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Towards Pulse by Pulse Dosimetry using a
SC CVD diamond detector

J.J. Velthuis, R.F. Page, T.M. Purves, L. Beck, M.A.M. Hanifa and R.P. Hugtenburg

Abstract—Solid state detectors with nanosecond response times
to incoming radiation are increasingly present at the forefront
of radiotherapy dosimetry research. The fast response time of
materials, such as diamond, allow pulse by pulse dosimetry. There
is a trend in radiotherapy to move towards shorter treatments,
using fewer but more intense pulses with varying pulse rates and
intensities. This makes the possibility of measuring individual
pulses very attractive and would allow intervention during the
treatment and not just afterwards. Here an analogue front end
has been developed and combined with a CVD diamond detector
to provide real time, pulse by pulse beam intensity measure-
ments.The front end design is discussed and the experimental
results obtained using a medical LINAC are presented. The
results show that pulse by pulse The device is capable of pulse
by pulse beam intensity measurements up to pulse rates well
above 1 kHz. The system performs so well that its variations are
negligible compared to the pulse to pulse intensity variations.
The dosimetric performance of our system was compared to
a commercially available, integrating diamond detector, the
microDiamond by PTW. The dose and dose-rate linearity of our
system is comparable with the one of the microDiamond and has
the additional advantage of being able to measure the deposited
dose per pulse.

Index Terms—non-reference dosimetry, small beam dosimetry,
synthetic diamond detector

I. INTRODUCTION

EXTERNAL beam radiotherapy (EBRT), used to treat
cancer patients, has improved with the development of

the medical linear accelerator (LINAC). LINACs are capable
of generating both electron and photon beams which are used
in treatment delivery. Generally, photon beams consist of a
series of pulses with a constant pulse duration of around 4 µs.
A range of pulse rate repetition frequencies (PRF) are available
depending on the LINAC. PRFs are typically a few hundred
Hz and do not exceed 1 kHz. To verify the applied dose to
the patient dosimeters are placed on the skin of the patient.
Current solid state dosimetry systems integrate the measured
charge over the treatment session to verify the applied dose.

As radiotherapy procedures such as modulated arc therapies
are getting more common, a need for time-resolved dosimetry
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methods arises to verify the dose delivery of a medical
LINAC on shorter timescales [1], with one example being
the development of fast-scintillator based dosimeters [2]–[4].
These systems utilise high atomic number phosphors and as a
consequence do not have a tissue-equivalent response, unlike
diamond-based dosimeters. Pulse by pulse dosimetry can be
achieved using solid state detectors. Here a single crystal
chemical vapour deposition diamond sensor (SC CVD) was
used as the radiation detector. SC CVD diamonds are excellent
detectors for radiotherapy: they are very radiation hard, have
a fast response time, are near tissue equivalent and, in contrast
to natural diamonds, have a uniform response from sensor to
sensor. The performance of single crystal diamond dosimeters
has been reported widely, see for example [5]–[9]. To achieve
pulse by pulse readout a custom frontend was developed.
Measurements were performed with an Elekta Synergy at
Singleton Hospital, Swansea to demonstrate the feasibility of
pulse by pulse dosimetry.

II. ANALOGUE FRONT END

Commercially available detector front ends, such as the
systems presented in [10] tend to focus on high count rate, low
intensity signals. In a wide range of radiation environments
this is ideal. However, during radiotherapy treatments the
pulses are intense but the pulse rate rarely exceeds a few
hundred Hz. The generated pulse in the 500 µm thick CVD
diamond detector, see section III, is a few microseconds long
with an amplitude in the order of 1 mA and a repetition rate
well below 1 kHz. With this in mind the following front end
was designed. It is a classic design: an AC coupled preamp
followed by a two-stage shaper resulting in a semi-Gaussian
voltage output.
The schematic is presented in figure 1. The detector itself is
represented by I1. The operational amplifiers used were Texas
Instruments TL082BCP, chosen for their fairly fast slew rate.
A short summary of the properties of the amplifiers can be
found in table I. The bias voltage is provided by the HV source
V 1. A LINAC pulse will cause electrons to flow onto the AC

TABLE I
TABLE OF TL082BCP AMPLIFIER PROPERTIES

Property Value Units

Bandwidth 3 MHz

Slew Rate 13 V µs−1

Maximum Voltage Supply ±18 V

Operating Temperature 0− 70 ◦Celsius
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Fig. 1. Circuit diagram of the custom front end constructed. I1 represents a current source, in this case a solid state detector.

decoupling capacitor C1. The preamplifier that follows C1 is
arranged as an operational integrator, with transfer function

vout(s)

iin(s)
=

R4

1 + sR4C2
(1)

Taking the inverse Laplace transform of this with an impulse
of current gives

vout(t) =
1

C2
e−

t
R4C2 (2)

The preamplifier output was passed first to a pole zero
cancellation circuit, in order to negate the effects of the pole
at s = −RC and provide optimal baseline restoration. It
then passes through two Sallen-Key filters [11] in a low pass
configuration that act both to filter out high frequency noise
in the system and shape the pulse for data acquisition. The
transfer function of the first Sallen-Key filter is

vout(s)

vin(s)
=

w2
0

s2 + 2as+ w2
0

(3)

with
w0 =

1√
R7R8C5C4

(4)

and
2a =

R7 +R8

R7R8
(5)

such that the output pulse from a single stage of shaping
can be obtained by taking the inverse Laplace transform. This
configuration produces a semi-Gaussian voltage pulse which
is slow enough, so that extremely fast and complex data
acquisition systems are not needed. Gain control is available
by altering the negative feedback resistor pairs R9 and R10,
or R13 and R14, following the usual gain control method [12].
The voltage output was measured between the circuit ground
and the output of the amplifier used in the second stage of
pulse shaping. In this work a National Instruments PCI 6024E
DAQ was used to digitise the input signal and readout out the
sensor. The DAQ was operating at its maximum acquisition
rate of 200 kilo-samples per second, giving 5 µs resolution on
the time base. The 6024E card has a 4.88 mV resolution on
the voltage base.

Fig. 2. The encapsulated diamond detector.

III. THE SC CVD DIAMOND DETECTOR

The detector system uses a single crystal CVD diamond
purchased from Diamond Detectors Ltd (Poole, U.K.). The
detector is encapsulated in a tissue equivalent plastic resin and
the sensitive volume is a high-purity single crystal diamond
with concentrations of less than 1ppm of boron and nitrogen.
The size of the sensitive volume is 1×1 mm2 and 0.5 mm
thick. The bias voltage was 100 V. A picture of the encapsu-
lated diamond detector is shown in figure 2. Figure 3 shows a
radiograph of the encapsulated module. The electrical contacts
were made through top and bottom pads with a proprietary
metalization technique (Diamond Like Carbon/Pt/Au) [13].
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Fig. 3. A radiograph of the encapsulated diamond dectector.
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Fig. 4. Example of a pulse train measurement taken with the LINAC operating
at 400 MU·min−1.

IV. EXPERIMENTAL SET UP

Measurements were taken at Singleton Hospital, Swansea
using an Elekta Synergy. The LINAC was operated at an
acceleration voltage of 6 MV at 400 MU·min−1 with a
10×10 cm2 field size at 100 cm source to surface distance
(SSD). The data was recorded during mid-delivery of the
beam to avoid any pulse variations due to start up issues
of the LINAC. The detector was mounted in a custom built
8×8×8 cm3 PMMA phantom. The detector is cylindrical
and was positioned with its main axis perpendicular to the
incoming photon beam. To minimise effects from scattering
the cube was shielded on all sides using multiblock RW3 solid
water phantoms. The sensor was placed 1.5 cm deep in the
phantom: the depth of maximum dose for a 6 MV beam.

V. RESULTS

Figure 4 shows the detector response to a series of LINAC
pulses as measured with the described system. A single
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Fig. 5. Example of a measured detector signal pulse taken with the LINAC
operating at 400 MU·min−1. The line shows a fit to the data using equation 6.

detector signal pulse is shown in figure 5. The detector signal
pulse displays the expected semi-Gaussian behaviour with a
rapid rise and slower fall. The detector signal pulse is very
well described by the parametrisation

V (t) = p0e
− 1

2 (λ+e−λ) + p1 λ =
t− p2
p3

(6)

where the parameters pi are extracted from the fit. The fit,
also shown in figure 5, was performed using the ROOT
package [14]. From the fit, the peak height and the integral
of the signal pulse, which is a measure of the charge of the
signal pulse and thus of the dose in patient per LINAC pulse,
are extracted.

It is an important design criterium that the front end pulse
is fast enough such that signal returns to baseline before the
next LINAC pulse arrives. If the next LINAC pulse would
arrive before the signal has returned to 0, signal pulse pile
up occurs. The pile up will lead to an increased base line for
subsequent measurements of the detector signal. In principle
this can be corrected for offline until the detector signal
reaches the maximum of the dynamic range. This would
make dosimetry impossible. To study whether pile up is a
problem the signal pulse duration, defined as the time the
signal pulse exceeded a certain fraction of the peak height,
was extracted from the data for 2% and 5% of the peak height
as a function of the SSD. Figure 6 demonstrates that the pulse
duration does not depend on the dose rate. In addition, the
pulse duration was calculated for 5%, 2%, 1% and 0.1% of
the peak height. The calculations for 5% and 2% agree well
with the data. The calculated pulse duration time for 0.1%
of the peak height is 365.7 µs. Hence, there is no problem
with signal pulse pile up as long as the PRF does not exceed
2734 Hz. Since medical operation rarely exceeds 400 Hz, the
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Fig. 6. The detector signal pulse duration, defined as the time the signal pulse
exceeded a certain fraction of the peak height, measured for 2% and 5% of
the peak height as a function of the SSD and the predicted values for 5%,
2%, 1% and 0.1% of the peak height.

effects of signal pulse pile up can be safely neglected. This
is essential to perform pulse by pulse dosimetry effectively.

The LINAC producing the X-rays is effectively a point
source. This is a well assessed model in external beam
radiation dosimetry, see for example [15]. The energy absorbed
by a detector at the point of maximum dose in the phantom is
expected to closely follow the inverse square law as a function
of the source to the detector distance. To vary the signal
per pulse the SSD was varied. The distribution of the peak
height of the charge per pulse as a function of the SSD is
shown in figure 7. The peak height of the charge per pulse
is proportional to the total charge per pulse as will be shown
later on in this section. Figure 8 shows the average charge per
pulse as a function of the SSD. The data was fitted using the
inverse square law with an offset a for the depth at which the
measurement was performed

Qpulse =
QLINAC

(SSD − a)
2 (7)

to correct the SSD where Qpulse is the measured average
charge per pulse and QLINAC the average charge emitted by
the LINAC per pulse. As can be seen in figure 8, the data is
well described by the inverse square law including the offset.
The obtained value for a of -1.7±0.4 cm corresponds well to
the calibrated depth of 1.5 cm.

Figure 7 demonstrates that the measured charge per pulse
varies for each SSD. Part of this will be due to the pulse
to pulse intensity variation of the LINAC and part due to
imperfections in our measurement and analysis chain. As
demonstrated in figure 8 the measured intensity follows the
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Fig. 7. The distribution of the peak height of the detector signal for several
SSD values: from left to right the SSD was 100, 90, 80, 75 and 70 cm.
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Fig. 8. The measured average charge per pulse in the detector in arbitrary
units as a function of the SSD, along with an inverse square fit to the data.

expected inverse square law. Any pulse to pulse variation in
our measured signal will therefore lead to an inverse square
dependence of the standard deviation of the measured charge
per pulse. It is reasonable to assume that the component of
the standard deviation due to our measurement system is
independent of the SSD as the measured pulse heights are
quite small compared to the maximum input range. Therefore,
the standard deviation as a function of the SSD should follow
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Fig. 9. Variance of the measured pulse charge as a function of the SSD.

the parametrisation given in equation 8

σ2
overall(SSD) =

α

(SSD − a)2
+ β (8)

where β is the standard deviation squared due to our
measurement system. The fit of equation 8, shown in figure 9,
describes the data well. From the fit β was extracted to be
(0.3± 0.7)× 10−3, which is compatible with 0. Furthermore,
at a SSD of 140 cm where the smallest standard deviation
was measured, the value was approximately 0.03 which is
an order of magnitude larger than the obtained value for β.
Hence, the imperfections in our measurement and analysis
chain are negligible and the measured pulse to pulse variation
is due to actual pulse to pulse intensity variations of the
LINAC.

For practical applications, it would be desirable if pulse
fitting is not required as it takes time to execute and requires
storing a significant amount of data per pulse. In figure 10
the pulse integral is plotted as a function of the peak height.
The figure shows that the integral is directly proportional to
the peak height. Fitting figure 10 with a straight line yielded
a slope of 17.7 ± 0.5 and an offset of 0.04 ± 0.2 which
is compatible with 0, demonstrating that the peak height is
indeed proportional to the pulse height. Hence, it is sufficient
to extract the peak height per pulse. This can be easily done
either in the electronics, firmware or offline.

VI. COMPARISON WITH MICRODIAMOND

The performance of our device was compared to a
commercially available diamond detector system, the
microDiamond type 60019 by PTW [16]. The microDiamond
is a commercial diamond detector system in Schottky
diode configuration; no external bias voltage is required.
The detector has an active volume of 0.004 mm3 and the
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Fig. 10. The total charge per pulse as a function of the pulse peak height for
pulses measured at several SSD values.

effective point of measurement from the tip is 1 mm. The
microDiamond system was connected to a PTW UNIDOS
dosimeter to measure the charge generated by the photon
beams. Several studies on the use of this system in therapeutic
dosimetry have been reported [17]–[20].

In radiotherapy it is common to compare detector systems
after normalisation to the deposited dose (or signal) at a
calibrated depth. Here, the phantom surface was at 100 cm
SSD and the measurement was done at a depth of 1.5cm in
RW3 Solid Water using a 6 MV beam. Figure 11 shows the
normalised average total charge per pulse for the DDL SC
CVD diamond system and the PTW microDiamond system as
a function of the source to detector distance. The agreement
between the two detector systems is very good. As mentioned
before, the normalised average total charge per pulse as a
function of the source to detector distance should follow an
inverse square law function. To verify this a fit was performed
for both detectors using the parametrisation

y = Axb (9)

For the DDL SC CVD diamond, the obtained parameter values
were A = (1.01 ± 0.09) × 104 cm−1 and b = (−2.00 ±
0.02). For the microDiamond the obtained parameter values
were A = (0.982 ± 0.005) × 104 cm−1 and b = (−1.990 ±
0.001). The fit results showed that both detectors agree very
well with the expected inverse square law. Furthermore, the
fit results confirm that both systems agree very well with each
other as both fit parameters are within errors the same for
both systems, although the uncertainties for the DDL SC CVD
diamond system are an order of magnitude worse. However,
the errors for both systems are very small.
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Fig. 11. Normalised average total charge per pulse for the DDL SC CVD
diamond system and the PTW microDiamond system as a function of the
source to detector distance. For clarity only the fit for the DDL SC CVD
diamond is shown.

The microDiamond has previously been demonstrated to
have excellent dose-rate linearity [17]. To compare the dose-
rate linearity of the DDL SC CVD diamond system with the
PTW microDiamond system, the logarithm of the average
total charge per pulse was plotted as a function of the
SSD, see figure 12. This allowed the Fowler factor for both
detectors to be extracted as the slope of a linear fit. The mea-
sured Fowler factor for the PTW microDiamond system was
(0.9964±0.0004) which agrees well with the value reported
in [21] of (0.999±0.07%). The Fowler factor for the DDL SC
CVD diamond system was found to be (0.996±0.025) which
agrees well with the PTW microDiamond system. From the
above it follows that the performance of our system is similar
to the performance of the microDiamond system in terms of
dose-rate linearity. This is a remarkable result for the DDL
SC CVD diamond detector system as this contains a thick,
biased diamond detector, with a much larger sensitive volume,
in contrast a microDiamond, which contains a thin Schot-
tky diode. Schottky diodes are expected to have very good
linearity. Dose-rate linearities have been measured in single-
crystal CVD diamond detectors by a number of groups [6],
[9], [22]–[28], several of whom determined a significant non-
linear response as a function of dose-rate [6], [9], [23], [27],
[28]. A variety of methodologies were used, including varying
the PRF, varying the source current in the case of X-ray
sources, and varying the source to detector distance, which
is the method that has been used here. We expect that our
good dose rate linearity is due to our improved pulse handling.
The advantage of using the DDL SC CVD diamond detector
system compared to microDiamond system is that our system
measures the dose per pulse and not the integral dose over
the treatment. This is important for dynamic treatments like
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Fig. 12. The logarithm of the average total charge per pulse for the DDL
SC CVD diamond system and the PTW microDiamond as a function of the
SSD.

VMAT and IMRT.

VII. CONCLUSION

We have successfully demonstrated pulse by pulse beam
intensity measurements on a medical LINAC using a 500 µm
thick SC CVD diamond sensor inside a phantom, which was
read out using a simple, custom built front end. The front
end is a classic design using a preamp and a two stage
Sallen-Key filter. We have shown that individual pulses can be
measured using this system, up to pulse rates of well above
1 kHz. The measured peak pulse heights are proportional to the
amount of measured charge. Hence, it is sufficient to extract
the peak height per pulse. This can be easily done either in
the electronics, firmware or offline. Our system performs so
well that the imperfections in our measurement and analysis
chain are negligible compared to the actual pulse to pulse
intensity variations over a large range of pulse amplitudes. The
performance of our system was compared to a commercially
available diamond detector system, the microDiamond by
PTW. The comparison study shows that the performance of
our system is similar in terms of dose-rate linearity to the
performance of the microDiamond. This is a remarkable result
for the DDL SC CVD diamond dosimetry system as dose-rate
linearity for other conductivity detectors is in general much
poorer than the dose-rate linearity for Schottky diode systems,
like the microDiamond. Furthermore, the system presented
here has the advantage that the deposited dose is measured for
each pulse, which is important for dynamic treatments. Hence,
pulse by pulse dosimetry on medical LINACs is entirely
feasible during treatments using this system.
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