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I. INTRODUCTION 
 
1. Stability of the food supply is broadly related to the environmental conditions that allow for 
sustainable food production and encourage productivity as well as to the economic conditions that 
allow for sustainable supplies at reasonable prices. This paper focuses on the interactions and 
interdependencies between farming practices and environmental conditions. By producing food, 
farmers can improve or degrade the environment they depend on. Both favorable and stable 
environmental conditions and agricultural systems resistant or resilient to environmental changes are 
crucial for the stability of food production. 
 
2. Stability of food supply is also associated with other dimensions of food security, such as 
access to food and food utilization, as well as economic conditions of food stability. This paper 
reviews the literature on food stability and the environmental factors that contribute to it with respect 
to organic agriculture. Organic agriculture here includes both those production systems organized 
around distinct organic and biodynamic certification schemes that are “certified organic agriculture” 
and those that, by virtue of their production systems, follow organic principles but are “non-certified 
organic”. 
 
3. Organic agriculture is a system that uses less intensive practices. It is, therefore, expected to 
deliver far more ecological goods and services than conventional agriculture, even in its modified 
forms such as integrated farming or minimum tillage. Furthermore, organic agriculture efficiently 
reduces environmental risks by not using some potentially damaging technologies of intensive 
agriculture such as pesticides, herbicides, synthetic nitrogen fertilizers, GMO crops or veterinary 
antibiotics and anthelminthics. The ecological goods and services of organic agriculture are reviewed 
in El-Hage Scialabba and Hattam (2002), Shepherd, et al. (2003) and Stolze, et al. (2000).  
 
4. In broad terms, organic agriculture can be described as increased diversification on both farm 
and regional scale. It is a system that leads farmers and rural communities to economic independence 
from expensive agricultural inputs through their use of participatory seed-breeding systems; natural 
bio-control agents; soil fertility management through recycling, nitrogen fixation and green manure; 
and habitat management as a prevention strategy against pests, diseases and weeds.   
 
5. Currently, 0.61 percent of the world’s reported agriculture land is certified organic agriculture.  
There are no recent data on the extent of non-certified organic agriculture. However, it is widely 
known that a large part of global food production systems is non-certified organic agriculture, often at 
subsistence level.  
 

II. ENVIRONMENTAL INFLUENCES ON FOOD SUPPLY STABILITY  
 
6. The key environmental influences on the performance of agricultural systems are soil and 
water resources, biodiversity and climate. Agriculture is both perpetrator of changes – in most cases 
environmental deterioration – and victim. Among all concepts of sustainable land use practices, 
organic agriculture is the most consequential approach, in terms of ecological sustainability. 
 
7. With respect to the quality of sustainability of organic agriculture, two observations can be 
made. 
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 Sustainability from organic systems is based on standards that advocate restrictions or bans on 
the input side. However, metrically measurable standards on the impact side (e.g. minimum 
percentage of high quality ecological areas such as hedge rows, field margins and species rich 
wildflower strips, or minimum of crops in a rotation) would improve the sustainability of 
organic agriculture even more. As they are very region specific, such standards focusing on 
positive environmental impacts can only be introduced in regional or national standards as has 
been done in Switzerland. 

 Organic agriculture is a multi-targeted approach to sustainability. Unlike conventional 
farming, it does not focus on individual high impact measures. For example, the “no till” 
technique used in conventional farming efficiently prevents soils erosion but needs more 
herbicides and soluble nitrogen fertilizers and often promotes soil borne diseases leading to 
need for additional fungicidal treatments. 

 

A. ORGANIC AGRICULTURE AND STABILITY AND FERTILITY OF SOILS 
 
8. In order to meet the world’s current and future food demand, food supply stability will be 
needed to maintain agricultural productivity at least at the current level without negative effects on 
soils or the environment. In addition, the expanding human population will require more secure and 
improved yields and additional acreage. Yield increases resulting from the so-called “Green 
Revolution” have slowed and are currently linked to soil degradation (Kaiser, 2004), which is 
considered a threat to food supply stability. Pimentel, et al. (1995) calculated a loss of nearly a third of 
the world’s arable land to erosion within the last 40 years with an on-going loss of more than 10 
million ha per year. Bellamy, et al. (2005) found massive losses of carbon in soils across England 
between 1978 and 2003. Their estimates ranged from 0.5 to 2 g soil carbon per kg soil per year with 
all but 8 percent of the investigated cropland affected by erosion – a factor the authors identified as 
the main reason for losses in soil carbon and therefore in soil fertility. This highlights that current land 
use practices are not sustainable.  
 
9. Reganold, et al. (1987), in comparing soils from organic and conventional farms in 
Washington, USA, found organic fields had topsoils 16 cm deeper and a higher organic matter content 
which resulted in soils less prone to erosion. A long-term Swiss field experiment on loess soil that 
began in 1978 (Mäder, et al., 2002) found the aggregate and percolation stability of both bio-dynamic 
and organic plots were significantly higher (10 to 60 percent) than conventionally farmed plots. This 
also affected the water retention potential of these soils in a positive way and reduced their 
susceptibility to erosion. Soil aggregate stability was strongly correlated to earthworm and microbial 
biomass, important indicators of soil fertility (Mäder, et al., 2002). The long-term application of 
organic manure positively influenced soil fertility at the biological, chemical and physical level, 
whereas the repeated spraying of pesticides appeared to have negative effects. Compared to stockless 
conventional farming (mineral fertilizers, herbicides and pesticides), repeated measurements of 
aggregate stability in plots with livestock-based integrated production (mineral and organic fertilizers, 
herbicides and pesticides) found 29.4 percent higher values while in organic and bio-dynamic plots 
(organic fertilizers only), it was 70 percent higher (Siegrist, et al., 1998). The Swiss long-term study 
underlines the importance of using manure, by means of organic agriculture, as a good practice for 
soil quality preservation (Fließbach, et al. 2007).    
 
10. Similar results were obtained under on-farm conditions in the Netherlands in a polder soil, 
which is considered prime agricultural land for Dutch arable crop production (Pulleman, et al., 2003). 
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The percentage of water stable macro-aggregates on organically farmed sites was 72 percent higher 
compared to conventional. The higher physical stability was linked to significantly increased soil 
organic matter content and to a larger volume percentage of worm-worked soil (organic 28 percent 
and conventional 8 percent). The investigation was done on farms that had been under organic and 
conventional management for 70 years. A study of cotton production under organic conditions in 
India found yield levels similar to a modern cultivation technique, but soil quality, as indicated by soil 
organic matter, water stable aggregates and mean weight diameter, showed advantages for the organic 
system (Blaise, 2006).  
 
11. The Rodale farming systems trial, that began in 1981 in Pennsylvania, USA, compared manure 
and legume-based organic agriculture systems to a conventional system based on mineral fertilizers 
(Hepperly, et al., 2006). It found the organic and conventional systems had similar soybean and maize 
yields whereas the organic system showed an impressive increase in soil carbon of 574 kg per ha in 
the legume-based and 981 kg ha-1 in the manure-based system.  
 
12. Soil macrofauna, such as worms, ants and termites that are actively involved in the build-up of 
soil structure, have positive effects on water infiltration, drainage, water-holding capacity and soil 
aeration (Giller, et al., 2003). These and other beneficial soil biota help process nutrients from 
residues for plant uptake while also creating stable organic matter. Several field studies found 
earthworms and other soil fauna such as carabides, spiders and staphylinides were more abundant in 
organic fields than conventional ones (Pfiffner and Niggli, 1996; Pfiffner, 1997; Pfiffner and Mäder, 
1997; Birkhofer, et al., submitted). A more diverse food and micro-landscape (weeds and soil 
structure) and the absence of potentially toxic pesticides are the main factors favouring macrofauna in 
organic systems. 
 
13. The predominant practice in organic agriculture is the on-farm flux of manure from livestock 
production to cropland. However, even stockless organic farms use leguminous plants for nitrogen 
fixation and green manure for building up soil fertility. Catch crops for soil nutrients, especially 
nitrogen, integrated in different positions of the rotations, help manage nitrogen intelligently, 
especially in temperate climatic zones where nitrogen losses are likely to occur (Thorup-Kristensen, et 
al., 2003).  
 
14. Soil organic matter, a key to soil fertility throughout agriculture, is understood to contribute 
significantly to soil quality and health (Quiroga, et al., 2006). Soil organic matter drives and enhances 
numerous chemical and biological processes and physical soil properties (Fan, et al., 2005). Higher 
levels of soil organic matter have been observed regularly in organic agriculture soils compared to 
conventional (Pimentel, et al., 2006; Fließbach, et al., 2007; Marinari, et al., 2007). In one study, soil 
organic matter was higher in organically managed soil than in conventional soil despite relatively 
similar totals of organic carbon (Marinari, et al., 2007).  
 
15. Marriott and Wander (2006) analyzed soil samples from nine farming system trials that were 
started in the USA between 1981 and 2000. The soil organic carbon concentrations were 14 percent 
higher in organic systems than in conventional ones. The labile fraction of the soil organic matter – a 
source of mineralizable C and N with important implications for plant nutrition – showed 30 to 40 
percent higher values in organic soils. Enhancing soil organic matter improves soil fertility and, in the 
long-term, has the potential to increase crop yields (Fan, et al., 2005).  
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16. Parallel to the changes of organic matter in soils of organically managed systems, soil 
microbial biomass and the physiological functions of soils are enhanced by organic agriculture. 
Important soil enzyme activities such as dehydrogenase, protease and phosphatase were higher in 
organic field plots leading, for example, to a faster phosphorus flux through the microbial biomass 
contributing to the plants’ phosphorus supply (Mäder, et al., 2002). Field trial soils that received only 
mineral fertilizers in a conventional system showed a 52 percent higher basal respiration per unit of 
microbial biomass than organic soils, suggesting that micro-organisms in organic soils use organic 
substances more efficiently for growth than for maintenance (Fließbach, et al., 1997, 2007).  
 
17. In summary, organic practices contribute considerably to increasing soil stability and 
resilience, the latter reflects the time needed to recover from disturbances, an important factor in food 
supply stability. The productivity of organic compared to conventional farming depends strongly on 
soil and climate conditions as well as on choice of crops being compared. Under less favorable soil 
conditions, organically managed crop yields equal those from conventional agriculture, as was shown 
for maize and soybeans in the USA by Pimentel, et al. (2005). In organic cotton production in India, 
Eyhorn, et al. (2007) also reported no yield differences from organic compared to conventional farms. 
In a fertile soil in a temperate climate in Switzerland, total yields of the organic 7-year crop rotation 
were 20 percent lower than the conventional one (Mäder, et al., 2002), but had a significantly better 
output/input ratio for nutrients, energy and pesticides in the case of organic practice. When soil and 
climate conditions are extremely favorable, yield losses of organic crop rotations may exceed 30 
percent of conventional ones. This may also apply to crops with peculiar plant protection demands 
and short vegetation periods. 
 
18. In comparison to other modern approaches to improving crop yields and soil quality in order to 
prevent soil erosion such as minimum or no tillage systems (Holland, 2004), organic agriculture 
advocates a site-adapted multifactorial strategy without the use of synthetic fertilizers or pesticides. 
Instead, organic agriculture makes use of available production factors that mainly derive from the 
farm-ecosystem itself. The combination of techniques – organic agriculture and minimum or reduced 
tillage – is a challenging subject for future research in this field. Long-term field experiments 
addressing this area are underway (Berner, et al. submitted) and need to be performed under different 
site and climate conditions.  
 

B. ORGANIC AGRICULTURE AND WATER EFFICIENCY 
 
19. Organic agriculture practices have the potential to use less water and to use water more 
efficiently due to vegetation and soil management. Soil and water use are inextricably linked in 
agricultural production. During the twentieth century, humans increased the diversion of river water 
by six-fold (Pretty, et al., 2006). By 2025, as many as 60 percent of all humans may face a scarcity of 
water (Qadir et al., 2007). Currently, 70 percent of human water use is directed towards agriculture. 
As water becomes increasingly scarce in certain regions of the world, it will be important to increase 
water efficiency in irrigation and rain-fed agriculture. Water use efficiency is a calculation determined 
by the amount of crop yielded from an amount of water (Hatfield, et al., 2001).   Pretty, et al. (2006) 
outlined several ways to improve water use efficiency in organic agriculture, including reducing 
evaporation through minimum tillage, using more water-efficient varieties and inducing microclimatic 
changes to reduce crop water requirements. 
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20. The soil fertility-building techniques of organic agriculture that lead to higher organic matter 
contents, better aggregate stability and, biologically, more active soils in turn, increase water retention 
in soils and improve the water use efficiency (Mäder, et al., 2002; Pimentel, et al., 2005). Pimentel et 
al. (2005) reported 28 to 34 percent higher corn yields in the Rodale experiment in Pennsylvania in 
the organically managed plots in years with drought. During the 2003 summer drought in Europe, 
similar observations were made with wheat although not scientifically analyzed.  
 
21. Additionally, the presence of soil macrofauna, which are promoted through organic 
agriculture, can enhance soil water availability (Ouedraogo, et al., 2006). A few studies have shown 
that organically managed agriculture fields have less water run-off. In the Rodale experiment, water 
volumes percolating through the organic systems were 15 to 20 percent higher than through the 
conventional one, indicating an increase in groundwater recharge and reduced run-off. Similar data 
was obtained in the DOK trial in Switzerland where percolation stability of organic and bio-dynamic 
soils was 40 percent higher than of conventional ones (Mäder, et al., 2002).   
 
22. In general, different agricultural techniques used in organic agriculture affect water use 
efficiency. Tillage, soil residue management, soil temperature, soil nutrients and structure effect water 
use efficiency (Hatfield, et al., 2001; Hati, et al., 2006). Different degrees of tillage can either increase 
or decrease water infiltration while also increasing the rate of soil drying (Hatfield et al., 2001). 
Maintenance of either a cover crop or harvest residue can maintain soil moisture and water use 
efficiency by increasing water infiltration and cooling the soil surface to a greater degree than tillage 
that incorporates stubble in the soil (Hatfield, et al., 2001). Thus, no-till planting that maintains a 
cover crop while minimally disturbing the soil surface can increase water use efficiency (Hatfield et 
al., 2001). Unfortunately, field experiments comparing the effect of well managed organic systems on 
water use efficiency with that of good conventional no-till systems do not exist. It can be assumed that 
organic systems with elements of minimum tillage would be very powerful in terms of water and soil 
erosion management. In India, although not scientifically analysed observation from biodynamic 
systems suggest decreased irrigation need by 30 to 50%: this is due to characteristics such as 
significantly superior soil structure, friability, aeration and drainage, lower bulk density, higher 
organic matter content, soil respiration (related to soil microbial activity), more earthworms and 
deeper topsoil layer (Proctor and Cole, 2002).  
 
 
23. Organic management practices also decrease pollution in water effluent. In addition to 
maximizing water use efficiency in agriculture, it will also be important to decrease the amount of 
water polluted by agricultural practices for the sake of downstream users and aquatic biodiversity. The 
prohibition of pesticides and inorganic fertilizers in organic food production is an important step 
towards removing these pollutants from the aquatic environment. Nitrates are also an agricultural 
pollutant produced by nitrogen fertilization, both organic and inorganic. Organic agriculture, however, 
has demonstrated reduced nitrate leaching rates, ranking from 40 percent to 64 percent in different soil 
types in Europe (see the meta study of Stolze, et al., 2000). These effects are less the result of the 
organic fertilization technique, as the use of manure and slurry is also prone to nitrate leaching. 
Reduction in nitrate leaching can only be obtained by carefully designed crop rotations including 
catch and cover crops (Thorup-Kristensens, et al., 2003, 2007). As the opportunity costs of nitrogen 
on organic farms are 7 to 16 times higher than with mineral fertilizers, these rotational techniques are 
widely used on organic farms. 
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24. In summary, food security, in light of regional water scarcity, will ultimately require “more 
crop per drop”. Organic agriculture can increase water use efficiency through improved soil 
management and by reducing pollutants.  

C. ORGANIC AGRICULTURE AND SYSTEM STABILITY THROUGH 
BIODIVERSITY 
 
25. Biodiversity is an important driving factor for system stability, and organic agriculture, in 
particular organic pest and disease management, is based on a most stabilized system. Organic 
agriculture has been shown to promote more species and have more abundance of organism groups 
than conventional farming (Bengtsson, et al., 2005; Hole, et al., 2005). Stability of agroecosystems 
can be optimized through the implementation of appropriate soil fertility management and habitat 
management (Altieri et al., 2005). Moreover, green manures, application of manure and broad crop 
rotations within organic farmland lead to greater species diversity and density for insects, plants, soil 
macrofauna and soil microfauna, although some taxa will not be significantly affected (e.g. Fuller, et 
al., 2005; Gabriel, et al., 2007). An over-riding determinant of biodiversity may be habitat diversity, 
rather than management practices (Weibull, et al., 2003). 
 
26. Genetic diversity of crops within conventional farms is very low – usually one variety per 
planting. Organically grown crops can be just as genetically limited but, organic farms have a greater 
diversity due to mandatory crop rotation. However, one pillar of organic plant protection and animal 
health is the use of a more diverse range of disease, pest and parasite tolerant or resistant varieties and 
breeding lines. In most organic crops and in animal husbandry, the use of this genetic diversity is part 
of the economic strategy to control pests, diseases and parasites. 
 
27. The potential of genetic diversity on crop level for stabilization of low-input farming systems 
and for adaptation to environmental changes is theoretically understood in organic quarters but 
unfortunately not yet practically used. Cultivar or race choice is still strongly based on immediate 
market needs; traditional regional or local varieties are niches even in organic agriculture, and in situ 
concepts of conservation and breeding on farms or in rural communities are still underdeveloped. 
Kotschi (2006) considered agrobiodiversity a fundamental resource for adaptation and therefore 
crucial for the stability of food supply. As resistance and robustness to environmental stress are multi-
genetic characteristics, the in situ conservation and on-farm breeding are likely to be more successful 
than genetic engineering. There are many very small initiatives by plant and animal breeders in the 
context of organic farms scattered around the world. These initiatives urgently need political, 
scientific and economic support.  
 
28. To show the importance of biodiversity for stability in organic agriculture systems, the 
strategy of plant protection is exemplary. Organic pest and disease management is based on indirect 
and direct control measures. Wyss, et al. (2005) proposed a conceptual model for arthropod pest 
management for organic crop production. In this model, indirect, preventative measures are of highest 
priority. They are to be considered early in the adoption process, followed by more direct and curative 
measures only when needed. Zehnder, et al. (2007) reviewed the preventative and direct measures of 
this model for organic crops. They concluded that the establishment of an organic production system 
needs to consider aspects such as landscape complexity to ensure that sufficient semi-natural 
landscape elements are present to serve as natural enemies that could be attracted by conservation 
biocontrol methods (e.g. planting hedges, sowing weed strips, installing beetle banks). Soil quality 
management (e.g. amendment with compost), tillage practices (e.g. conservation tillage), host plant 
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resistance, crop rotation and intercropping are important additional measures to lower risks of pest and 
disease outbreaks. Based on just these preventative measures, direct plant protection measures 
(inundation and inoculation biocontrol, pesticides of vegetal and mineral origin) can be used 
efficiently by farmers and can therefore be limited. In other words, biodiversity in organic agriculture 
has a clear function a functional biodiversity that stabilizes the agricultural systems. 
 
29. In conclusion, organic farmers strive for the protection of a diverse landscape with habitats 
managed to host and attract beneficial organisms. They use a broad crop rotation with a large set of 
tolerant varieties on a healthy, diverse soil to get the most stability possible. This stability is based on 
biodiversity (below and above ground) and is the best guarantee for stable production in organic, low-
input agriculture. As a result, this biodiversity-driven stability leads to a more stable food supply. 
 

III. POTENTIALS AND DEFICITS OF ORGANIC AGRICULTURE UNDER 
CLIMATE CHANGE SCENARIOS 

 
30. Climate change will dramatically alter international food supplies. Five factors expected with 
climate change –  rise in temperature, changes in precipitation patterns, rise of sea levels, higher 
incidence of extreme weather events (droughts, storms, floods) and an increase of greenhouse gases 
(especially carbon dioxide) in the atmosphere – will all influence food production.  
 
31. Models predict that average global temperatures will increase between 1.8º and 4.0ºC at the 
end of the twenty-first century (IPCC Report 2007) and will be accompanied by random alterations 
(both temporal and geographic) in precipitation patterns (Mendelsohn and Williams, 2006).  These 
models, which contain a degree of uncertainty, project an increase in agricultural productivity for mid- 
and high-latitude areas, but a large decrease in low-latitude agricultural productivity (Mendelsohn and 
Williams, 2006). These estimates of net positive and negative effects of climate change on food 
security take into account the positive effects of increased CO2 on plant growth, reductions in plant 
water use, and the possibility that new areas for agricultural production will emerge. Negative effects 
include increased flooding of low-lying areas; increased drought, particularly in tropical countries; 
and the likelihood of reduced yields in areas affected by decreased precipitation and other changes in 
climatic conditions.   
 
32. Land suitable for agricultural land may increase by as much as 40 percent in some developed 
countries while less developed tropical countries may witness a reduction in agricultural productivity 
by 5 to 10 percent (Fischer, et al., 2005). As for grazing lands, forage yields are predicted to decrease 
between 16 and 25 percent (Steinfeld, et al., 2006). A forthcoming IPPC report on specific global 
effects of climate change predicts that negative effects will occur disproportionately in equatorial 
countries compared to temperate ones. The 40 poorest countries located predominantly in tropical 
Africa and Latin America might lose 10 to 20 percent of their crop production capacity by 2080, 
mainly due to drought (Kotschi, 2006). It is therefore important that resilience of the food supply be 
maintained and promoted in those places where agriculture is most vulnerable.  
 
33. Aside from the ability of certain regions to maintain agricultural productivity, irrigation 
requirements will change with the climate. Fischer, et al. (2006) predict that global water withdrawals 
for irrigation will increase by 20 percent as a result of climate change, in addition to a 25 percent 
increase that will result from a 45 percent expansion of irrigated cropland in parallel to a 20 percent 
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increase in irrigation efficiency (this means decreased water needs). Around two-thirds of the climate-
change-induced increases in water requirements will occur within developing countries. 
 
34. Combating such changes requires mitigation and adaptation strategies. Above all, all possible 
efforts are needed to reduce greenhouse gas emissions and to slow climate change. In addition, action 
is needed to enhance the capacity of agricultural production systems to adapt to irreversible changes. 
Organic agriculture is a whole food chain approach with unique features that differ from mainstream 
food and farming production. One can assume that organic agriculture not only enables agro-
ecosystems to better adapt to the effects of climate change but also has high potential to reduce the 
emissions of agricultural greenhouse gases. It is therefore critical to analyze the major characteristics 
of organic food and farming systems in the light of their potential for mitigation and adaptation. 
Complementary to strong points, deficits of organic food and farming systems will be discussed and 
recommendations will be made for research and development and for standard-setting actions.   
 

A. POTENTIAL OF ORGANIC AGRICULTURE FOR MITIGATION 
 
35. Agriculture accounts for 15 percent of the total emission of greenhouse gases (GHG). The 
whole food chain, including transportation, storage, processing, consumption and preparation, adds up 
to 20 percent of the total GHG (figure calculated for Germany, von Koerber and Kretschmer, 2006). 
Of this, agriculture is responsible for emitting one quarter of the carbon dioxide, two-thirds of the 
methane and 65 to 80 percent of the nitrous oxide (IPPC, 2001). 
 
36. Afforestation is recognized as a major land use change mitigating climate change. However, 
crop land management is overestimated for its potential for carbon sequestration especially in Europe 
(Smith, et al., 2005). Smith, et al., concluded that “the only trend in agriculture that may be enhancing 
carbon stocks on croplands at present is organic agriculture, and the magnitude of this effect is highly 
uncertain.” 
 
37. Organic agriculture offers a wide range of very significant side effects to be seriously 
considered in the light of reducing GHG emissions in agriculture. Major factors are i) the reduced 
consumption of fossil fuels for energy, ii) the reduced emissions of carbon dioxide, methane and 
nitrious dioxide, iii) the considerably reduced vulnerability of soils to erosion accompanied by organic 
matter respiration, and iv) the increase of carbon stocks which is part of organic management practice 
and is especially high in already degraded soils. 
 
38. Energy consumption per land unit has been shown to be 10 to 70 percent lower in all organic 
crops in five European countries (Geier, et al., 2001; Kus and Stalenga, 2000; Wetterich and Haas, 
1999; Cederberg and Mattsson, 1998; Alföldi, et al., 1995; Reitmayr, 1995; Barbera and La Mantia, 
1995; Haas and Köpke, 1994). Due to the lower yields of organic production systems, the energy 
consumption per product unit is low for wheat, milk, citrus and olive (15 to 54 percent lower in 
organic systems than in conventional ones) but for potatoes and apples, organic energy use equal or 
higher than for conventional crops. A study from Iran (Zarea, et al., 2000) found organic to be 81 
percent more energy efficient than high-input conventional production. For the Rodale long-term 
experiment in the USA, the energy inputs per ha for the organic systems were 28 to 32 percent less 
than those of the conventional ones. As the yields of both systems were equal, the relative advantage 
of organic remained the same per unit produce.   
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39. Organic soil fertility management offers a unique possibility to replace fossil-fuel-based 
nitrogen fertilizers. In the UK, a 100 ha stockless arable farm consumes 17 000 litres of fossil fuel 
annually through fertilizer inputs. The nitrogen self-reliance of organic systems is a major advantage 
in times of fossil energy shortage (Cormack, 2000). 
 
40. Comparative data on the emission of greenhouse gases for organic and conventional systems 
are rare. Available data show that parallel to the lower energy consumption of organic production, the 
CO2 emissions are also lower, between 48 and 60 percent (Burdick, 1994; Haas and Köpke, 1994). 
Nemecek, et al. (2005) found greenhouse warming potential in organic systems 29 to 32 percent lower 
on a per ha basis than in a mineral fertilizer system and 35 to 37 percent lower than in the 
conventional manure-based system. This results from the omission of synthetic fertilizers and 
pesticides as well as less use of high energy feedstuff.  
 
41. In most cases, organic systems are also advantageous per unit yield, especially for dairy and 
meat production (Bos, et al., 2007) and for most arable crops (Nemecek, et al., 2005). For technically 
difficult crops such as potatoes, grape and fruits (with insufficient pest and disease control), as well as 
for very intensive crops (that require soil tillage and organic fertilizer input), organic vegetable and 
arable crop systems have equal or higher CO2 emissions than conventional ones (Haas and Köpke, 
1994; Bos, et al., 2007). 
 
42. As far as N20 and methane emissions are concerned, no data on organic production is 
available at the moment. Models used for comparing farms or production units do not differentiate 
between organic and conventional. Nonetheless, some inherent characteristics of organic systems are 
likely to lower N20 and methane emissions. N20 emission is directly linked to the concentrations of 
easily available mineral nitrogen in soils. Denitrification is additionally enhanced in compacted soils. 
Organic soils have significantly less mobile nitrogen concentrations and – thanks to the excellent soils 
structure – are more aerated. Both of these factors reduce N20 emission considerably. Permanent plant 
covers which are part of many organic cropping systems further reduce N20 emission. Methane 
emissions of organic rice and ruminant production equal those of conventional ones. In cattle 
breeding, longevity is a characteristic of organic systems (Verhoog et al., 2004). The ratio between the 
unproductive phase of young cattle and the productive phase of dairy cows is favourable in organic 
systems as far as methane emissions are concerned. 
 
43. Soil erosion on agricultural land is accompanied by massive losses of carbon into the 
atmosphere. These losses occur in arable land (wind and water erosion) as well as on pastures 
(overgrazing through cattle, sheep and goats). Organically managed soils are significantly less prone 
to erosion (see the section “Organic agriculture and the stability and fertility of soils” for data) and 
organic standards do not allow overgrazing as livestock charge is strictly limited per land area in 
respect to site specific productivity. Although many improvements in conventional arable systems 
have been discussed for decades, carbon loss is not slowing and, in fact, continues at high rates 
(Bellamy et al., 2005; Pimentel, et al., 1995). 
 
44. The carbon sequestration efficiency (tonnes CO2-C per ha) of organic systems in temperate 
climates is almost double compared to conventional ones, when the total of above and below ground 
biomass of cash and catch crops and weeds is calculated (Köpke and Haas, 1994). All farm 
comparisons and long-term field trials show significantly higher soil organic matter content when 
organically managed (see chapter “Organic agriculture and the stability and fertility of soils” for data). 
In the Swiss long-term DOK experiment (Mäder, et al., 2002), in 28 years, the organic systems 
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accumulated 12 percent and the bio-dynamic system accumulated 15 percent more carbon in the soil. 
The carbon sequestration rate was 157 to 191 kg carbon per ha per year. In the Rodale experiment in 
the USA, Pimentel, et al. (2005) reported an annual soil carbon increase of 981 kg per ha in the 
manure-based organic system and an increase of 574 kg per ha in the legume-based organic system. 
Carbon sequestration was on a perfectly comparable level in both the Swiss and USA long-term field 
experiments.  
 
45. Foereid & Høgh-Jensen (2004) estimated that a Northern Europe conversion from 
conventional arable crops to organic crops would result in an increase in organic soil matter during the 
first 50 years of about 10 to 40 g C per m2 per year. The steady state (a stable level of soil organic 
matter) would be reached after 100 years. They found the main factors for the increase in organic 
matter were use of grass clovers for feedstuff and of cover crops in organic rotations. 
 

B. POTENTIAL OF ORGANIC AGRICULTURE FOR BETTER ADAPTATION TO 
CLIMATE CHANGE 
 
46. The Intergovernmental Panel on Climate Change (IPCC, 2001) defines adaptation to climate 
change as “adjustment in natural or human systems in response to actual or expected climatic stimuli 
or their effects, which moderates harm or exploits beneficial opportunities.” This definition puts 
emphasis on the importance of farmer knowledge for adaptation to climate change, especially as its 
impact is very site specific (local) and all scenarios are very complex and unpredictable in many 
aspects. Therefore, Borron (2006) looked specifically into farm “community knowledge as a form of 
adaptive management.”  
 
47. Traditional skills and knowledge have been neglected in intensive agriculture although now 
they are being partly recaptured by integrated pest management. However, organic agriculture has 
always been based on practical farming skills, observation, personal experience and intuition. 
Knowledge replaces or reduces reliance on inputs. This knowledge is important for manipulating 
complex agro-ecosystems, for the breeding of locally adjusted seeds and livestock, and for the 
production of on-farm fertilizers (compost, manure, green manure) and inexpensive nature-derived 
pesticides. Tengo and Belfrages (2004) described such knowledge as a “reservoir of adaptations” (see 
OFS/2007/2 for more details on knowledge in organic systems). 
 
48. Agricultural production systems that emphasize resilience, resistance and site-specific 
adaptation to changing soil and water conditions, such as organic systems, are potentially well-
positioned to maintain production in the face of climate change.  
 
49. Ewel (1986) describes soil organic matter as “the warehouse of most of the nitrogen, 
phosphorus, and sulphur potentially available to plants, is the main energy source for microorganisms 
and is a key determinant of soil structure.” This underlines the importance of the findings concerning 
organic agriculture and soil fertility described in the previous section “Organic agriculture and 
stability and fertility of soils”.  
 
50. Farming practices such as organic agriculture that preserve soil fertility and maintain or even 
build up organic matter in soils are definitely well positioned to maintain productivity in case of 
drought, irregular rainfall events with floods, and rising temperature. Soils under organic management 
retain significantly more rainwater thanks to the “sponge properties” of organic matter. This was 
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described for heavy loess soils in a temperate climate in Switzerland (Mäder et al., 2002) where water 
infiltration capacity was 20 to 40 percent higher in organically managed soils than in conventional 
ones. Pimentel et al. (2005) estimated the amount of water held in the organic plots of the Rodale 
experiment in the upper 15 cm of soil at 816 000 litres per ha. This water reservoir was likely the 
reason for higher yields of corn and soybean in dry years. Lotter, et al. (2003) found that water capture 
in organic plots was approximately 100 percent higher than in conventional plots during torrential 
rains. This reduced the risk of floods significantly, an effect that could be very important if organic 
agriculture were practiced on much bigger areas. 
 
51. An additional strength of organic agriculture systems is their diversity at all levels including 
crop, fields, whole rotations, polycultures, farm activities (greater mix of different branches), and 
landscape on the farms. The high diversity of organic farms (see section “Organic agriculture and 
system stability through biodiversity” for data) provides many ecological services that enhance farm 
resilience tremendously. Positive effects on pest prevention have been proven by Zehnder et al. 
(2007), Wyss, et al. (2005) and Pfiffner, et al. (2003). Similar effects of diversified agro-ecosystems 
on diseases and better utilization of soil nutrients and water (Altieri and Nicholls, 2006) are likely to 
occur. Good quantitative data are not found in the literature, because such experiments are very 
difficult. However, it can be concluded that organic systems are very adaptive to climate change 
thanks to their high multi-level diversity.  
 

C. WEAKNESSES ORGANIC AGRICULTURE IN THE CONTEXT OF CLIMATE 
CHANGE 
 
52. One major criticism of organic agriculture is its lower productivity. Data shown on energy use 
and greenhouse gas emissions earlier in this paper indicate that for a few crops and for some farm 
activities, the relative advantage of organic agriculture vis-à-vis conventional production per land area 
switches to the contrary when calculated on the crop or livestock produce unit. This is especially true 
for agronomically difficult crops such as potatoes, grapes and fruits. Pest and disease management 
problems for these crops have not been solved satisfactorily, and either the yields are low or the 
energy input is too high. 
 
53. In the case of very intensive cropping systems, especially vegetables with high off-farm input 
of permitted pesticides and fertilizers, GHG emissions of organic crops seem to be higher for organic 
crops as well (Bos et al., 2007; Foster et al., 2006). Similar results were found for high input organic 
arable crops such as those that are common e.g. in the Netherlands (Bos, et al., 2007). These results 
clearly indicate that such “organic” production systems are not well balanced and use too much 
energy and nutrients input compared to the phytomedical solutions that have been developed for 
organic systems (Cooper et al., 2007). 
 
54. Organic production of non ruminants such as poultry and pigs depends on concentrates and 
high energy feedstuff and, thus, are not likely to have reduced GHG emissions. Some specific 
veterinary and nutritional problems of non ruminants have not yet been solved and, thus, lead to 
reduced yields, especially due to ecto- and endoparasites and inappropriate feeding rations (Spoolder 
et al., 2007). 
 
55. Another critique of organic agriculture concerns soil tillage. Ploughing, an important technique 
of organic cropping, serves to keep weed infestation low. In temperate zones, organic agriculture is as 
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efficient as no tillage conventional production in soil conservation and erosion prevention (see section 
“Organic agriculture and stability and fertility of soils”). During the last decade, ploughing 
frequencies decreased on many farms due to new machinery and improved crop rotations. 
Nonetheless it is not yet possible to convert organic arable systems completely to organic no tillage 
systems because herbicides and soluble nitrogen fertilizers, both crucial for such systems, are banned. 
In the case of very labile soils in tropical and subtropical regions prone to erosion, organic agriculture 
needs to be improved as even infrequent ploughing might harm soil stability. 
 
56. These deficits and critical points underline the research and development needs of organic 
agriculture. Yet, in spite of these issues, organic agriculture is so far the most promising approach for 
mitigation and adaptation to climate change.  
 

IV. CONCLUSIONS  
 
57. Organic production systems can make important contributions to food supply stability and 
farmer livelihoods by establishing soil fertility, providing diversity and, therefore, resilience to food 
production systems in light of the many uncertainties of climate change. In particular, they contribute 
positively to food stability in terms of fertile and well structured soils, improved water retention, 
protection of biodiversity with beneficial side-effects on phytomedical stability and nutrients, and 
water use efficiency.  
 
58. Agricultural production methods specifically adapted to microclimates, production of diverse 
products, and cropping methods emphasizing soil carbon retention are most likely to withstand 
climatic challenges and contribute to food stability, particularly in those countries most vulnerable to 
increased climate change. 
 
59. Organic agriculture is emphatic about making use of farmer and farmer-community 
knowledge, particularly about farm organization, crop design, manipulation of natural and semi-
natural habitats on the farm, use or even selection of locally appropriate seeds and breeds, on-farm 
preparation of natural plant strengtheners and traditional drugs and curing techniques for livestock, 
innovative and low budget technology, etc. It is unique in modern agriculture that a food production 
system is so strongly based on adaptive management.  
 
60. So far, no practical options other than organic agriculture have been proposed to address 
climate instability. Currently, it is an option which is based and more scientific evidence and field 
implementation than inexistent or untested technologies such as genetically improved crops that can 
withstand drought/flood and that can maintain a high resilience in order to cope with unpredictable 
impacts of climate change. 
 
61. This paper recognizes the deficits of organic agriculture that are mainly related to lower 
productivity and yield losses. However, the deficits should not be exaggerated. The massively lower 
yields, those in the range of more than 20 to 30 percent compared to conventional agriculture, occur 
only in cash-crop-focused production systems and under most favourable climate and soil conditions. 
 
62. Such deficits highlight needs in the current international and national research activities. 
European countries, leaders in organic agriculture research, spend approximately €60 million per year 
on specific problems of organic food and farming (Lange, et al., 2006), supplemented with roughly €4 
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million per annum by the European Commission. This represents less than 1 percent of total food and 
agriculture research. In order to improve the performance of organic production, more research is 
needed on: 

 soil fertility management and crop growth and health; 
 habitat management with improved manipulation and exploitation of diversity at all levels; 
 crop breeding programmes focusing on the adaptability of plants to low input situations in soils, 

in weed competition, and in pest and disease tolerance;  
 improved techniques and compounds for plant protection from natural sources; 
 organic livestock production breeding concepts and programmes for adaptability to 

management and environmental stress situations; and 
 reduced tillage organic systems; 

 
63. Organic agriculture represents a positive example of how farmers can help mitigate climate 
change and adapt to its predictable and unpredictable impacts. It could be used as an indicator for 
allocating national or international development resources to climate change adaptation (e.g. 
Adaptation Fund) or to measure progress in implementing climate-related multilateral environment 
agreements (such as already done in 2010 targets of the Convention on Biological Diversity). 
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