan, used to ensure 

VOC mixing, was suspended inside the chamber and its electrical leads were passed through two Teflon 

ports. The reaction chamber was suspended inside a temperature-controlled housing maintained at 

(298±2) K. The ~0.1 m3 enclosure generally kept the reaction chamber in the dark but also allows for 

irradiation with up to twelve individually-controlled linear fluorescent, blacklight lamps with λmax = 350 

nm (F40T12/350BL, Osram Sylvania Inc., Danvers, Maine). Reaction chambers were replaced after 

every two experiments to avoid interference due to contaminating species that can accumulate on the 

chamber walls. 

Two sets of reactions were carried out in separate RR and KIE experiments: (1) reactions of OH 

radicals with isoprene, and (2) the reaction of OH with MACR and MVK. For all experiments, n-

 



 
 

heptane, n-octane, and n-nonane were used as reference compounds, for a few experiments also p-

xylene was used as reference compound. Initial VOC mixing ratios were in the range of 10–18 ppmV. 

All liquid VOCs were obtained from Sigma-Aldrich with the following stated purities: isoprene (99%), 

MACR (95%), MVK (99%), n-heptane (99%), n-octane (98%), and n-nonane (99%), and p-xylene 

(99+%). 

VOCs were injected into the chamber already containing 25 L of synthetic air (99.999%, Praxair). 

Isopropyl nitrite (IPN) and NO were added to allow the photochemical production of OH radicals. IPN 

was synthesized in the laboratory using a procedure based on the syntheses of alkyl nitrites described by 

Noyes (1943) and Levin and Hartung (1995). Before initiating any OH-radical reactions by turning on 

the fluorescent lights in the chamber housing, 3–4 measurements were conducted in order to determine 

the stability of the VOC mixing ratios and the stable carbon isotope ratios. Consecutive measurements 

of reaction chamber mixtures took 1–1.5 h, depending on amount of time for the separation and 

preparation of GC-IRMS instrument components for the subsequent measurement. Activating the UV 

lamps resulted in generation of OH radicals: 

(CH3)2HCONO + hν → (CH3)2HCO + NO       (R1) 

(CH3)2HCO + O2 → (CH3)2CO + HO2        (R2) 

HO2 + NO → OH + NO2         (R3) 

Depending upon the desired rate of reactant depletion, 5–60 μL of IPN were injected and 1–5 UV lamps 

were activated per run. Samples of reaction chamber air were taken through a 1/8″ Teflon line at a flow 

rate of 35 mL min–1 using a diaphragm pump. The sample flow proceeded through a six-port sampling 

valve and a 10 cm3 sampling loop. After the conditioning of the sample loop with 70 mL of chamber air, 

the position of six-port valve was pneumatically changed, transferring the 10 cm3 sample in He carrier 

gas to either the GC-FID (RR experiments) or GC-IRMS (KIE experiments). 

The GC-FID measurements used a SiCHROMAT gas chromatograph (Siemens AG, Munich, 

Germany) equipped with a 15 m × 5.0 μm film × 0.53 mm i.d. RTX-5 column (Restek Corp., 

Bellefonte, PA). The initial GC temperature was isothermal at 303 K (held for 5.00 min), and increased 

 



 
 

at a rate of 5.00 K min–1 until the final temperature of 393 K was reached and held for 7.00 min. A split 

ratio of 1:20 was used for the helium carrier gas (99.9999%, Messer) prior to entering the GC column. 

The column flow rate was 7 mL min–1. VOC peak evaluations were performed using a PE Nelson 900 

Series Interface (PerkinElmer Life and Analytical Sciences, Inc., Boston, MA) interfaced to a PC with a 

PE Nelson software package. Each VOC peak was integrated by manually defining the peak boundaries. 

For RR experiments, chamber samples were taken at regular intervals of 0.5 h and continued until the 

reactant VOCs were depleted to <25% of their initial concentrations, which typically occurred between 

5-7 h. A mixture of MACR and MVK (in the Teflon chamber filled with 25 L of synthetic air) was 

monitored for concentration losses, with and without UV irradiation, in the absence of any IPN for 

about 45 h and 50 h, respectively. 

The GC-IRMS measurements used the following combination of instruments: (1) a custom-built 

Online TDS G Large cryofocussing system (Gerstel GmbH & Co. KG, Mülheim an der Ruhr, 

Germany), (2) an Agilent 6890 Gas Chromatograph equipped with a 60 m × 5 μm film × 0.32 mm i.d. 

DB-1 column (Agilent Technologies), (3) a combustion interface, (4) a water trap, and (5) an Isoprime 

Isotope Ratio Mass Spectrometer (IRMS) (GV Instruments, Manchester, UK). The cryotrap 

concentrated the VOCs at 163 K prior to injection onto the GC column by rapid heating. After injection, 

an on column trap was used to focus the VOCs at the top of the capillary column at 213 K. The gas 

chromatograph used the following temperature program: 303 K held for 7.50 min, increased at a rate of 

4.00 K min–1 until the final temperature of 373 K was reached, and held for 35 min (60 min total). The 

helium flow rate through the column was set to 1.8 mL min–1 for all runs. The VOCs eluting from the 

column were converted to CO2 and water in the combustion interface, which consisted of a quartz tube 

packed with 0.1–0.5 mm Cu particles at an operating temperature of 1123 K. Water removal was 

performed by a water trap which consisting of a coiled capillary cooled with liquid nitrogen to 173 K. 

The helium gas stream containing 12CO2 and 13CO2 enters the source of the IRMS through an open 

split at 0.4 mL min–1. CO2 was ionized and separated into three ion beams of m/z 44, 45, and 46, which 

were simultaneously detected in Faraday cup collectors. The resulting, amplified ion currents were 

 



 
 

continuously monitored and stored in digitized form for the evaluation of the isotope traces. For every 

mass trace, peak areas were determined using IRMS integration software. CO2 reference gas with δ13CV-

PDB = –4.62‰ was injected in pulses of 30 s duration near the beginning and end of every experiment (2 

min and 58 min). Peaks representing separated VOCs in IRMS mass traces were automatically 

integrated using MassLynx v4.0i (GV Instruments). Reactant concentrations were proportional to the 

integrated peak areas of the m/z-44 trace and these peak area values were used to evaluate relative rate 

constants. 

Relative rate constants were determined for all VOCs in the KIE and RR experiments. The relative 

rate is the ratio of rate constants, kz/kref, for the studied VOC (VOCz) and a reference VOC (VOCref). It 

was determined through the following equation:
 

         
(1) 

where [VOCz]0 and [VOCref]0 were taken as average concentrations of the VOCs determined before any 

reactions were initiated, and [VOCz]t and [VOCref]t were concentration measurements during VOC loss. 

The relative rate was determined through a linear regression analysis of ln([VOCz]0/[VOCz]t) against 

ln([VOCref]0/[VOCref]t), where the slope was kz/kref. The experimental rate constant, kRR, was determined 

through multiplication of the slope kz/kref with the literature rate constant of the reference compound, 

kref. The experimental uncertainty of kRR was determined from the standard error of the slope of 

Equation (1) and the reported uncertainty of kref. 

Stable carbon delta values and VOC peak areas were used to determine 12C/13C KIEs from GCC-

IRMS measurements. The stable carbon isotope form of the KIE is equivalent to the ratio k12/k13 where, 

given the same reaction, k12 is the rate constant for the reactant containing solely 12C atoms and k13 is the 

rate constant for the same reactant substituted with one 13C atom. The KIE was determined from the 

slope of a linear dependence between the concentration and stable carbon isotope ratio of the studied 

VOC (Rudolph et al., 2000; Anderson et al., 2003) using the following equation: 

 



 
 

.       (2) 

Here, the integrated VOC peak areas from the m/z-44 signal trace are proportional to the concentration 

values for the sample compound [12C]s,t and [12C]s,0. The quantities δ13Ct and δ13C0 are stable carbon 

isotope ratio delta values expressed as per mille difference values relative to V-PDB (Vienna Pee Dee 

Belemnite). Equation (2) was plotted as ln(12Ct/12C0) against ln[(δ13Ct+1000‰)/(δ13C0+1000‰)] where 

a straight line was formed with a zero y-axis intercept. Given the definition of the carbon KIE as k12/k13, 

the slope (k12/k13)/(1–k12/k13) of Equation (2) allowed for the determination of the KIE using, 

.           (3) 

A final calculation transforms the KIE into the commonly used epsilon value: 

.          (4) 

 

3. Results and Discussion 

3.1. Wall Losses, Relative Rate Experiments, and Determination of KIEs 

First-order loss rate constants of (1.25±0.07)×10–6 s–1 and (7.86±0.07)×10–7 s–1 were determined for 

MACR and MVK, respectively, in the absence of lighting inside the 25 L chamber. Cross sections for 

MACR and MVK (260–390 nm) partially overlap with the emission spectra of the UV lamps inside the 

reaction chamber enclosure, which have an emission maximum at 350 nm (Figure 2). Since UV 

radiation of the reaction mixture was required for the in situ generation of OH radicals in RR and KIE 

experiments according to Reaction (R1), studies of the photolytic loss of MACR and MVK in the 

absence of OH radicals were conducted. From the experiments irradiating mixtures of MVK and MACR 

in synthetic air in the absence of IPN, photolytic loss rates were determined. MACR experienced a loss 

rate that was within the uncertainty of the measurement identical to the wall loss rate. For MVK the 

results indicate a small photolytic loss leading to an overall first-order loss rate constant (wall loss + 

 



 
 

photolysis) of 1.0×10–6 s–1. For the typical duration of the RR and KIE experiment of 8–10 hours, these 

losses would contribute ~4% and ~2.5% to the total loss of MACR and MVK, respectively. The 

measured peak areas of MACR and MVK were corrected for these losses. 

Statistics were determined for repeat pre-reaction measurements of VOCs for all experiments 

performed. From 28 individual measurements of the VOC mixture inside the reaction chamber (from a 

total of 10 KIE experiments), the mean relative standard deviation for peak areas was 1.20% and the 

mean standard deviation for δ13C values was 0.37‰. The corresponding 95% confidence intervals are  

(0.04–2.15%) and (0.05–0.63)‰ for standard deviations of peak areas and δ13C values, respectively.  

These variations in integrated peak area and δ13C are within expected error bounds for this type of 

instrumentation and have been observed in previous KIE studies (e.g. Iannone et al., 2003; Anderson et 

al., 2003, 2007a,b). These variations are small compared to the overall changes that occur from the 

reaction of the chamber VOCs with OH radicals. 

Relative rate comparisons were conducted for selected VOCs within both the GC-FID and GC-IRMS 

experiments. Figure 3 provides an example of a relative rate plot for the reactions of MACR, MVK, n-

heptane, and n-octane with OH radicals using n-heptane as reference VOC. The uncertainty for each 

experimentally-determined kRR value was derived from the standard error of the relative rate analysis, 

and the uncertainty of the reference compound. Uncertainties associated with mean values for kRR were 

determined from 1σ standard errors. A summary of mean experimental rate constants (kRR), and 

comparisons to literature values, is provided in Table 1. From GC-FID data, all kRR values agree, within 

the uncertainty of the measurements, with literature rate constants except in the case of n-hexane. It 

should be noted that a relatively high uncertainty in kRR for this reaction was determined In comparison, 

the average kRR values obtained from GC-IRMS data are similar but have lower uncertainties due to 

better agreement of repeat measurements. The kRR value determined for the MVK + OH reaction, is 

slightly above the range of values expected from literature and GC-FID results. However wall losses 

and photolysis, being very small, cannot explain such a discrepancy, Nevertheless, the results confirm 

 



 
 

the expectation that the measured changes in VOC concentrations are indeed due to reaction with the 

OH radical. 

Figure 4 provides an example of a KIE determination through the least-squares analysis of several 

data points and the subsequent calculations required to obtain the OHε value. Linear regression analyses 

used a simple regression model and thus did not consider the individual errors of the data points. Those 

data points resulting from integrations where peak overlaps were observed were excluded from the fit 

procedure. Nevertheless, four or more data points were available for every KIE evaluation and r2 values 

were often above 0.99 and reactants typically underwent >60% depletion (>80% for isoprene). Table 2 

provides a summary of OHε values determined in this study. Uncertainties of mean OHε values were 

based on standard errors of the mean (1σ). Errors for individual OHε values were determined using the 

standard error of the slope from the linear regression analysis. 

3.2. Comparison with previously published data 

The average isoprene OHε value of (6.56±0.12)‰ from this study is similar to the only other reported 

values of (8.23±0.97)‰, (6.18±0.22)‰, and (6.40±0.24)‰ (Rudolph et al., 2000). The 95% confidence 

interval of 6.10–6.80‰ for the five measurements reported here agree with two measurements from the 

previous study. The uncertainty for the isoprene + OH KIE value of (8.23±0.97)‰ was due to the 

relatively poor fit of the data points to the linear dependence of equation (2), whereby the r2 value was 

0.9552 (the other two values exhibited r2 values > 0.995). Considering this and the new OHε values for 

isoprene presented here, the higher value of (8.23±0.97)‰ from the previous study probably is an 

experimental outlier. Excluding this outlier, an average value of (6.56±0.12)‰ was obtained.  

In several previous KIE studies for specific gas-phase reactions (e.g. n-alkanes + OH, alkenes + O3, 

etc.), KIE values were fitted as a function of the inverse carbon number, NC
–1 (Rudolph et al., 2000; 

Iannone et al., 2003, 2008; Anderson et al., 2004a,b, 2007a,b). As can be seen from Figure 5a the 

average isoprene OHε value from this study agrees within its uncertainty with predictions from the 1-

alkene KIE dependence of OHε(‰) = (34.9±1.2)NC
–1, which can be derived from six KIE values reported 

by Rudolph et al. (2000) and one from Anderson et al. (2004b).  

 



 
 

To date, there are no previously published KIE values for the reactions of MVK and MACR with OH 

radicals. The average OHε values for MACR and MVK are both lower than predicted from the NC
–1 KIE 

dependence. This is similar to the findings reported by Iannone et al. (2008) for the KIEs of the reaction 

of MVK and MACR with ozone. Iannone et al. (2008) showed that an inverse dependence on molecular 

mass (MM) will also provide a useful approximation. Specifically, the MM–1 KIE dependence provides a 

better prediction for the KIEs of the MACR and MVK reaction with ozone. Figure 5b provides a 

comparison of available KIE data with a fit of the KIEs for reactions of 1-alkenes with OH radicals to a 

MM–1 dependence (OHε(‰) = (487±18) MM–1). Indeed, similar to the ozone reaction KIEs, the MM–1 

dependence also provides a better prediction of the OH radical reaction KIEs for MVK and MACR. 

A general comparison of the KIEs for reaction of alkenes with OH radicals and those for reaction with 

ozone reveals that the OH-radical and ozone reaction KIEs are of similar magnitude (Figure 6). The data 

points are very close to the 1:1 line and for very few data points the difference between measurements 

and a 1:1 correspondence exceeds the experimental uncertainties. This may be partly due to the 

substantial uncertainties of the KIE values, which were taken from 2 σ standard errors of mean values. 

Nevertheless, even for O3ε–OHε data pairs with low uncertainties, the difference between OH-radical and 

ozone reaction KIEs is small. For example the O3ε values of (8.38±0.42)‰ for MACR, (8.01±0.07)‰ 

for MVK, and (8.40±0.11)‰ for isoprene reported by Iannone et al. (2008) are higher than the 

corresponding OHε values  of (6.47 ± 0.27)‰ (MACR), (7.58 ± 0.47)‰ (MVK) and (6.56±0.12)‰ 

(isoprene) from this study. Based on the uncertainties, these differences cannot be completely explained 

by experimental errors. However, these differences are still less than 2‰.   

It is beyond the scope of this paper to discuss the implication this finding has for the interpretation of 

details of the chemical mechanisms causing isotope fractionation during reaction of alkenes with ozone 

and OH radicals. However, as will be seen in the following section these similarities in magnitude for 

OHε and O3ε will have an important impact on the interpretation of isotope ratio measurements for MVK, 

MACR, isoprene and other alkenes in the troposphere.  

 

 



 
 

3.3. Application of KIEs toward interpretations of ambient studies of VOCs 

The change in the isotopic composition of an alkene relative to its source composition can be 

calculated by: 

      (5) 

where δ13C and 0δ13C represent observed and emitted carbon delta values for the alkene, respectively; 

(t·[OH])av and (t·[O3])av represent the products of the average age of the alkene and the average 

concentrations of OH radicals and ozone, respectively; OHk and O3k are rate constants for reactions of 

OH and O3 with the alkene, respectively; and OHε and O3ε are KIE values for reactions of OH and O3 

with the alkene, respectively. 

 The KIE comparison in Figure 6 indicates that for alkenes the relative difference between OHε 

and O3ε  generally is less than 25%. Consequently the change in isotope ratio due to photochemical 

processing (δ13C – 0δ13C) will depend only to a minor extent on the type of reaction. Even in extreme 

cases of the loss being entirely due to either ozone or OH radical reaction the change in isotope ratio 

will vary by 25% or less. The accuracy of presently available methods for isotope ratio measurements of 

VOCs is typically in the range of 0.5‰ to 2‰, depending on available sample volume, compound, and 

atmospheric mixing ratio. When considering the additional uncertainty created by possible variations in 

isotope signatures of VOC sources, it is evident that reliably determining the change in isotope ratios 

between emission and observation with a relative accuracy substantially better than 25% will only be 

possible in exceptional cases. 

 While the similar magnitude of the O3- and OH-reaction KIEs seriously limits the use of isotope 

ratio measurements to identify the type of alkene loss reactions, it significantly improves the possibility 

of using isotope ratio measurements to differentiate between chemical loss and mixing processes as 

cause for changes in VOC mixing ratios. Using OHε ≈ O3ε ≈ ε we can modify Equation (5): 

       (6) 

 



 
 

Since OHk(t·[OH])av + O3k(t·[O3])av describes the combined loss due to reaction of the alkene with O3 and 

OH radicals, Equation (6) allows a quantitative estimate of the change in concentration which can be 

explained by chemical processing alone, that is in the absence of mixing and dilution processes. 

 4.  Conclusions 

The KIE for reaction of isoprene with OH radicals determined in this study is consistent with 

previously reported measurements by Rudolph et al. (2000). The higher reproducibility of these new 

measurements allows for the determination of a substantially improved best estimate of ε = 

(6.56±0.12)‰ for this reaction. The MACR and MVK OHε values are the first measurements of this kind 

reported in literature. Combined with the recently published KIEs for the corresponding ozone 

reactions, this provides the necessary information to use isotope ratio measurements to study some of 

the processes determining the atmospheric mixing ratios of isoprene as well as MVK and MACR. 

Specifically, isotope ratio measurements will be useful to quantitatively differentiate between the 

influence of chemical loss and mixing on changes in the atmospheric mixing ratios of isoprene, MVK, 

and MACR, as well as of other alkenes.  

The semi-empirical relations between carbon number or molecular mass and KIE allow predictions of 

ε values with the necessary accuracy to be used in quantitative evaluations of the photochemical age of 

alkenes. Moreover, the KIEs for reaction of light alkenes, isoprene, MVK and MACR with OH radicals 

are large enough to result in measurable changes in carbon isotope ratios as consequence of atmospheric 

processing. 

The finding that carbon KIEs for reactions of alkenes with OH radicals are very similar in magnitude 

to the KIEs for the corresponding reactions with ozone has important consequences. Carbon isotope 

ratio measurements will not be well suited for differentiating between alkene loss due to reaction with 

ozone or OH radicals. However, since reaction with ozone or the OH radicals are the only relevant 

atmospheric loss reactions for most alkenes, isotope ratio data can be very valuable to obtain insight into 

the role of loss processes in determining the atmospheric mixing ratios of alkenes. Specifically, it is 

 



 
 

expected that combining isotope ratio and mixing ratio measurements will help to quantify the 

contribution of photochemical loss processes to observed changes in mixing ratios. 
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Figure 1. System schematics used for relative rate (RR) and carbon kinetic isotope effect (KIE) 

experiments using GC-FID and GC-IRMS systems, respectively. For all GC-IRMS experiments, the 

heartsplit valve remained closed and all eluate from the DB-1 column was sent to the combustion 

furnace. 

 



 
 

 
 

 
Figure 2. Absorption cross sections of MACR and MVK at 298 K. Also shown is the spectral power 

distribution for the F40/350BL fluorescent lamp. Cross section data taken from Gierzcak et al. [1997]; 

lamp data provided by Osram Sylvania Inc.

 



 
 

 

 

 
Figure 3. Example of a relative rate plot for the reactions of MACR, MVK, and n-octane with OH 

radicals in a GCC-IRMS experiment, using n-heptane as the reference VOC. Slopes correspond to 

kz/kref, which were used to determine the relative rate constants kRR for each VOC + OH reaction. 

 



 
 

 
 

 

Figure 4. Example of the graphical determination of stable carbon KIE value for the isoprene + OH 

reaction through a least-squares analyses. The slope of Equation (2) is equivalent to the slope of the 

linear-regression line and was used to obtain the KIE value. 

 



 
 

 
 

 

 



 
 

 
 
Figure 5. Dependence of 1-alkene and diene OHε values to the inverse carbon number (NC

–1, graph a) 

and inverse molecular mass (MM–1, graph b). The fit equations are OHε(‰) = (34.9±1.2)NC
–1 and 

OHε(‰) = (487±18)MM–1 for graphs a and b, respectively. Previously published data provided by 

Rudolph et al. (2000) and Anderson et al. (2004b).

 



 
 

 

 
 

 

 

 

 

 

 

 

 
Figure 6. Comparison between OHε and O3ε values for alkene–OH and alkene–O3 reactions, 

respectively, from this and previous studies (see text for references). The alkenes are: (a) 1-hexene, (b) 

MACR, (c) isoprene, (d) 1-butene, (e) 1,3-butadiene, (f) MVK, (g) E-2-butene, (h) propene, and (i) 

ethene. The dashed line represents a hypothetical perfect agreement between the OHε and O3ε values. 

 



 
 

 
 
 
TABLE 1: Comparison between Mean Relative Rate Constants from the GC-FID and GCC-
IRMS Studies of this Investigation and Literature Rate Constants (298 K)

OHk, 10–11 cm3 molecule–1 s–1

Studied VOC 
This work, GC-FID. This work, GCC-IRMS. Literature Value 

Isoprene 11.5 ± 3.50 12.6 ± 1.34 10.1 ± 2.5a

MACR 2.74 ± 0.71 3.43 ± 0.10 3.35 ± 0.84b

MVK 2.06 ± 0.55 3.09 ± 0.10 1.88 ± 0.47b

n-Hexane 0.90 ± 0.25 — 0.55 ± 0.08a

n-Heptane 0.68 ± 0.19 0.59 ± 0.05 0.70 ± 0.11a

n-Octane 0.79 ± 0.21 0.85 ± 0.08 0.87 ± 0.01a

n-Nonane — 1.00 ± 0.03 1.00 ± 0.15a

p-Xylene 1.33 ± 0.48 1.02 ± 0.21 1.30 ± 0.20c

 
aAtkinson (1997). bAschmann and Atkinson (1994). cAtkinson and Aschmann (1989). 
 

 



 
 

 
 
TABLE 2:  Summary of Stable Carbon OHε Values for the Reactions of Isoprene, MACR, and 
MVK with OH Radicals at (298±4) K. 

Compound 
Extent of Reaction, 

% 
Number of 
Data Points 

r2 Statistic from 
KIE Plot 

OHε, ‰ 

94.3 5 0.9993 6.46±0.10 Isoprene 

85.6 4 0.9986 6.89±0.18  
88.1 6 0.9959 6.24±0.20  
77.1 4 0.9985 6.60±0.18  

 83.3 6 0.9997 6.60±0.05 

  Mean: 6.56±0.12a

  95% Confidence Interval: 6.10–6.80 

     
58.2 6 0.9853 7.14±0.44 MACR 

80.5 6 0.9884 5.66±0.31  
86.1 5 0.9985 6.43±0.25  
55.9 5 0.9895 6.37±0.39  

 61.7 7 0.9998 6.74±0.20 

  Mean: 6.47±0.27a

  95% Confidence Interval: 5.40–7.00 

     
66.4 6 0.9990 8.83±0.24 MVK 

83.6 6 0.9989 6.71±0.12  
87.5 5 0.9975 6.89±0.20  
56.2 5 0.9925 7.13±0.65  
63.7 6 0.9983 8.33±0.44  

  Mean: 7.58±0.47a

  95% Confidence Interval: 5.73–8.50 

 
aUncertainty was determined by the standard error: σ(n–1)–0.5, where σ represents the standard deviation 
of the averaged OHε values, and n represents the number of OHε values included in the calculation of the 
mean. 

 

 


