1	Number of text page	s: 28
2	Number of tables:	3
3	Number of figures:	6
4		
5	Biologically fixed N	$_2$ as a source for N ₂ O production in a grass-clover mixture,
6	measured by ¹⁵ N ₂	
7		
8	M.S. Carter ¹ and P. A	Ambus
9	Biosystems Departm	ent, Risø National Laboratory, P.O. Box 49, 4000 Roskilde, Denmark
10		
11	¹ Corresponding auth	or
12	Telephone No:	+45 4677 4151
13	FAX No:	+45 4677 4160
14	E-mail:	mette.sustmann.carter[a]risoe.dk

15 Abstract

16 The contribution of biologically fixed dinitrogen (N_2) to the nitrous oxide (N_2O)

production in grasslands is unknown. To assess the contribution of recently fixed N₂ as a 17 source of N₂O and the transfer of fixed N from clover to companion grass, mixtures of 18 white clover and perennial ryegrass were incubated for 14 days in a growth cabinet with a 19 15 N₂-enriched atmosphere (0.4 atom% excess). Immediately after labelling, half of the 20 grass-clover pots were sampled for N₂ fixation determination, whereas the remaining half 21 were examined for emission of ¹⁵N labelled N₂O for another eight days using a static 22 chamber method. Biological N2 fixation measured in grass-clover shoots and roots as well 23 as in soil constituted 342, 38 and 67 mg N m⁻² d⁻¹ at 16, 26 and 36 weeks after emergence, 24 respectively. The drop in N₂ fixation was most likely due to a severe aphid attack on the 25 clover component. Transfer of recently fixed N from clover to companion grass was 26 detected at 26 and 36 weeks after emergence and amounted to $0.7 \pm 0.1 \text{ mg N m}^{-2} \text{ d}^{-1}$, 27 which represented 1.7 ± 0.3 % of the N accumulated in grass shoots during the labelling 28 period. Total N₂O emission was 91, 416 and 259 µg N₂O-N m⁻² d⁻¹ at 16, 26 and 36 weeks 29 after emergence, respectively. Only 3.2 ± 0.5 ppm of the recently fixed N₂ was emitted as 30 N_2O on a daily basis, which accounted for 2.1 ± 0.5 % of the total N_2O -N emission. Thus, 31 32 recently fixed N released via easily degradable clover residues appears to be a minor source of N₂O. 33

34

35 Key words

emission factor, nitrogen fixation, nitrogen transfer, nitrous oxide, ¹⁵N₂, white clover
 37

38 Abbreviations

39 CONT – control

40 $EMI - determination of N_2O EMIssion$

- 41 FIX determination of N₂ FIXation
- 42 START sampled at the start of labelling
- 43

44 Introduction

In temperate organic farming, biological N₂ fixation in grass-legume swards provides a 45 major N input to the system, but knowledge is sparse regarding the amount of fixed N2 lost 46 47 from the grasslands as N₂O. Agricultural soils are known to be a considerable source of N₂O (Kroeze et al. 1999) and at present this source accounts for 5 % of the European 48 release of anthropogenic derived greenhouse gases (EEA 2002). Furthermore, N₂O is 49 50 involved in ozone depletion of the stratosphere (Crutzen 1981). In soils, N₂O is mainly produced in the bacterial processes of nitrification and denitrification (Firestone and 51 52 Davidson 1989). Thus, legumes may give rise to N₂O by supplying the microbial community in the soil with N compounds. In addition, many strains of the symbiotic N₂ 53 fixing bacteria Rhizobium are able to denitrify nitrate that moves into the root nodules from 54 55 the soil (O'Hara and Daniel 1985). However, this ability was not found among the strains that form symbiosis with white clover (de Klein et al. 2001). 56 According to the guidelines issued by the Intergovernmental Panel on Climate 57 Change, inventories for N₂O emissions from agricultural soils should be based on the 58 assumption that 1.25 % of the total N supply is emitted as N₂O (IPCC 1997). This emission 59

60 factor is used as a standard for all N inputs, although the factor relies on experiments with

61 fertilizer and manure only (Bouwman 1996). Input to the systems via biological N₂ fixation

in grass-legume swards is currently not considered as a source of N_2O in the IPCC

63	guidelines (IPCC 1997), partly due to uncertainties in quantifying the N_2 fixation in
64	grasslands (Mosier et al. 1998). Hence, the agricultural greenhouse gas release may
65	presently be underestimated. As organic farming to a very large extent utilises grass-
66	legume mixtures as N source, the contribution from organic farming systems in particular
67	may be underestimated. However, countries are allowed to develop their own inventory
68	methodology based on local measurement data. Some countries, e.g. Denmark and
69	Switzerland, include the contribution from biological N_2 fixation in grasslands in the
70	national N_2O inventory, using the standard emission factor of 1.25 % (Schmid et al. 2001;
71	Mikkelsen et al. 2005). This factor nonetheless seems to overestimate the contribution
72	from biologically fixed N_2 , as substituting fertilizer N with biological N_2 fixation is often
73	found to reduce N ₂ O emissions from grasslands (e.g. Garrett et al. 1992; Ruz-Jerez et al.
74	1994).
75	So far, the N_2O emission factor for biologically fixed N_2 in grass-legume swards
76	has only been estimated via modelling (e.g. Schmid et al. 2001) or determined indirectly
77	by relating total N ₂ O emission to measured N ₂ fixation (e.g. Ruz-Jerez et al. 1994).
78	Therefore a ¹⁵ N ₂ -tracer-experiment was initiated on grass-clover to assess the contribution
79	of recently fixed N_2 as a source of N_2O and the transfer of fixed N from clover to
80	companion grass. The ${}^{15}N_2$ -labelling technique is the sole direct measure of N_2 fixation,
81	and in many cases it is the only method to assess the fate of biologically fixed $N_{\rm 2}$
82	(Warembourg 1993). To our knowledge the present study is the first where the ${}^{15}N_2$ -
83	labelling technique is used to determine the contribution of N_2 fixation to the N_2O
84	production.

86 Materials and methods

87

88 Establishment of grass-clover

Air-dried and sieved (1 cm) topsoil from an organic crop rotation was packed in 15×15 89 cm pots to a bulk density of 1.46 g cm⁻³. The soil was a loamy sand with total N content of 90 0.12 %, total C content of 1.4 %, pH in water of 7.6 and water-holding capacity of 0.23 g 91 water g⁻¹ dry soil. Each pot was either sown with a mixture of white clover (*Trifolium* 92 repens L. cv. Klondike) and perennial ryegrass (Lolium perenne L. cv. Fanda) or with 93 94 perennial ryegrass only. All pots were placed in a glasshouse with a day/night regime of 16/8 h, minimum temperature 21/16 °C and minimum light intensity of 120 $\mu mol~m^{-2}~s^{-1}$ 95 (PAR) provided by fluorescent tubes. Seedlings emerged around 21 March 2002, and after 96 three weeks the plant density was reduced to 14 seedlings per pot (grass:clover, 1:1). 97 98 Grazing was simulated by cutting to a height of 6 cm every second week. Six weeks after emergence, the pots were transferred outdoors. Ammonium sulphate corresponding to 25 99 kg N ha⁻¹ was added at 8, 14, 21 and 26 weeks after emergence. At 28 weeks, pots were 100 transferred to a growth chamber with a day/night regime of 16/8 h, temperature 20/15 °C 101 and light intensity of 300 μ mol m⁻² s⁻¹ (PAR). From 26 weeks after emergence, attempts 102 were made to control aphids on clover via smothering agents and biological pest control by 103 the Asian lady beetle (Harmonia axyridis), an aphid midge (Aphidoletes aphidimyza) and a 104 105 parasitic wasp (Aphidius colemani).

106

107 *Growth cabinet for* ${}^{15}N_2$ *-labelling*

108 The ¹⁵N-labelling approach consisted of introducing ${}^{15}N_2$ into the atmosphere in a

109 minimum-volume closed-system growth cabinet in order to trace the symbiotic N_2 fixation.

110 The labelling cabinet (Figure 1) was a modified chest freezer (model TMW300, Frigor,

111 Viborg, DK) in which the volume was reduced to 48 (width) \times 86 (length) \times 42 (depth) cm by installing a raised floor (4 mm aluminium sheeting). The cabinet could host twelve $15 \times$ 112 113 15 cm pots, which were placed in plastic bags and elevated slightly above the floor to hinder water exchange between pots. External growth lamps supplied light through a 114 transparent window of 12 mm plexiglas mounted above a 44×82 cm hole cut into the lid 115 116 of the freezer. To improve the seal between lid and casket, an EPDM rubber gasket was fitted to the sealing edge of the freezer. Circulation of air within the cabinet was achieved 117 118 using a fan $(60 \times 60 \text{ mm})$ to blow air from the bottom to the top of the cabinet through a 7.5 cm diameter PVC Flex Pipe. 119

Temperature was maintained by a computer, which controlled the compressor of 120 the freezer. The computer also controlled light on/off as well as the supply of CO₂ during 121 defined periods in order to keep CO₂ near ambient levels. The concentration of CO₂ in the 122 123 cabinet was monitored by an infra-red gas analyser (IRGA; EGM-2, PP Systems, Hitchin, 124 UK). The atmosphere of the system was circulated externally around a closed loop made from copper tubing $\binom{1}{8}$ OD) by a timer-controlled diaphragm pump. A CO₂ scrub could 125 126 be integrated in the closed loop in order to remove excess CO₂ produced during night. The 127 scrub consisted of 1 M potassium hydroxide (KOH) in a 0.5 litre screw capped serum bottle, mounted with a rubber stopper pierced by two tubes. This scrub was later replaced 128 by a 0.6 litre solid-state soda lime scrub (75 % CaOH₂, 3.5 % NaOH), as KOH foam had 129 130 started to corrode the rubber stopper. A 12 litres tedlar bag attached to the closed loop 131 prevented over-pressure in the system. The closed gas loop was equipped with a sampling port for collecting gas samples and introducing ${}^{15}N_2$ to the system. Water was provided 132 through a silicon tube to each pot connected to a valve on the outside. The irrigation was 133 134 adjusted to obtain a soil water content slightly below the water-holding capacity based on initial transpiration measurements, experience from the former labelling event and water 135

status of control pots. Condensate that accumulated at the floor of the cabinet was suckedout daily via a silicone tube connected to a valve on the outside.

138

139 $^{15}N_2$ -labelling

Three 14-day incubations were conducted with grass-clover mixtures at 16, 26 and 36 140 weeks of age. At each labelling event, 16 grass-clover and 12 grass pots were cut to a 141 142 height of 6 cm. Eight grass-clover and eight grass pots were placed in an ordinary growth chamber with a day/night regime of 16/8 h, temperature at 20/15 °C and light intensity of 143 300 µmol m⁻² s⁻¹ (PAR). The remaining eight grass-clover and four grass pots were placed 144 in the labelling cabinet under similar conditions. The following day (Day 1), four grass-145 clover and four grass pots from the growth chamber were sampled to establish the amount 146 of N in the plant material at the start of the labelling period (START pots - soil not 147 analysed). The remaining four grass-clover and four grass pots in the growth chamber were 148 controls and were sampled on day 14 (CONT pots). On day 1, two litres 98 atom% $^{15}N_2$ 149 were added to the labelling cabinet and on day 8, a volume of 0.7 litres was added, 150 resulting in a mean enrichment of the atmosphere over the 14-day incubation period of 0.4 151 atom% excess. To compensate for a leaky diaphragm pump during the incubation at 36 152 weeks after emergence, the $^{15}N_2$ addition on day 8 was substituted by addition of about 0.5 153 litres on day 4, 7 and 11. A sample of the cabinet atmosphere was taken daily and stored in 154 an evacuated 120 ml serum bottle fitted with rubber stopper before analysis for ¹⁵N 155 abundance of N_2 , concentration of N_2O , and sometimes (5/14 days) ¹⁵N abundance of N_2O . 156 On day 14, four grass-clover and four grass pots from the labelling cabinet were sampled 157 to establish the N₂ fixation during the labelling period (FIX pots). 158

160 Measurement of ${}^{15}N_2O$ emission

The remaining four grass-clover pots from the labelling cabinet (EMI pots) were 161 162 transferred to the ordinary growth chamber. During the following eight days, emission of ¹⁵N labelled N₂O was measured daily from these pots using a static chamber method. 163 164 Beforehand, water-holding capacity was determined on a set of pots by removing plant 165 shoots and saturating the soil with water. The pots were covered by plastic to hinder 166 evaporation and were then allowed to drain for two days before weighing and determination of gravimetric water content (oven drying at 105 °C for 24 h). At least one 167 hour before onset of gas measurements, the EMI pots were irrigated to reach 60-65 % of 168 the water-holding capacity. For analysis of initial N₂O concentration and ¹⁵N abundance, 169 two evacuated 3.5 ml Venoject vials and two evacuated 120 ml serum bottles were filled 170 with samples of growth chamber atmosphere using 5 and 60 ml Plastipak syringes, 171 172 respectively. The same procedures were used when sampling headspace gas during the following cover period. Each pot was placed on an $11.5 \times 11.5 \times 1.3$ cm platform above a 173 shallow (1 cm) tray of water. The pot was then enclosed within an $18 \times 18 \times 29$ cm plastic 174 175 cover fitted with a rubber stopper to allow sampling, and weighted down to ensure a complete water-seal. After 45, 90, 135 and 180 minutes of cover period, a 3.5 ml sample of 176 the headspace gas was removed through the rubber stopper for analysis of N₂O 177 178 concentration. At the end of the cover period (180 minutes), a 120 ml sample was taken for analysis of ¹⁵N abundance of N₂O. The EMI pots were harvested after eight days of gas 179 measurement. At 36 weeks after emergence, emission of N₂O was also measured for 180 unlabelled grass pots. Once during each experiment, ¹⁵N abundance of emitted N₂O was 181 determined on unlabelled grass-clover pots. The result was at natural abundance or slightly 182 below, thus 0.3663 atom% was used as the background value in the calculations. 183

The 3.5 ml gas samples were added 2 ml N₂ before they were analysed for N₂O in a 184 gas chromatograph (GC-14B, Shimadzu, Kyoto, JP) fitted with a HaySep Q column and an 185 electron capture detector (column and detector temperature were 30 °C and 300 °C, 186 respectively). Concentration of N₂O in gas samples from the labelling cabinet was 187 188 determined in the same way. Gas samples of 100 µl from the labelling cabinet and from the 189 120 ml samples taken during the cover periods at 16 weeks were analysed manually for ¹⁵N abundance of N₂ using an elemental analyser (EA 1110, Carlo Erba, Milano, IT) fitted 190 with an injection port and coupled in continuous flow mode to an isotope-ratio mass 191 192 spectrometer (IRMS; Finnigan MAT Delta E or Finnigan MAT Delta Plus, Bremen, DE). All 120 ml samples from the cover periods as well as selected samples from the labelling 193 cabinet were analysed for ¹⁵N abundance of N₂O following removal of CO₂ and cryogenic 194 195 focusing of N₂O on a trace gas concentration unit (PreCon Finnigan MAT, Bremen, DE) in continuous flow mode to an IRMS (Finnigan MAT Delta Plus, Bremen, DE). 196

197

198 Sampling of pots

Shoot material was harvested and sorted into clover and grass. At 26 and 36 weeks after emergence, a dead shoot fraction was also determined for the grass-clover pots. Fresh weight of shoot material from FIX pots was established in order to calculate needed irrigation of EMI pots to reach 60-65 % of water-holding capacity. A root and a soil fraction were obtained by sieving (6 mm), and the root fraction was subsequently cleaned of soil by repeatedly being immersed in water then washed into a fine sieve.

205

206 Analyses of plants and soil

207 Dry matter of plant samples was determined (oven dried at 80 °C for 24 h). Plant samples

and samples of air-dried soil were finely ground and analysed for total N and ¹⁵N on the

209	elemental analyser and IRMS (Finnigan MAT Delta Plus, Bremen, DE). In addition, total
210	carbon was measured on soil from grass-clover CONT pots sampled at 16 weeks after
211	emergence. This treatment was also used to determine soil pH in a 10:25 (w:vol)
212	suspension of fresh soil in distilled water. Within eight hours of pot sampling, 10 g
213	portions of fresh soil were extracted in 2 M KCl (1:10, w:vol), stirred on a horizontal
214	shaker for one hour. The extracts were filtered through Whatman 40 filters and kept at -20
215	$^{\circ}$ C until NO ₃ ⁻ and NH ₄ ⁺ were analysed colorimetrically on an autoanalyzer (Bran+Luebbe,
216	Norderstedt, DE). Nitrogen-15 abundance of inorganic N was determined in extracts by the
217	diffusion method, where NO_3^- and NH_4^+ are converted into NH_3 , which is trapped on an
218	acidified filter paper (Sørensen and Jensen 1991). The filters were subsequently analysed
219	for ¹⁵ N as described for plant and soil samples.

221 *Calculations*

When calculating the N₂ fixation, the proportion of total N in plants derived from a ${}^{15}N_2$ enriched atmosphere (*P*) is determined as

224

225
$$P = N_L^* / N_P^*$$
 (1)

226

where N_L^* is the ¹⁵N atom% excess enrichment of the legume after exposure to an atmosphere with a ¹⁵N atom% excess enrichment of N_P^* (Warembourg 1993). Wood and McNeill (1993) show that this *P* value is independent of the plant N pool at the start of the labelling period, which makes the equation suitable for calculating N₂ fixation for the FIX pots. However, by extending their argumentation it can be established that the *P* value is also valid in cases where the plants accumulate N both before and after the labelling period. This makes the equation suitable for calculating N₂ fixation for the EMI pots as well. The equation is based on the assumptions that N supplied by soil, fertilizer and nonlabelled atmosphere have the same ¹⁵N abundance and that no ¹⁵N₂ remains during the last period. The amount of N originating from fixation during the labelling period (N_LP) is

238
$$N_L P = N_L N_L^* / N_P^*$$
 (2)

239

where N_L is the N accumulated by the plants during their full growth. For the FIX pots, the amount of N derived from fixation was calculated for each plant-soil fraction (*viz.* clover shoot, grass shoot, dead shoot, root and soil total N), provided that ¹⁵N abundance of the fraction increased significantly between CONT and FIX pots. Total N₂ fixation was determined in the same way for the EMI pots. Additionally, the amount of fixed N₂ lost as N₂O during the eight days emission measurement was calculated, and included in the total N₂ fixation for the EMI pots.

Flux of N₂O was calculated from the linear increase in N₂O concentration in the headspace during the cover period. Emission of N₂O-N derived from biologically fixed N₂ was calculated from the emission of ¹⁵N labelled N₂O, which was determined in two ways. If a significant N₂O emission (R² of N₂O concentration vs. time ≥ 0.7) and increase in ¹⁵N abundance of N₂O (end-value ≥ 0.3689 atom%) were detected, then emission of ¹⁵N

252 labelled N₂O (CC^*) was calculated as

253

254
$$CC^* = C_t C_t^* - C_0 C_0^*$$
 (3)

255

where C_0 and C_t are the N₂O concentration calculated from the regression equation for the start and end of the cover period, respectively, and C_0^* and C_t^* are the atom% excess enrichment of N₂O at the start and end of the cover period, respectively. If only a

significant increase in ¹⁵N abundance of N₂O was detected then the emission of ¹⁵N 259 labelled N₂O was calculated as 260 261 $CC^* = (C_t^* - C_0^*)C_0$ 262 (4) 263 Emission of N₂O-N derived from fixed N₂ (CP) was then established as 264 265 $CP = CC^*/N_P^*$ (5) 266 267 which corresponds to equation 2. The estimates were subsequently converted from 268 concentration of N₂O to amount of N. The fraction of fixed N, which was emitted as N₂O 269 (FE) was calculated as 270 271 $FE = E_{N2O}/F_{tot}$ (6) 272 273 where E_{N2O} is the amount of fixed N emitted as N₂O per day and F_{tot} is the total N₂ fixation 274 during the labelling period per day determined for the EMI pots. 275 276 **Statistics** 277 278 ANOVAs and Tukey's multiple comparison tests ($\alpha = 0.05$) were performed using SAS General Linear Model procedure (SAS Institute 1997). Homogeneity of variance was not 279 obtained despite transformation when testing soil inorganic N for all grass-clover 280 treatments. Hence, differences between median inorganic N content for each experiment 281 were assessed using the Kruskal-Wallis test. The same constraint appeared for three 282 fractions when testing ¹⁵N abundance of grass-clover CONT pots against FIX and EMI 283

pots, *viz.* soil of EMI pots at 26 weeks after emergence and clover shoot of FIX and EMI
pots at 36 weeks after emergence. Thus, the medians were compared using the MannWhitney U-test. In some cases variation was indicated as coefficient of variance (CV),
which is the standard deviation in percent of the mean.

288

289 **Results**

290

291 Labelling cabinet atmosphere

292 Nitrogen-15 abundance of N₂ in the labelling cabinet declined in an apparent exponential

pattern (Figure 2), probably because of diffusion of N_2 through the 12 mm plexiglas

window. This problem was also faced in other ${}^{15}N_2$ incubation studies (McNeill et al. 1994;

295 Wood and McNeill 1993), and was compensated for by multiple additions of ${}^{15}N_2$. Mean

 $^{15}N_2$ enrichment over the labelling period was 0.4369, 0.4177 and 0.3724 atom% excess at

²⁹⁷ 16, 26 and 36 weeks after emergence, respectively. Nitrogen-15 abundance of N₂O in the

labelling cabinet gave no evidence for release of N_2O derived from biologically fixed N_2

during the labelling events (data not shown). During nighttime, the CO₂ concentration in

300 the labelling cabinet increased to > 1200 ppm. After onset of light, the CO₂ decreased

assisted by the CO_2 scrub (3-5 hours) to near ambient concentrations with a mean of 344,

³⁰² 530 and 468 ppm at 16, 26 and 36 weeks after emergence, respectively.

303

304 Biomass in grass-clover FIX pots

305 At 16 weeks of age, the clover component made up a significantly larger proportion of the

living shoot biomass (82 %) than at 26 and 36 weeks after emergence (65 and 51 %).

307 However, total living biomass including roots did not differ significantly between labelling

events (P = 0.6523), and constituted 772 ± 38 g dry matter m⁻² on average (Table 1).

309	Despite the increased CO_2 level, conditions in the labelling cabinet had no significant
310	effect on the growth of plants measured as living shoot and root biomass compared to the
311	control ($P = 0.1176$) (Table 1).

313 Nitrogen fixation

Amount of N and ¹⁵N abundance of the different plant-soil fractions appear in Table 2 and 314 315 3, respectively. The results on N_2 fixation revealed a significant effect of time (P < 0.0001). Accordingly, at 16 weeks after emergence N₂ fixation measured in grass-clover 316 FIX pots constituted 342 mg N m⁻² d⁻¹, which declined to 38 and 67 mg N m⁻² d⁻¹ at 26 and 317 318 36 weeks, respectively (Figure 3). Overall the N₂ fixation differed between the FIX and the EMI pots (P = 0.0171), which mainly resulted from the higher N₂ fixation measured in the 319 EMI pots at 16 weeks after emergence (Figure 3). The difference was probably due to 320 variation in the clover biomass between pots randomly selected for the two treatments. 321 Also, at 16 weeks, N₂ fixation calculated for the EMI pots includes fixed N found in the 322 grass shoot and soil fractions, which had not yet reached a significant ¹⁵N enrichment in 323 the FIX pots (Table 3). Therefore, the fraction of fixed N₂ emitted as N₂O (FE, equation 6) 324 was calculated using N₂ fixation measured in EMI pots. Fixed N accounted for 90 and 63 325 % of the N, which accumulated in clover shoots during the labelling period at 16 and 36 326 weeks after emergence, respectively, but the difference was insignificant (P = 0.2465). A 327 percentage was not calculated for 26 week old plants because of negative N accumulation 328 between START and FIX pots due to a severe aphid attack on the clover component (Table 329 2 B). 330

332 Distribution of fixed N

333 The majority of fixed N was found in clover shoot biomass (Figure 4). However, the proportion varied significantly between the labelling events, accounting for 96, 69 and 84 334 % of the fixed N at 16, 26 and 36 weeks after emergence, respectively. Transfer of fixed N 335 from clover to companion grass determined in FIX pots was insignificant when the plants 336 were 16 weeks old (Table 3 A). However, eight days after the labelling event when pots for 337 determination of N₂O emission were sampled, a significant increase in ¹⁵N abundance of 338 grass shoots was detected, demonstrating that N transfer had taken place. At 26 and 36 339 weeks after emergence, the uncorrected transfer of fixed N from clover to grass shoots 340 constituted 1.0 mg N m⁻² d⁻¹ (P = 0.9761), which represented 2.6 and 1.5 % of the fixed N 341 (P = 0.0727) (Figure 4). An apparent N₂ fixation of 0.4 ± 0.1 mg N m⁻² d⁻¹ was detected in 342 pots with grass. This apparent fixed N₂ was either supplied via free-living or associative N₂ 343 fixing bacteria or an artefact due to absorption of ¹⁵N-labelled ammonia (¹⁵NH₃) through 344 stomata (McNeill et al. 1994). Ammonia contamination of the ${}^{15}N_2$ gas cannot be excluded. 345 Because of the relatively low importance, these two ¹⁵N sources may only have introduced 346 minor error in the calculated symbiotic N₂ fixation for the grass-clover pots. In contrast, 347 they might have caused overestimation of the determined transfer of symbiotically fixed 348 N₂. When the ¹⁵N enrichment of grass shoots in mixture is corrected for ¹⁵N enrichment of 349 grass shoots in pure stand, then the transfer of fixed N amount to 0.7 ± 0.1 mg N m⁻² d⁻¹, 350 which represented 1.7 ± 0.3 % of the N accumulated in grass shoot during the labelling 351 period. 352

353

N_2O emission and soil water content

Total N₂O emission changed significantly over time (P = 0.0004) and was 91, 416 and 259 ug N₂O-N m⁻² d⁻¹ at 16, 26 and 36 weeks after emergence, respectively (Figure 5 A).

357	Emission of ¹⁵ N labelled N ₂ O was detected at 16 weeks after emergence only and could
358	theoretically derive from 1) biological N_2 fixation in clover, 2) biological N_2 fixation by
359	free-living or associative bacteria, or 3) $^{15}\mathrm{NH_3}$ contamination of the $^{15}\mathrm{N_2}$ gas. However, the
360	two latter sources appeared to be minor as no $^{15}\mathrm{N}$ labelled $N_2\mathrm{O}$ was detected at 26 and 36
361	weeks after emergence. At 16 weeks, emission of N_2O -N derived from biologically fixed
362	N_2 constituted 1.6 \pm 0.2 μg $N_2 O\text{-}N$ m^-2 d^-1. Thus, 3.2 \pm 0.5 ppm of the N_2 fixed by 16 week
363	old clover was emitted as N ₂ O, which accounted for 2.1 ± 0.5 % of the total N ₂ O emission.
364	Loss of N_2O from grass pots measured at 36 weeks after emergence was 22 $\mu g \ N_2O\text{-}N \ m^{-2}$
365	d ⁻¹ and did not differ significantly from the emission measured from grass-clover pots at 16
366	weeks. The advancement of the N_2O emission was found to be similar to that of the soil
367	water content (Figure 5 A, B). The intention was to keep soil water content of the pots at
368	60-65 % of the water-holding capacity during N_2O emission measurements. However,
369	because of excessive irrigation in the labelling cabinet prior to gas measurements, and low
370	transpiration rate at 26 and 36 weeks, the mean soil water content of grass-clover pots was
371	65, 90 and 80 % of the water-holding capacity at 16, 26 and 36 weeks after emergence,
372	respectively ($P = 0.0031$) (Figure 5 B). Soil water content of grass pots at 36 weeks was 64
373	%. Emission of ${}^{15}N_2$ from the grass-clover pots was assessed at 16 weeks after emergence,
374	however it was found to be below the detection limit.

376 Soil inorganic nitrogen in grass-clover pots

The content of soil inorganic N varied between the experiments, *i.e.* the median of
inorganic N was significantly lower at 16 weeks after emergence than at 36 weeks (Figure
6). The change was mainly a result of increased ammonium content. Soil inorganic N in
the FIX pots corresponded to 75, 1582 and 327 mg N m⁻² (0-17 cm soil layer) at 16, 26 and

381 36 weeks after emergence, respectively. At 26 weeks, the content in FIX pots was

- 382 significantly higher than in the CONT and EMI pots. Attempt to determine the ¹⁵N
- abundance of the inorganic N pool failed, since total amounts of inorganic N trapped from

the KCl extracts were inadequate for a proper 15 N analysis.

385

386 **Discussion**

387

388 Nitrogen fixation

For 16 week old plants, the total N₂ fixation determined in grass-clover shoots and roots as 389 well as in bulk soil constituted 342 mg N m⁻² d^{-1} , which dropped dramatically to 38 and 67 390 mg N m⁻² d⁻¹ at 26 and 36 weeks after emergence, respectively (Figure 3). The main reason 391 for this drop was a severe aphid attack on the clover component, which peaked during the 392 experiment at 26 weeks and was still present 36 weeks after plant emergence. The aphids 393 394 probably reduced the N₂ fixation by contributing to a decline in the clover content from 82 to 65 and 51 % of the total herbage dry weight. Clover content is known to be the major 395 396 factor determining N₂ fixation in grass-clover swards (Kristensen et al. 1995). In field studies, N₂ fixation is usually determined in the harvested herbage only, e.g. N₂ fixation 397 was reported between 206 and 235 kg N ha⁻¹ y⁻¹ in first year white clover-ryegrass swards 398 having a mean clover content of about 50-60 % (Jørgensen et al. 1999; Vinther and Jensen 399 2000). Assuming a growth season of six months, the reported values correspond to daily 400 N_2 fixation rates between 113 and 129 mg N m⁻² d⁻¹. In conclusion, the determined N_2 401 fixation at 16 weeks after emergence was relatively high compared to annual field 402 measurements. However, clover content and N2 fixation vary over the growing season (e.g. 403 Jørgensen et al. 1999; Vinther and Jensen 2000), thus results at 16 weeks represent N₂ 404 fixation at optimal growth conditions. Furthermore, our studies estimate total amounts of 405 fixed N in all pools in contrast to the field measurements. 406

408 N_2O emission

Total N₂O emission from the grass-clover pots was 91, 416 and 259 μ g N₂O-N m⁻² d⁻¹ at 409 16, 26 ad 36 weeks after emergence, respectively (Figure 5 A), which is in the same order 410 of magnitude as emissions determined for other extensively managed grasslands containing 411 legumes (e.g. Carran et al. 1995; Wang et al. 1997). The increase in N₂O emission between 412 413 16 and 26 weeks after plant emergence might relate to the aphid-induced clover shoot death. The reason is that shoot death leads to decay of roots and nodules (Butler et al. 414 1959), which may act as a carbon source for denitrifying bacteria. Also, Beck and 415 416 Christensen (1987) showed that N₂O emission increased when all above-ground ryegrass was removed or when grass leaves turned yellowish. 417

Soil inorganic N content tended to be higher at 26 and 36 weeks after emergence 418 419 than at 16 weeks (Figure 6), which was probably due to increased mineralisation of clover tissues combined with decreased clover N uptake. In addition to this, the elevated soil 420 421 water content during the labelling at 26 weeks (Figure 5 B) may have caused the remarkably high soil inorganic N content in the FIX pots. During the following N₂O 422 measurements, the soil was allowed to dry slightly, which enabled nitrification in aerobic 423 424 microsites. In conclusion, at 26 and 36 weeks after plant emergence N₂O loss via denitrification was favoured by high availability of inorganic N, labile carbon compounds 425 and anaerobic microsites. 426

Soil water content is often found to be a key factor influencing N_2O emissions (e.g. Carran et al. 1995; Ruz-Jerez et al. 1994). Comparing N_2O emission from grass and grassclover pots (Figure 5 A) having the same soil water content (Figure 5 B – grass-clover at 16 weeks, grass at 36 weeks) reveals a tendency for higher N_2O emission from the grassclover pots. This conforms with results obtained by Duxbury et al. (1982) indicating that legumes can increase N₂O emissions by factor two to three compared to unfertilised grass
swards.

434

435 Transfer of fixed N

It is generally acknowledged that transfer of N from white clover to companion grass 436 mainly involves the long-term mineralisation of dead clover tissues taking place on a scale 437 of months (e.g. Goodman 1988; Ledgard 1991). In addition to the long-term N release, a 438 pool of relatively easily degradable clover residues (e.g. exudates, lysates, secretion and 439 decaying fine roots) may contribute to soil inorganic N on a short-term scale, viz. within 440 441 days or weeks after elimination from the clover plant. Consistent with this view, Laidlaw et al. (1996) observed high release of inorganic N from clover indicating a total turnover of 442 clover root N within three months. In the present study, release of recently fixed N into the 443 444 soil probably took place through this latter pathway.

Transfer of recently fixed N from clover to companion grass was observed in the 445 446 FIX pots at 26 and 36 weeks after emergence only. However, at 16 weeks recently fixed N was emitted as N₂O, demonstrating that recently fixed N was released from the clover 447 component into the soil at that time. In line with this, an increase in ¹⁵N abundance of grass 448 449 shoots was detected eight days later in the EMI pots, indicating a slower transfer rate for 16 week old mixtures. The reason could be the high competition for light at 16 weeks 450 (clover content 82 %), which seemed to suppress ryegrass growth and thereby N uptake 451 (Table 2 A). On the other hand, the observed transfer at 26 and 36 weeks may be explained 452 by improved light conditions (clover content 65 and 51 %), which tended to stimulate 453 ryegrass growth and N uptake (Table 2 B, C). This conclusion is consistent with results 454 attained by Høgh-Jensen and Schjoerring (2000), showing highest N transfer in spring and 455 autumn, where white clover growth is low and the growth of ryegrass is high. 456

Fixed N transferred from clover to grass constituted 1.7 ± 0.3 % of the N 457 accumulated in grass shoots during the labelling period. In contrast, two other ¹⁵N₂ studies 458 showed no transfer of fixed N from white clover to companion ryegrass in a 19 and 129 459 day experiment (McNeill et al. 1994; McNeill and Wood 1990). However, long-term field 460 studies using the ¹⁵N dilution technique have reported apparent transfer of fixed N from 461 white clover to companion ryegrass in the range 0 to 80 % of the grass N content (Boller 462 463 and Nösberger 1987; Ledgard 1991), with the percentage increasing over time after labelling. The transfer of fixed N found in the present study is low compared to the 464 mentioned studies, which supports the general view that short-term N transfer via easily 465 466 degradable clover residues is less important than the long-term transfer through decay of more recalcitrant clover tissues. 467

It is striking that recently fixed N was transferred to companion grass at 26 and 36 468 469 weeks after emergence, but was not detected in the emitted N₂O. This could indicate that ryegrass and the N₂O producing bacteria utilized different pools of labile N in the soil. One 470 471 reason may be differences in the spatial distribution of grass roots and N₂O producing bacteria in relation to the zones of clover residue release. Another explanation may be that 472 the fixed N was less available for the nitrifiers and denitrifiers, either due to amino acid 473 474 uptake by the grass (Falkengren-Grerup et al. 2000) or because N was mostly transferred directly through common mycorrhizal mycelium (Frey and Schüepp 1992). 475

476

477 N_2O -N derived from fixed N_2

478 Recently fixed N released via easily degradable clover residues may be important in the

flow from N_2 fixation to N_2O emission. However, the present study revealed that only 3.2

 ± 0.5 ppm of the recently fixed N was emitted as N₂O on a daily basis. Furthermore,

481 recently fixed N accounted for 2.1 ± 0.5 % of the emitted N₂O-N only. A large part of the

remaining N_2O -N was most likely derived from previously fixed N_2 , which indicates that long-term N release through decay of more recalcitrant clover tissues probably contributes considerably to the flow from N_2 fixation to N_2O emission.

485 The standard IPCC N₂O emission factor of 1.25 % is criticised by some authors for overestimating the N₂O emission from mineral fertilizer (e.g. Lægreid and Aastveit 2002) 486 and by others for underestimating the long-term effect of manure and mineral fertilizer 487 488 application (e.g. Schmid et al. 2001). According to the methodology currently recommended by IPCC, the national N₂O inventories should not include the contribution 489 from biological N₂ fixation in grasslands (IPCC 1997). Some countries, e.g. Denmark and 490 491 Switzerland, nonetheless include quantitative estimates of biological N₂ fixation in grasslands in their N₂O inventory, using an emission factor of 1.25 % as for other N inputs 492 (Schmid et al. 2001; Mikkelsen et al. 2005). 493 494 However, the standard N₂O emission factor of 1.25 % might be considerably unrepresentative for biologically fixed N₂ as only a part of the fixed N is mineralised 495 496 during the lifetime of the crop (Petersen and Olesen 2002), and because the mineralisation occurs slowly (Velthof et al. 1998). The extent to which clover N released through 497 mineralisation will give rise to N₂O emission from the sward depends on several factors. 498 499 First, it depends on the sinks for inorganic N, e.g. uptake by grass and clover,

500 immobilisation in microbial biomass and loss by leaching. Second, it depends on whether

501 the abiotic conditions favour N₂O production, e.g. temperature, carbon source and O₂ level,

502 mainly regulated by the soil water content. Goodman (1991) showed that white clover

primarily contributes to soil organic matter in autumn. In line with this, Garret et al. (1992)

found that under mild conditions, 70 % of the annual N₂O emission from a white clover-

505 ryegrass pasture occurred during autumn and winter. In the present study, the N₂O

506 emission was measured under temperature and soil water regimes representative of

summer conditions. However, even under conditions more favourable for N₂O emission, 507 508 the contribution of recently fixed N to the N₂O emission would still be minor. Via modelling, Schmid et al. (2001) estimated the N₂O emission factor for 509 510 biologically fixed N₂ in permanent grasslands to be 0.22 %. However, after steady state in soil carbon and nitrogen was reached, the emission factor increased to 0.56 %. Obviously, 511 these emission factors are associated with extremely large uncertainties. Ruz-Jerez et al. 512 513 (1994) found that the annual N₂O emission represented about 1 % of the N input by legume fixation in grazed grass-clover swards. The N₂O loss often increased following a 514 grazing period, mainly because of N return in animal excreta. Thus, the estimated emission 515 516 factor includes the contribution from N₂ fixation as well as the effect of grazing. In contrast, the effect of grazing animals is accounted for separately in the IPCC 517 methodology. 518 519 Biological N₂ fixation in grass-legume swards should not be neglected as a source of N₂O in the national greenhouse gas inventories, especially not when considering the 520 521 large area of Europe covered by managed grasslands. However, based on the present study and data from the literature we find it unlikely that the N₂O emission factor for biologically 522 fixed N₂ in grass-clover swards would reach the standard emission factor of 1.25 %. 523 524 Conclusions 525 Our results support the general view that recently fixed N contributes little to the N transfer 526 527 from white clover to companion grass. Moreover, only a tiny fraction of the biologically

fixed N_2 was lost as N_2O over the course of a few weeks, and this fraction represented

 $_{529}$ about 2 % of the total N₂O-N emission. Thus, the long-term mineralisation of dead clover

tissues is probably more important than recently fixed N for the flow from N_2 fixation to

531 N₂O emission.

533 Acknowledgements

534	This work was funded by the Danish Research Centre for Organic Farming (DARCOF)
535	and the Danish Agricultural and Veterinary Research Council. We wish to thank Svend
536	Danbæk for creating the temperature-controle-programme for the labelling cabinet, Anja
537	Nielsen for her assistance with the isotopic analyses and Anders Priemé, Henning Høgh-
538	Jensen and Daniel Carter for their useful comments on the manuscript.
539	
540	References
541	Beck H. and Christensen S. 1987. The effect of grass maturing and root decay on N_2O
542	production in soil. Plant Soil 103: 269-273.
543	Boller B.C. and Nösberger J. 1987. Symbiotically fixed nitrogen from field-grown white
544	and red clover mixed with ryegrasses at low levels of ¹⁵ N-fertilization. Plant Soil 104: 219-
545	226.
546	Pourman A.F. 1006 Direct amiggion of nitrous quide from agricultural soils. Nutr. Cuel
546	Bouwman A.F. 1996. Direct emission of nitrous oxide from agricultural solis. Nutr. Cycl.
547	Agroecosys. 46: 53-70.

- 548 Butler G.W., Greenwood R.M. and Soper K. 1959. Effects of shading and defoliation on
- 549 the turnover of root and nodule tissue of plants of *Trifolium repens*, *Trifolium pratense*,
- and Lotus uliginosus. New Zeal. J. Agr. Res. 2: 415-426.
- 551 Carran R.A., Theobald P.W. and Evans J.P. 1995. Emission of nitrous oxide from some
- grazed pasture soils in New Zealand. Aust. J. Soil Res. 33: 341-352.

- 553 Crutzen P.J. 1981. Atmospheric chemical processes of the oxides of nitrogen, including
- nitrous oxide. In: Delwiche C.C. (Ed.) Denitrification, Nitrification and Atmospheric
- 555 Nitrous Oxide. John Wiley & Sons, Chichester, pp. 7-44.
- de Klein C.A.M., Sherlock R.R., Cameron K.C. and van der Weerden T.J. 2001. Nitrous
- 557 oxide emissions from agricultural soils in New Zealand a review of current knowledge
- and directions for future research. J. Roy. Soc. New Zeal. 31: 543-574.
- 559 Duxbury J.M., Bouldin D.R., Terry R.E. and Tate III R.L. 1982. Emissions of nitrous
- 560 oxide from soils. Nature 298: 462-464.
- 561 EEA 2002. Greenhouse gas emission trends in Europe, 1999-2000. Topic report 7.
- 562 European Environment Agency, Copenhagen.
- 563 Falkengren-Grerup U., Månsson K.F. and Olsson M.O. 2000. Uptake capacity of amino
- acids by ten grasses and forbs in relation to soil acidity and nitrogen availability. Environ.
- 565 Exp. Bot. 44: 207-219.
- 566 Firestone M.K. and Davidson E.A. 1989. Microbiological basis of NO and N₂O production
- and consumption in soil. In: Andreae M.O. and Schimel D.S. (Eds.) Exchange of Trace
- 568 Gases Between Terrestrial Ecosystems and the Atmosphere. John Wiley & Sons,
- 569 Chichester, pp 7-21.
- 570 Frey B. and Schüepp H. 1992. Transfer of symbiotically fixed nitrogen from berseem
- 571 (Trifolium alexandrinum L.) to maize via vesicular-arbuscular mycorrhizal hyphae. New
- 572 Phytol. 122: 447-454.
- 573 Garrett M.K., Watson C.J., Jordan C., Steen R.W.J. and Smith R.V. 1992. The nitrogen
- economy of grazed grassland. Proceedings no. 326. The Fertiliser Society, London.

575	Goodman P.J.	1988.	Nitrogen	fixation,	transfer	and t	turnover	in up	land a	and l	owland	grass-

- clover swards, using ¹⁵N isotope dilution. Plant Soil 112: 247-254.
- 577 Goodman P.J. 1991. Root turnover and nitrogen cycling in low input grass/clover
- 678 ecosystems. In: Atkinson D. (Ed.) Plant Root Growth. An Ecological Perspective.
- 579 Blackwell Scientific Publications, London, pp. 267-280.
- 580 Høgh-Jensen H. and Schjoerring J.K. 2000. Below-ground nitrogen transfer between
- ⁵⁸¹ different grassland species: Direct quantification by ¹⁵N leaf feeding compared with

⁵⁸² indirect dilution of soil ¹⁵N. Plant Soil 227: 171-183.

- 583 IPCC 1997. Reference manual (Vol. 3). In: Houghton J.T. et al. (Eds.) Revised 1996 IPCC
- 584 Guidelines for National Greenhouse Gas Inventories. UK Meteorological Office,
- 585 Bracknell.
- 586 Jørgensen F.V., Jensen E.S. and Schjoerring J.K. 1999. Dinitrogen fixation in white clover
- ⁵⁸⁷ grown in pure stand and mixture with ryegrass estimated by the immobilized ¹⁵N isotope
- dilution method. Plant Soil 208: 293-305.
- 589 Kristensen E.S., Høgh-Jensen H. and Kristensen I.S. 1995. A simple model for estimation
- of atmospherically-derived nitrogen in grass-clover systems. Biol. Agric. Hortic. 12: 263276.
- 592 Kroeze C., Mosier A. and Bouwman L. 1999. Closing the global N₂O budget: A
- retrospective analysis 1500 1994. Global Biogeochem. Cy. 13: 1-8.
- 594 Laidlaw A.S., Christie P. and Lee H.W. 1996. Effect of white clover cultivar on apparent
- transfer of nitrogen from clover to grass and estimation of relative turnover rates of
- nitrogen in roots. Plant Soil 179: 243-253.

- 597 Lægreid M. and Aastveit A.H. 2002. Nitrous oxide emissions from field-applied fertilizers.
- 598 In: Petersen S.O. and Olesen J.E. (Eds.) Greenhouse Gas Inventories for Agriculture in the
- 599 Nordic Countries. DIAS report, Plant Production no. 81. Danish Institute of Agricultural
- 600 Sciences, Tjele, pp. 122-134.
- 601 Ledgard S.F. 1991. Transfer of fixed nitrogen from white clover to associated grasses in
- swards grazed by dairy cows, estimated using ¹⁵N methods. Plant Soil 131: 215-223.
- McNeill A.M., Hood R.C. and Wood M. 1994. Direct measurement of nitrogen fixation by
- 604 Trifolium repens L. and Alnus glutinosa L. using ${}^{15}N_2$. J. Exp. Bot. 45: 749-755.
- 605 McNeill A.M. and Wood M. 1990. Fixation and transfer of nitrogen by white clover to
- ryegrass. Soil Use Manage. 6: 84-86.
- Mikkelsen M.H., Gyldenkærne S., Olesen J.E. and Sommer S.G. 2005. Opgørelse og
- ⁶⁰⁸ beregningsmetode for landbrugets emissioner af ammoniak og drivhusgasser 1985 2002.
- 609 Arbejdsrapport fra DMU Nr. 204. National Environmental Research Institute, DK.
- Mosier A., Kroeze C., Nevison C., Oenema O., Seitzinger S. and van Cleemput O. 1998.
- 611 Closing the global N₂O budget: nitrous oxide emissions through the agricultural nitrogen
- 612 cycle OECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse
- 613 gas inventory methodology. Nutr. Cycl. Agroecosys. 52: 225-248.
- 614 O'Hara G.W. and Daniel R.M. 1985. Rhizobial denitrification: a review. Soil Biol.
- 615 Biochem. 17: 1-9.
- 616 Petersen S.O. and Olesen J.E. 2002. Greenhouse Gas Inventories for Agriculture in the
- 617 Nordic Countries. DIAS report, Plant Production no. 81. Danish Institute of Agricultural

618 Sciences, Tjele.

619	Ruz-Jerez B.E., White R.E. and Ball P.R. 1994. Long-term measurement of denitrification
620	in three contrasting pastures grazed by sheep. Soil Biol. Biochem. 26: 29-39.
621	SAS Institute 1997. SAS/STAT User's Guide, Release 6.12. Statistical Analysis Systems
622	Institute, Cary.

- 623 Schmid M., Neftel A., Riedo M. and Fuhrer J. 2001. Process-based modelling of nitrous
- oxide emissions from different nitrogen sources in mown grassland. Nutr. Cycl.

625 Agroecosys. 60: 177-187.

626 Sørensen P. and Jensen E.S. 1991. Sequential diffusion of ammonium and nitrate from soil

extracts to a polytetrafluoroethylene trap for 15 N determination. Anal. Chim. Acta 252:

628 201**-**203.

- Velthof G.L., van Beusichem M.L. and Oenema O. 1998. Mitigation of nitrous oxide
 emission from dairy farming systems. Environ. Pollut. 102, S1: 173-178.
- 631 Vinther F.P. and Jensen E.S. 2000. Estimating legume N₂ fixation in grass-clover mixtures

of a grazed organic cropping system using two ¹⁵N methods. Agr. Ecosyst. Environ. 78:

- 633 139-147.
- Wang Y.-P., Meyer C.P., Galbally I.E. and Smith C.J. 1997. Comparisons of field

635 measurements of carbon dioxide and nitrous oxide fluxes with model simulations for a

- legume pasture in southeast Australia. J. Geophys. Res. 102: 28013-28024.
- 637 Warembourg F.R. 1993. Nitrogen fixation in soil and plant systems. In: Knowles R. and
- 638 Blackburn T.H. (Eds.) Nitrogen Isotope Techniques. Academic Press, London, pp 127-
- 639 156.

- 640 Wood M. and McNeill A.M. 1993. ${}^{15}N_2$ measurement of nitrogen fixation by legumes and
- actinorhizals: theory and practice. Plant Soil 155/156: 329-332.

- R Relays
- S Solenoid valve
- SLS Soda lime scrub

- Tube for irrigation
- Tube for collection of condensate
- Pipe or tube
- Wiring and signal direction ---

Table 1. Biomass (g dry matter m⁻²) of the fractions clover shoot, dead shoot, grass shoot and root in grass-clover and grass pots at the start (START), for control (CONT), for determination of N_2 fixation (FIX) and for determination of N_2O emission (EMI), (A) 16 weeks, (B) 26 weeks and (C) 36 weeks after emergence; n = 4, means and SE (in brackets).

Grass-clover pots						Grass pots			
Fraction	START	CONT	FIX	EMI	START	CONT	FIX		
Clover shoot	402 (42)	548 (44)	493 (34)	645 (47)	-	-	_		
Grass shoot	124 (8)	147 (10)	109 (5)	146 (4)	190 (13)	211 (8)	207 (3)		
Root	431 (75)	322 (38)	221 (19)	257 (40)	235 (27)	190 (20)	218 (25)		
Living biomass ^a	957 (116)	1017 (74)	823 (52)	1048 (78)	424 (34)	400 (23)	425 (25)		

A. 16 weeks

B. 26 weeks

_	Grass-clover pots					Grass pots			
Fraction	START	CONT	FIX	EMI	START	CONT	FIX		
Clover shoot	392 (47)	341 (60)	302 (34)	271 (40)	-	-	-		
Dead shoot	177 (16)	205 (25)	198 (16)	226 (20)	-	-	_		
Grass shoot	127 (3)	183 (6)	158 (8)	193 (7)	312 (22)	293 (27)	266 (6)		
Root	214 (11)	277 (29)	273 (13)	276 (36)	239 (29)	226 (30)	232 (22)		
Living biomass ^a	734 (55)	802 (85)	733 (36)	740 (70)	551 (36)	518 (56)	499 (20)		

C. 36 weeks

Grass-clover pots					Grass pots			
Fraction	START	CONT	FIX	EMI	START	CONT	FIX	
Clover shoot	274 (27)	235 (62)	260 (75)	221 (55)	-	-	-	
Dead shoot	334 (35)	327 (23)	330 (21)	424 (22)	_	-	-	
Grass shoot	245 (16)	254 (5)	224 (9)	281 (14)	309 (8)	385 (12)	312 (14)	
Root	238 (15)	314 (31)	275 (37)	207 (34)	194 (26)	245 (36)	184 (19)	
Living biomass ^a	756 (23)	802 (86)	759 (102)	709 (100)	504 (26)	630 (40)	497 (15)	

^a Living biomass includes the fractions clover shoot, grass shoot and root.

Table 2. Amount of N (g N m⁻²) in the fractions clover shoot, dead shoot, grass shoot and root in grassclover and grass pots at the start (START), for control (CONT), for determination of N₂ fixation (FIX) and for determination of N₂O emission (EMI), (A) 16 weeks, (B) 26 weeks and (C) 36 weeks after emergence; n = 4, means and SE (in brackets).

A. 16 weeks

		Grass-clo	over pots		Grass pots		
Fraction	START	CONT	FIX	EMI	START	CONT	FIX
Clover shoot	10.9 (0.6)	16.0 (1.3)	15.4 (0.4)	21.7 (1.8)	-	_	-
Grass shoot	1.58 (0.06)	1.71 (0.06)	1.57 (0.07)	1.95 (0.09)	1.69 (0.15)	1.94 (0.10)	1.85 (0.08)
Root	4.60 (0.67)	3.88 (0.68)	2.25 (0.11)	4.16 (0.46)	1.49 (0.15)	1.01 (0.06)	1.21 (0.15)
Living biomass ^a	17.1 (1.1)	21.6 (1.9)	19.3 (0.5)	27.8 (2.3)	3.18 (0.29)	2.96 (0.14)	3.06 (0.22)

B. 26 weeks

		Grass-clo	over pots	Grass pots			
Fraction	START	CONT	FIX	EMI	START	CONT	FIX
Clover shoot	9.55 (1.50)	6.76 (1.14)	6.44 (0.81)	5.57 (0.60)	-	-	_
Dead shoot	3.81 (0.39)	4.49 (0.57)	3.96 (0.28)	4.84 (0.44)	-	-	_
Grass shoot	1.66 (0.05)	2.02 (0.09)	1.90 (0.08)	2.29 (0.13)	2.73 (0.16)	2.64 (0.16)	2.44 (0.04)
Root	3.48 (0.28)	4.95 (0.61)	4.85 (0.49)	4.47 (0.59)	1.49 (0.16)	1.43 (0.14)	1.58 (0.20)
Living biomass ^a	14.7 (1.7)	13.7 (1.7)	13.2 (1.0)	12.3 (1.0)	4.23 (0.21)	4.07 (0.30)	4.02 (0.18)

C. 36 weeks

		Grass-clo	over pots	Grass pots			
Fraction	START	CONT	FIX	EMI	START	CONT	FIX
Clover shoot	5.09 (0.64)	5.39 (1.42)	6.16 (1.45)	5.04 (1.25)	-	-	_
Dead shoot	6.52 (0.68)	7.12 (0.46)	7.84 (0.59)	9.56 (0.91)	-	-	_
Grass shoot	2.15 (0.11)	2.59 (0.10)	2.72 (0.07)	3.07 (0.09)	2.90 (0.04)	3.30 (0.13)	3.13 (0.11)
Root	3.52 (0.30)	4.45 (0.64)	3.50 (0.42)	2.82 (0.51)	1.19 (0.12)	1.56 (0.14)	1.39 (0.24)
Living biomass ^a	10.8 (0.7)	12.4 (2.1)	12.4 (1.8)	10.9 (1.8)	4.09 (0.11)	4.85 (0.27)	4.51 (0.33)

^{*a*} Living biomass includes the fractions clover shoot, grass shoot and root.

Table 3. Nitrogen-15 abundance (atom%) of the fractions clover shoot, dead shoot, grass shoot, root and soil in pots for control (CONT), determination of N_2 fixation (FIX) and determination of N_2O emission (EMI) at 16, 26 and 36 weeks after emergence, (A) grass-clover pots, (B) grass pots; n = 4, means.^{*ab*}

Α.	Grass-clover	pots
----	--------------	------

	16 weeks			26 weeks			36 weeks		
Fraction	CONT	FIX	EMI	CONT	FIX	EMI	CONT	FIX	EMI
Clover shoot	0.3661	0.4787	0.4754	0.3659	0.3857	0.3783	0.3660	0.4077	0.4185
Dead shoot	-	-	-	0.3662	0.3697	0.3685	0.3661	0.3672	0.3669
Grass shoot	0.3669	0.3675	0.3689	0.3659	0.3683	0.3677	0.3660	0.3677	0.3672
Root	0.3667	0.3994	0.4054	0.3666	0.3742	0.3696	0.3666	0.3760	0.3771
Soil	0.3688	0.3692	0.3697	0.3692	0.3692	0.3689	0.3691	0.3691	0.3692

B. Grass pots

	16 w	eeks	26 w	eeks	36 w	36 weeks	
Fraction	CONT	FIX	CONT	FIX	CONT	FIX	
Shoot	0.3673	0.3680	0.3667	0.3675	0.3667	0.3671	
Root	0.3677	0.3684	0.3676	0.3677	0.3675	0.3676	
Soil	0.3694	0.3691	0.3693	0.3692	0.3692	0.3692	

^{*a*} Bold indicates significant increase in ¹⁵N abundance from CONT pots to FIX and EMI pots. ^{*b*} Coefficient of variance (CV) of ¹⁵N abundance in the fractions clover shoot and root in grass-

⁶ Coefficient of variance (CV) of ¹⁵N abundance in the fractions clover shoot and root in grassclover FIX and EMI pots was in the range 0.47-4.18 %. For all remaining fractions CV was in the range 0.01-0.36 %.