Drought and perennial weeds 1

2	
3	Drought Tolerance and Perennial Weed Management
4 5 6	Libère Nkurunziza, Christian Andreasen, Fulai Liu, and Jens C. Streibig ¹
7	The aim of this study was to investigate the effect of controlled soil water deficits on sprouting and
8	shoot growth of Canada thistle, coltsfoots and quackgrass. A gradient of soil water contents was
9	created by establishing different densities of barley. The plants were harvested 14 days after
10	watering was stopped. On Canada thistle and coltsfoots, relative water content (RWC) in leaves was
11	measured prior to harvest and biomass of all weed shoots were recorded at harvest. In terms of
12	shoot biomass and leaf RWC quackgrass was drought tolerant while coltsfoot was drought sensitive
13	and Canada thistle was between the two. The barley cover crop could have had a competitive effect
14	upon the growth of the weeds; the effect, however, was not detrimental compared to the drought
15	effect, because relationships between initial height and the final height of coltsfoot and Canada
16	thistle were not different among barley densities. The results suggest that the shooting from
17	subterranean parts of broadleaf perennial weeds can to some extent be impeded by reducing soil
18	water availability. However, the use of reduced soil water content can be challenging in fields in
19	humid temperate regions.
20	
21	Nomenclature: Barley, Hordeum vulgare L.; Canada thistle, Cirsium arvense (L.) Scop;
22	Quackgrass, Elytrigia repens (L.) Nevski; Coltfoots, Tussilago farfara L.

- 23
- Key words: Soil water content, early growth, broadleaf perennial weeds. 24

¹ Affiliation of all the authors: Copenhagen University, Faculty of Life Sciences, Department of Agriculture and Ecology, Højbakkegård Allé 13, 2630 Taastrup, Denmark *Corresponding author: Jens C. Streibig, E-mail: jcs@life.ku.dk

Drought adaptation divides plant species of seasonal environments into two categories: annual species known to be drought avoiding and perennial species that are drought tolerant (Zollinger et al. 2006). For both categories, a range of drought adaptation mechanisms have been recently described (Farooq et al. 2009). Perennial species forestall desiccation, tolerate desiccation, or they combine both strategies. It has been established that modulations of cellular elasticity and osmotic potential, via solutes accumulation, are important mechanisms used to tolerate drought in perennials during dry and hot summers (Hare et al. 1998;Yousfi et al. 2010).

32 It is only under favorable environmental conditions (e.g. temperature, water availability) that 33 herbaceous perennials resume their vegetative growth, otherwise the above-ground biomass dies 34 back and the biochemical and physiological activity remain at a minimum (growth arrest) until the 35 return of appropriate conditions. Lundmark (2007) and Patton et al. (2007) have shown the 36 association between plant cell water and carbohydrates in propagules of perennials of temperate 37 regions. In weed management, tillage has been traditionally recommended for control of quackgrass 38 (Elytrigia repens (L.) Nevski) because of increased rhizome desiccation when exposed on the soil 39 surface. However, owing to humid autumn climate and biotype differences, high variations in 40 sprouting has been demonstrated (Reidy and Swanton 1994; Melander et al. 2008) and this requires 41 additional strategies to destroy rhizomes and rootstocks once exposed to desiccation on the soil 42 surface. In addition, exposure and destruction of rhizomes and rootstocks apply to weed species that 43 can be completely uprooted such as quackgrass. Species with deep root/rhizome systems such as 44 Canada thistle (Cirsium arvense (L.) Scop) and coltsfoot (Tussilago farfara L.) would escape 45 uprooting. These species make up a considerable problem in conventional as well as in organic 46 farming of the temperate regions (e.g. Andreasen and Stryhn 2008; Hyvönen et al. 2003, Lundkvist 47 et al. 2008; Lukashyk et al. 2008)

48 Great amount of carbohydrate reserves, mainly fructans, stored in reproductive roots of Canada 49 thistle and rhizomes of coltsfoot (Otzen and Koridon 1970) support shoot emergence when 50 favorable temperature and soil moisture are available. However, among the few studies that have 51 addressed, the early growth of perennials at different levels of soil water content (Gordon et al. 52 1999; Gazanchian et al. 2006; Kawakami et al. 2006); none have focused on herbaceous perennials 53 with deep underground root or rhizome systems and broad leaves. The information on levels of 54 drought tolerance during the establishment period in different types of perennial weeds may help 55 farmers improve control strategies in organic farming systems.

The objective of this study was to compare the drought tolerance of quackgrass, Canada thistle and coltsfoot by measuring shoot production response under a gradient of soil water contents. Since small leaf size can be seen as an adaptation to drought (Pedrol et al. 2000; Kulkarni et al. 2008; Xu

59	et al. 2009), we hypothesize that drought tolerance is higher for quackgrass than the two other broad					
60	leaf perennial weeds.					
61						
62	Material and Methods					
63						
64	Plant Material. Uniform and approximately five centimeters long root/rhizome fragments of					
65	Canada thistle ¹ , coltsfoot ² and quackgrass ³ were planted at 5 cm depth in 4 L pots (15 cm of					
66	diameter, 25 cm depth) with sandy soil. The exact length in case of rhizomes of coltsfoot and					
67	quackgrass was dictated by the presence of at least one lateral bud at the node of rhizomes to ensure					
68	the possibility of shooting.					
69						
70	Experimental Design. An experiment was run twice in greenhouse at the experimental station in					
71	Taastrup, University of Copenhagen, Denmark (55 40'10N; 12 18'32E) from July to September					
72	2 2009 and from March to April 2010. The experimental factors were three weed species and five					
73	levels of soil water content in a randomized complete block design with 8 and 10 replicates in the					
74	first and second experimental runs, respectively. The five levels of soil water content, for each					
75	species, was created by four different cover densities of barley ⁴ (Hordeum vulgare L., SIMBA 08T5					
76	Øko) and a reference without barley giving a total of five densities. The cover densities were					
77	obtained by sowing 5, 10, 15 and 20 barley seeds per pot one day after a root or rhizome had been					
78	planted. In total, 120 and 150 pots with four liters of sandy soil were used in 2009 and 2010,					
79	respectively.					
80	Prior to root and rhizome planting, pots containing soil were watered to field capacity.					
81	Thereafter drip irrigation with a fertilizer solution ⁵ was applied with 25 cm ³ water per pot per day.					
82	The drip irrigation continued until 30 % shoots had emerged from roots or rhizomes. At this time					
83	watering stopped and soil water content measurements began with an interval of 2 to 3 days and up					
84	to harvest. The drought deficit lasted for a period of approximately 14 days in both experimental					
85	replications.					
86						
87	Measurements. Measurements of soil water content were done with HydroSense ⁶ (HydroSense ^{TM,}					
88	Campbell Scientific Australia Pty. Ldt). At each time, two measurements were taken per pot. These					
89	measurements were coupled with growth change assessment by taking the height of weeds, except					
90	for coltsfoot that has a compacted stem. At the end of the 2010 experimental run, in Canada thistle					
91	and coltsfoot we measured leaf fresh weight (FW), turgid weight, (TW), which is the difference					
92	between weight of a newly detached leaf form the drought suffering plant and the leaf after being					

93 soaked in water for 4 hours, and dry weight (DW) and the calculated relative water content (RWC=

94	(FW-DW)/(TW-DW)) (Liu and Stützel 2002). Only broadleaf weeds, Canada thistle and Coltsfoot,					
95	were used for RWC to compare their tolerance to water stress.					
96	At the end of the experiment, the weeds were harvested. Aboveground parts were weighed and					
97	dried at 70°C until constant weight.					
98						
99	Statistical Analysis. Linear regression was used to analyze the relationship between the soil water					
100	content, cover crop densities, shoot biomass and RWC. Subsequently, t-test was used to test					
101	differences in regression slopes of soil water content on cover crop density at different measuring					
102	time within species.					
103	We used analysis of covariance to assess the relation between final height and initial height of					
104	the weed species. First, we tested the interaction between final height (Y) and initial height (x) at					
105	different barley densities (i=15) (eq. 1);					
106	$Y = \alpha_i + \beta_i x [1]$					
107	Subsequently, we tested if the interaction could be ruled out by assuming similar slope but different					
108	intercept (eq. 2)					
109	$Y = \alpha_i + \beta x [2]$					
110	And finally we tested if the intercept could be assumed to be the same for all barley densities,					
111	$Y = \alpha + \beta x [3]$					
112	All data analyses were done with the open source program \mathbf{R}^7					
113						
114	Results and Discussion					
115						
116	Different densities of barley created a gradient of soil water content as expected. Soil water content					
117	decreased with increasing barley density for all species and time. The regression slopes of soil water					
118	content in percent on barley density within species (Table 1) were in most instances not significant					
119	from each other at the P >0.05 level. The only differences were the regression slopes at day zero for					
120	coltsfoot and quackgrass after the irrigation was stopped (Table 1). This consistency of the slopes of					
121	the regression of soil water content on barley density in Table 1 allowed us to use mean soil water					
122	content for comparisons of biomass and relative water content (Figures 1 and 2). Table 1 also gives					
123	the slopes of the regression of biomass on soil water content (Figure 1).					
124	The results showed that the responses of shoot biomass to soil water content were different					
125	among weed species. Coltsfoot (Figure 1A and D) had the larges regression slope and was thus					
126	more sensitive to drought stress than the other species. There was a positive significant change of					
127	the shoot biomass as soil water content increased for coltsfoot in both experiments (Figure 1A and					

D), but this was only observed once for Canada thistle in the 2009 run (Table 1B and E). There wasno significant relationship in any of the experiments for quackgrass (Table 1C and F).

130 The differences found in shoot biomass of coltsfoot and Canada thistle in relation to soil water 131 contents also were reflected in the data of relative water content of leaves on soil water content in 132 Figure 2. The difference between the two slopes, however were only significant on the P = 6%133 level. At higher soil water contents, coltsfoot had higher relative water content than did Canada 134 thistle. The steeper slope for coltsfoot than for Canada thistle indicated that the former species is 135 more susceptible to soil water deficit. These results support previous observations on the effect of 136 soil water differences and germination or vegetative reproduction (Håkansson 2003a; Håkansson 137 2003b).

138 Previous research on soil water management in relation to root dry weight, leaf area and the 139 number of inflorescences was done on Canada thistle (Zimdahl et al. 1991) and the effect of 140 moisture in interaction with Glyphosate on the same species (Tworkoski et al. 1998). These studies, 141 however, were conducted at a later growth stage compared to the sprouting and establishment, 142 which was used in our study. In addition, no comparative studies have been conducted so far, where 143 we can see how various broadleaf weeds behave among themselves and in relation to quackgrass 144 (Figure 1). It means that controlled soil water deficits may be used as a tool to reduce the early 145 establishment of perennial weeds. In a field perspective, crop density can to some extent be used to 146 reduce the infestation of perennial weeds as already pointed out elsewhere by increasing the 147 competition ability of the crop to take up water, nutrition and utilize sunlight (e.g. Weiner et al. 148 2001; Kristensen et al. 2008).

149 The analysis of covariance showed, by means of sequential tests, that the relationship between 150 the final height and the initial height in Figure 3 was independent of barley density in the pots. In 151 other words, the final height was not interacting with the barley density during the 14 days of 152 drought. Consequently, the regression in Figure 1 for biomass on soil water content was mostly 153 affected by the sheer soil water content and not the competitive effect of the barley density. Of 154 course this does not necessarily mean that barley did not have an effect on the growth of the weeds, 155 apart from drying out the soil, but apparently the period of the drought was not enough to show 156 clear cut competition effects. We cannot rule out, however, some confounded effect between barley 157 density competition and draught. That said the duration of the drought period was rather short, only 158 14 days.

We recognize the difficulty in using water stress as a management strategy in wet and humid temperate regions. But there are indications that water stress can be used as a method to control perennial weeds in arid zones with dry and hot summers, when it can be economically justified (Kjelgren et al. 2009). With some extrapolations, these results might also open up new perspectives

163	especially in arid zones. For instance, tillage followed by irrigation, during dry and hot summers,				
164	would deplete carbohydrate storages and reduce infestation at the return of rain. However, a study				
165	on bulbs which contain both fructan and starch found that the degree of polymerization of fructan				
166	increased after drought (Orthen 2001). More research is needed to elucidate the relationship				
167	between the increased degree of polymerization of fructan, the effect of drought and the amount of				
168	energy available in the roots and rhizomes for sprouting and establishment.				
169					
170					
171	Sources of Materials				
172					
173	1, 2, 3 and 4, Roots of Cirsium arvense, rhizomes of Tussilago farfara and Elytrigia repens and				
174	seeds of Hordeum vulgare from the experimental station of the University of Copenhagen, 2630				
175	Taastrup, Denmark. The planting material of Elytrigia repens used at the second experiment was				
176	obtained from Research Centre of Flakkebjerg at the University of Århus, 4200 Slagelse, Denmark.				
177	⁵ Pioner NPK Makro 14-3-23 + Mg plus Pioner micro with ion, Brøste A/S, Denmark				
178	⁶ HydroSense for measurement of water content (HydroSense ^{TM,} Campbell Scientific Australia				
179	Pty. Ldt)				
180	⁷ The R Foundation for Statistical Computing, Version 2.10.1 (2009-12-14). <u>http://www.R-</u>				
181	project.org				
182					
183	Acknowledgements				
184					
185	Financial support from the International Centre for Research in Organic Food Systems (ICROFS,				
186	Denmark) is acknowledged. We thank Jens Bertelsen, Hanne Hasselager and Britta Garly				
187	Henriksen for technical assistance in the greenhouse experiments. We also thank Solvejg K.				
188	Mathiassen, from the Research Centre of Flakkebjerg at Århus University, who provided rhizomes				
189	of <i>Elytrigia repens</i> for the second experiment.				

190Literature Cited						
191						
192	Andreasen, C. and H. Stryhn. 2008. Increasing weed flora on Danish arable fields and its					
193	importance for biodiversity. Weed Res. 48, 1-9.					
194	Farooq, M., A. Wahid, N. Kobayashi, D. Fujita, and S. M. A. Basra. 2009. Plant drought stress:					
195	effects, mechanisms and management. Agron. Sustain. Dev. 29: 185-212.					
196	Gazanchian, A., N. A. K. K. Sima, M. A. Malboobi, and E. M. Heravan. 2006.					
197	Relationships between emergence and soil water content for perennial cool-season grasses native to					
198	Iran. Crop Sci. 46: 544-553.					
199	Gordon, C., S. J. Woodin, I. J. Alexander, and C. E. Mullins. 1999. Effects of increased					
200	temperature, drought and nitrogen supply on two upland perennials of contrasting functional					
201	type: Calluna vulgaris and Pteridium aquilinum. New Phytol. 142: 243-258.					
202	Hare, P. D., W. A. Cress, and J. Van Staden. 1998. Dissecting the roles of osmolyte accumulation					
203	during stress. Plant Cell Environ 21: 535-553.					
204	Hyvönen T., E. Ketoja, J. salonen, H. Jalli, and J. Tiainen. 2003. Weed species diversity and					
205	community composition in organic and conventional cropping of spring cereals. Agric Ecosyst					
206	Environ 97: 131-149.					
207	Håkansson, S. 2003a. Germination, Emergence and Establishment. In S. Håkansson, ed. Weeds and					
208	weed management on arable land: an ecological approach. Wallingford: CABI Publishing.					
209	Pages 56-80.					
210	Håkansson, S. 2003b. Soil Tillage Effect on Weeds. In Weeds and weed management on arable					
211	land: an ecological approach. Wallingford: CABI Publishing. Pages 158-196.					
212	Kawakami, J., K. Iwama, and Y. Jitsuyama. 2006. Soil water stress and the growth and yield of					
213	potato plants grown from microtubers and conventional seed tubers. Field Crops Res. 95: 89-					
214	96.					
215	Kjelgren, R., L. X. Wang, and D. Joyce. 2009. Water Deficit Stress Responses of Three Native					
216	Australian Ornamental Herbaceous Wildflower Species for Water-wise Landscapes.					
217	Hortscience 44: 1358-1365.					
218	Kristensen, L., J. Olsen, and J. Weiner. 2008. Crop density, sowing pattern, and nitrogen					
219	fertilization effects on weed suppression and yield in spring wheat. Weed Sci. 56: 97-102.					
220	Kulkarni, M., T. Borse, and S. Chaphalkar. 2008. Mining anatomical traits: A novel modelling					
221	approach for increased water use efficiency under drought conditions in plants. Czech Journal					
222	of Genetics and Plant Breeding 44: 11-21.					
223	Liu, F., and H. Stützel. 2002. Leaf water relations of vegetable amaranth (Amaranthus spp.) in					
224	response to soil drying. Eur. J. Agron. 16: 137-150.					

- 225 Lukaskuk P., M. Berg, and U. Kopke. 2008. Stratetgies to control Canada thistle (Cirsium arvense)
- under organic farming conditions. Renew Agric Food Syst 23: 13-18.
- Lundmark, M. 2007. Low temperature acclimation in plants alterations in phytosynthetic carbon
 metabolism. Dept. of Plant Physiology, Umeå University. Thesis/Dissertation.
- 229 Lundkvist A, Salomonsson L, Karlsson L, and AMD Gustavsson. 2008. Effects of organic farming

- 231 Melander, B., M. Nørremark, and E. Fløjgaard. 2008. Exposure and destruction of *Elytrigia repens*
- rhizomes and *Rumex crispus* rootstocks. Perennial weeds: A growing problem. Perennial
- 233 weeds: A growing problem. Wageningen University.
- Orthen, B. 2001. Sprouting of the fructan- and starch-storing geophyte *Lachenalia minima*: Effects
 on carbohydrate and water content within the bulbs. Physiologia Plantarum 113: 308-314.
- 236Otzen, D., A.H. Koridon. 1970.Seasonal Fluctuations Of Organic Food Reserves In Underground
- 237 Parts Of Cirsium-arvense (L) Scop And Tussilago-farfara L. Acta Botanica Neerlandica 19:495
- 238 Pankovic, D., Z. Zakaè, S. Kevresan, and M. PLesnicar. 1999. Acclimatation to long-term water
- deficit in leaves of two sunflower hybrids: photosynthesis, electron transport and carbon
 metabolism. J. Exp. Bot. 50: 127-138.
- Patton, A. J., S. M. Cunningham, J. J. Volenec, and Z. J. Peicher. 2007. Differences in freeze
 tolerance of zoysiagrasses: II. Carbohydrate and proline accumulation. Crop Sci. 47: 21702181.
- 244 Pedrol, N., P. Ramos, and M. J. Reigosa. 2000. Phenotypic plasticity and acclimation to water
- 245 deficits in velvet-grass: a long-term greenhouse experiment. Changes in leaf morphology,
- 246 photosynthesis and stress-induced metabolites. J. Plant Physiol. 157: 383-393.
- Reidy, M. E. and C. J. Swanton. 1994, Response of 4 Quackgrass (*Elytrigia-Repens* (L) Nevski)
 Biotypes to Desiccation. Can. J. of Plant Sci. 74: 643-646.
- Starman, T., and L. Lombardini. 2006. Growth, gas exchange, and chlorophyll fluorescence of four
 ornamental herbaceous perennials during water deficit conditions. J. Am. Soc. Hortic. Sci. 131:
 469-475.
- Tworkoski, T., E. M. Engle, and T. P. Kujawski. 1998. Effect of moisture stress and glyphosate on
 adventitious shoot growth of Canada thistle (*Cirsium arvense*). Weed Science 46: 59-64.
- 254 Weiner, J., H. W. Griepentrog, and L. Kristensen. 2001. Suppression of weeds by spring wheat
- *Triticum aestivum* increases with crop density and spatial uniformity. J. Appl. Ecol 38: 784790.
- Xu, F., W. H. Guo, W. H. Xu, Y. H. Wei, and R. Q. Wang. 2009. Leaf morphology correlates with
 water and light availability: What consequences for simple and compound leaves? Prog. Nat.
- 259 Sc. 19: 1789-1798.

on weed flora composition in a long term perspective. Eur J Agron 28: 570-578.

- 260 Yousfi, N., I. Slama, T. Ghnaya, A. Sayoure, and C. Abdelly. 2010. Effects of water deficit stress
- 261 on growth, water relations and osmolyte accumulation in *Medicago truncatula* and *M. laciniata*
- 262 populations. C. R. Biol. 333: 205-213.
- 263 Zimdahl, R. L., L. Jingzhu, and A. A. Armelina. 1991. Effect of light, watering frequency, and
- chlorsulfuron on Canada thistle (*Cirsium arvense*). Weed Science 39: 590-594.
- 265 Zollinger, N., R. Kjelgren, T. Cerny-Koenig, K. Kopp, and R. Koenig. 2006. Drought responses of
- six ornamental herbaceous perennials. Sci. Hortic-Amsterdam 109: 267-274.

267 Table 1. Linear regression slopes of soil water contents (SWC) on Barley densities (BD); and shoot

Relationship	Time Days after stop of watering	Canada thistle	Coltsfoot	Quackgrass
SWC vs. BD	0 3 6 9	$-0.40(\pm 0.075) \\ -0.47(\pm 0.079) \\ -0.40(\pm 0.044) \\ -0.59(\pm 0.052) \\ 0.42(\pm 0.051)$	$\begin{array}{c} -0.19 (\pm 0.063)^{\#} \\ -0.33 (\pm 0.067) \\ -0.35 (\pm 0.070) \\ -0.52 (\pm 0.061)^{\#} \\ 0.24 (\pm 0.063) \end{array}$	$\begin{array}{c} -0.22 \ (\pm \ 0.071)^{\#} \\ -0.27 \ (\pm 0.065) \\ -0.35 \ (\pm \ 0.054) \\ -0.48 \ (\pm 0.064)^{\#} \\ 0.41 \ (\pm \ 0.055)^{\#} \end{array}$
Biomass vs SWC (see Figure 1)	Exp. 2009 Exp. 2010	$\frac{0.18 (\pm 0.069) *}{0.03 (\pm 0.019)^{\text{NS}}}$	$\begin{array}{c} 0.46 (\pm 0.090) \\ 0.26 (\pm 0.091) \\ ** \end{array}$	$\frac{0.02 (\pm 0.016)^{\text{NS}}}{-0.02 (\pm 0.010)^{\text{NS}}}$

268 biomass on SWC and of different species. Time denotes days after irrigation stopped.

269 270 271

Significance levels: ***: *P*<0.001; **: *P*<0.01; *: P<0.05; NS: *P*>0.05 [#] Slope within species significantly different from each other.

272

275Soil water content (%)Soil water content (%)Soil water content (%)276Figure 1: Relationship between biomass of shoots of coltsfoots (A and D), Canada thistle (B and E)

277 and *quackgrass* (C and F) and soil water content. The upper graphs represent the first experimental

278 run while the lower graphs are from the second experimental run (Regression slopes in Table 1).

Soil water content (%)

280 Figure 2. Relationship between relative water content in leaves of broadleaf weeds (RWC) Canada

```
281 thistle and coltsfoots and soil water content (SWC) (second experimental run). Regression equations
```

- for coltsfoot and Canada thistle were RWC= 0.025 SWC+0.45 and RWC= 0.012 SWC+0.61,
- 283 respectively; the difference between slopes was barely significant (P<0.06).

Figure 3. Relationship between the final height (cm) and the initial height (cm) at different cover crop densities of *Canada thistle* (a) and *quackgrass (b)* The regressions were based on sequential test for interaction (see Text). Please note that height of quackgrass t was the sum of shoot length per pot because some rhizomes yield more that one shoot (First experimental run).

289

290