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The contribution of biologically fixed dinitrogen (N2) to the nitrous oxide (N2O) 

production in grasslands is unknown. To assess the contribution of recently fixed N2 as a 

source of N2O and the transfer of fixed N from clover to companion grass, mixtures of 

white clover and perennial ryegrass were incubated for 14 days in a growth cabinet with a 

15N2-enriched atmosphere (0.4 atom% excess). Immediately after labelling, half of the 

grass-clover pots were sampled for N2 fixation determination, whereas the remaining half 

were examined for emission of 15N labelled N2O for another eight days using a static 

chamber method. Biological N2 fixation measured in grass-clover shoots and roots as well 

as in soil constituted 342, 38 and 67 mg N m-2 d-1 at 16, 26 and 36 weeks after emergence, 

respectively. The drop in N2 fixation was most likely due to a severe aphid attack on the 

clover component. Transfer of recently fixed N from clover to companion grass was 

detected at 26 and 36 weeks after emergence and amounted to 0.7 ± 0.1 mg N m-2 d-1, 

which represented 1.7 ± 0.3 % of the N accumulated in grass shoots during the labelling 

period. Total N2O emission was 91, 416 and 259 μg N2O-N m-2 d-1 at 16, 26 and 36 weeks 

after emergence, respectively. Only 3.2 ± 0.5 ppm of the recently fixed N2 was emitted as 

N2O on a daily basis, which accounted for 2.1 ± 0.5 % of the total N2O-N emission. Thus, 

recently fixed N released via easily degradable clover residues appears to be a minor 

source of N2O. 
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CONT – control 

EMI – determination of N2O EMIssion 

FIX – determination of N2 FIXation 

START – sampled at the start of labelling  

 

Introduction 

In temperate organic farming, biological N2 fixation in grass-legume swards provides a 

major N input to the system, but knowledge is sparse regarding the amount of fixed N2 lost 

from the grasslands as N2O. Agricultural soils are known to be a considerable source of 

N2O (Kroeze et al. 1999) and at present this source accounts for 5 % of the European 

release of anthropogenic derived greenhouse gases (EEA 2002). Furthermore, N2O is 

involved in ozone depletion of the stratosphere (Crutzen 1981). In soils, N2O is mainly 

produced in the bacterial processes of nitrification and denitrification (Firestone and 

Davidson 1989). Thus, legumes may give rise to N2O by supplying the microbial 

community in the soil with N compounds. In addition, many strains of the symbiotic N2 

fixing bacteria Rhizobium are able to denitrify nitrate that moves into the root nodules from 

the soil (O'Hara and Daniel 1985). However, this ability was not found among the strains 

that form symbiosis with white clover (de Klein et al. 2001). 

According to the guidelines issued by the Intergovernmental Panel on Climate 

Change, inventories for N2O emissions from agricultural soils should be based on the 

assumption that 1.25 % of the total N supply is emitted as N2O (IPCC 1997). This emission 

factor is used as a standard for all N inputs, although the factor relies on experiments with 

fertilizer and manure only (Bouwman 1996). Input to the systems via biological N2 fixation 

in grass-legume swards is currently not considered as a source of N2O in the IPCC 
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guidelines (IPCC 1997), partly due to uncertainties in quantifying the N2 fixation in 

grasslands (Mosier et al. 1998). Hence, the agricultural greenhouse gas release may 

presently be underestimated. As organic farming to a very large extent utilises grass-

legume mixtures as N source, the contribution from organic farming systems in particular 

may be underestimated. However, countries are allowed to develop their own inventory 

methodology based on local measurement data. Some countries, e.g. Denmark and 

Switzerland, include the contribution from biological N
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2 fixation in grasslands in the 

national N2O inventory, using the standard emission factor of 1.25 % (Schmid et al. 2001; 

Mikkelsen et al. 2005). This factor nonetheless seems to overestimate the contribution 

from biologically fixed N2, as substituting fertilizer N with biological N2 fixation is often 

found to reduce N2O emissions from grasslands (e.g. Garrett et al. 1992; Ruz-Jerez et al. 

1994). 

So far, the N2O emission factor for biologically fixed N2 in grass-legume swards 

has only been estimated via modelling (e.g. Schmid et al. 2001) or determined indirectly 

by relating total N2O emission to measured N2 fixation (e.g. Ruz-Jerez et al. 1994). 

Therefore a 15N2-tracer-experiment was initiated on grass-clover to assess the contribution 

of recently fixed N2 as a source of N2O and the transfer of fixed N from clover to 

companion grass. The 15N2-labelling technique is the sole direct measure of N2 fixation, 

and in many cases it is the only method to assess the fate of biologically fixed N2 

(Warembourg 1993). To our knowledge the present study is the first where the 15N2-

labelling technique is used to determine the contribution of N2 fixation to the N2O 

production. 
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Materials and methods 86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

 

Establishment of grass-clover 

Air-dried and sieved (1 cm) topsoil from an organic crop rotation was packed in 15 × 15 

cm pots to a bulk density of 1.46 g cm-3. The soil was a loamy sand with total N content of 

0.12 %, total C content of 1.4 %, pH in water of 7.6 and water-holding capacity of 0.23 g 

water g-1 dry soil. Each pot was either sown with a mixture of white clover (Trifolium 

repens L. cv. Klondike) and perennial ryegrass (Lolium perenne L. cv. Fanda) or with 

perennial ryegrass only. All pots were placed in a glasshouse with a day/night regime of 

16/8 h, minimum temperature 21/16 ºC and minimum light intensity of 120 μmol m-2 s-1 

(PAR) provided by fluorescent tubes. Seedlings emerged around 21 March 2002, and after 

three weeks the plant density was reduced to 14 seedlings per pot (grass:clover, 1:1). 

Grazing was simulated by cutting to a height of 6 cm every second week. Six weeks after 

emergence, the pots were transferred outdoors. Ammonium sulphate corresponding to 25 

kg N ha-1 was added at 8, 14, 21 and 26 weeks after emergence. At 28 weeks, pots were 

transferred to a growth chamber with a day/night regime of 16/8 h, temperature 20/15 ºC 

and light intensity of 300 μmol m-2 s-1 (PAR). From 26 weeks after emergence, attempts 

were made to control aphids on clover via smothering agents and biological pest control by 

the Asian lady beetle (Harmonia axyridis), an aphid midge (Aphidoletes aphidimyza) and a 

parasitic wasp (Aphidius colemani).  

 

Growth cabinet for 15N2-labelling 

The 15N-labelling approach consisted of introducing 15N2 into the atmosphere in a 

minimum-volume closed-system growth cabinet in order to trace the symbiotic N2 fixation. 

The labelling cabinet (Figure 1) was a modified chest freezer (model TMW300, Frigor, 
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Viborg, DK) in which the volume was reduced to 48 (width) × 86 (length) × 42 (depth) cm 

by installing a raised floor (4 mm aluminium sheeting). The cabinet could host twelve 15 × 

15 cm pots, which were placed in plastic bags and elevated slightly above the floor to 

hinder water exchange between pots. External growth lamps supplied light through a 

transparent window of 12 mm plexiglas mounted above a 44 × 82 cm hole cut into the lid 

of the freezer. To improve the seal between lid and casket, an EPDM rubber gasket was 

fitted to the sealing edge of the freezer. Circulation of air within the cabinet was achieved 

using a fan (60 × 60 mm) to blow air from the bottom to the top of the cabinet through a 

7.5 cm diameter PVC Flex Pipe.  
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Temperature was maintained by a computer, which controlled the compressor of 

the freezer. The computer also controlled light on/off as well as the supply of CO2 during 

defined periods in order to keep CO2 near ambient levels. The concentration of CO2 in the 

cabinet was monitored by an infra-red gas analyser (IRGA; EGM-2, PP Systems, Hitchin, 

UK). The atmosphere of the system was circulated externally around a closed loop made 

from copper tubing (1/8” OD) by a timer-controlled diaphragm pump. A CO2 scrub could 

be integrated in the closed loop in order to remove excess CO2 produced during night. The 

scrub consisted of 1 M potassium hydroxide (KOH) in a 0.5 litre screw capped serum 

bottle, mounted with a rubber stopper pierced by two tubes. This scrub was later replaced 

by a 0.6 litre solid-state soda lime scrub (75 % CaOH2, 3.5 % NaOH), as KOH foam had 

started to corrode the rubber stopper. A 12 litres tedlar bag attached to the closed loop 

prevented over-pressure in the system. The closed gas loop was equipped with a sampling 

port for collecting gas samples and introducing 15N2 to the system. Water was provided 

through a silicon tube to each pot connected to a valve on the outside. The irrigation was 

adjusted to obtain a soil water content slightly below the water-holding capacity based on 

initial transpiration measurements, experience from the former labelling event and water 
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status of control pots. Condensate that accumulated at the floor of the cabinet was sucked 

out daily via a silicone tube connected to a valve on the outside.  
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15N2-labelling 

Three 14-day incubations were conducted with grass-clover mixtures at 16, 26 and 36 

weeks of age. At each labelling event, 16 grass-clover and 12 grass pots were cut to a 

height of 6 cm. Eight grass-clover and eight grass pots were placed in an ordinary growth 

chamber with a day/night regime of 16/8 h, temperature at 20/15 ºC and light intensity of 

300 μmol m-2 s-1 (PAR). The remaining eight grass-clover and four grass pots were placed 

in the labelling cabinet under similar conditions. The following day (Day 1), four grass-

clover and four grass pots from the growth chamber were sampled to establish the amount 

of N in the plant material at the start of the labelling period (START pots - soil not 

analysed). The remaining four grass-clover and four grass pots in the growth chamber were 

controls and were sampled on day 14 (CONT pots). On day 1, two litres 98 atom% 15N2 

were added to the labelling cabinet and on day 8, a volume of 0.7 litres was added, 

resulting in a mean enrichment of the atmosphere over the 14-day incubation period of 0.4 

atom% excess. To compensate for a leaky diaphragm pump during the incubation at 36 

weeks after emergence, the 15N2 addition on day 8 was substituted by addition of about 0.5 

litres on day 4, 7 and 11. A sample of the cabinet atmosphere was taken daily and stored in 

an evacuated 120 ml serum bottle fitted with rubber stopper before analysis for 15N 

abundance of N2, concentration of N2O, and sometimes (5/14 days) 15N abundance of N2O. 

On day 14, four grass-clover and four grass pots from the labelling cabinet were sampled 

to establish the N2 fixation during the labelling period (FIX pots). 
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Measurement of 15N2O emission 

The remaining four grass-clover pots from the labelling cabinet (EMI pots) were 

transferred to the ordinary growth chamber. During the following eight days, emission of 

15N labelled N2O was measured daily from these pots using a static chamber method. 

Beforehand, water-holding capacity was determined on a set of pots by removing plant 

shoots and saturating the soil with water. The pots were covered by plastic to hinder 

evaporation and were then allowed to drain for two days before weighing and 

determination of gravimetric water content (oven drying at 105 °C for 24 h). At least one 

hour before onset of gas measurements, the EMI pots were irrigated to reach 60-65 % of 

the water-holding capacity. For analysis of initial N2O concentration and 15N abundance, 

two evacuated 3.5 ml Venoject vials and two evacuated 120 ml serum bottles were filled 

with samples of growth chamber atmosphere using 5 and 60 ml Plastipak syringes, 

respectively. The same procedures were used when sampling headspace gas during the 

following cover period. Each pot was placed on an 11.5 × 11.5 × 1.3 cm platform above a 

shallow (1 cm) tray of water. The pot was then enclosed within an 18 × 18 × 29 cm plastic 

cover fitted with a rubber stopper to allow sampling, and weighted down to ensure a 

complete water-seal. After 45, 90, 135 and 180 minutes of cover period, a 3.5 ml sample of 

the headspace gas was removed through the rubber stopper for analysis of N2O 

concentration. At the end of the cover period (180 minutes), a 120 ml sample was taken for 

analysis of 15N abundance of N2O. The EMI pots were harvested after eight days of gas 

measurement. At 36 weeks after emergence, emission of N2O was also measured for 

unlabelled grass pots. Once during each experiment, 15N abundance of emitted N2O was 

determined on unlabelled grass-clover pots. The result was at natural abundance or slightly 

below, thus 0.3663 atom% was used as the background value in the calculations.  
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The 3.5 ml gas samples were added 2 ml N2 before they were analysed for N2O in a 

gas chromatograph (GC-14B, Shimadzu, Kyoto, JP) fitted with a HaySep Q column and an 

electron capture detector (column and detector temperature were 30 °C and 300 °C, 

respectively). Concentration of N
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2O in gas samples from the labelling cabinet was 

determined in the same way. Gas samples of 100 μl from the labelling cabinet and from the 

120 ml samples taken during the cover periods at 16 weeks were analysed manually for 

15N abundance of N2 using an elemental analyser (EA 1110, Carlo Erba, Milano, IT) fitted 

with an injection port and coupled in continuous flow mode to an isotope-ratio mass 

spectrometer (IRMS; Finnigan MAT Delta E or Finnigan MAT Delta Plus, Bremen, DE). 

All 120 ml samples from the cover periods as well as selected samples from the labelling 

cabinet were analysed for 15N abundance of N2O following removal of CO2 and cryogenic 

focusing of N2O on a trace gas concentration unit (PreCon Finnigan MAT, Bremen, DE) in 

continuous flow mode to an IRMS (Finnigan MAT Delta Plus, Bremen, DE). 

 

Sampling of pots  

Shoot material was harvested and sorted into clover and grass. At 26 and 36 weeks after 

emergence, a dead shoot fraction was also determined for the grass-clover pots. Fresh 

weight of shoot material from FIX pots was established in order to calculate needed 

irrigation of EMI pots to reach 60-65 % of water-holding capacity. A root and a soil 

fraction were obtained by sieving (6 mm), and the root fraction was subsequently cleaned 

of soil by repeatedly being immersed in water then washed into a fine sieve.  

 

Analyses of plants and soil 

Dry matter of plant samples was determined (oven dried at 80 °C for 24 h). Plant samples 

and samples of air-dried soil were finely ground and analysed for total N and 15N on the 
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elemental analyser and IRMS (Finnigan MAT Delta Plus, Bremen, DE). In addition, total 

carbon was measured on soil from grass-clover CONT pots sampled at 16 weeks after 

emergence. This treatment was also used to determine soil pH in a 10:25 (w:vol) 

suspension of fresh soil in distilled water. Within eight hours of pot sampling, 10 g 

portions of fresh soil were extracted in 2 M KCl (1:10, w:vol), stirred on a horizontal 

shaker for one hour. The extracts were filtered through Whatman 40 filters and kept at -20 

°C until NO

209 
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224 

3
- and NH4

+ were analysed colorimetrically on an autoanalyzer (Bran+Luebbe, 

Norderstedt, DE). Nitrogen-15 abundance of inorganic N was determined in extracts by the 

diffusion method, where NO3
- and NH4

+ are converted into NH3, which is trapped on an 

acidified filter paper (Sørensen and Jensen 1991). The filters were subsequently analysed 

for 15N as described for plant and soil samples.  

 

Calculations  

When calculating the N2 fixation, the proportion of total N in plants derived from a 15N2-

enriched atmosphere (P) is determined as  

 

P = NL
*/NPP225 

226 

227 

*          (1) 

 

where NL
* is the 15N atom% excess enrichment of the legume after exposure to an 

atmosphere with a 15N atom% excess enrichment of NPP228 

229 

230 

231 

232 

233 

* (Warembourg 1993). Wood and 

McNeill (1993) show that this P value is independent of the plant N pool at the start of the 

labelling period, which makes the equation suitable for calculating N  fixation for the FIX 

pots. However, by extending their argumentation it can be established that the P value is 

also valid in cases where the plants accumulate N both before and after the labelling 

period. This makes the equation suitable for calculating N  fixation for the EMI pots as 

2

2
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well. The equation is based on the assumptions that N supplied by soil, fertilizer and non-

labelled atmosphere have the same 

234 

235 

236 

237 

15N abundance and that no 15N  remains during the last 

period. The amount of N originating from fixation during the labelling period (N P) is 

2

L

 

NLP = NLNL
*/NPP238 
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255 
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*         (2) 

 

where NL is the N accumulated by the plants during their full growth. For the FIX pots, the 

amount of N derived from fixation was calculated for each plant-soil fraction (viz. clover 

shoot, grass shoot, dead shoot, root and soil total N), provided that 15N abundance of the 

fraction increased significantly between CONT and FIX pots. Total N2 fixation was 

determined in the same way for the EMI pots. Additionally, the amount of fixed N2 lost as 

N2O during the eight days emission measurement was calculated, and included in the total 

N2 fixation for the EMI pots.  

Flux of N2O was calculated from the linear increase in N2O concentration in the 

headspace during the cover period. Emission of N2O-N derived from biologically fixed N2 

was calculated from the emission of 15N labelled N2O, which was determined in two ways. 

If a significant N2O emission (R2 of N2O concentration vs. time ≥ 0.7) and increase in 15N 

abundance of N2O (end-value ≥ 0.3689 atom%) were detected, then emission of 15N 

labelled N2O (CC*) was calculated as 

 

CC* = CtCt
* - C0C0

*                                                                                                   (3) 

 

where C0 and Ct are the N2O concentration calculated from the regression equation for the 

start and end of the cover period, respectively, and C0
* and Ct

* are the atom% excess 

enrichment of N2O at the start and end of the cover period, respectively. If only a 
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significant increase in 15N abundance of N2O was detected then the emission of 15N 

labelled N
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2O was calculated as 

 

CC* = (Ct
* - C0

*)C0                                                                                                    (4)     

 

Emission of N2O-N derived from fixed N2 (CP) was then established as 

 

CP = CC*/NP
*                                                                                                            (5) 

 

which corresponds to equation 2. The estimates were subsequently converted from 

concentration of N2O to amount of N. The fraction of fixed N, which was emitted as N2O 

(FE) was calculated as  

 

FE = EN2O/Ftot                                                                                                             (6)  

 

where EN2O is the amount of fixed N emitted as N2O per day and Ftot is the total N2 fixation 

during the labelling period per day determined for the EMI pots. 

 

Statistics 

ANOVAs and Tukey’s multiple comparison tests (α = 0.05) were performed using SAS 

General Linear Model procedure (SAS Institute 1997). Homogeneity of variance was not 

obtained despite transformation when testing soil inorganic N for all grass-clover 

treatments. Hence, differences between median inorganic N content for each experiment 

were assessed using the Kruskal-Wallis test. The same constraint appeared for three 

fractions when testing 15N abundance of grass-clover CONT pots against FIX and EMI 
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pots, viz. soil of EMI pots at 26 weeks after emergence and clover shoot of FIX and EMI 

pots at 36 weeks after emergence. Thus, the medians were compared using the Mann-

Whitney U-test. In some cases variation was indicated as coefficient of variance (CV), 

which is the standard deviation in percent of the mean. 
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Results 

 

Labelling cabinet atmosphere 

Nitrogen-15 abundance of N2 in the labelling cabinet declined in an apparent exponential 

pattern (Figure 2), probably because of diffusion of N2 through the 12 mm plexiglas 

window. This problem was also faced in other 15N2 incubation studies (McNeill et al. 1994; 

Wood and McNeill 1993), and was compensated for by multiple additions of 15N2. Mean 

15N2 enrichment over the labelling period was 0.4369, 0.4177 and 0.3724 atom% excess at 

16, 26 and 36 weeks after emergence, respectively. Nitrogen-15 abundance of N2O in the 

labelling cabinet gave no evidence for release of N2O derived from biologically fixed N2 

during the labelling events (data not shown). During nighttime, the CO2 concentration in 

the labelling cabinet increased to > 1200 ppm. After onset of light, the CO2 decreased 

assisted by the CO2 scrub (3-5 hours) to near ambient concentrations with a mean of 344, 

530 and 468 ppm at 16, 26 and 36 weeks after emergence, respectively.  

 

Biomass in grass-clover FIX pots 

At 16 weeks of age, the clover component made up a significantly larger proportion of the 

living shoot biomass (82 %) than at 26 and 36 weeks after emergence (65 and 51 %). 

However, total living biomass including roots did not differ significantly between labelling 

events (P = 0.6523), and constituted 772 ± 38 g dry matter m-2 on average (Table 1). 
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Despite the increased CO2 level, conditions in the labelling cabinet had no significant 

effect on the growth of plants measured as living shoot and root biomass compared to the 

control (P = 0.1176) (Table 1). 
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Nitrogen fixation 

Amount of N and 15N abundance of the different plant-soil fractions appear in Table 2 and 

3, respectively. The results on N2 fixation revealed a significant effect of time (P < 

0.0001). Accordingly, at 16 weeks after emergence N2 fixation measured in grass-clover 

FIX pots constituted 342 mg N m-2 d-1, which declined to 38 and 67 mg N m-2 d-1 at 26 and 

36 weeks, respectively (Figure 3). Overall the N2 fixation differed between the FIX and the 

EMI pots (P = 0.0171), which mainly resulted from the higher N2 fixation measured in the 

EMI pots at 16 weeks after emergence (Figure 3). The difference was probably due to 

variation in the clover biomass between pots randomly selected for the two treatments. 

Also, at 16 weeks, N2 fixation calculated for the EMI pots includes fixed N found in the 

grass shoot and soil fractions, which had not yet reached a significant 15N enrichment in 

the FIX pots (Table 3). Therefore, the fraction of fixed N2 emitted as N2O (FE, equation 6) 

was calculated using N2 fixation measured in EMI pots. Fixed N accounted for 90 and 63 

% of the N, which accumulated in clover shoots during the labelling period at 16 and 36 

weeks after emergence, respectively, but the difference was insignificant (P = 0.2465). A 

percentage was not calculated for 26 week old plants because of negative N accumulation 

between START and FIX pots due to a severe aphid attack on the clover component (Table 

2 B).  
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Distribution of fixed N 332 
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The majority of fixed N was found in clover shoot biomass (Figure 4). However, the 

proportion varied significantly between the labelling events, accounting for 96, 69 and 84 

% of the fixed N at 16, 26 and 36 weeks after emergence, respectively. Transfer of fixed N 

from clover to companion grass determined in FIX pots was insignificant when the plants 

were 16 weeks old (Table 3 A). However, eight days after the labelling event when pots for 

determination of N2O emission were sampled, a significant increase in 15N abundance of 

grass shoots was detected, demonstrating that N transfer had taken place. At 26 and 36 

weeks after emergence, the uncorrected transfer of fixed N from clover to grass shoots 

constituted 1.0 mg N m-2 d-1 (P = 0.9761), which represented 2.6 and 1.5 % of the fixed N 

(P = 0.0727) (Figure 4). An apparent N2 fixation of 0.4 ± 0.1 mg N m-2 d-1 was detected in 

pots with grass. This apparent fixed N2 was either supplied via free-living or associative N2 

fixing bacteria or an artefact due to absorption of 15N-labelled ammonia (15NH3) through 

stomata (McNeill et al. 1994). Ammonia contamination of the 15N2 gas cannot be excluded. 

Because of the relatively low importance, these two 15N sources may only have introduced 

minor error in the calculated symbiotic N2 fixation for the grass-clover pots. In contrast, 

they might have caused overestimation of the determined transfer of symbiotically fixed 

N2. When the 15N enrichment of grass shoots in mixture is corrected for 15N enrichment of 

grass shoots in pure stand, then the transfer of fixed N amount to 0.7 ± 0.1 mg N m-2 d-1, 

which represented 1.7 ± 0.3 % of the N accumulated in grass shoot during the labelling 

period. 

 

N2O emission and soil water content 

Total N2O emission changed significantly over time (P = 0.0004) and was 91, 416 and 259 

μg N2O-N m-2 d-1 at 16, 26 and 36 weeks after emergence, respectively (Figure 5 A).  
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Emission of 15N labelled N2O was detected at 16 weeks after emergence only and could 

theoretically derive from 1) biological N
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2 fixation in clover, 2) biological N2 fixation by 

free-living or associative bacteria, or 3) 15NH3 contamination of the 15N2 gas. However, the 

two latter sources appeared to be minor as no 15N labelled N2O was detected at 26 and 36 

weeks after emergence. At 16 weeks, emission of N2O-N derived from biologically fixed 

N2 constituted 1.6 ± 0.2 μg N2O-N m-2 d-1. Thus, 3.2 ± 0.5 ppm of the N2 fixed by 16 week 

old clover was emitted as N2O, which accounted for 2.1 ± 0.5 % of the total N2O emission. 

Loss of N2O from grass pots measured at 36 weeks after emergence was 22 μg N2O-N m-2 

d-1 and did not differ significantly from the emission measured from grass-clover pots at 16 

weeks. The advancement of the N2O emission was found to be similar to that of the soil 

water content (Figure 5 A, B). The intention was to keep soil water content of the pots at 

60-65 % of the water-holding capacity during N2O emission measurements. However, 

because of excessive irrigation in the labelling cabinet prior to gas measurements, and low 

transpiration rate at 26 and 36 weeks, the mean soil water content of grass-clover pots was 

65, 90 and 80 % of the water-holding capacity at 16, 26 and 36 weeks after emergence, 

respectively (P = 0.0031) (Figure 5 B). Soil water content of grass pots at 36 weeks was 64 

%. Emission of 15N2 from the grass-clover pots was assessed at 16 weeks after emergence, 

however it was found to be below the detection limit. 

 

Soil inorganic nitrogen in grass-clover pots 

The content of soil inorganic N varied between the experiments, i.e. the median of 

inorganic N was significantly lower at 16 weeks after emergence than at 36 weeks (Figure 

6). The change was mainly a result of increased ammonium content. Soil inorganic N in 

the FIX pots corresponded to 75, 1582 and 327 mg N m-2 (0-17 cm soil layer) at 16, 26 and 

36 weeks after emergence, respectively. At 26 weeks, the content in FIX pots was 
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significantly higher than in the CONT and EMI pots. Attempt to determine the 15N 

abundance of the inorganic N pool failed, since total amounts of inorganic N trapped from 

the KCl extracts were inadequate for a proper 
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15N analysis.  

 

Discussion 

 

Nitrogen fixation 

For 16 week old plants, the total N2 fixation determined in grass-clover shoots and roots as 

well as in bulk soil constituted 342 mg N m-2 d-1, which dropped dramatically to 38 and 67 

mg N m-2 d-1 at 26 and 36 weeks after emergence, respectively (Figure 3). The main reason 

for this drop was a severe aphid attack on the clover component, which peaked during the 

experiment at 26 weeks and was still present 36 weeks after plant emergence. The aphids 

probably reduced the N2 fixation by contributing to a decline in the clover content from 82 

to 65 and 51 % of the total herbage dry weight. Clover content is known to be the major 

factor determining N2 fixation in grass-clover swards (Kristensen et al. 1995). In field 

studies, N2 fixation is usually determined in the harvested herbage only, e.g. N2 fixation 

was reported between 206 and 235 kg N ha-1 y-1 in first year white clover-ryegrass swards 

having a mean clover content of about 50-60 % (Jørgensen et al. 1999; Vinther and Jensen 

2000). Assuming a growth season of six months, the reported values correspond to daily 

N2 fixation rates between 113 and 129 mg N m-2 d-1. In conclusion, the determined N2 

fixation at 16 weeks after emergence was relatively high compared to annual field 

measurements. However, clover content and N2 fixation vary over the growing season (e.g. 

Jørgensen et al. 1999; Vinther and Jensen 2000), thus results at 16 weeks represent N2 

fixation at optimal growth conditions. Furthermore, our studies estimate total amounts of 

fixed N in all pools in contrast to the field measurements. 
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N2O emission 

Total N2O emission from the grass-clover pots was 91, 416 and 259 μg N2O-N m-2 d-1 at 

16, 26 ad 36 weeks after emergence, respectively (Figure 5 A), which is in the same order 

of magnitude as emissions determined for other extensively managed grasslands containing 

legumes (e.g. Carran et al. 1995; Wang et al. 1997). The increase in N2O emission between 

16 and 26 weeks after plant emergence might relate to the aphid-induced clover shoot 

death. The reason is that shoot death leads to decay of roots and nodules (Butler et al. 

1959), which may act as a carbon source for denitrifying bacteria. Also, Beck and 

Christensen (1987) showed that N2O emission increased when all above-ground ryegrass 

was removed or when grass leaves turned yellowish.  

Soil inorganic N content tended to be higher at 26 and 36 weeks after emergence 

than at 16 weeks (Figure 6), which was probably due to increased mineralisation of clover 

tissues combined with decreased clover N uptake. In addition to this, the elevated soil 

water content during the labelling at 26 weeks (Figure 5 B) may have caused the 

remarkably high soil inorganic N content in the FIX pots. During the following N2O 

measurements, the soil was allowed to dry slightly, which enabled nitrification in aerobic 

microsites. In conclusion, at 26 and 36 weeks after plant emergence N2O loss via 

denitrification was favoured by high availability of inorganic N, labile carbon compounds 

and anaerobic microsites.  

Soil water content is often found to be a key factor influencing N2O emissions (e.g. 

Carran et al. 1995; Ruz-Jerez et al. 1994). Comparing N2O emission from grass and grass-

clover pots (Figure 5 A) having the same soil water content (Figure 5 B – grass-clover at 

16 weeks, grass at 36 weeks) reveals a tendency for higher N2O emission from the grass-

clover pots. This conforms with results obtained by Duxbury et al. (1982) indicating that 
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legumes can increase N2O emissions by factor two to three compared to unfertilised grass 

swards.  
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Transfer of fixed N 

It is generally acknowledged that transfer of N from white clover to companion grass 

mainly involves the long-term mineralisation of dead clover tissues taking place on a scale 

of months (e.g. Goodman 1988; Ledgard 1991). In addition to the long-term N release, a 

pool of relatively easily degradable clover residues (e.g. exudates, lysates, secretion and 

decaying fine roots) may contribute to soil inorganic N on a short-term scale, viz. within 

days or weeks after elimination from the clover plant. Consistent with this view, Laidlaw et 

al. (1996) observed high release of inorganic N from clover indicating a total turnover of 

clover root N within three months. In the present study, release of recently fixed N into the 

soil probably took place through this latter pathway. 

Transfer of recently fixed N from clover to companion grass was observed in the 

FIX pots at 26 and 36 weeks after emergence only. However, at 16 weeks recently fixed N 

was emitted as N2O, demonstrating that recently fixed N was released from the clover 

component into the soil at that time. In line with this, an increase in 15N abundance of grass 

shoots was detected eight days later in the EMI pots, indicating a slower transfer rate for 

16 week old mixtures. The reason could be the high competition for light at 16 weeks 

(clover content 82 %), which seemed to suppress ryegrass growth and thereby N uptake 

(Table 2 A). On the other hand, the observed transfer at 26 and 36 weeks may be explained 

by improved light conditions (clover content 65 and 51 %), which tended to stimulate 

ryegrass growth and N uptake (Table 2 B, C). This conclusion is consistent with results 

attained by Høgh-Jensen and Schjoerring (2000), showing highest N transfer in spring and 

autumn, where white clover growth is low and the growth of ryegrass is high. 
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Fixed N transferred from clover to grass constituted 1.7 ± 0.3 % of the N 

accumulated in grass shoots during the labelling period. In contrast, two other 
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15N2 studies 

showed no transfer of fixed N from white clover to companion ryegrass in a 19 and 129 

day experiment (McNeill et al. 1994; McNeill and Wood 1990). However, long-term field 

studies using the 15N dilution technique have reported apparent transfer of fixed N from 

white clover to companion ryegrass in the range 0 to 80 % of the grass N content (Boller 

and Nösberger 1987; Ledgard 1991), with the percentage increasing over time after 

labelling. The transfer of fixed N found in the present study is low compared to the 

mentioned studies, which supports the general view that short-term N transfer via easily 

degradable clover residues is less important than the long-term transfer through decay of 

more recalcitrant clover tissues.  

It is striking that recently fixed N was transferred to companion grass at 26 and 36 

weeks after emergence, but was not detected in the emitted N2O. This could indicate that 

ryegrass and the N2O producing bacteria utilized different pools of labile N in the soil. One 

reason may be differences in the spatial distribution of grass roots and N2O producing 

bacteria in relation to the zones of clover residue release. Another explanation may be that 

the fixed N was less available for the nitrifiers and denitrifiers, either due to amino acid 

uptake by the grass (Falkengren-Grerup et al. 2000) or because N was mostly transferred 

directly through common mycorrhizal mycelium (Frey and Schüepp 1992). 

 

N2O-N derived from fixed N2

Recently fixed N released via easily degradable clover residues may be important in the 

flow from N2 fixation to N2O emission. However, the present study revealed that only 3.2 

± 0.5 ppm of the recently fixed N was emitted as N2O on a daily basis. Furthermore, 

recently fixed N accounted for 2.1 ± 0.5 % of the emitted N2O-N only. A large part of the 
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remaining N2O-N was most likely derived from previously fixed N2, which indicates that 

long-term N release through decay of more recalcitrant clover tissues probably contributes 

considerably to the flow from N
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2 fixation to N2O emission. 

The standard IPCC N2O emission factor of 1.25 % is criticised by some authors for 

overestimating the N2O emission from mineral fertilizer (e.g. Lægreid and Aastveit 2002) 

and by others for underestimating the long-term effect of manure and mineral fertilizer 

application (e.g. Schmid et al. 2001). According to the methodology currently 

recommended by IPCC, the national N2O inventories should not include the contribution 

from biological N2 fixation in grasslands (IPCC 1997). Some countries, e.g. Denmark and 

Switzerland, nonetheless include quantitative estimates of biological N2 fixation in 

grasslands in their N2O inventory, using an emission factor of 1.25 % as for other N inputs 

(Schmid et al. 2001; Mikkelsen et al. 2005). 

However, the standard N2O emission factor of 1.25 % might be considerably 

unrepresentative for biologically fixed N2 as only a part of the fixed N is mineralised 

during the lifetime of the crop (Petersen and Olesen 2002), and because the mineralisation 

occurs slowly (Velthof et al. 1998). The extent to which clover N released through 

mineralisation will give rise to N2O emission from the sward depends on several factors. 

First, it depends on the sinks for inorganic N, e.g. uptake by grass and clover, 

immobilisation in microbial biomass and loss by leaching. Second, it depends on whether 

the abiotic conditions favour N2O production, e.g. temperature, carbon source and O2 level, 

mainly regulated by the soil water content. Goodman (1991) showed that white clover 

primarily contributes to soil organic matter in autumn. In line with this, Garret et al. (1992) 

found that under mild conditions, 70 % of the annual N2O emission from a white clover-

ryegrass pasture occurred during autumn and winter. In the present study, the N2O 

emission was measured under temperature and soil water regimes representative of 

 21



summer conditions. However, even under conditions more favourable for N2O emission, 

the contribution of recently fixed N to the N

507 

508 

509 

510 

511 

512 

513 

514 

515 

516 

517 

518 

519 

520 

521 

522 

523 

524 

525 

526 

527 

528 

529 

530 

531 

2O emission would still be minor. 

Via modelling, Schmid et al. (2001) estimated the N2O emission factor for 

biologically fixed N2 in permanent grasslands to be 0.22 %. However, after steady state in 

soil carbon and nitrogen was reached, the emission factor increased to 0.56 %. Obviously, 

these emission factors are associated with extremely large uncertainties. Ruz-Jerez et al. 

(1994) found that the annual N2O emission represented about 1 % of the N input by 

legume fixation in grazed grass-clover swards. The N2O loss often increased following a 

grazing period, mainly because of N return in animal excreta. Thus, the estimated emission 

factor includes the contribution from N2 fixation as well as the effect of grazing. In 

contrast, the effect of grazing animals is accounted for separately in the IPCC 

methodology. 

Biological N2 fixation in grass-legume swards should not be neglected as a source 

of N2O in the national greenhouse gas inventories, especially not when considering the 

large area of Europe covered by managed grasslands. However, based on the present study 

and data from the literature we find it unlikely that the N2O emission factor for biologically 

fixed N2 in grass-clover swards would reach the standard emission factor of 1.25 %. 

 

Conclusions 

Our results support the general view that recently fixed N contributes little to the N transfer 

from white clover to companion grass. Moreover, only a tiny fraction of the biologically 

fixed N2 was lost as N2O over the course of a few weeks, and this fraction represented 

about 2 % of the total N2O-N emission. Thus, the long-term mineralisation of dead clover 

tissues is probably more important than recently fixed N for the flow from N2 fixation to 

N2O emission. 
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Table 1. Biomass (g dry matter m-2) of the fractions clover shoot, dead shoot, grass shoot and root in 
grass-clover and grass pots at the start (START), for control (CONT), for determination of N2 
fixation (FIX) and for determination of N2O emission (EMI), (A) 16 weeks, (B) 26 weeks and (C) 
36 weeks after emergence; n = 4, means and SE (in brackets). 

A. 16 weeks

Fraction

Clover shoot 402 (42) 548 (44) 493 (34) 645 (47)

Grass shoot 124 (8) 147 (10) 109 (5) 146 (4) 190 (13) 211 (8) 207 (3)

Root 431 (75) 322 (38) 221 (19) 257 (40) 235 (27) 190 (20) 218 (25)

Living biomass a 957 (116) 1017 (74) 823 (52) 1048 (78) 424 (34) 400 (23) 425 (25)

B. 26 weeks

Fraction

Clover shoot 392 (47) 341 (60) 302 (34) 271 (40)

Dead shoot 177 (16) 205 (25) 198 (16) 226 (20)

Grass shoot 127 (3) 183 (6) 158 (8) 193 (7) 312 (22) 293 (27) 266 (6)

Root 214 (11) 277 (29) 273 (13) 276 (36) 239 (29) 226 (30) 232 (22)

Living biomass a 734 (55) 802 (85) 733 (36) 740 (70) 551 (36) 518 (56) 499 (20)

C. 36 weeks

Fraction

Clover shoot 274 (27) 235 (62) 260 (75) 221 (55)

Dead shoot 334 (35) 327 (23) 330 (21) 424 (22)

Grass shoot 245 (16) 254 (5) 224 (9) 281 (14) 309 (8) 385 (12) 312 (14)

Root 238 (15) 314 (31) 275 (37) 207 (34) 194 (26) 245 (36) 184 (19)

Living biomass a 756 (23) 802 (86) 759 (102) 709 (100) 504 (26) 630 (40) 497 (15)

START CONT FIX EMI

Grass-clover pots

START CONT

Grass pots

FIX

Grass-clover pots Grass pots

– – –

START CONT FIX EMI

CONT FIX

– – –

START

– – –

Grass-clover pots Grass pots

START CONT FIX EMI

– – –

START CONT FIX

– – –

a Living biomass includes the fractions clover shoot, grass shoot and root. 



Table 2. Amount of N (g N m-2) in the fractions clover shoot, dead shoot, grass shoot and root in grass-
clover and grass pots at the start (START), for control (CONT), for determination of N2 fixation (FIX) 
and for determination of N2O emission (EMI), (A) 16 weeks, (B) 26 weeks and (C) 36 weeks after 
emergence; n = 4, means and SE (in brackets). 

A. 16 weeks

Fraction

Clover shoot 10.9 (0.6) 16.0 (1.3) 15.4 (0.4) 21.7 (1.8)

Grass shoot 1.58 (0.06) 1.71 (0.06) 1.57 (0.07) 1.95 (0.09) 1.69 (0.15) 1.94 (0.10) 1.85 (0.08)

Root 4.60 (0.67) 3.88 (0.68) 2.25 (0.11) 4.16 (0.46) 1.49 (0.15) 1.01 (0.06) 1.21 (0.15)

Living biomass a 17.1 (1.1) 21.6 (1.9) 19.3 (0.5) 27.8 (2.3) 3.18 (0.29) 2.96 (0.14) 3.06 (0.22)

B. 26 weeks

Fraction

Clover shoot 9.55 (1.50) 6.76 (1.14) 6.44 (0.81) 5.57 (0.60)

Dead shoot 3.81 (0.39) 4.49 (0.57) 3.96 (0.28) 4.84 (0.44)

Grass shoot 1.66 (0.05) 2.02 (0.09) 1.90 (0.08) 2.29 (0.13) 2.73 (0.16) 2.64 (0.16) 2.44 (0.04)

Root 3.48 (0.28) 4.95 (0.61) 4.85 (0.49) 4.47 (0.59) 1.49 (0.16) 1.43 (0.14) 1.58 (0.20)

Living biomass a 14.7 (1.7) 13.7 (1.7) 13.2 (1.0) 12.3 (1.0) 4.23 (0.21) 4.07 (0.30) 4.02 (0.18)

C. 36 weeks

Fraction

Clover shoot 5.09 (0.64) 5.39 (1.42) 6.16 (1.45) 5.04 (1.25)

Dead shoot 6.52 (0.68) 7.12 (0.46) 7.84 (0.59) 9.56 (0.91)

Grass shoot 2.15 (0.11) 2.59 (0.10) 2.72 (0.07) 3.07 (0.09) 2.90 (0.04) 3.30 (0.13) 3.13 (0.11)

Root 3.52 (0.30) 4.45 (0.64) 3.50 (0.42) 2.82 (0.51) 1.19 (0.12) 1.56 (0.14) 1.39 (0.24)

Living biomass a 10.8 (0.7) 12.4 (2.1) 12.4 (1.8) 10.9 (1.8) 4.09 (0.11) 4.85 (0.27) 4.51 (0.33)

START CONT FIX EMI

Grass-clover pots

START CONT

Grass pots

FIX

Grass-clover pots Grass pots

– – –

START CONT FIX EMI

CONT FIX

– – –

START

– – –

Grass-clover pots Grass pots

START CONT FIX EMI

– – –

START CONT FIX

– – –

 

a Living biomass includes the fractions clover shoot, grass shoot and root. 



Table 3. Nitrogen-15 abundance (atom%) of the fractions clover shoot, dead shoot, grass shoot, 
root and soil in pots for control (CONT), determination of N2 fixation (FIX) and determination 
of N2O emission (EMI) at 16, 26 and 36 weeks after emergence, (A) grass-clover pots, (B) grass 
pots; n = 4, means.a b 

A. Grass-clover pots

Fraction CONT FIX EMI CONT FIX EMI CONT FIX EMI

Clover shoot 0.3661 0.4787 0.4754 0.3659 0.3857 0.3783 0.3660 0.4077 0.4185

Dead shoot – – – 0.3662 0.3697 0.3685 0.3661 0.3672 0.3669

Grass shoot 0.3669 0.3675 0.3689 0.3659 0.3683 0.3677 0.3660 0.3677 0.3672

Root 0.3667 0.3994 0.4054 0.3666 0.3742 0.3696 0.3666 0.3760 0.3771

Soil 0.3688 0.3692 0.3697 0.3692 0.3692 0.3689 0.3691 0.3691 0.3692

16 weeks 26 weeks 36 weeks

B. Grass pots

Fraction CONT FIX CONT FIX CONT FIX

Shoot 0.3673 0.3680 0.3667 0.3675 0.3667 0.3671

Root 0.3677 0.3684 0.3676 0.3677 0.3675 0.3676

Soil 0.3694 0.3691 0.3693 0.3692 0.3692 0.3692

16 weeks 26 weeks 36 weeks

a Bold indicates significant increase in 15N abundance from CONT pots to FIX and EMI pots. 
b Coefficient of variance (CV) of 15N abundance in the fractions clover shoot and root in grass-
clover FIX and EMI pots was in the range 0.47-4.18 %. For all remaining fractions CV was in 
the range 0.01-0.36 %. 
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