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Poincaré and complex function theory

JEREMY GRAY

1 Introduction

Poincaré is still well known for the mathematical work that first made his
name : his discovery in 1880-1881 of automorphic functions. New documents
and insights were added in [16], which can also be consulted for references
to the well-known history of his work in this area. He is also remembered for
one further theorem that grew out of that early work : the uniformisation
theorem, which he sketched a proof of in 1883 and then proved rigorously in
1907, as did Koebe independently.! The rest of his numerous contributions
to complex function theory are more scattered and do not seem to have
been the focus of much attention.? In this paper I survey what he did and
argue that they tell an eloquent story not only about the state of the subject
in the years around 1900 but about Poincaré’s place in the mathematical
community of his day. To understand either of these it is necessary to give a
quick summary of the prior development of complex function theory, which
was growing rapidly into a central topic in all mathematics, and that will
occupy the first half of this paper. The second half will consider Poincaré’s
contributions. We will see that although he was actively involved in many
aspects of the subject, his influence is scarcely to be noticed in the many
books that were published, and I will investigate why that was and what it
may tell us about relationship between research and teaching in the years
around 1900.3

2 The first textbooks on complex function theory

Cauchy was the first mathematician to appreciate that within the class of
functions from R? to R? there is a significant subclass of functions from
C to C and to begin to spell out their distinctive properties. He apprecia-
ted complex function theory on intrinsic grounds : it was a new subject,

1 At great length in [24] and numerous other publications of the time.

2 For an account from a modern mathematical perspective, see [55].

3 The first full-length history of complex function theory, in which the issues in this
essay are explored in greater detail, is given in [6] (to appear).

P.-E. Bour, M. Rebuschi & L. Rollet (eds.), Construction, 1-20.
© 2010, the author.



2 Jeremy Gray

with fascinating implications for evaluating integrals, but essentially the
theory was about what happens when you do mathematical analysis with
complex variables. Riemann, on the other hand, was developing complex
function theory in order to do something else : to study Abelian functions,
differential equations and the distribution of the prime numbers. His ap-
preciation of the merits of the new subject was not Cauchy’s. Weierstrass
began closer to Riemann’s opinion, and indeed on almost the same theme,
hyper-elliptic functions, which are a special case of Abelian functions. Later,
and consistent with his position in Berlin, he was to build up the subject of
complex function theory in its own right (thus endorsing Cauchy’s opinion
if not his methods) and to put it to use.

So for Riemann and Weierstrass complex function theory, whatever it
might be, was a preliminary. The real focus of interest was ‘Abelian functions,
a vast and misty generalisation of elliptic functions that had themselves only
been in the literature since the late 1820s (the famous work of Abel and
Jacobi). Even these functions were not properly understood, and one of the
great forces promoting complex function theory was the idea that it would
make good sense of the elliptic functions themselves. For, on any account
and however formulated, elliptic function theory is about complex-valued
functions of a complex variable.

The task of isolating and pulling together the foundations of a theory
of complex functions of a complex variable, which interested Cauchy only
slightly, was carried to success by two of his close followers and co-religionists,
Briot and Bouquet, who, like Cauchy, were attracted to the Catholic Right
and the Jesuits, and therefore close to Cauchy in the master’s final years.
Their book [8] has the distinction of being the first on the subject of com-
plex function theory. 40 of its 326 pages set out the general theory, the rest
puts it to work to define the elliptic functions in this way and deduce their
major properties, going via the theory of differential equations to elliptic
functions as doubly periodic functions.

The first textbook in German on complex function theory was written
not many years later. The author was Heinrich Durege, a friend and col-
league of Riemann’s who had passed through Goéttingen, and who also had
access to a set of Riemann’s lectures published by Gustav Roch [?]. Du-
rege’s textbook [14] proved to be quite successful, it ran to four editions
in his lifetime and was translated into English for the American market in
1896. Mention should also be made of the book by Schlémilch (who, by the
way, was the person who encouraged the young Roch to go to Gottingen
and study with Riemann). His Vorlesungen [48] contains enough material
on the subject to count as only the third book on complex function theory
to be published, and it ran to several editions. Pages 35 to 111 cover func-
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tions of a complex variable, and further chapters look at elliptic integrals
and elliptic functions. He, somewhat like Briot and Bouquet, developed the
theory of complex function and then used the theory of Riemann surfaces
to deduce the properties of elliptic functions from the elliptic integrals.

The books by Briot and Bouquet, Durege, and Schlémilch did more than
put elliptic function theory on a sound footing. They established a textbook
subject — complex function theory — with reasons for studying it. The subject
was more than a preliminary : it had its own methods, distinct from the
theory of functions from R? to R?, and its own charm (the residue theorem)
quite independent of the fact that it grounded elliptic function theory. With
these books it became possible to speak of a genuine new subject within
mathematics.

Briot and Bouquet’s route up Mont Cauchy proceeded as follows. They
said a function is monodromic if it is single-valued in its domain, and mono-
genic if it is complex differentiable. They then showed that such a function
satisfies the Cauchy-Riemann equations, an-observation which is a common-
place today but the significance of which had only dawned on Cauchy in the
late 1840s. Briot and Bouquet added that such a function is also conformal
when the derivative does not vanish. They then defined a function to be sy-
nectic (the modern word is holomorphic)n if it is monodromic; monogenic,
finite and continuous in the entire plane.

Throughout this period among the canonical examples of complex func-
tions were such functions as square roots, and quite generally nth roots and
the logarithm function, none of which are single-valued on the entire com-
plex plane. For that reason they are not considered functions in the modern
sense of the term, but they were then, and Cauchy had dealt with them by
first cutting the plane to reduce them to a single-valued branch on the cut
plane, which could then be studied by letting the independent variable move
in the plane and cross the cut. This ad hoc solution to a genuine difficulty
was the best that Cauchy had been able to come up with, and Briot and
Bouquet could do no better.

Central to Cauchy’s theory was the study of the integral of a single-
valued complex function taken around a closed path. Briot and Bouquet
gave a proof using the calculus of variations to show that a function which
is synectic in a portion of the plane if has an integral along arcs in that
domain that depends only on the end points. From this they deduced the
Cauchy integral theorem : if f(2) is a synectic function in a domain, . is
a point in that domain, and -y is a simple closed curve in that domain that
enclosed ¢ then

10 = o [ 122

2 z—C
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As they then quickly showed, still following Cauchy, it follows that sy-
nectic function is infinitely differentiable, and (by a convergence argument
akin to the maximum modulus principle) a function synectic in a disc has a
convergent power series expansion in the disc. Moreover, the derivatives of
a synectic function are synectic. Cauchy had also shown how to deal with —
the concept of residue and the terminology were created by him in the 1820s.
As he showed, and in their turn Briot and Bouquet, functions with infinities
have (Laurent) expansions. It had been shown by Liouville in the 1840s that
a function which monodromic and monogenic everywhere in the plane must
become infinite somewhere. Briot and Bouquet took this to-mean what the
elementary examples of rational and elliptic functions confirm, that there-
fore every non-constant synectic function will take every possible value, and
they deduced that two monodromic and monogenic function with the same
zeros and infinities are constants multiples of each other. This was enough
abstract theory for them, and they now turned to recap their earlier study
of differential equations, upon which they went on to base their theory of
elliptic functions. Not only did this free the theory of elliptic functions from
any dependence on elliptic integrals with their confusing two-valued inte-
grands, it meant that Briot and Bourquet denied themselves the chance to
show how real integrals can be evaluated by Cauchy’s calculus of residues.

Durege’s route up the Riemannberg in his [14] was more thorough be-
cause it was offered as the whole of a book and not a mere preliminary. He
explained the arithmetic of complex numbers before saying that a function
is a function of a complex variable if it is complex differentiable. Such a
function satisfies the Cauchy-Riemann equations (and conversely, he said,
as had Riemann) and is conformal when the derivative does not vanish.
Many-valued functions are studied by considering the corresponding Rie-
mann surface, not by cutting the complex plane. He used Green’s theorem
to show that the integral of a nowhere infinite function of a complex va-
riable around a closed contour in the plane vanishes, and then he deduced
the Cauchy integral theorem and the Cauchy residue theorem for function
of a complex variable with simple infinities. As was standard since the work
of Cauchy, and very clear in the lectures by Riemann, such functions are in-
finitely differentiable and have convergent power series expansions. Durege
also followed Riemann in noting that, because the real and imaginary parts
of a complex function are harmonic, they take their maxima and minima
on the boundary of their domains. He then deduced Liouville’s principle,
that a function of a complex variable defined everywhere in the plane must
become infinite somewhere, and followed Briot and Bouquet in believing
that this implied that such a function will take every possible value (or it is
a constant). Durege concluded his book with the very Riemannian topic of
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branch points and non-simply connected domains.

But the person to whom the task fell of getting complex function theory
right was the third of the founding fathers, and a very different mathema-
tician indeed : Weierstrass. Weierstrass defined an analytic function by a
power series convergent in some disc and by the analytic continuation of
this ‘function element’ as he called it. It is well known, and has recently
been described in [52], that Weierstrass had a dislike of the integral, and
after a few (unpublished) papers using it in the 1840s it disappeared from
his repertoire. Weierstrass also distrusted the Cauchy-Riemann equations
on the grounds that they were a pair of partial differential equations and
as such examples of a poorly understood mathematical entity and therefore
not well suited to the foundations of a subject.

If the work of Cauchy and Riemann lent itself to occasionally misty views
the Weierstrass plateau required a steep ascent of its own and then a long
march that exchanged the dubious pleasures of intuition for the sturdier
virtues of rigour. Weierstrass based his lectures — he never wrote a book
on complex function theory but required people to come to him and listen
— on a theory of convergent power series, which define function elements,
and analytic continuation, Single and many-valued functions are studied in
this way. Gradually he isolated the central concepts : he was the first to
distinguish between poles or finite singularities and essential singularities,
and to show the falsehood of the claim that a non-constant analytic function
takes every value. In its place he put the Casorati-Weierstrass theorem,
which says that in the neighbourhood of an essential singularity an analytic
function gets arbitrarily close to every value. Analytic continuation of an
analytic function proceeds until it can go no further ; the points, curves, and
regions where it cannot be done form what he called the natural boundary
of the function (a concept Cauchy had missed and which Riemann did not
attach a central role to).

Weierstrass continually reworked his theory and frequently revised his
lectures on the subject, which formed the first quarter of his two-year four-
semester lecture cycle in Berlin. In the 1870s he was happy to add his repre-
sentation theorem, which describes the possible zero set of a complex func-
tion, and not long afterwards Mittag-Leffler contributed his complementary
theorem on the possible singularities of a complex function. representation
theorem.

The emphasis on power series and algebraic considerations, to the exclu-
sion of much geometry and any interest in the integral and Cauchy’s integral
and residue theorems are simply explained [5]. Weierstrass’s lifelong ambi-
tion was to do for Abelian functions what had already been done for elliptic
functions. Abel and Jacobi had begun the process of giving a formal complex
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theory of the functions that arise by inverting elliptic integrals. Subsequent
mathematicians took up the task of creating a rigorous theory of complex
functions and placing elliptic functions securely in the new theory, a task
accomplished most successfully by Weierstrass himself. However, not only
was there not a satisfactory theory of Abelian functions, it has been argued
by Jacobi that any such theory would have to be based on a theory of com-
plex functions of several variables. Weierstrass agreed, and it became his
life’s mission to create a theory of complex functions of several variables
and to show how the theory of Abelian functions grew out of it. This am-
bition determined his preference for the method of power series over that
of either Cauchy or Riemann, because neither the Cauchy integral and resi-
due theorems nor the Cauchy-Riemann equations generalise well to several
variables. Weierstrass always sought to cast the single-variable theory in a
way that would generalise to several variables, and for all his considerable
success with a single variable he was unable to clarify. the major features
of the several variable theory or to make the progress he had hoped for. In
this respect his work was a mixture of some insights, some unproved claims,
and some actual errors.

Weierstrass also had an aversion to publishing, and so the first German
textbooks on complex function theory were largely Riemannian: A year after
Durege’s book came Carl Neumann’s [29]. Its first edition followed a careful
presentation of the idea of a Riemann surface with an account of hyperel-
liptic functions (the second edition went on to consider Abelian functions
in general). Casorati, the leading Italian in the field and the author of the
first Italian book on the subject, also chose to give a deliberately Rieman-
nian account in his Teorica [11], from the opening definitions to the proof
of the Cauchy theorems and the deduction that analytic functions have po-
wer series expansions. He intended to write a second volume on elliptic and
Abelian functions, but-sadly he never did. The first Weierstrassian book was
Thomae’s second book on complex function theory, his Elementare Theorie
[50]. It was much more elementary than his first, Riemannian text book,
and it took a strictly Weierstrasian route because, said Thomae, there was
no Weierstrassian textbook and it was unreasonable to expect the students
to learn it on the own.

3 Later French textbooks in complex function theory

Cauchy’s approach to complex analysis, however briefly it was treated by
Briot and Bouquet, was naturally attractive to a French audience. It offered
a natural starting point, a good range of standard techniques, and you did
not have to go to Berlin to learn it. When French mathematics began to
recover as a result of the reforms that followed the defeat of the Franco-
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Prussian war, Hermite and Jules Tannery encouraged their doctoral students
to write theses on various aspects of German (largely Riemannian) complex
function theory. Bertrand also devoted part of his Traité on analysis to
complex analysis [2], and while he inclined to present the theory of complex
integrals as a way to evaluate real integrals he did not agree with Briot
and Bouquet that Puiseux’s treatment of integrals of many-valued functions
was adequate and instead gave an account of Riemann surfaces, the first,
therefore, in French. In his review of the book Darboux welcomed this part
as being the first to show a proper understanding of this difficult subject and
therefore to offer the hope that Riemann’s ideas would not be abandoned.
Briot and Bouquet for their part, reverted to Puiseux’s account and added
the Clebsch-Gordan theory of fundamental loops when they wrote their
the second book, the Théorie des fonctions elliptiques [9] ~ which is very
different from the first — and they never acknowledged a direct influence of
Riemann.

This dichotomy marks the beginning of what one might call a policy
decision among French authors. Given that Cauchy and Riemann largely
agreed about where to start (with the definition of complex differentiability
and the derivation of the Cauchy-Riemann equations) mathematicians faced
with the sheer profusion of Cauchy’s ideas and the greater focus and clarity
of Riemann’s had to decide if their treatment was intended to illuminate
many-valued functions and, if it was, if the difficulty of understanding a
Riemann surface has other merits that outweigh the ad hoc approach via
cuts.

Hermite, for example, when he presented his Cours of 1880/81 at the
Faculty of Sciences at the Sorbonne did not commit himself to a definition of
a complex analytic function, and in the opening chapters showed a marked
allegiance to the early work of Cauchy. But then he gathered speed and
used Riemann’s method (a Green’s theorem argument) to prove the Cauchy
integral theorem and so climb Mont Cauchy to the result that holomorphic
functions are analytic. Then he continued along a Weierstrassian path : poles
and essential singularities are distinguished and the Casorati-Weierstrass
theorem proved ; the Weierstrass and Mittag-Leffler representation theorems
are proved, and then he turned to elliptic functions.

In the years 1885 to 1891 the other Laurent (H., not Pierre after whom
the Laurent series is named) published his seven-volume Traité [26]. As
one might suppose in a work of this size an attempt was made to cover
everything and, as one might also expect, not everything was described
correctly. For example, the existence of the higher derivatives of a function
that is once complex differentiable is assumed without proof. Nor did he
see that there was anything to prove when he turned to (Pierre) Laurent’s
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theorem. In fact, oddly enough, the book improved when its author turns
to the Riemannian parts of the theory.

To draw this survey of textbooks on complex function theory to an end
some general remarks can be made. There was something of a consensus in
France that the elementary theory would be treated as Cauchy, or perhaps
Briot and Bouquet, had presented, but that the higher reaches of the the
theory would be presented in Weierstrassian terms, the bridge from the
Cauchy-Riemann equations and the use of the integral to the use of power
series methods (and infinite products) being provided by the Cauchy integral
theorem. Then, with the foundations of the new theory in place the young
researcher could be expected to move into the realms of elliptic function
theory, or, less likely, into the deep waters of Abelian function theory. But if
that route was to be taken nothing prepared anyone for what they might find
except the difficult, and frankly sketchy original literature. In this respect
Simart’s doctoral thesis of 1882 is instructive. Simart described Riemann’s
theory of algebraic functions and (Riemann) surfaces as far as the Riemann-
Roch theorem, and at the end he noted that he had just come across Klein’s
little book emphUeber Riemanns Theorie der algebraischen Funktionen und
ihrer Integrale [23], which he hoped his ‘preliminary study’ would make it
easy to read. Altogether a painful measure of the gap between French and
German work on this important subject.

4 Poincaré

Poincaré was, of course, only recently out of his student days in 1880, and
the origins of his work on Fuchsian and Kleinian automorphic functions lay
in a prize competition of the Paris Academy of Sciences organised at that
time by Hermite which also aimed to push French mathematicians in the
direction of their German peers. But he was no ordinary student. His work
on automorphic functions in 1881 and 1882 produced a class of functions
that were considerable generalisations of the familiar elliptic functions.* He
studied them by imposing non-Euclidean geometry on their maximal domain
of definition, which was a disc, and his work marks the first use of non-
Fuclidean geometry outside the realm of pure geometry. This work occupied
him for something like four years, and by the time he abandoned the field he
had already taken up the study of lacunary functions — a topic to be defined
in a moment. He had also begun to think about complex functions in two
variables. He was to return to some of these themes some 20 years later and
enrich them considerably. He also raised, even if he did not fully solve, the
question of how many values a many-valued complex function could take,
and investigated the theory of complex partial differential equations (a topic

4 See [44] and the literature cited there.
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outside the them of this paper).

In the course of his work on automorphic functions he was led to propose,
and to sketch a proof of, the uniformisation theorem. As such, it is one of
the first studies in which Riemann surfaces play an essential role. There is
no question that Poincaré and Picard were the first to bring the Riemannian
approach successfully to France, given the stated dislike that Hermite had
for the subject (Darboux might have regarded Bertrand’s book as giving
Riemannian function theory some chance of life, but it took the next gene-
ration to bring it fully alive). But Poincaré’s was not a wholly Riemannian
understanding of the subject. The Fuchsian and Kleinian functions, as he
noted, typically have the boundary of the non-Euclidean disc as their natu-
ral boundary, even if they can be made to define another analytic function
outside the disc. This means that they cannot be continued analytically
across the circle that bounds the disc. The concept of a natural boundary
is very much a Weierstrassian one, present in the work of neither Cauchy
nor Riemann.

The presence of a natural boundary in these examples raises the question
of whether the two functions on the two domains (inside and outside the
circle) should be considered as nonetheless one function, or as two. In 1883
[32] Poincaré showed that it is possible to divide the unit circle into two
arcs A; and A, and find two (single-valued) functions ®; and ®5 with these
properties : ®; is analytic in C \ A;; ®5 is analytic in C \ As; and the
sum ®; + P, defines a function F inside D, the unit disc, and a function G
outside D. This means that the function F has an entirely arbitrary analytic
continuation outside D to the function G.

Another aspect of Poincaré’s work that is-both Riemannian and Weiers-
trassian was his contribution to the Poincaré-Volterra theorem. This is the
claim that a many-valued analytic function can take only countably many
values at a point, or, alternatively, that a Riemann surface can only be a
countable covering of the sphere. It seems that Weierstrass was aware of
this result in 1885, to judge by letters he wrote to Schwarz and Kovalevs-
kaya, but he did not publish anything about it. He had learned the result
some years before from Cantor, or so Cantor claimed when in 1888 Vivanti
published a flawed version of it. It was Vivanti’s flawed but publicly avai-
lable proof that inspired first Poincaré and then Volterra to give their own,
rigorous versions: The reader is referred to (Ullrich 2000) for a full account.

Another important theme in Weierstrass’s work was his proof that every
analytic function can be written as an infinite product. Indeed, the product
representation is in many ways more informative, because it locates the zeros
of the function and says something about its rate of growth. Weierstrass’s
work of 1876 was followed by Laguerre [25]. Laguerre’s original motivation
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(more akin to that of Weierstrass than Picard) was to show that some
transcendental functions could be thought of as very like polynomials, so
much so that the theorems of Rolle and Descartes about the location of their
zeros applied to them.® To this end he drew attention to primary factors
of the form e*/%(1 — £) which he called of order (“genre”) 1, those of order
zero being functions with no exponential factor. He also showed how one
might determine the order of a given entire function. But he published only
three short notes on the matter in the Comptes rendus for 1882 (and a later
one in 1884) before leaving the field to Poincaré. They were, however, to be
much appreciated by Emile Borel, who savoured Laguerre’s-habit of giving
precise and interesting results without any systematic presentation of the
underlying ideas (see [3]).

Poincaré, however, picked up the baton at once. In [?] he defined an
entire function to be of genre n if its primary factors were of the form
el(@) (1 — %) where P (z) was a polynomial of degree n. He then considered
functions of order zero, and showed that if F is such a function and «
is such that exp (are®) tends to zero as r increases (¢ being fixed), then
exp (arew) F (rew) likewise tends to zero. One can paraphrase this as :
if Fis of genre zero and e®® tends to zero along a ray, then it tends to
zero more strongly than F' tends to infinity ; or, even more shortly, that e®*
dominates F'. As Poincaré noted with regret, this and some other properties
he presented did not characterise functions of genre 0. It was true, however,
that if F’ was of genre n, then exp (aa:"“‘l) dominated F'.

More troublingly, as he noted in a longer but inconclusive paper the next
year [31] it seemed very difficult to establish such basic results as :

1. the sum of two functions of genre n is also of genre n;
2. the derivative of a function of genre n is also of genre n.

Indeed, he said, one could not be sure that the results were true. He was
right to register a doubt : Boutroux [7] showed that pairs of certain types
of function of genre n had a sum of genre n + 1. Borel was among those
who were surprised, and impressed, by Boutroux’s example, which exploited
the fact that some functions of genre p grow like functions of genre p — 1
and order p, as the remarks in his Fonctions méromorphes attest [4, p.
113]. Blocked in this direction Poincaré turned aside, publishing in April on
another topic pioneered by Weierstrass, the theory of lacunary spaces [35]
[36], and in May on the uniformisation theorem [31] [37].

As noted earlier, the only accepted formulation of the hope that Abelian
integrals would produce a theory of Abelian functions was to seek to create

5 Among the functions that behave very like a polynomial is Riemann’s £ function.
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a theory of complex functions in several variables. This remained the case
even though Poincaré’s admittedly difficult theory of Fuchsian and Kleinian
functions offered a single-variable alternative, and in any case a theory of
complex functions of several variables would surely be an interesting thing
to have.

In this context he and Picard first moved beyond Weierstrass in the study
of functions of two variables [45]. This step from one to two is enough to
raise the most salient difficulties. One mathematical aspect of the problem
that Poincaré emphasised was the utility of the equations that replace the
Cauchy-Riemann equations in the several variable setting: There are, in
a sense, too many of them, so the system of equations need not have a
solution, and certainly there will be harmonic functions that are not the
real or imaginary part of a complex analytic functions — contrary to the
case for functions of a single variable. But Poincaré was nonetheless able to
show that in fact one can solve important problems in the function theory
of several variables by working with harmonic functions first.

A function of several variables whose only singularities are poles — points
at which it can meaningfully be said to tend to an infinite value — are called
meromorphic. Weierstrass had claimed in 1880 [53] that a function that is
meromorphic everywhere is also rational, a result that is true for functions
of a single variable, but which he could not prove for functions of several
variables. It was , however, soon proved by Hurwitz and Poincaré indepen-
dently. It implies that if a function is meromorphic on a domain but not a
rational function everywhere then its domain of definition is bounded. Hur-
witz’s argument [21] used induction on the number of variables. Poincaré,
in the papers that mark his first involvement with the complex function
theory of several variables (see [32], [33] and especially [34]), exploited what
analogy he could find with the theory of harmonic functions. He began by
writing down the partial differential equations for the real part of an analytic
function of two complex variables.

If 2z, = x. +iy,, and F = u + iv, then these equations hold for the real
part u (and similar ones for the imaginary part v) :

0%u  0%u
1 — 4+ — =12, ...
( ) ax% + ayg b ’r. b ) 7” b
9%u 0%u
2 =0
@) 0,0z, | opoys
0%u 0%u

Oz, 0y, Oy, 0x,

These equations seem to have been written down for the first time by Poin-
caré in 1883. Weierstrass did not do so, because he was unwilling to base even
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the theory of a single variable on such foundations. These equations make
it plain that there can be no simple relationship with harmonic functions of
several variables, for there are more differential equations than variables. In
particular, there are harmonic functions of four real variables that are not
the real part of a complex function of two complex variables. This is just
one mathematical reason why generalising from one variable was to prove
difficult.

Poincaré then covered the plane C? by “hyperspheres” (open balls of 4 real
dimensions) inside any one of which the given meromorphic function, F', was
representable as a quotient of two analytic functions. For each ball he found
a harmonic function analytic outside the ball and tending to zero at infinity.
These functions enabled him to define a harmonic function ® such that if
at an arbitrary pointF = % , then ® — log|D| was analytic. For this, he
said, it was enough to apply Weierstrass’s proof of Mittag-Leffler’s theorem.
Although the function ® was not an analytic function, he claimed that one
could always find an entire harmonic function G satisfying equations (1)-(3)
and such that the difference ® — G was the real part of an analytic function
U of two variables. It followed that the functions G7 and G defined by the
equations

e¥ = Gy and Fe? = Gy

were entire and that the function F' was their quotient everywhere, F' = %

It seems that this work did not satisfy Weierstrass, who, without mentio-
ning Poincaré by name, noted in 1886 in his [54, p. 137], that the question
was unresolved and some considerable difficulties seemed to lie in the path
of a solution.

The next significant result came in 1890, when Appell gave a proof in [1]
that a function of two variables with four pairs of periods and no essential
singularities at a finite distance can be written as a quotient of theta func-
tions: In his thesis of 1895 [13] Cousin generalised Poincaré’s result to any
dimension and so Appell’s proof became valid for all g.

Then in 1897 Poincaré announced detailed proofs of two of the essential
steps in Weierstrass’s programme for Abelian functions. The second of these
said that every Abelian function can be written as a quotient of theta func-
tions, and Poincaré remarked that Weierstrass had never published a proof
of this result. Details of the proof of this second claim appeared in 1898. To
prove it, Poincaré went back to his work of 1883 [34], in which he showed
that a meromorphic function is a quotient, and modified it to establish that
the entire functions forming the quotient can be taken to be theta functions.

6 Cousin’s paper and Poincaré’s work on this topic are discussed in Chorlay (to ap-
pear).
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In a paper of 1902, written in answer to a request from Mittag-Leffler,
Poincaré proved, amongst other things, that every 2n-fold periodic function
whose periods satisfy the Riemann conditions can be expressed by means
of theta functions. He gave a geometrical demonstration that a modern
commentator [22, p. 163] observes is interesting but not quite satisfactory.
This theorem had, of course, been claimed long ago by Weierstrass, but no
proof had ever been forthcoming. Poincaré had seemingly grown tired of
this, however, and commented tartly at the start of part III of his paper
that although he believed that Weierstrass had given the principles of his
proof in lectures, “be that as it may, the proof has never been made public
and his pupils, if they knew it, have communicated it to no-one”. So he
and Picard had given a proof in 1883, entirely ignorant of Weierstrass’s,
and it only turned out much later, when Weierstrass’s proof of this result
appeared in 1903 in the third volume of his Mathematische Werke that the
proofs were essentially identical. Appell, and later Picard, had then given
other proofs. This new one by Poincaré occupied a middle position between
his first proof and the methods of Cousin.

5 Poincaré and conformal maps in two variables

In his paper of 1907 [41], Poincaré raised the question of the conformal
nature of maps between domains in two complex variables. He considered his
work to be incomplete, although it contained enough material to establish
conclusively that the boundaries of some domains are such that there can
be no conformal map between the interiors of these domains. It follows that
there is no possibility of an analogue of the Riemann mapping theorem
in two complex dimensions, but Poincaré stopped short of giving specific
examples, and the first of these are due to Reinhardt in 1921.7

Poincaré began his paper by observing that in the complex function
theory of a single complex variable, there are two distinct ways of asking
a question about the existence of a conformal map. One, which he called
the local problem, takes as given two copies of C the first of which contains
a curve £ upon which there is a point m and the second of which contains
a curve L upon which there is a point M, and asks if there is an analytic
function regular in a neighbourhood of m that maps m to M and ¢ to £. The
second problem, which he called the extended problem, takes as given two
copies of C the first of which contains a closed curve ¢ bounding a domain

7 The first explicit examples of domains with inequivalent boundaries were given in
[46], where he introduced what are often called Reinhardt domains. As he noted, his
paper marks an advance upon Poincaré’s because it drops the requirement that the map
be regular on the boundary hypersurfaces. It also used quite different methods, being
an ingenious blend of elementary four-dimensional geometry and the use of two complex
variables.
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d and the second of which contains a closed curve £ bounding a domain D,
and asks if there is an analytic function that maps ¢ to £ and d to D. The
former problem is always solvable and in infinitely many ways ; the second
problem has a unique solution via the Dirichlet principle.

The analogous problems for analytic functions of two complex variables
behave very differently, however, as Poincaré proceeded to show. The local
problem takes as given two copies of C2, the first of which contains a three-
dimensional “surface” s upon which there is a point m and the second of
which contains a three-dimensional hypersurface S upon which there is a
point M, and asks if there is an analytic function regular in aneighbourhood
of m that maps m to M and s to S. The extended problem takes as given two
copies of C2, the first of which contains a closed hypersurface s bounding a
domain d and the second of which contains a closed hypersurface S bounding
a domain D, and asks if there is a regular function that maps s to .S and d
to D.

Poincaré showed at once that the local problem will not always have a so-
lution. It is over-determined because it asks for three functions that are the
solutions of four differential equations. So Poincaré turned the local ques-
tion into one about types of surfaces, classified according to their groups
of analytic automorphisms. He observed that is a surface s admits only the
identity analytic automorphism, then the local problem has at most one
solution, else the automorphism can be used to generate a second solution.
Similarly, if two surfaces correspond under an analytic automorphism, their
groups are necessarily conjugate, and so the surfaces belong to the same
class. Poincaré now invoked Lie’s theory of transformation groups to obtain
all the relevant groups, citing Lie Theorie der Transformationsgruppen, vol
111 [27], and Campbell’s [10] to establish that there are 27 possible groups,
and showed explicitly that for most groups there is a hypersurface having
that group as its analytic automorphism group, but some groups corres-
pond to two-dimensional surfaces. It follows that there are hypersurfaces
that not analytically equivalent. Unfortunately, Poincaré’s account was very
unspecific. The hypersurface (hypersphere) with equation 2z 4 2’z = 1 was
discussed, and its group described explicitly (in § 7), but otherwise the nea-
rest Poincaré got to describing a hypersurface with a different group was to
indicate how its equation could be found by means of Lie’s theory.

In § 8 of the paper Poincaré turned to the extended problem in two
complex dimensions. He supposed given an analytic map between the hy-
persurfaces s and S and asked if it necessarily extended to an analytic map
between the interiors, d and D. He found that Hartogs’ theorem said di-
rectly that the answer was “Yes”, and sketched his own proof of that result.
The paper then ended with some investigations of the hypersphere and hy-
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persurfaces “infinitely close” to it, which we shall not discuss.

6 Conclusions

Poincaré contributed in important ways to three topics in the complex func-
tion theory of his day : Fuchsian and Kleinian functions; genre and lacu-
nary series; and functions of several variables including Abelian functions.
Of these, he is well remembered today only for the first. But after him very
little was done in that area of lasting significance — one might say of com-
parable significance — for a long time. In the field of genre and lacunary
series his work was dissolved into the much more elaborate theories of Ha-
damard and, especially, of Emile Borel. As for functions of several variables
and Abelian functions, he is well remembered for his discovery of different
domains of holomorphy, but the rest of his contributions-are hard to eva-
luate because we lack a good history of complex function theory in several
variables, and the modern theory starts with the work of Oka and Henri
Cartan in the 1930s (although Renaud Chorlay has begun to work in this
area, see his paper to appear in Archive for History of Exact Sciences).

How then should we regard Poincaré’s contributions today ? From the
standpoint of elementary complex function theory we can note the follo-
wing. Throughout the period and indeed ever since, the elementary theory
is exclusively concerned with a single variable. Textbook writers increasin-
gly started by climbing Mont Cauchy to the point where they proved that a
holomorphic function is analytic, then they slid over to the Weierstrass pla-
teau for a selection of the topics that are best done that way : the distinction
between poles and essential singularities, the Weierstrass and Mittag-Leffler
representation theorems. Even the Weierstrass theory of elliptic functions,
which is generally regarded-as the best one to start with, is omitted from
most accounts of complex function theory today, and Weierstrass’s aspira-
tion to bring about a complex function theory in several variables is entirely
forgotten. This consensus emerged in the 1890s, it is visible early on in Hil-
bert’s lectures at Gottingen in 1896/97, and it was forged in Germany. The
French textbooks made more of the transition from Cauchy to Riemann, for
those who wanted to venture so far, reflecting an acceptance of many-valued
functions that we also do not share. It will be evident that Poincaré made no
attempt to contribute to forging this consensus, and of course this reflects
the fact that professionally his teaching was in branches of physics. But it
is also the case that the whole theory of how properties of functions are
encoded in their Taylor series never became part of the consensus either. It
remained firmly part of the research enterprise, one with a strongly French
flavour.

That raises more puzzles than it might seem. The Weierstrass approach
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emphasised power series and natural boundaries, but there was little done to
connect the two until Borel, Fabry, and others took up the subject. It would
be interesting to understand better why what might seem to be an obvious
topic of interest for any pupil of Weierstrass’s was not taken up by any of
them but prospered instead in France. The way that work on power series
and convergence never became part of the elementary theory is also worth
reflecting upon. One might say that such work is simply not elementary, and
that is true — the approach via the Cauchy integral theorem is much more
direct, in the opinion of all but Weierstrass and his most loyal disciples. But
there is also a component of what makes a teaching package, a package that
others can accept and teach on their own account ; what makes a textbook,
in other words, and at that level what swayed most_authors was the fact
the the theory of the integral was known to all students from their study of
real analysis before they ever encountered complex function theory.

In the last years of Weierstrass’s life it became clear that the next genera-
tion in Berlin (Fuchs, Schwarz, and Frobenius) would not, be carrying on his
work, and at the same time in Paris Emile Borel drew around him people
who shared his interests in real and complex function theory. Whether or
not they formed a school in Parshall’s sense of the term [30] they formed
the first research group in mathematics in France. Borel’s famous series of
monographs testify to the shared interests of this group, and famously its
emergence marks a generational shift in French mathematics. The influence
Poincaré had on this group was slight, another instance of the fascinating
question of the impact Poincaré had on his contemporaries, and how slight
it seems to have been. The difference is that in this case, instead of doing
too much and leaving nothing easy for any followers to get started on, in
this case he did not do enough and was soon pushed out of the way.

Much of Poincaré’s work on complex function theory in one or several
variables lay well beyond any teaching frontier. With the exception of his
work on lacunary series; and perhaps the Poincaré-Volterra theorem, no-
thing he did picked up on issues that might engage the beginning graduate
student of his time. This may well reflect his official position as a physicist
- he was not lecturing on complex function theory, and need not attend
to its development. But his work on the complex function theory of several
variables was influential, it drew contributions from Appell and Cousin, and
it did so by shifting the formulation of problems away from those laid down
by Weierstrass:

The work on Fuchsian and Kleinian functions was driven by a vision,
a desire to create a new class of functions that generalised and extended
a range of known examples. This was not the case with Poincaré’s work
on function theory in several variables, which respected the structure of the
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theory as Weierstrass had expected it to be but brought to it a (Riemannian,
one might say) wish to exploit what remained of the connection to harmonic
function theory. This was difficult enough, but one can always ask of a piece
of research why and when it ended. In 1884 Poincaré abandoned Fuchsian
and Kleinian functions because he had established the fundamentals of the
theory, and identified and even imperfectly proved the most important theo-
rem to which it led. If he also thought that further progress with Kleinian
functions would be hard to come by, and he did not say so, he was proved
to be right : the theory rested more or less where he left it until the 1960s.

In looking at several complex variables Poincaré was much more conserva-
tive. His most unexpected result was his proof that there are domains which
are topologically but not conformally equivalent. Overall, his discoveries are
piecemeal, spread out over a number of years, the product undoubtedly of
considerable thought and insight, but not a programme. It would be unfair
to call them opportunistic, because they do not seem.to have capitalised
on the recent work of other mathematicians. Rather, they reflect a mature
mathematician, aware of a number of important issues, who carries around
with him a number of ideas that he explores, some of which turn out to
be fruitful. In the topic at hand, it is most likely that Poincaré’s deepening
interest in the 1890s in harmonic function theory and the partial differential
equations of mathematical physics that brought him back to the subject,
until he was able to find a way to resolve the major questions.

The fact is that the subject was difficult, the advances Poincaré and
others made were restricted, the best ideas some 30 or 40 years in the future.
Piecemeal progress was all anyone could achieve, the hoped-for analogy with
the complex function theory of a single variable was insubstantial. Poincaré’s
work reminds us what historians of mathematics and historians of science
too easily forget : there is no guarantee of success in the best research, and
if a breakthrough is made, there is no guarantee that another will follow.
Researchers know this very well, and the best, like Poincaré, deal with it
by cultivating several topics at once until good fortune strikes. His work
belongs to an honourable short list of achievements in a very difficult branch
of mathematics that, impressive as they are, did not produce a systematic
theory. The reasons for this are measured by the steps Oka and Cartan
needed to take to advance the theory beyond the place where Weierstrass,
Poincaré and Cousin left it.
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