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Abstract 

Cellular immune defences in sea urchins are shared amongst the coelomocytes – a 

heterogeneous population of cells residing in the coelomic fluid (blood equivalent) and tissues. 

The most iconic coelomocyte morphotype is the red spherule cell (or amebocyte), so named 

due to the abundance of cytoplasmic vesicles containing the naphthoquinone pigment, 

echinochrome A. Despite their identification over a century ago, and evidence of anti-septic 

properties, little progress has been made in characterising the immune-competence of these 

cells.  

Upon exposure of red spherule cells from sea urchins, Paracentrotus lividus and 

Psammechinus miliaris, to microbial ligands, intact microbes and damage signals, we observed 

cellular degranulation and increased detection of cell-free echinochrome in the coelomic fluid 

ex vivo. Treatment of the cells with ionomycin, a calcium-specific ionophore, confirmed that 

an increase in intracellular levels of Ca2+ is a trigger of echinochrome release. Incubating Gram-

positive/negative bacteria as well as yeast with lysates of red spherule cells led to significant 

reductions in colony-forming units. Such antimicrobial properties were counteracted by the 

addition of ferric iron (Fe3+), suggesting that echinochrome acts as a primitive iron chelator in 

echinoid biological defences.  

 

Keywords: coelomocytes; antimicrobial; damage response; degranulation; invertebrate 

immunity; Paracentrotus lividus; Psammechinus miliaris; 
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1. Introduction 

Lacking adaptive immune capabilities, invertebrates such as insects and decapod crustaceans 

are used routinely to study the mechanisms and biological complexities of innate immunity. 

Unlike those invertebrates, sea urchins are deuterostomes – placing them on the same ancestral 

branch of life as chordates prior to the divergence of these metazoan lineages. The fully 

sequenced genome of the purple sea urchin, Strongylocentrotus purpuratus, has revealed the 

shared origin of many immune gene families and the genetic synonymity between vertebrates 

and echinoderms [1, 2]. The canonical view of invertebrate innate immunity describes three 

arms of defence – (1) physical barriers such as the exoskeleton, (2) cellular activities within 

the equivalents of blood, namely coelomic fluid or haemolymph, and (3) humoral factors that 

include (but are not limited to) antimicrobial peptides, lysozyme and complement-like proteins 

[reviewed by 3, 4, 5]. Cell-derived immunity in sea urchins is provided by the coelomocytes – 

a heterogeneous population consisting of four distinct morphotypes: phagocytes, vibratile cells, 

colourless and red spherule cells. The former can be subdivided into discoidal, polygonal and 

small phagocytes, which express a myriad of immune effectors belonging to the 

(Sp)Transformer gene family [6, 7]. The phagocytes are tasked with identifying, ingesting and 

destroying invading pathogens, whereas the vibratile cells are said to be involved in hemostasis 

[8, 9, 10]. The immunological function of colourless spherule cells (CSCs) remains unclear, 

although some evidence supports a cytotoxic role [11].    

Despite progress being made in enhancing our understanding of sea urchin immunity over the 

past 50 years, little is known about the pigmented coelomocytes in adult coelomic fluid, namely 

red spherule cells (RSCs). RSCs owe their distinct colouration to echinochrome A, a 1,4-

napthoquinone packaged within cytoplasmic vesicles (or granules) [12]. Initial studies on RSCs 

provided circumstantial evidence in support of immune-competence [13, 14, 15], further 

strengthened when Service and Wardlaw (1984) [16] deduced the antibacterial activity of 

echinochrome A from the edible sea urchin, Echinus esculentus. Following this, Gerardi et al. 

(1990) [17] fractionated Paracentrotus lividus coelomocytes and monitored bactericidal 

activity of RSC lysates toward several marine Vibrio species (100% inhibition of bacterial 

growth was achieved within 12 hours). The authors confirmed that RSC immune activity was 

independent of lysozyme, but the mechanism of inhibition of microbial growth remained 

unknown. More recently, the levels of RSCs in the coelomic fluid of P. lividus have been 

proposed as a good indicator of environmental stress due to their enhanced presence in 
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coelomic fluid in animals living in waters contaminated with heavy metals and/or xenobiotics 

[18, 19, 20].  

Renewed interest in culturing P. lividus and its continued development as an ecotoxicology 

model presents a greater need to document the immune-capacity and health status indicators of 

this commercial shellfish. The overall aim of our study was to assess the putative role of RSCs 

in innate immunity. This was addressed by interrogating (1) the physiological responses of 

RSCs in the presence of microbes, their exoplasmic sugar moieties (ligands) and damage-

related signals, and (2) the nature of the anti-infective properties of liberated contents of 

cytoplasmic vesicles, i.e. echinochrome A. Our findings demonstrate a capacity of RSCs to 

respond to pathogen/damage-associated molecular patterns (e.g. lipopolysaccharides) by 

undergoing exocytosis through a mechanism most likely involving Ca2+ influx. The 

extracellular echinochrome A targets bacteria and yeast in vitro, leading to reductions in colony 

forming units. The broad antimicrobial activity of RSC lysates can be offset by the addition of 

iron – leading us to surmise that echinochrome’s iron chelating properties impede microbial 

colonisation of the sea urchin host.  

 

2. Materials and Methods 

2.1 Maintenance of sea urchins 

Paracentrotus lividus adults (37.4 ± 1.7 cm test diameter) were obtained from FAI Ardtoe 

Marine Research Facility, Ardtoe, UK. Psammechinus miliaris adults (32.6 ± 2.7 cm test 

diameter) were collected from coastal waters near Oban and Millport, UK. In the laboratory, 

sea urchins were maintained in closed circulation tanks (30 individuals per 80 L) between 6oC 

and 10°C containing a mixture of artificial (Instant Ocean) and filtered seawater, and fed dried 

kelp ad libitum. Particulates were siphoned daily in addition to 25% of seawater being 

exchanged weekly.  

2.2 Coelomocyte removal and preparations  

All chemicals and reagents (including microbial ligands and membrane phospholipids) of the 

highest purity available were purchased from Sigma Aldrich (Dorset, UK) unless stated 

otherwise.  
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Coelomic fluid (up to 5 mL) was extracted from sea urchins using a 26-gauge hypodermic 

needle attached to a sterile syringe containing an equal volume of pre-chilled anti-coagulant 

(20mM Tris-HCl, 0.5M NaCl, 70mM EDTA, pH 7.5). Each animal was sprayed on the oral 

(ventral) surface with 70% ethanol prior to needle insertion through the peristomial membrane. 

Extracted coelomocytes were enumerated using an improved Neubauer haemocytometer or 

plastic counting chambers (FastRead counting slides, Immune Systems, Torquay, UK). Further 

cytology work was performed using an Axiovert 135 inverted microscope.  

Continuous 40-60% Percoll gradients were used for cell fractionation. Gradients were prepared 

in sterile Beckman polyallomer tubes using 4 mL Percoll diluted with an equal volume of 2x 

anti-coagulant (40mM Tris, 1M NaCl, 140mM EDTA, pH 7.5). The mixture was centrifuged 

at 30,000 x g using a fixed angle rotor (23.5°) for 30 minutes at 4°C. The coelomic fluid extract 

and anti-coagulant mixture were layered onto gradients and centrifuged at 400 x g using a 

swing-out rotor (JS 24.15) for 15 minutes at 4°C. Polyallomer tubes were pierced using sterile 

26-gauge hypodermic needles and fractions were collected (1mL) into pyrogen-free, conical 

tubes containing 4 mL anti-coagulant buffer. Samples were further centrifuged for 10 minutes 

at 500 x g (4°C), the supernatant was discarded and coelomocytes were re-suspended in 500 

μL artificial coelomic fluid (ACF) (10mM CaCl2, 14mM KCl, 50mM MgCl2, 398mM NaCl, 

1.7mM NaHCO3, 25mM Na2SO4, 10mM HEPES, pH 7.4; [21]). The homogeneity of each 

fraction was assessed by microscopy – only those populations consisting of >95% red spherule 

cells were used.    

2.3 Effect of microbial and damage-related ligands on coelomocytes in vitro  

Approximately 2.5 x104 ± 3.9 x103 isolated RSCs (in 500 μL ACF) were seeded into each well 

of a 24-well (pyrogen-free) culture plate and left for 30 minutes at room temperature (<20oC ) 

to settle before centrifugation at 250 x g for 5 minutes at 4°C with no braking. After 

centrifugation, microbial ligands ranging in concentration from 15–75 μM (mannan from 

Saccharomyces cerevisiae, laminarin from Laminaria digitata, lipopolysaccharides from 

Escherichia coli and lipoteichoic acids from Staphylococcus aureus) and inner membrane 

phospholipids at 25–50 μM (phosphatidylserine and phosphatidylethanolamine) were added to 

each well and incubated at room temperature for 1 hour.  Controls, absent ligands, were run 

concurrently. Cellular activity was recorded by calculating the percentage of RSCs that 

released echinochrome (fully de-granulated). For each well, randomly chosen fields of view 

were selected until 200-300 cells had been assessed. N.B. the viability of extracted (un-
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stimulated) coelomocytes at room temperature (<20oC) was monitored in vitro over a 4 hour 

period using trypan-blue exclusion (0.2% w/v, [22]). Colourless spherule cells were selected 

for this task due to the technical challenges encountered when staining the pigmented RSCs. 

Cells staining blue were recorded as dead.   

Overnight cultures of Gram-positive bacteria (Bacillus megaterium, Bacillus subtilis), yeast 

(Saccharomyces cerevisiae strain AH22) and Gram-negative bacteria (Escherichia coli strain 

M15) were used to challenge isolated RSCs in vitro. S. cerevisiae was cultured at 30°C in 

YEPD broth (1% (w/v) yeast extract, 2% (w/v) Bacto-peptone, 2% (w/v) D-glucose, pH7) and 

all bacteria were grown at 37°C in Lysogeny broth (1% (w/v) Bacto-tryptone, 0.5% (w/v)  yeast 

extract, 1% NaCl, pH7). Optical density readings at 600 nm were recorded for each microbe 

using a Novaspec-4049 Spectrophotometer. An OD600 value of 1.0 is equal to ~3 x107 cells/mL 

for S. cerevisiae and ~1.2 x109 cells/mL for E. coli, B. megaterium and B. subtilis [22]. 

Microbial cultures (1 mL) were centrifuged at 1000 x g for 5 minutes (4°C) and re-suspended 

in 1ml PBS pH 7.4 prior to dilution into pre-prepared culture wells containing RSCs (2.5 x104 

± 3.9 x103). Sea urchin coelomocytes (suspended in ACF) were incubated in the presence of 

bacteria (2 x106 cells/ml) or yeast (1 x106 cells/mL) for 1 hour at room temperature (20oC) and 

responses to each microbe (i.e. de-granulation) were quantified as stated above.  

 

The calcium-specific ionophore, ionomycin (Tocris, Avonmouth, UK), was used to test 

whether RSCs are reliant on elevated intracellular levels of Ca2+ for degranulation. RSCs were 

maintained ex vivo in ACF as detailed above, treated with 2, 4 or 10 μM ionomycin (stock 

solution prepared at 2 mM in DMSO) and observed at 0 and 60 minutes using microscopy. All 

images were captured using a 63x 1.2 NA objective on a Zeiss Axiovert 135 microscope 

attached to an Axiocam MRc camera system and analysed using Zen (Zeiss) and/or ImageJ 

software. Trypan-blue exclusion assays were used to determine viability of RSCs at 2 hours 

post-activation with 10 μM ionomycin.   

 

Additionally, an interspecies comparison between mixed coelomocyte populations extracted 

from P. lividus and P. miliaris was performed in vitro. Coelomocytes were removed from sea 

urchins and processed as mentioned above but were not fractionated. Instead, ~4x 105 cells 

were exposed to 25 μM of each microbial ligand (LPS, LTA, mannan) or 10 μM ionomycin 

and left for 30 minutes at room temperature in sterile 15 mL centrifuge tubes (and agitated 
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gently). Post-incubation, 15 μL of the coelomocyte suspension was assessed for the proportion 

of intact (pigmented) red spherule cells using brightfield microscopy (x40).     

 

2.4 Spectrophotometric detection of Echinochrome A release  

 

Sea urchins were challenged with 3 μg LPS per mL of coelomic fluid (~5 μM) via injection 

into the coelomic cavity through the peristomial membrane using a 26-gauge hypodermic 

needle. The amount of LPS injected was standardised using a modified formula presented in 

Smith et al. (1995) [23]: weight of sea urchin(g) x 0.18 = X mL coelomic fluid. The accuracy 

of this formula to predict dosages was confirmed by removing all coelomic fluid 

(exsanguination) from a sub-sample of P. lividus (n = 8). Surfaces were sterilised with 70% 

ethanol pre- and post-treatment. Control injections consisted of ACF only.  At 1 and 24 hours 

post inoculation, 1 mL of coelomic fluid was removed. Differential cell counts were performed 

using 15 μL coelomic fluid, with the remaining sample volume (~985 μL) being centrifuged at 

10,000 x g for 5 min to remove the coelomocytes. The acellular coelomic fluid (i.e. supernatant) 

was placed in a quartz cuvette (1 cm path length) and absorbance values across the range, 300–

700 nm, were recorded using an Ultrospec 2100 pro UV/Vis spectrophotometer. The effect of 

immune challenge on the acellular coelomic fluid was monitored via absorbance peaks at 346 

nm and 480 nm, which are indicative of echinochrome A [16, 24].  

 

2.5 Antimicrobial properties of red spherule cell-derived echinochrome A 

 

Bacteria and yeast were grown as stated above; 1 mL of each culture was centrifuged, re-

suspended in PBS pH 7.4 and subsequently diluted to 1 x106 microbes per mL. RSC fractions 

(>98% homogenous) were centrifuged at 10,000 x g (4°C) for 10 min, re-suspended in 1mL 

deionized water and vortexed to lyse the cells. Post-lysis, cell debris was pelleted using 

centrifugation (4,000 x g for 5 minutes at 4oC) and the supernatant was retained on ice. Three 

assays were prepared for each microbe: (1) microbes alone (negative control), (2) microbes 

treated with 100 µL RSC lysate (1x 105), or, (3) 50 mM EDTA (positive control). Sub-samples 

of RSC-lysates were spread onto agar to check for potential contamination.  

 

After microbes were incubated at room temperature for 1 hour, samples were diluted in PBS 

so that ~200 colony-forming units (CFUs) were plated onto pre-prepared 2% agar (in YEPD 

for yeast and LB for bacteria). Two types of agar recipes were used for each treatment, one 
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containing regular medium and another supplemented with 0.05% (w/v) ferric ammonium 

citrate (FAC; Fe3+). FAC was selected as this form of iron is more readily available for 

microbes to utilise (in addition to being a hematinic). The inoculated plates were incubated for 

24–48 hours; S. cerevisiae at 30°C, E. coli, B. megaterium and B. subtilis at 37°C. Absorbance 

readings of RSC lysates from 300 nm – 550 nm were recorded in the absence and presence of 

200 μM FAC to assess whether iron formed complexes with echinochrome A.  

 

2.6 Data handling  

All data were gathered from experiments performed on at least three independent occasions 

(see individual figure legends for sample sizes), and are represented by mean values with 95% 

confidence intervals.  Assays concerning ligands, microbes and damage signals in vitro were 

run in triplicate (3 technical replicates per biological sample). Analysis of variance (1- or 2-

way) with Tukey’s multiple comparison tests were utilised to assess data for significant 

differences at p ≤ 0.05. Statistical analyses and figure preparation were carried out using 

GraphPad Prism v7. 

 

3. Results 

Response of red spherule cells to immune-stimulants in vitro 

On average, 6.62 x106 coelomocytes per mL of coelomic fluid were extracted from sea urchin 

(P. lividus; Figure 1A) adults, consisting of 70.7% phagocytes (55–84 %), 16.1% colourless 

spherule cells (7–24%), 9.5% red spherule cells (1.5–25.9 %), and 3.7% vibratile cells (<1–

10.2%) (Figure 1B). Fractionation of mixed coelomocyte populations was achieved using 40-

60% Percoll gradients. Four cellular bands were observed in addition to a diffuse layer of debris 

found at the Percoll-coelomic fluid interface (Figure 1C & 1D). Bands 1, 2 and 3 consisted 

mainly of phagocytes, vibratile and colourless spherule cells, respectively. Homogeneity 

ranged from 82% to >95%. Phagocytes are generally sub-divided into discoidal, polygonal and 

small morphotypes, but an enumeration of these sub-types was not within the scope of our 

experimentation. RSCs made-up >98% of band 4, with colourless spherule cells found to be 

the only contaminant (<2%).  
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Isolated RSCs responded to the presence of various immune-stimulants in vitro through the 

apparent exocytosis of cytoplasmic vesicles containing echinochrome A (Figures 2 – 4). The 

proportions of cellular degranulation in control samples ranged from 8.8–11.5%, whereas 

treatment of RSCs with either microbial ligands (LPS, LTA, mannan, laminarin), intact 

microbes (E. coli, B. megaterium, B subtilis, S. cerevisiae) or inner membrane phospholipids 

(PS, PE), led to significant increases in echinochrome A release (ligands, F(4, 30) = 65, p < 0.001; 

microbes, F(4, 10) = 32.27, p < 0.001; damage, F(2, 12) = 96.59, p < 0.001). Lipoteichoic acid 

(LTA) from Gram-positive bacteria was the most potent activator of RSCs (47%) across the 

concentration range 15–75 µM (Figure 2A). LPS from Gram-negative bacteria and β-glucan 

(i.e. laminarin) from brown algae were not as effective as LTA at the highest dose tested (75 

μM), 27.8% and 30.4% respectively, but were found to be significantly different to the control. 

On average, the presence of intact microbes led to a significant 2.5-fold increase in the 

proportion of de-granulated RSCs compared to the control (Figure 2B; E. coli >S. cerevisiae 

>B. megaterium >B. subtilis). No internalisation of targets (i.e. phagocytosis) was observed in 

these particular coelomocytes.  

The second most potent inducer of RSCs in vitro was the negatively charged phospholipid, 

phosphatidylserine (PS). PS stimulated a 2.5-fold increase in RSC activity when compared to 

the control (10.3%; Figure 3). A second phospholipid, namely phosphatidylethanolamine (PE), 

was less effective than PS yet still activated 24.8% of the RSCs when applied at the same 

concentration of 25 µM. Upon doubling the concentration of PS to 50 µM, a reciprocal increase 

(39.7%) in RSC degranulation was observed, however, this was not the case for PE. 

Examination of extracted RSCs pre-activation, revealed an abundance of refractile, reddish-

brown granules (containing echinochrome A) clearly visible within the cytosol (Figures 1D & 

2). Following exposure to pathogen- or damage-associated molecular patterns (PAMPs, 

DAMPs), the RSCs emptied their cytoplasmic cargo into the surrounding milieu, flattened, and 

were no longer refractile (Figures 2 and 3B). The extent of the mass exocytosis can be seen in 

Figure 3B, where vacuole-like compartments occupy the seemingly quiescent RSC.  

 

 

Role of calcium in red spherule cell degranulation  
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To further interrogate the degranulation process in P. lividus RSCs, we employed the Ca2+-

specific ionophore, ionomycin. Exposure to 2 µM ionomycin led to ~32% of RSCs releasing 

their granular content in vitro. This proportion increased to ~90% when the concentration of 

ionomycin was doubled to 4 µM (Figure 3), thereby suggesting an increase in intracellular 

levels of calcium [Ca2+]i was required for echinochrome release. When coelomocytes were 

loaded with the Ca2+ chelator BAPTA (20 μM; as the membrane permeant AM-ester) prior to 

exposure to ionomycin or immune stimulants, there was no release of granular contents (data 

not shown). A comparison of mixed coelomocyte populations removed from P. lividus and the 

green sea urchin, Psammechinus miliaris, verified that RSCs responded to bacterial cell wall 

components (LTA, LPS) and ionomycin in a similar manner (Figure 4). Conversely, RSCs in 

the mixed populations from both species were unresponsive to mannan from S. cerevisiae (p > 

0.05). Preliminary experiments to visualise the increase in [Ca2+]i into RSCs were performed 

using the fluorescent indicator, Fluo-3 AM (Supp. Figure 1). Upon addition of 10 µM 

ionomycin there was a clear increase in fluorescence within vesicular structures and the 

cytosol, indicative of Ca2+ influx. At such a high concentration of ionomycin, degranulation of 

echinochrome A was observed in ~99% of RSCs within 60 seconds. The viability of RSCs 2 

hours after 10 µM ionomycin was >93%. Notably, removal of Ca2+ from the artificial coelomic 

fluid (ACF) interfered with the activation of RSCs despite the presence of immune-stimulants 

(Supp. Figure 2). 

 

Antimicrobial activity of red spherule cell lysates  

Intra-coelomic injection of LPS (3 µg per mL coelomic fluid) into P. lividus adults led to 

significant increases in the proportions of circulating RSCs within 1 hour (p < 0.001) in 

contrast to coelomocyte numbers from control animals over the same experimental period (p 

= 0.98) (Figure 5A and 5B). RSCs increased to 21.9% between 0 and 30 min, and then fell to 

17.2% at 60 minutes. Cell numbers correlated inversely with the amount of soluble 

echinochrome A detected in the coelomic fluid – monitored via absorbance maxima at 346 nm 

and 480 nm (Figure 5C). A hyperchromic effect (2-fold increase) was noted at 346 nm in the 

coelomic fluid of LPS-stimulated sea urchins within 1 hour. LPS caused an initial increase (at 

30 minutes) in the proportion of RSCs within the circulating coelomocyte population, which 

subsequently underwent degranulation (Figure 5D). The levels of RSCs and soluble 
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echinochrome A in challenged sea urchins recovered by 24 hours, in line with data from control 

animals having received an injection of ACF only.     

In vitro antimicrobial activity of RSC lysates was tested against Gram-positive and Gram-

negative bacteria as well as yeast. Lysates from 1x 105 RSCs were incubated with 1x 106 of 

each microbe for 1 hour at room temperature prior to plating ~200 CFUs onto agar with/without 

ferric ammonium citrate (FAC). The number of viable microbes (i.e. CFUs) decreased 

significantly to 17.8% for E. coli (p < 0.001), ~45% for Bacillus sp. (p < 0.001), and 61% for 

S. cerevisiae (p = 0.003) when compared to untreated (control) microbes (Figure 6A). CFUs 

recovered to >80% for each treated microbe when grown on agar supplemented with iron 

(FAC) as opposed to standard agar recipes. Notably, complete recovery of CFUs (97.8–

104.9%) was achieved when microbes were treated with FAC and RSC lysates simultaneously, 

prior to plating (Supp. Figure 3). Microbes that were exposed to a known antimicrobial iron 

chelator, namely EDTA, displayed similar trends of CFU mortality (Figure 6A). EDTA-treated 

microbes recovered to >95% viability when cultured on FAC-agar, which was similar to the 

data for microbes treated with RSC lysates.   

To test whether RSC lysates (i.e. echinochrome A) inhibited microbial growth via iron 

deprivation, we studied the spectral properties of lysates incubated with ferric iron (Fe3+). A 

hypochromic effect was observed in the absorbance spectrum at 480 nm upon incubation with 

200 μM FAC for 15 minutes (Figure 6B). Additionally, the shoulder peak at ~525 nm was no 

longer distinguishable. These results suggested that iron and echinochrome formed complexes.  

 

Discussion 

RSCs are often identified near damaged spines, encapsulated bacteria and infested epidermal 

tissues of sea urchins [13–15, 25, 26], yet until now evidence supporting a role for RSCs in 

immunity has been lacking. Due to the distinct morpho-functional properties of echinoid 

coelomocytes and the convenience of density separation media (Figure 1), we were able to 

examine RSCs (>98% homogeneity) in vitro. The introduction of immune-stimulants 

(microbes, PAMPs) and membrane phospholipids triggers the exocytosis of echinochrome-

containing vesicles in up to 50% of RSCs (Figures 2–4). Direct injection of lipopolysaccharides 

into the coelom mobilises RSCs to release echinochrome A in vivo (Figure 5). These data 
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indicate RSCs recognise ‘non-self’ motifs leading them to undergo morphological and 

physiological changes associated with enhanced antimicrobial defence (Figure 6; Supp. Video 

1).   

Responses of invertebrate immune cells to PAMPs and DAMPs are well characterised across 

diverse taxa, however, sea urchin RSCs are an exception [9, 10, 23; 27]. When insect and 

crustacean hemocytes encounter pathogens they release a battery of immune effectors (through 

exocytosis) to immobilise/entrap the intruders as part of their inflammatory programmes [28]. 

RSCs alone, and in mixed coelomocyte populations from P. lividus and P. miliaris, degranulate 

when presented with Gram-negative and Gram-positive bacteria as well as yeast (Figures 2 and 

4). The inner-membrane phospholipids, phosphatidylserine (PS) and 

phosphatidylethanolamine (PE), also stimulate echinochrome A release (Figure 3). PS location 

is restricted to the cytoplasmic membrane of healthy coelomocytes. Its relocation onto the cell 

surface is a hallmark of cell death (apoptosis) in metazoans [29], drawing attention to defective 

(immune) cells and those tissues compromised by pathogens. Surveys of wounded sea urchins 

consistently find elevated levels of RSCs (>40%) in the coelomic fluid compared to ‘healthy’ 

conspecifics (~10%) [13, 25, 26, 30]. These animals play host to noxious bacteria, fungi and 

algae – organisms that we have proven RSCs react to (Figures 2 and 3). Amorphous red 

materials and friable layers coincide with hemostasis and spine regeneration, hinting that RSCs 

deposit echinochrome A to prevent the loss of coelomic fluid during infection [13, 25, 26, 30]. 

Such barriers are found in ‘hanging-drop’ preparations of purple (S. purpuratus) and red 

(Mesocentrotus franciscanus) sea urchin coelomocytes where RSCs form ‘palisades’ on the 

edges of clots and bacterial aggregates [13]. Our data reinforce these early studies, and indicate 

that RSCs are recruited to injury sites (Figures 3 and 5), recognise antigens (Figures 2 and 4), 

and release echinochrome A. Additionally, we present new evidence for echinochrome A 

having another, more direct role to play in echinoid immune defence (see next section).  

The effects of ligands/microbes/phospholipids can be mimicked by ionomycin, indicating that 

elevated intracellular Ca2+ is the trigger for echinochrome A release (Figures 3 and 4). 

Mechanistic aspects of degranulation events and cell-derived immunity in invertebrates (e.g. 

Drosophila hemocytes) are largely modulated by calcium [31]. We used the Ca2+-indicator dye 

Fluo-3 to determine if the release of echinochrome A following application of ionomycin 

correlates with intracellular Ca2+ in RSCs. Shortly after the addition of ionomycin there is 

enhanced Fluo-3 fluorescence, meaning Ca2+ concentration has indeed increased (Supp. Figure 
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1). Spatial distribution of Fluo-3 fluorescence reveals an increase in intra-vesicular Ca2+ 

accompanies the morphological changes of RSCs. This accumulation of Ca2+ in cytoplasmic 

compartments, as well as in the cytosol, is not unheard-of (reviewed by [32]). Firstly, although 

ionomycin is a Ca2+-specific ionophore, it is relatively non-selective regarding membranes into 

which it can insert. Secondly, Ca2+ indicator dyes such as Fluo-3 AM can accumulate in 

secretory vesicles, especially those that are acidic [32]. These characteristics of ionomycin 

likely account for the compartmentalised fluorescent signal visible in activated RSCs. Our 

observations on the requirement for external Ca2+ (Supp. Figure 2) and the blocking effect of 

intracellular BAPTA on RSC responsiveness further support a role for Ca2+ in echinochrome 

A discharge. 

By inoculating P. lividus adults with LPS, we have gained rare insight into RSC activities in 

vivo (Figure 5). Within 30 minutes, the proportion of circulating RSCs doubles – likely due to 

cells making their way into circulation from neighbouring tissues where they carry out 

immune-surveillance. This short period of time is not sufficient for hematopoiesis to occur. By 

60 minutes, there is a noticeable drop in RSC numbers but an increase in absorbance at 346 

nm, a signal that more cell-free echinochrome A is in the coelomic fluid (Figure 5D; Supp. 

Figure 4). Activation of invertebrate defences generally leads to an increase in free-floating 

immune cell numbers and the liberation of bioactive compounds (e.g. antimicrobial peptides 

and lysozyme) [33]. Likewise, exposure of sea urchin phagocytes to LPS in vitro induces 

cellular aggregation (reminiscent of encapsulation) and de novo synthesis of SpTransformer 

proteins (formerly Sp185/333) (Majeske et al., 2013). Intriguingly, both phagocytes and RSCs 

from the green sea urchin (Strongylocentrotus droebachiensis) increase gene expression of a 

defensin-like antimicrobial peptide, namely strongylocin 2, when exposed to E. coli in vitro 

[34]. Whether the mRNA is translated into a functional peptide or degraded in the cytoplasm 

remains to be determined. Nevertheless, if RSCs can produce AMPs in addition to 

echinochrome A, then both could be released to combat sepsis.  

Echinochrome A is a putative immune factor in sea urchins 

The cytoplasmic granules of RSCs are replete with the pigment echinochrome A (6-ethyl-

2,3,5,7,8-pentahydroxy-1,4-naphthoquinone; Figure 6C). Service and Wardlaw (1984) [16] 

first assigned antimicrobial properties to echinochrome A using ethanol/acetone extractions of 

whole coelomocyte lysates from E. esculentus. Antibacterial activity of echinochrome A 

toward Pseudomonas strain 111 was concentration (20 – 200 μM) and time (4 – 48 hours) 
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dependent [16]. Following this, lysates of fractionated RSCs (1x 105) from P. lividus were 

found to be 100% effective at killing marine bacteria (Vibrio species, Photobacterium sp. strain 

56) over a 12 hour period at 20oC [17]. More recently, extracts of 

EchinochromeA:SpinochromeC (75:25) from the tests/spines of several tropical sea urchin 

species were found to be effective at killing E. coli, B. subtilis and Shewanella oneidensis [35]. 

An EC50 value of 61 μM has been calculated for the metal reducing bacterium, S. oneidensis. 

None of these studies investigated the mechanism behind RSC and echinochrome’s anti-

infective characteristics. That said, lysozyme (muramidase activity) was ruled out as a 

contributing factor in RSC lysates [16, 17, 35]. Based on our evidence, we argue that iron-

chelating properties of echinochrome A underpin these earlier observations (Figure 6). By 

following the protocol of Gerardi et al. (1990) [17], RSC-lysates inhibited CFUs by 82.2% in 

E. coli, 53.1% in B. megaterium, 56.3% in B. subtilis and 38.9% in S. cerevisiae after 1 hour 

incubation at 20oC (Figure 6, Supp. Figure 3). The microbicidal nature of RSC-lysates can be 

counteracted by plating the treated microbes onto iron-supplemented agar (0.05% FAC). Re-

introducing iron reduces CFU mortalities to 13.3–19.1%. Also, treating bacteria and yeast with 

RSC-lysates in the presence of Fe3+ prior to plating has no (measurable) negative impact on 

microbial growth (Supp. Figure 3). In its purified form, echinochrome A is a potent antioxidant 

and metal chelator capable of scavenging oxidising/nitrosative radicals and forming complexes 

with ferric/ferrous states of iron in a molar ratio of 1:2 (echinochrome : iron) [36]. The addition 

of iron (<80 μM FeSO4) alters the absorbance profile of purified echinochrome A (~40 μM) 

from S. intermedius [36]; a result comparable to the effects of ferric ammonium citrate (200 

μM) on RSC lysates containing (~27 μM) echinochrome A observed here (Figure 6B). The 

free ortho-hydroxyl groups and ketol structure of echinochrome A facilitates the chelation of 

iron (Figure 6C). Collectively, these data suggest that echinochrome A from RSC lysates 

gathers unbound iron from the environment, thereby depriving microbes of this essential metal. 

Iron reintroduction post-treatment does not restore CFU viability to 100% (Supp. Figure 3). 

This is only achieved when excess iron (Fe3+) is added to RSC-lysates during treatment, 

implying echinochrome A may also interfere with microbes directly – analogous to the 

antimicrobial mechanism of synthetic metal chelators like EDTA [37]. Given its 

hydrophobicity, it is also possible that echinochrome A directly enters microbes and has some 

intracellular effects. 

We postulate that the ability of echinochrome A to switch between oxidised and reduced forms 

(via hydroxyl groups; Figure 6C) benefits the sea urchin host through the disarmament of 
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reactive by-products (e.g. H2O2, ONOO⁻) caused by immune activities, i.e. phagocytosis-

associated respiratory burst [38]. The withholding of metals, particularly iron, is an important 

component of innate immunity in vertebrates and invertebrates alike, because iron is an 

essential factor for microbial growth and pathogenicity [39]. We demonstrate that LPS 

activates P. lividus RSCs into releasing the metal-binding pigment, echinochrome A, in vitro 

and in vivo (Figures 2 - 5). LPS has also been shown to induce the synthesis of 60 stress and 

immune-related factors within the coelomic fluid of S. purpuratus, notably transferrin and 

ferritin [40]. These proteins have well-defined roles in immunity and metabolism as they 

coordinate the detoxification, transport and storage of iron.  

Concluding remarks 

Based on our observations, and after careful consideration of the available literature, we 

propose dual functionality of RSCs in vivo. First, RSCs detect and respond to microbes by 

releasing echinochrome A to sequester iron from the environment. Second, pathological trauma 

mobilises RSCs to prevent the systemic spread of microbes and deploy echinochrome A to 

disarm oxidising and nitrosative radicals produced as a consequence of immune vigour. The 

iron-chelating properties of echinochrome A would serve as a microbial deterrent and its ability 

to act as a chemical antioxidant would reduce the likelihood of collateral damage.  
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Figures and legends 

 

Figure 1 Density-dependent fractionation of sea urchin coelomocytes. A) Paracentrotus 

lividus adult. B) Total and differential coelomocytes per ml of coelomic fluid (mean +/- 95% 

CI, n = 30). C) 40-60% continuous Percoll gradient with extracted coelomic fluid, before and 

after centrifugation. Band 0 consists mainly of cellular debris. Band 1 contains phagocytes; 

bands 2 and 3 contain vibratile and colourless spherule cells (CSCs), respectively; band 4 is 

>98% red spherule cells (RSCs). D) Living coelomocytes removed from P. lividus. The red 

spherule cells are distinguishable due to the abundance of echinochrome-containing cytosolic 

vesicles (red arrow-heads). Colourless spherule cells, phagocytes and a vibratile cell are 

highlighted by white, black and blue arrow-heads respectively. Scale bar represents 20 μm.     
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Figure 2 Degranulation of red spherule cells in response to pathogen-associated 

molecular patterns. Isolated red spherule cells (RSCs) were exposed to increasing 

concentrations of (A) bacterial (LPS, lipopolysaccharide; LTA, lipoteichoic acid), fungal 

(mannan) and algal (laminarin, a β-glucan) ligands, or, (B) intact microbes (Gram-

positive/negative bacteria and yeast) for 1 hour in vitro. RSC responses to such challenges were 

recorded as percentage degranulation. All data are represented as mean values + 95% CI, n = 

3.  An asterisk (*) indicates a significant difference (p < 0.05) between the control and 

treatment. Inset; images depicting RSCs in the absence (control) or presence of an immune-

stimulant. Scale bar represents 10 μm.  

 

Figure 3 Degranulation of red spherule cells in response to damage-associated molecular 

patterns. A) Isolated red spherule cells (RSCs) were exposed to inner membrane phospholipids 

(PS, phosphatidylserine; PE, phosphatidylethanolamine) and the calcium ionophore, 

ionomycin, for 1 hour in vitro. RSC responses to such challenges were recorded as percentage 

degranulation. Data are represented as mean values + 95% CI, n = 3.  An asterisk (*) indicates 

a significant difference (p < 0.05) between the control and treatment.  B) Images depicting 

RSCs challenged with inner membrane phospholipids (PS, PE), and, when intracellular levels 

of Ca2+ increased due to the presence of an ionophore (ionomycin). Scale bar represents 20 μm.  
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Figure 4 Degranulation of red spherule cells in mixed coelomocyte populations from (a) 

Paracentrotus lividus and (b) Psammechinus miliaris. Coelomocytes were extracted into an 

anti-coagulant, pelleted and re-suspended in artificial coelomic fluid, and seeded into wells of 

a 24-well culture plate without fractionation. Mixed coelomocyte populations were exposed to 

25 μM of each microbial ligand (LPS, lipopolysaccharides; LTA, lipoteichoic acids; mannan) 

and 10 μM ionomycin (positive control). The reduction in red spherule cell numbers due to 

degranulation was recorded after 1 hour. All data are represented as mean values + 95% CI, n 

= 5 (for each species).  An asterisk (*) indicates a significant difference (p < 0.05) between the 

control and treatment.  

 

Figure 5 Response of red spherule cells to lipopolysaccharides in vivo. A) The proportion 

of red spherule cells in the free-floating coelomocyte population was determined upon 

inoculation with 3 μg lipopolysaccharides (LPS) per mL coelomic fluid or artificial coelomic 

fluid (control). B) Living coelomocytes removed from ACF-injected Paracentrotus lividus. An 
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intact red spherule cell can be seen alongside four colourless spherule cells. Scale bar represents 

20 μm. C) Absorbance spectrum of cell-free coelomic fluid from P. lividus after 1 hour post-

challenge. The observed peaks at 346 nm and 480 nm are indicative of echinochrome a [see 

16, 24]. The presented spectra are a representation of experiments carried out on three 

independent occasions. D) Peak absorbance values for echinochrome were monitored in cell-

free coelomic fluid at 1 hour and 24 hours post-injection with LPS. Control values were 

recorded at 1 hour post-injection with ACF. Data displayed in A and D are mean values with 

95% CI, n = 5. Unshared letters indicate significant differences (p < 0.05).  

 

 

Figure 6 Antimicrobial activities of red spherule cell lysates from Paracentrotus lividus. 
Gram-positive (B. megaterium, B. subtilis) and Gram-negative (E. coli) bacteria as well as yeast 

(S. cerevisiae) were incubated in the presence/absence of the iron chelator EDTA, or, red 

spherule cell lysates (2.5 x105) for 1 hour at room temperature. Following treatment, microbes 

were serially diluted in PBS, pH7.4 so that 200 colony forming units (CFUs) were plated onto 

standard agar medium (LB for bacteria and YEPD for yeast), or, agar that had been enriched 

with iron (Fe3+, ferric ammonium citrate). The colour scale on the right indicates the mean 

number of viable microbes present on agar, i.e. CFUs (n = 3). An asterisk (*) indicates a 

significant difference (p < 0.05) between the control and treatment. B) Absorbance spectrum 

of RSC lysate (~ 27 μM echinochrome A) in the absence and presence of 200 μM ferric 

ammonium citrate.  The concentration of echinochrome A in 1x 105 RSCs was calculated by 

following the extraction method developed by Service and Wardlaw [16], and taking into 

account that there ~6.3 x105 RSCs per mL of P. lividus coelomic fluid. C) Molecular structure 

of the 1,4-napthoquinone pigment, echinochrome A. 
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Supplementary Figure 1 [Left image] To visualise intracellular levels of calcium [Ca2+]i pre- and post- activation, the calcium 

indicator Fluo-3 AM was used.  Coelomic fluid from Psammechinus miliaris was extracted into an equal volume of anti-

coagulant (20mM Tris-HCl, 0.5M NaCl, 70mM EDTA, pH 7.5) and incubated with 5 μM Fluo-3 AM and 0.1% PluronicTM 

F68 for 30 min at 4oC, followed by centrifugation at 170 x g for 5 min and re-suspended in ACF to a final cell number of 1x 

106 mL-1. The non-ionic detergent, PluronicTM F68, facilitates dispersion of AM esters in the medium[1], and, incubating the 

coelomocytes at 4oC helps to prevent non-specific labelling of intracellular organelles. Labelled coelomocytes (200 μL) were 

placed into chambers of an Ibidi µ-slide and allowed to settle for 20 min at room temperature. Ionomycin (10 μM) was perfused 

into the chamber and calcium was visualised as an increased green fluorescence signal that results from it binding to Fluo-3.  

[Right image] Living coelomocytes removed from PBS-injected Paracentrotus lividus. An intact red spherule cell can be seen 

alongside a small phagocyte. Scale bar represents 10 μm. As the cell flattens the individual granules become more distinct.  

 [1] Masiera, N., Buczyńska, J., Orzanowska, G., Piwoński, H. and Waluk, J. (2014). Enhancing fluorescence by using pluronic block 

copolymers as carriers of monomeric porphycenes. Methods and Applications in Fluorescence, 2(2), 024003. 

 

 

Supplementary Figure 2 Degranulation response of red spherule cells from Psammechinus miliaris (n = 3) following 

treatment with microbial ligands (25 µM) and ionomycin (10 µM) in vitro under different calcium regimes. Following removal 

and enumeration of coelomocytes (see methods) samples were re-suspended in regular artificial coelomic fluid (ACF) 

containing 10 mM Ca2+, ACR without Ca2+ added (i.e. nominal) and ACF with 5 mM EGTA and no Ca2+. Data are expressed 

as mean values + 95% CI. Unshared letters and an asterisk (control vs. ionomycin) indicate significant differences (p < 0.05). 
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Supplementary Figure 3 Antimicrobial activities of red spherule cell lysates in the presence/absence of ferric iron (Fe3+). 

Data from the main text (Figure 6) is expanded to include values where RSC lysate and ferric ammonium citrate (0.05% w/v) 

are exposed to microbes prior to plating on agar (orange bars). In this instance, the presence of iron appeared to prevent/inhibit 

the putative antimicrobial properties of echinochrome. Bars represent mean values with 95% CI, n = 3. An asterisk indicates 

a significant difference when compared to the control (p < 0.05).  

 

 

Supplementary Figure 4 Echinochrome A assay. Absorbance of Paracentrotus lividus coelomocyte samples (n = 5) 

following treatment with microbial ligands (25 µM) and ionomycin (2 µM) in vitro. These two wavelengths (346 and 480 nm) 

correspond to the peak absorbance values of echinochrome a (derived from red spherule cells). Data are expressed as mean 

values + 95% CI. 
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Original images used for Figure 1C, Figure 5B, and Supp. Figure 1 

 

 

 

 


