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Abstract 

Ventricular assist devices (VADs) are a life-saving form of mechanical circulatory support in 

heart failure patients. However, VADs have not yet reached their full potential due to the 

associated side effects (thrombosis, bleeding, infection) related to the activation and damage 

of blood cells and proteins caused by mechanical stress and foreign materials. Studies of the 

effects of VADs on leukocytes are limited, yet leukocyte activation and damage including 

microparticle generation can influence both thrombosis and infection rates. Therefore, the 

aim was to develop a multicolour flow cytometry assessment of leukocyte microparticles 

(LMPs) using ovine blood and the CentriMag VAD as a model for shear stress. Ovine blood 

was pumped for 6 hours in the CentriMag and regular samples analysed for haemolysis, 

complete blood counts and leukocyte microparticles by flow cytometry during three different 

pump operating conditions (low flow, standard, high speed). The high speed condition caused 

significant increases in plasma-free haemoglobin; decreases in total leukocytes, granulocytes, 

monocytes and platelets; increases in CD45
+
 LMPs as well as two novel LMP populations: 

CD11b
bright

/HLA-DR
-
 and CD11b

dull
/HLA-DR

+
, both of which were CD14

-
/CD21

-
. 

CD11b
bright

/HLA-DR
-
 LMPs appeared to respond to an increase in shear magnitude whereas 

the CD11b
dull

/HLA-DR
+
 LMPs significantly increased in all pumping conditions. We propose 

that these two populations are released from granulocytes and T cells, respectively, but 

further research is needed to better characterise these two populations.  

Key words:  

Flow cytometry, ovine, leukocyte, microparticle, shear stress, ventricular assist, CD11b, 

HLA-DR, CentriMag 
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Introduction 

Ventricular assist devices (VADs) are a life-saving form of mechanical circulatory support in 

refractory advanced heart failure patients, either as bridge to heart transplant or as destination 

therapy [1, 2]. However, VADs have not yet reached their full potential due to the associated 

side effects (stroke, bleeding, infection, and thrombosis) [3], related to the activation and 

damage to blood cells and proteins caused by mechanical stress and foreign materials.  

Studies of the effects of VADs on leukocytes are limited, yet leukocyte activation and 

damage can potentially influence both thrombosis and infection rates [4]. Clinical data 

demonstrate that VADs can cause an overall decrease in leukocyte counts [5], supported by 

in vitro studies using bovine blood, which show a device-specific decrease in viable 

leukocytes [6]. Activation of granulocytes [5] and CD4
+
 T cell apoptosis [7, 8], initiated by 

CD40-ligand (CD40L) induction [9, 10], have also been observed in VAD-patients. Studies 

on allosensitisation have shown that VAD-patients have hyperreactive B cells and increased 

levels of alloantibodies, probably caused by stimulation by activated T cells as evidenced by 

increased levels of soluble CD40L [10, 11]. Finally, microparticle (MPs) formation has been 

demonstrated in vitro [12, 13], and clinically [14-17], suggesting a use for them as predictive 

markers of adverse events [15, 17]. MPs are membrane vesicles released from many different 

cell types, through activation or apoptosis, with pro-inflammatory, pro-thrombotic, 

vasoconstrictive, and angiogenic effects [18-21]. Based on these effects it is evident that MPs 

can play a role in VAD-related thrombosis. Since MPs are mediators of cellular cross-talk 

[22], and MP levels are increased in patients with sepsis [23, 24] and parasitic infections [25], 

it is likely that MPs are involved in VAD-related infections. Since different cell types can 

release MPs, using lineage markers is important to determine the origin of the cell type. 

CD45 has been used to demonstrate leukocyte MPs (LMPs) in VADs in vitro [12, 13], and 
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CD11b or CD45 have been used to demonstrate LMPs in VAD-patient samples [14, 16]. 

Unfortunately, the studies linking microparticles to VAD-complications did not employ 

lineage markers [15, 17], so it remains unknown which parent cell type(s) are predictive of  

VAD-complications and there is a need for further studies to better identify MP cellular 

provenance and quantitative functional capacity before and after LVAD implantation [26]. 

The above mentioned examples demonstrate that VADs have an impact on leukocytes. 

However, the results are disarrayed by different device designs tested (including HeartMate 

XVE, HeartMate II, PVAD, HVAD, CentriMag, VentrAssist, Circulite, and RotaFlow), and a 

lack of lineage markers for leukocytes in the large animals used for pre-clinical studies, 

typically cows and sheep. This limits the ability to glean cell type specific effects during early 

in vitro and later in vivo testing.  

The ovine model is used commonly for in vivo testing of VADs [27-32], but there is a need 

for standardised in vitro methods to rapidly assess leukocyte damage of new device designs 

to enable the development of VADs with fewer side effects. Therefore, the purpose of this 

study was to: 1) develop an in vitro method for studying leukocyte microparticles in ovine 

blood that can be used by device developers during the screening of new device designs, and 

2) identify the parent cell type and activation status of the leukocyte microparticles formed in 

the CentriMag pump during in vitro testing.  
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Methods 

Blood Preparation 

Ovine blood was collected by venepuncture using an 11 G x 44 mm stainless steel needle 

from live sheep (sourced from Ig-Innovations Ltd, Llandysul, UK, project licence (PPL) 

number 40/3538). The blood was collected into 14% Citrate Phosphate Dextrose Adenine 

anticoagulant solution and antibiotics / antimycotics. Ovine venepuncture blood was used as 

opposed to abattoir blood  previously [33] due to the poor quality of the blood as a result of 

the release of mechanically fragile young erythrocytes from the spleen [34]. 

Automated Haematology Analysis 

Complete blood counts were measured using the veterinary analyser Abacus Jr Vet 5 

(Diatron, Budapest, Hungary).  

Device Operation and Specifications 

The extracorporeal ventricular assist device CentriMag® CP (Abbott Vascular, Santa Clara, 

CA, USA) was tested using an in vitro testing circuit under constant haemodynamic 

conditions using three different operating conditions: herein called standard, low flow, and 

high speed. The standard operating conditions have been described in detail elsewhere [13] 

and followed the American society for testing and materials (ASTM) standards [35, 36]. 

Briefly, the flow rate was 5 ± 0.25 L/min, the differential pressure across the pump was 

adjusted using a custom-made clamp to 100 ± 3 mmHg, and the speed was 2,200 rpm. The 

low flow condition differed by using a flow rate of 1 ± 0.25 L/min, and the high speed 

condition differed by using a speed of 3,300 rpm.  



Ovine MPs in the CMAG 

5 

 

Haemolysis 

One ml blood samples were collected hourly and centrifuged at 4700 x g for 7 min. The 

plasma supernatant (100 µl) was transferred from each aliquot into a deep well 96-well plate 

(StarLabs, Milton Keynes, UK) and diluted with 1 ml 0.1% Na2CO3 solution (Sigma-Aldrich, 

Poole, UK). 170 µl diluted plasma was transferred into a 96-well flat bottom plate (ELISA 

plate, Greiner Bio-One, Stonehouse, UK) and the absorbance was measured at three 

wavelengths: 380, 415, and 450 nm (POLARstar Omega, BMG LABTECH Ltd., Aylesbury, 

UK). The plasma-free haemoglobin (pfHb) was calculated by the Harboe direct 

spectrophotometric method (Eq. (1)) as described [37].  

(1) 𝑝𝑓𝐻𝑏 (
𝑔

𝐿
) = (167.2 𝑥 𝐴415 − 83.6 𝑥 𝐴450 − 83.6 𝑥 𝐴380) × (

1

1000
) 𝑥 (1/

𝑉𝑜𝑙𝑝𝑙𝑎𝑠𝑚𝑎

𝑉𝑜𝑙𝑁𝑎2𝐶𝑂3

) 

The normalized index of haemolysis (NIH) was calculated as described by (2) [36].  

𝑁𝐼𝐻 (
𝑔

100 𝐿
) =  ∆𝑝𝑓𝐻𝑏 × 𝑉 ×

100 − 𝐻𝑡

100
×

100

𝑄 × 𝑇
 

Where: 

NIH = normalized index of haemolysis (g/100L) 

ΔpfHb = increase of plasma free haemoglobin concentration (g/L) over the sampling time 

interval 

V = Circuit volume (L)  

Q = Flow rate (L/min) 

Ht = Haematocrit (%) 

T = Sampling time (min) 

 

(1) 

(2) 
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Flow Cytometry 

Sample Treatment and Reagents 

Leukocyte Microparticles 

Blood samples from time points 5, 120, 240, and 360 min were stained with CD45-PE 

(Thermo Fisher Scientific, Gloucester, UK) for 30 min on ice in the dark. The red blood cells 

were lysed by adding EasyLyse (1:20 with dH2O, DAKO, Alere, Cheshire, UK), followed by 

vortexing and 15 min incubation at room temperature in the dark. Necrotic cells were stained 

with 7AAD solution (eBioscience, Hatfield, Ireland, UK) at room temperature in the dark for 

15 min before acquisition. As a positive control for 7AAD staining of dead cells, 1 ml 

baseline blood was treated with Staurosporin solution (Sigma-Aldrich) at room temperature 

for at least 4 h prior to staining with CD45-PE and 7AAD. Untreated blood was single-

stained with CD45-PE and was used to set the 7AAD-gate.  

Leukocyte Activation 

Blood samples from time points 5, 120, 240, and 360 min were stained with a panel including 

activation and lineage markers. The antibodies were used according to manufacturer’s 

instructions: anti-CD11b-FITC (AbD Serotec, Oxford, UK), anti-CD21-PE (AbD Serotec) 

[38], anti-CD14-BDV500 (BD Bioscience, Oxford, UK), and anti-HLA-DR-PE-Cy7 

(eBioscience). CD11b and HLA-DR were chosen based on their clinical relevance in 

monitoring of systemic inflammation response caused by cardiopulmonary bypass pumps 

(CPB). CD11b is part of the β2 integrin CR3 (complement receptor 3; αMβ2; Mac-1; 

CD11b/CD18) [39] and is expressed on neutrophils, monocytes, and NK cells [40]. CD11b is 

upregulated on activated neutrophils in CPB patient blood [41] and has been suggested as a 

predictive marker of acute renal injury in this patient group [42]. Increased HLA-DR 

expression is a sign of T cell activation, and HLA-DR is upregulated on T cells in patients 
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suffering from dilated cardiomyopathy [43]. On the contrary, HLA-DR expression on 

lymphocytes is decreased by CPB [41], so it is unclear how T cells might respond to the 

VAD. HLA-DR is also decreased on monocytes after CPB [44-46]. CD14 was first identified 

on the surface of monocytes and macrophages [47]. Although recent evidence shows its 

expression is not restricted to myeloid cells [48], it was chosen because it is conventionally 

used as a monocyte marker for flow cytometry [49]. CD21 was chosen because of its use as 

an ovine B cell marker, targeting a subset of ovine B cells [50, 51]. Samples were vortexed 

and incubated on ice for 30min in the dark. EasyLyse (1:20 with dH2O) was added to the 

samples which were immediately vortexed and incubated for 15 min at room temperature in 

the dark to lyse the red blood cells. Antibody-capture (AbC) beads (Thermo Fisher Scientific) 

were single-stained and used as compensation controls. Fluorescence-minus-one (FMO) 

controls were used for all antibodies by staining samples subjected to medium insult (240 min 

CentriMag time point). Isotype controls, isotype-FITC (AbD Serotec, Oxford, UK) and 

isotype-PE-Cy7 (eBioscience) were used for the activation markers also using the medium 

insult samples.  

Data Acquisition 

Samples were acquired with a Navios flow cytometer equipped with three lasers (violet: 405 

nm, blue: 488 nm, red: 638 nm), the standard filter configuration, and with Navios Cytometry 

List Mode Data Acquisition and Data Analysis Software Navios Cytometer 1.2 software 

(Beckman Coulter, High Wycombe, UK). Forward scatter (FSC), side scatter (SSC), and 

fluorescent voltages were set using unstained samples and all samples were recorded for 60 

sec. Stained AbC bead samples were acquired using a gate around the beads and capturing 

10,000 events. 



Ovine MPs in the CMAG 

8 

 

Quality Control Measures 

The instrument was maintained using daily cleaning procedures recommended by the 

manufacturer throughout the study period. The quality control used the Flow-Check and 

Flow-Set Pro Fluorospheres (Beckman Coulter) and the protocols used were set-up by the 

manufacturer’s technical support engineers. 

Data Analysis 

All data were exported and analysed using automatic compensation in Kaluza 1.5a (Beckman 

Coulter) using the data from the AbC bead samples. Data were displayed on FSC and SSC 

logarithmic axes and fluorescence displayed on bi-exponential axes [52]. 

Leukocytes were gated and displayed on a contour density dot plot with 7AAD against 

CD45-PE. The healthy cell gate was set using the Staurosporin-treated control to just outside 

the main contour of the healthy 7AAD-negative population (Supplementary Figure 1). Any 

events to the right of this border were considered 7AAD-positive necrotic leukocytes. 

Fragmented white blood cells (LMPs) still display CD45 but no longer contain DNA and 

because of their reduced size and complexity, and therefore lower side scatter, end up below 

the healthy leukocytes on an SSC axes in the gate designated MP. 

The gating strategy was drawn using the baseline samples and comparing the pattern 

differences to the pumped samples which were obvious (see for example Figure 3). FMOs for 

all antibodies, and isotype controls for the activation markers CD11b and HLA-DR, were 

prepared but did not prove useful in this lyse no wash protocol. Isotype controls were useful 

for setting the gates for the cells but not for the microparticles (Supplementary Figure 2).  



Ovine MPs in the CMAG 

9 

 

Statistical Methods 

Averages and standard deviations were calculated for all parameters and time points. 

Leukocyte microparticles and complete blood counts were divided by the static control at 

time point 5 minutes to evaluate the relative increase or decrease caused by duration of 

pumping whilst minimising donor-to-donor variability. For haemolysis, the background 

levels observed at 5 minutes were subtracted from all other measurements. The dataset 

consisted of repeated measurements of blood samples across three pumping conditions and 4 

or 7 time points (7 for haemolysis, 4 for the other assays). Linear mixed models were used to 

analyse the dataset. The reason we used a LMM was because the observations were in the 

form of repeated measures, which introduced possible hierarchical effects. By using LMM 

we were able to allow for these. In particular, we included individual level random effects 

(intercept and rate of change) in addition to the fixed effects. Differences between the groups 

at time point 360 min were assessed with the Kruskal-Wallis test and post-hoc pairwise 

comparisons. All statistical data analysis was performed in SPSS version 22 (SPSS, Inc., 

Chicago, Illinois, US).  
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Results 

Ovine blood was run through a 2 m loop, powered by a CentriMag under 3 different testing 

conditions (Table 1).  

Haematology 

There was no significant difference in the red blood cell count for either the static or the 

pumped samples (Fig 1A). The white cells decreased significantly in the high speed condition 

(p = 0.001). Both the standard and the high speed caused a significant decrease in the 

granulocyte count compared to the static control (p = 0.006 and p < 0.001, respectively) but 

only the high speed condition caused a decrease in the monocyte count versus the static 

control (p = 0.003). There were no changes to the lymphocyte count. The platelets decreased 

significantly in both the low flow and high speed condition compared to the static (p = 0.005 

and p = 0.008, respectively).  

Haemolysis 

The pfHb levels for all testing conditions increased over time as expected (Fig 1B). The 

lowest pfHb levels were observed in the tests run at low flow, with pfHb measured at 0.7 ± 

0.6 mg/dL at 6 hours.  The highest levels of pfHb were observed in the tests run at high 

speed; pfHb measured at 7.3 ± 5.0 mg/dL at 6 hours, which was significantly different 

compared to the static control (p < 0.001).  

Leukocyte microparticles 

All pumping conditions caused a significant increase in CD45
+
 LMPs compared to the static 

control (low flow: p = 0.005, standard: p = 0.004, high speed: p < 0.001; Fig 1C). An 

example of the flow cytometry data from the high speed condition over time is shown (Fig 2). 

The antibodies were tested on baseline blood to confirm that they could detect the target 
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parent cells (Supplementary Figure 3). CD14-BDV500 detected granulocytes (high 

SSC/CD14
dull

), and monocytes (medium-high SSC/CD14
+
). CD21-PE stained a B cell subset 

(medium SSC/CD21
+
). CD11b-FITC mainly stained granulocytes, monocytes, and a subset 

of lymphocytes. HLA-DR-PE-Cy7 targeted monocytes and a subset of lymphocytes. Gated 

medium-high SSC/CD14
+
 monocytes were CD11b

+
 and about 60% also expressed HLA-DR. 

Of the CD21
+
 B cells, around 50% were HLA-DR

+
/CD11b

-
, and approximately 40% were 

double positive. 

Characterisation of LMPs 

LMPs generated during pump testing expressed CD11b and/or HLA-DR (Figure 3). Three 

subpopulations could be identified: CD11b
bright

HLA-DR
+
, CD11b

dull
HLA-DR

+
, and 

CD11b
bright

HLA-DR
-
 (Fig 4A). All three populations were negative for both CD14 and CD21 

(Fig 4B), so are unlikely to be derived from monocytes or the CD21
+
 B cell subset. On 

specifically seeking CD14
+
 or CD21

+
 LMPs there were none detectable (Supplementary 

Figure 4). Since HLA-DR expression was restricted to the monocyte/lymphocyte side scatter 

area (Fig 3C), the parental lineage is unlikely to be granulocytes and we propose T cells or 

CD21
-
 B cells as the most likely parental lineages for the CD11b

dull
HLA-DR

+
 LMPs. The 

parental lineage for the CD11b
bright

HLA-DR
-
 population is most likely granulocytes, due to 

their high CD11b expression (Fig 3B) and lack of HLA-DR (Fig 3C). The small 

CD11b
bright

HLA-DR
-
 population could be a further activated subset from either of the 

granulocyte or lymphocyte MP populations, as both activated T cells can increase their 

CD11b expression [53], and activated neutrophils can increase their HLA-DR expression 

[54]. 
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Influence of Pumping Condition on Activated LMP Production 

The standard and the high speed condition caused a significant increase in the 

CD11b
bright

HLA-DR
-
 LMPs versus the static control (p = 0.027 and p < 0.001, respectively) 

(Figure 4C). The high speed also caused a significant increase for the CD11b
bright

HLA-DR
+
 

LMPs compared to the static control (p < 0.001) (Figure 4D). The CD11b
dull

HLA-DR
+
 LMPs 

significantly increased during all pumping conditions compared to the static control (p < 

0.001) (Figure 4E). Finally, at 360 min, the high speed condition caused significantly more 

CD11b
bright

HLA-DR
-
 LMPs compared to CD11b

dull
HLA-DR

+
 LMPs (p = 0.002). 
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Discussion 

To the best of our knowledge this is the first study to describe a four colour flow cytometry 

panel for ovine leukocytes; previous studies have used single or two-colour approaches [55-

58]. It is also the first time LMPs displaying activation markers have been shown to be 

generated during in vitro VAD testing, and the first time LMPs have been demonstrated in 

vitro using ovine blood. This study also represents the first ovine blood damage profile for 

the CentriMag operated under standard conditions (as defined by ASTM [35, 36]). The panel 

described herein can be used to detect differences in LMP generation due to shear stress as 

demonstrated by pumping whole blood in the CentriMag, a suggested benchmark for in vitro 

VAD-testing [13], at different operating conditions. The antibodies used were chosen on two 

criteria: 1) directly conjugated to fluorochromes for replicability and uptake by other users, 

and 2) cross reactivity to ovine, bovine, and human blood cells, to yield a translational 

research tool suitable for device developers using animals in the pre-clinical phase and then 

progressing to clinical studies. 

Similarly to our previously published bovine CentriMag blood damage profile [13], the 

standard condition did not cause any significant differences to ovine total red cell, white cell, 

or platelet counts. However, now we also studied the leukocyte subsets, and show that the 

standard condition caused a significant reduction in the granulocyte count. Perhaps because 

the lymphocytes are the most prevalent white blood cell type in bovine and ovine blood [59], 

and lymphocyte counts remained constant in this ovine blood study, they mask the decreasing 

granulocytes levels when only the total white blood cell count is measured.  

The high speed condition caused a reduction in both granulocyte and monocyte counts, but 

lymphocytes remained constant. This reflects either the resilience of lymphocytes or their 

abundance in the ovine circulation [59]. Consideration of lymphocyte subsets and/or a higher 
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resolution method such as absolute counting using flow cytometry [33] might be required to 

assess any decrease in lymphocyte cell numbers. Both the low flow and the high speed 

conditions significantly decreased platelet counts. Platelet activation is caused by both an 

increase in residence time (as in the low flow condition)[60], and by high shear stress [61, 62] 

which could lead to lysis and/or aggregation and the observed reduction in numbers. 

Interestingly, our previous study of bovine blood using the extracorporeal RotaFlow and the 

intracorporeal VentrAssist pumps observed an increase in platelet numbers [12]. This 

increase was hypothesised to be due to leukocyte microparticles being falsely detected as 

platelets by the haematology analyser due to the concomitant decrease in leukocytes and 

increase in CD45
+
 LMPs [12]. Although the high speed condition in this current study caused 

a reduction in leukocytes and an increase in CD45
+
 LMPs, there was no increase in platelets. 

This could be due to different haematology analysers being used in the two studies (CELL-

DYN Ruby versus Abacus Jr Vet 5).  

The haemolysis data showed evidence of increased resilience of ovine venepuncture versus 

bovine abattoir erythrocytes to the effects of shear. Levels of pfHb obtained with ovine blood 

were one quarter of those obtained in bovine blood after 360 minutes pumping in the 

CentriMag at the standard condition (2.5 ± 1.0 versus 10 ± 1.5 mg/dL), with mgNIH roughly 

one third in ovine compared to bovine blood (0.38 ± 0.15 compared to 1.10 ± 0.5 mg/100L) 

[13]. In our previous multispecies comparison study in which we evaluated the response to 

shear caused by a rheometer, we also observed greater haemolysis in bovine abattoir 

compared to ovine venepuncture blood at high shear (75 versus 50 mg/dL at 8000 s
-1

, 

respectively), although this difference was not statistically significant [34].  

The standard condition in this study caused a significant increase in ovine CD45
+
 LMPs, as 

previously observed in bovine blood [13]. In addition, the CD45
+
 LMPs significantly 
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increased in the low flow and the high speed conditions as well. We have confirmed the LMP 

identity in a previous study [12], where we showed that: CD45
+
 LMPs were a fraction of the 

size compared to CD45
+
 leukocytes using imaging cytometry; we showed microparticles, 

morphologically different from platelets, in association with leukocytes using scanning 

electron microscopy; and we showed that, when using bovine activated platelet marker 

GC5A, the FSC/SSC region co-habited by microparticles and platelets consists of 3 separate 

populations: CD45
+
 LMPs, activated GC5A

-
 platelets, and resting GC5A

+
 platelets. 

In this study, three novel ovine LMP populations were identified: CD11b
bright

HLA-DR
+
, 

CD11b
dull

HLA-DR
+
, and CD11b

bright
HLA-DR

-
. These were all negative for CD14 and CD21, 

suggesting they are not derived from monocytes or the CD21
+
 B cell subset. However, it is 

possible that as there are relatively few monocytes in ovine blood [59], monocyte-derived 

LMPs might simply be relatively rare and undetectable. The remaining major cell types are 

neutrophils, T cells, and CD21
-
 B cells. Neutrophils express CD11b, and have been shown to 

produce CD11b
+
 MPs when activated in vitro [63-65]. Considering that the granulocyte cell 

count (Fig 1) and the CD11b
bright

HLA-DR
-
 frequency (Fig 4C) were both the most affected 

by the high speed condition, this further supports that the CD11b
bright

HLA-DR
-
 MPs are of 

neutrophil origin. Excluding granulocytes (CD11b
bright

), and monocytes (CD14
+
), T cells, or 

CD21
-
 B cells are the most likely parent of the CD11b

dull
HLA-DR

+
 MPs. That granulocytes 

and T cells would be the cell types most affected in the VAD in vitro, is supported by clinical 

evidence showing the activation of both granulocytes and T cells in VAD-patients [5, 7, 8].  

This study shed light on two important aspects of leukocyte MPs in relation to VADs. Firstly, 

it showed that CD11b
+
 MPs are generated in VADs, which could have implications for pump 

thrombosis. Low levels of CD11b
+
 LMPs are a risk factor in patients suffering non-ST 

elevated acute coronary syndrome, as low levels are associated with a higher number of 
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occluded arteries, higher number of >50% stenosis, higher number of stenosed arteries, and 

higher frequency of recurring cardiovascular events, [66]. The decline in CD11b
+
 LMPs is 

suggestive of their consumption in the occlusions, since CD11b
+
 levels negatively correlate 

with thrombus weight in a mouse model [19]. The mechanism is likely to be through αMβ2 

interaction with resting platelets, causing them to become activated [65].  

Secondly, it showed that different LMP subtypes respond differently to changes in operating 

conditions. The CD11b
dull

HLA-DR
+
 LMPs were sensitive to pumping and significantly 

increased regardless of the operating conditions. However, they did not respond to a further 

increase in speed. In contrast, the levels of CD11b
bright

HLA-DR
-
 LMPs were not significantly 

different from the static control in any other condition than the high speed so are seemingly 

more affected by increasing speed than the CD11b
dull

HLA-DR
+
 LMPs. Hence, the 

CD11b
dull

HLA-DR
+
 LMPs show potential as a positive control for pumping versus static 

samples, and the CD11b
bright

HLA-DR
-
 LMPs may be able to differentiate between the effects 

of pump designs on LPM generation if the pumps differ in shear stress. The different 

responses to the operating conditions further supports that these LMPs are of different 

cellular origins. In vitro studies of human leukocytes under shear stress have revealed that the 

fluid shear response is not uniform among all cells. At low shear stress levels (0.2 dyn/cm
2
 

for 5 min) about 33% of leukocytes respond with pseudopodia projection [67]. These first 

responders could be lymphocytes since they make up 17-48 % of the human leukocyte count, 

whereas neutrophils make up 40-75% [68]. The number of human leukocytes responding to 

shear stress increases with each 1 dyn/cm
2 

[67]. This could be the neutrophils as they have 

been described to display a dose-response relationship with both shear magnitude and time in 

vitro using a cone-and-plate viscometer, with L-selectin shedding as the measure [69]. Lastly, 
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the migration of human T cells and neutrophils in vitro also differs with T cells migrating 

against the fluid flow and neutrophils migrating with it [70]. 
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Study Limitations 

One study limitation was to find antibodies that target ovine blood cells. For example, there is 

no ovine platelet lineage marker that is not affected by activation which is why platelet MPs 

were not studied. This also means we cannot analyse the potential platelet contamination 

within the leukocyte MP population. However, a confirmatory experiment using human 

blood double-stained with platelet and leukocyte lineage markers CD41 and CD45, 

respectively, pumped using the ’high speed’ protocol, showed that within the CD45
+
 MP 

population, there is a 10% contamination of double-positive platelet aggregates 

(Supplementary Figure 5). Thus, if the assay is used with human blood, an initial platelet-

discrimination gate can be set to exclude platelet-MP aggregates from further analysis steps, 

if desired. 

In addition, there is no directly conjugated anti-ovine granulocyte antibody available to 

confirm that the CD11b
bright

 MPs were of neutrophil origin. For future studies, in-house 

conjugation of the granulocyte-monocyte targeting antibody clone, DH59B [56], could be 

used in combination with anti-CD14 to distinguish the granulocyte (DH59B
+
CD14

+
) and 

monocyte  (DH59
bright

CD14
bright

) MPs.  

Although there is a vast amount of literature describing that MPs can be identified using 

lineage markers [21, 71-73], a couple of studies have described contradictory results. 

Monocyte and lymphocyte MPs, in particular B cell MPs, have been described to lack lineage 

markers [74, 75]. In addition, human malignant B cell MPs, but not T cell MPs, have been 

described to express HLA-DR [75], hence the CD11b
dull

HLA-DR
+
 LMPs could be B cell 

MPs that are not expressing CD21; this remains to be proven.  

The method described herein was developed as a whole blood wash-no-lyse protocol in order 

to fit around the routine haemolysis procedures of a device testing lab. As per the ASTM 
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standard, haemolysis testing should be carried out on fresh blood for a total of 6 hours [36]. 

In practice, this means that any samples collected from such a test will be available in the 

evening. We deemed an MP isolation method including several centrifugation steps would be 

too time-consuming for it to be practical to do in addition to a haemolysis test for most device 

developers. Thus, we opted for a rapid whole blood staining protocol to make it user friendly.  

Lastly, conventional flow cytometric methods use standardisation beads to define the initial 

FSC/SSC scatter gate for further MP analysis. Although we did not use such beads, the 

method is fully compatible with beads as exemplified by a subsequent acquisition of 

Megamix beads using the same acquisition protocol. When displaying the MP population in a 

Megamix gate created around the FSC/SSC of beads 900 nm and smaller, 92% of the CD45
+
 

MP population was within the gate (Supplementary Figure 6). Thus, an additional Megamix 

bead gate could be introduced, if desired. 
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Conclusion 

This first report of the blood damage profile of ovine blood exposed to the CentriMag pump 

shows that ovine venepuncture blood may potentially be more resilient than bovine abattoir 

blood to shear stress. This is supported by our previous multispecies rheometry study [34]. As 

expected, the high speed condition was the most detrimental regarding all parameters. This 

condition caused a significant decrease in total leukocytes, granulocytes, monocytes and 

platelets; an increase in pfHb; and an increase in CD45
+
 LMPs, and, using a 4-colour panel 

for ovine leukocytes for the first time, an increase in three novel LMP populations: 

CD11b
bright

HLA-DR
+
, CD11b

dull
HLA-DR

+
, and CD11b

bright
HLA-DR

-
.  

We propose that this multicolour panel can be used by device developers to test and develop 

VADs with better blood handling capacity for reduced side effects. Our next step is to repeat 

this study in bovine blood using several device types and to expand the flow cytometry panel 

used to include granulocyte and T cell markers based on the results presented herein. This 

will confirm if the panel is useful for monitoring LMP formation during in vitro testing in 

bovine blood and promote its further adoption by the industry. It will also enable us to 

identify the parental lineage of LMPs and undertake pump comparison testing. This study 

also highlights the need to better understand the formation and functional effects of 

circulating LMPs in humans implanted with VADs. 
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Tables 

Table 1. Operating conditions 

 Low flow Standard High speed 

Speed (rpm) 2200 ± 0 2200 ± 82 3300 ± 0 

Flow (L/min) 1.00 ± 0.03 5.03 ± 0.08 4.96 ± 0.06 

Pressure (mmHg) 105.29 ± 1.91 82.98 ± 4.59 212.23 ± 19.14 

mgNIH at 360 min (mg/100L) 1.05 ± 0.89 0.38 ± 0.15 2.82 ± 2.80 

Baseline Hct (%) 30.33 ± 2.57 30.78 ± 1.49 29.25 ± 3.88 

Baseline Hb (g/L) 116.27 ± 15.55 116.03 ± 15.05 108.11 ± 12.36 

Sample size (n) 4 5 5 
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Figure Legends 

Figure 1. Haematology, Haemolysis, and Leukocyte Microparticles Generated in the 

Centrimag Under Different Conditions. 

Ovine blood was diluted to a haematocrit of 30 ± 2% using PBS, loaded into the CentriMag 

loop and run at either low flow: 2,200 rpm, 1 L/min (n = 3), standard conditions: 2,200 rpm, 

5 L/min (n = 5), or high speed: 3,300 rpm, 5 L/min (n = 5). A 500 mL bag of ovine blood was 

left in the +37°C water bath as a static control. Blood samples were removed every hour for 6 

hours. A. Average complete cell counts from blood samples run in triplicate for erythrocytes, 

leukocytes, platelets, granulocytes, monocytes, and lymphocytes for each time point. B. 

Plasma free haemoglobin. C. Number of CD45 positive (CD45
+
) microparticles. 

Figure 2. Baseline Blood Characterisation.  

Ovine whole blood stained with antibodies targeting CD14, CD21, CD11b, and HLA-DR. A. 

Granulocytes have high side scatter (SSC) and are CD14
dull

. Monocytes (gated) have 

medium-high SSC and are CD14
+
. B. Some B cells have medium SSC and are CD21

+
. C. 

CD11b is mainly expressed by granulocyte and monocytes and a subset of lymphocytes. D. 

HLA-DR expression is restricted to monocytes and a subset of lymphocytes. E. Monocytes 

are CD11b
+
 and around 60% are HLA-DR

+
. F. Of CD21

+
 B cells, about 50% are HLA-

DR
+
/CD11b

-
, and approximately 40% are double positive. 

Figure 3. Scatter Profile and MP Formation During High Speed Pump Setting. 

Ovine whole blood pumped in the CentriMag (CMAG) at high speed (3,300 rpm) for 5, 120, 

240, and 360 min and compared to baseline. The blood was stained with antibodies targeting 

CD14, CD21, CD11b, and HLA-DR. FSC / SSC: there is an initial increase in scatter 

followed by a rapid decline during pumping. CD11b
+
 and HLA-DR

+
 MPs have low SSC and 

increase in frequency with pumping time.  

Figure 4. LMP populations expressing activation markers. 

Ovine whole blood pumped in the CentriMag (CMAG) at high speed (3,300 rpm) for 360 

min. The blood was stained with antibodies targeting CD14, CD21, CD11b, and HLA-DR, 

and MPs expressing CD11b and/or HLA-DR were gated. A Boolean gate named Active MPs 

was created (CD11b
+
 OR HLA-DR

+
 MPs) and displayed. A. Active MPs form three distinct 

populations when displayed on CD11b versus HLA-DR axes. B. The three populations are 

CD14
-
/CD21

-
, and therefore likely to be generated by granulocytes (CD11b) and T cells or 

CD21
-
 B cells (HLA-DR) based on the baseline cell surface marker expression 

(Supplementary Figure 3). 
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Supplementary Figure Legends 

 
Supplementary figure 1: Gating strategy for the determination of leukocyte 

microparticles using staurosporine control. Ovine blood (1 ml, baseline sample) treated 

with 3 μM Staurosporin solution at room temperature for at least 4 h prior to staining with 

CD45-PE and 7AAD. A. Forward and side scatter plot (log scale) showing the location of 

leukocytes. B. CD45-PE and side scatter indicating leukocytes as CD45+ events. C. The 

CD45+ events expressed on a 7AAD and side scatter plot to show healthy, necrotic, and 

CD45+ microparticles (MPs). 

 

Supplementary figure 2: Fluorescence-minus-one (FMO) and isotype controls. Ovine 

blood entered into the CentriMag loop and run at 3,300 rpm, 5 L/min (high speed condition). 

Samples were obtained after 4 hours and stained with CD14-BDV500, CD21-PE, CD11b- 

FITC, and HLA-DR-PE-Cy7 (ALL ABS). In addition, FMO controls were created by 

omitting one of the antibodies (i.e. CD14-FMO does not contain CD14-BDV500 but the three 

other antibodies). Isotype controls were created by swapping either CD11b-FITC or HLADR- 

PE-Cy7 for its isotype control as specified by the manufacturer. Gates were set based on 

the baseline sample (see Figure 2) and applied to the samples to assess the usefulness of the 

FMO and isotype controls. 

 

Supplementary figure 3: Comparison of leukocyte microparticle generation over time 

between static control and CentriMag. Ovine blood was entered into the CentriMag loop 

and run at 3,300 rpm, 5 L/min (high speed condition). A 500 mL bag of ovine blood was left 

in the +37°C water bath as a static control. Blood samples were removed every 2 hours and 

stained with CD45-PE and 7AAD. 

 

Supplementary figure 4. Search for CD14+ and CD21+ microparticles. Ovine blood was 

entered into the CentriMag loop and run at 3,300 rpm, 5 L/min (high speed condition). 

Samples were removed every 2 hours and stained with CD11b-FITC, CD14-BDV500, CD21- 

PE, and HLA-DR-PE-Cy7. The low side scatter (SSC) region was analysed to see if the 

number of CD14+ or CD21+ events increased over time. 

 

Supplementary figure 5. Analysis of contaminating platelets. Human blood was 

entered into the CentriMag loop and run at 3,300 rpm, 5 L/min (high speed condition). 

A sample was removed at 6 hours and stained with CD45-PE, CD41-FITC, and 7AAD. A-C) The 

CD45+ MPs were gated as previously described. D) The contaminating CD41+ platelet events 

within the CD45+ MP population were assessed. 

 

Supplementary figure 6. CD45+ LMP method compatibility with Megamix Beads.  

Megamix beads, 0.5, 0.9 and 3.0 µm in size, were acquired using the standard ovine CD45+ LMP 

acquisition protocol on the Navios flow cytometer and compared to a previously acquired ovine 

CD45-PE stained blood sample obtained at 6 hours from the CentriMag when operated at the 

high speed (3,300 rpm, 5 L/min) condition. A-C) The CD45+ LMPs were gated as previously 

described. D) A ‘microparticle’ gate was created to include beads ≤ 0.9 µm on a FSC/SSC scatter 

plot. E) The CD45+ LMPs were displayed on a FSC/SSC scatter plot to assess whether or not 

they fall within the ‘microparticle’ gate (92% compatibility). 

 

  



Ovine MPs in the CMAG 

33 

 

 

Supplementary Figure 1. 



Ovine MPs in the CMAG 

34 

 

 

Supplementary Figure 2. 

  



Ovine MPs in the CMAG 

35 

 

 

Supplementary Figure 3. 

  



Ovine MPs in the CMAG 

36 

 

 

Supplementary Figure 4. 



Ovine MPs in the CMAG 

37 

 



Ovine MPs in the CMAG 

38 

 

 


