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SUMMARY

Glucosinolates produced by Brassica species were investigated in relation to biofumigation, a term used to describe the effects some allelochemicals,
including glucosinolate derived products, may have on soil-borne pathogens or other herbivores. Four Brassica species of the U-triangle, namely B.
nigra (L.) Koch, B. carinata Braun, B. juncea (L.) Czern. and B. rapa L. were compared with respect to their qualitative and quantitative glucosinolate
profiles in roots, stems, leaves and reproductive organs. Plants were monitored at four different development stages and the total glucosinolate
content as well as their dry matter production as an indication of their potential biomass under field conditions were determined. Glucosinolate levels
of up to 120 imol g-! DM were found in B. nigra and B. juncea, while B. rapa did not show values over 25 imol g' DM at any stage of the investigated
plant life cycles. In the three species at the top of U-triangle, reproductive tissues showed the highest glucosinolate concentration when compared to
the rest of the plant parts, while in B. rapa, the roots were the organs with the highest glucosinolate concentration. The glucosinolate profile of the
different plant parts of the species studied changed during the growth cycle, showing that the trade-off between glucosinolate profile and biomass
production should be optimized in order to maximize the biofumigation effect of a crop. However, further information on other allelochemicals and
on the different types of glucosinolate derived products resulting from autolysis or myrosinase catalyzed hydrolysis of glucosinolates at different
reaction conditions is needed for the appropriate description of the potential biofumigation effects of different crops.

Key words: biofumigation, glucosinolates, brassica, U-triangle, growth cycle.

INTRODUCTION

Glucosinolates are alkyl-N-hydroximine
sulphate  esters with a  f-D-
thioglucopyranoside group attached to the
hydroximine carbon in Z-configuration rela-
tive to the sulphate group (Ettlinger and Kjeer,
1968; Kjer, 1960; Serensen, 1990). These
compounds are allelochemicals
biosynthetically derived from amino acids
(Hill et al., 2003) and they occur in all plants
of the Capparales order and in some other
plants (Bjerg and Serensen, 1987; Kjer, 1960;
Rodman, 1978). Glucosinolates co-occur
with myrosinase isoenzymes
(Thioglucosidase; EC 3.2.1.147), which
catalyze the hydrolysis of the B-D-
thioglucopyranoside bond (Bellostas et al.,
2003; Bjergegaard et al., 1994; Bjergegaard et
al.,2003; Petersen et al., 2003). The released
aglucones form a variety of biologically ac-
tive products with structures defined by the
type of glucosinolate and the reaction condi-
tions (Bjergegaard et al., 1994; Buskov et al.,
2000a; Buskov et al., 2000b; Buskov et al.,
2000c; Palmieri et al., 1998). These break-
down products can be chemically very reac-
tive, and they have for a long time been
known for their biologically active charac-
teristics, such as antinutritional (Bjerg ef al.,
1989; Hansen et al., 1997), anticarcinogenic
(Bonnesen et al., 1999), fungicidal or bacte-
ricidal properties (Angus et al., 1994; Brown
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and Morra, 1997; Buskov et al., 2002;
Kirkegaard and Sarwar, 1998). Special inter-
est also derives from the potential of these
compounds for controlling soil-borne patho-
gens (Chan and Close, 1987; Gardiner ef al.,
1999), a process that has been termed
‘biofumigation’ (Angus et al., 1994).

Over 130 glucosinolates have been identi-
fied of which more than 30 are present in
Brassica species (Fahey et al., 2001;
Serensen, 2001). The type and concentra-
tion of glucosinolates have been found to
vary between Brassica species as well as
between cultivars of the same species
(Bradshaw et al., 1984; Kirkegaard and
Sarwar, 1998; Rangkadilok et al., 2002; Sang
et al. 1984). Different tissues of the same
plant also present quantitative and qualita-
tive differences in their glucosinolate con-
tent, with other factors such as plant age and
environmental growth conditions influenc-
ing glucosinolate profile (Clossais-Besnard
and Larher, 1991; Sang et al., 1984; Sarwar
and Kirkegaard, 1998).

To maximize the potential benefits of
biofumigation it is therefore essential to
evaluate glucosinolate levels and patterns in
Brassica species and to investigate the plant
tissues that will give the required concentra-
tion of glucosinolate derived products, as well
as determining the timing of their produc-
tion (Rosa and Rodrigues, 1999). The aim of
the present study was to investigate the
glucosinolate profiles and concentrations in
different plant tissues of cruciferous crops
during their growth cycle, in order to com-
pare them on the basis of their potential
biofumigation properties. Four Brassica
species, namely B. nigra (L.) Koch, B.

carinata Braun, B. juncea (L.) Czern. and B.
rapa L. were selected on the basis of their
genetic relationships (U, 1935; Snowdon et
al., 2003). These species were compared
with respect to their glucosinolate profiles
in roots, stems, leaves and reproductive or-
gans at different development stages. Dry
matter production of the different plant tis-
sues of the four species throughout the grow-
ing cycle was also determined in order to
give a more accurate estimation of their
biofumigation potential.

MATERIALS AND METHODS
Plant material and growth conditions
The experiment was conducted between
February and July 2003 in the greenhouses
of The Royal Veterinary and Agricultural
University (KVL) at Hejbakkegaard,
Taastrup, Denmark. Four different Brassica
species were used in the study: B. carinata
Braun cv BRK-147-A, B. rapa L. cv
Harmoni, B. nigra L. Koch cv Giebra and B.
juncea L. Czern cv Cutlass. Seeds were ob-
tained respectively from ITGA (Spain),
ENHANCE project (CETIOM; France) and
Svalof Weibull (Sweden) for the last two
species. Seeds of a single species were sown
into 24 L pots (40*30%*20 cm?;
length:width:height) and seedlings thinned
after emergence leaving a total number of 12
plants per pot. Three replicates were estab-
lished for each species. The potting mix used
was Pindstrup Substrate No. 1, 0-20 mm
sieved and with a pH 6 (Pindstrup Mosebrug
A/S Denmark). Pots were watered for four-
six minutes per day with a nutrient solution
(Pioner NPK MAKRO 14323+Mg) which
contained the following nutrients: 14.5%
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Ntotal, 10.7% NO,N, 3.8% NH,N, 2.9%
water soluble P, 23.1% water soluble K,
3.0% water soluble Mg and 3.9% water solu-
ble S. The nutrient solution was mixed with
water to a EC=1.3 mS and regulated with
62% HNO, to a pH of 5.5. Temperature in
the greenhouse was kept at 15°C during the
day and 12°C during the night with a pho-
toperiod of 13-11 hours (day-night).

Sampling and analysis

Samples were taken at four different key
stages of plant development: leaf, bud, flower
and seed. The stages chosen were, according
to Berkenkamp (1973): 1.4 (four leaves), 2.3
(pedicels elongating), 3.1 (many flowers
open) and 4.0 (seeds in lower pods full size).
A total of three plants per species (one plant
per replicate) were sampled at each growth
stage. Plants were removed intact from the
pots, the roots carefully washed with tap
water and the whole intact plants were then
freeze-dried. Once dried, the plants were
separated into roots, stems, leaves and re-
productive tissues and their weight deter-
mined. The material was then thoroughly
milled and kept dried until extraction.

Glucosinolates  were  extracted,
desulphoglucosinolates produced and the
individual compounds were determined by
MECC according to standard procedures with
use of two internal standards as described
elsewhere (Bjerg and Serensen, 1987,
Michaelsen et al.,1992; Serensen et al, 1999).

RESULTS
Total glucosinolate concentration and
distribution among plant parts

The four species followed different pat-
terns during growth with respect to total
glucosinolate concentration (Fig. 1). Total
glucosinolate content increased from the first
(leaves) to the second (buds) growth stage in
B. carinata, B. nigra and B. juncea, with the
last species being the one that showed the
greatest increase. B. nigra and B. juncea sub-
sequently showed the same pattern with a
decrease in glucosinolate content at the third
stage (flower) followed by a new increase
towards the last stage monitored (green
seeds). Total glucosinolate concentration in-
creased in B. carinata until the flower-stage,
decreasing afterwards until the green seed stage,
while in B. rapa a steady decrease from the
first to the last growth stage was observed.

Glucosinolate distribution among plant
parts varied with plant age and species
(Fig. 1). The roots generally showed a higher
glucosinolate concentration in the first growth
stage monitored (leaves) than later in the
growth. Glucosinolate content of stem and
leaves showed a slight decrease during the
growth with total concentrations generally
below 15 imol g'! DM. Buds showed a large
glucosinolate concentration in all species ex-
cept for B. rapa, with amounts that varied
from 40 to 65 imol g"! DM in B. nigra and B.
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Figure 1. Glucosinolate concentration (imol g DM™) in the different plant parts at the four

growth stages monitored for the four species.
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Figure 2. Concentrations (imol g DM™) of different glucosinolate types (aliphatic, aromatic and
indol-3-yl) present in plant parts of each species at the last growth stage monitored (green

seeds in pods).

Jjuncea respectively. The glucosinolate con-
centration in the reproductive organs de-
creased from this stage to the flowering stage,
although values as high as 40 imol g' DM
were reported in flowers of B. juncea. Total
glucosinolate concentration increased in re-
productive organs towards the end of the
growth, and in the last growth stage values
as high as 98 imol g "' DM were found in
pods of B. nigra.

Glucosinolate profiles
The distribution of the different types of
glucosinolates varied among plant parts dur-

ing the growth cycle. Figure 2 shows the
type of glucosinolates (aliphatic, aromatic,
indol-3-ylmethyl) present in the different
plant parts of the Brassica species at the
last growth stage. Aliphatic glucosinolates
were mainly present in the vegetative parts
of the species, although they also accounted
for approximately 50% of the glucosinolate
content of the roots in all species, with the
exception of B. rapa (Fig. 2).
Phenethylglucosinolate was the only aro-
matic glucosinolate present in the species
studied, being the dominant compound in
the roots of B. rapa from the second growth



stage and representing around 50% of root
glucosinolates in B. juncea. It was the domi-
nant glucosinolate in roots of B. carinata and
B. nigra in the first two growth stages, but sub-
stituted by prop-2-enylglucosinolate towards
the end of the investigated growth cycle.

B. rapa contained a higher proportion of
indol-3-ylmethylglucosinolates compared to
the other species during the period investi-
gated. B. nigra and B. juncea showed the
same pattern of distribution of indol-3-
ylmethylglucosinolates along the growth cy-
cles, with a slight increase in roots and a
decrease in vegetative tissues, but with total
concentrations generally lower than 10%.
Indol-3-ylmethylglucosinolate concentra-
tions decreased in B. carinata along the
growth cycle, however, this species showed
a higher concentration of indol glucosinolates
than B. nigra and B. juncea in the first growth
stage.

Dry matter production

Even though greenhouse conditions for
plant growth are far from those encountered
in the field it was considered important to
determine the dry matter production of the
different tissues of the plants at the differ-
ent stages of their growth cycle in order to
have an estimation of the biofumigation po-
tential of the species studied. All species in-
creased their dry matter production steadily
(Table 1), until the last growth stage in which

Biomass (g DM plant™)

Species
Growth stage  Root Stem Leaves Reproductive Total
B. carinata 1 0.01 0.01 0.16 - 0.18
2 1.00 791 5.63 0.17 14.71
3 2.31 9.08 5.57 0.45 17.41
4 437 3431 4.69 7.81 51.18
B. rapa 1 0.01 0.03 0.14 - 0.18
2 1.00 8.71 3.02 0.25 12.97
3 0.65 5.37 2.45 0.60 9.08
4 3.12 16.00 3.08 6.98 29.17
B. nigra 1 0.01 0.01 0.09 - 0.11
2 1.36 9.75 5.07 0.65 16.82
3 2.11 13.88 5.15 2.71 23.85
4 2.79 38.12 7.20 27.56 75.66
B. juncea 1 0.01 0.02 0.14 - 0.17
2 0.73 2.21 3.04 0.23 6.21
3 1.57 5.62 3.00 0.71 10.90
4 1.60 11.52 3.87 15.09 32.09

Table 1. Dry matter production of the different plant tissues of the four Brassica species at the

four growth stages monitored.

nearly a three-fold increase was observed
with respect to the previous growth stage
monitored. This was mainly due to the in-
crease in the weight of the reproductive tis-
sues when the seeds started to be formed.
Roots increased their biomass steadily dur-

ing growth while stems showed a great in-
crease from the third to the last growth stage
monitored. Leaves showed a great increase
from the first to the second growth stage and
from then on their biomass was kept con-
stant throughout growth.

Total glucosinolate production (pmol plant ™)

Species C}si(;‘;’eth Root Stem Leaves Reproductive Total « (nm};??ll soil)
B. carinata 1 0.29 0.16 0.70 / 1.16 0.83
2 16.62 27.64 63.46 6.01 113.73 81.23
3 27.44 25.31 52.03 22.39 127.17 90.83
4 49.34 188.31 35.24 243.10 516.00 368.57
B. rapa 1 0.04 0.33 0.36 / 0.73 0.52
2 6.26 12.89 0.48 1.38 21.01 15.01
3 5.61 3.55 1.26 1.71 12.13 8.66
4 12.37 23.46 2.05 16.33 54.22 38.73
B. nigra 1 0.14 0.13 0.67 / 0.94 0.67
2 5.63 40.81 56.53 26.31 129.28 92.34
3 9.52 54.73 41.01 82.94 188.21 134.44
4 24.06 531.66 42.48 2709.86 3308.06 2362.90
B. juncea 1 0.22 0.19 1.35 / 1.76 1.26
2 12.96 11.40 25.25 15.46 65.06 46.47
3 7.53 27.03 11.72 29.89 76.17 54.41
4 12.50 44.78 53.35 1379.37 1490.00 1064.29

* Assuming 100 plants m?, 10 cm depth incorporation & soil bulk density of 1.4 g m* (Kirkegaard and Sarwar, 1998).

Table 2. Whole plant and tissue contribution to total glucosinolate production (imol plant’ and nmol g soil) of the four species at the four growth

stages monitored.
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Figure 3. Summary of some of the different factors influencing the outcome of biofumigation.

Biofumigation potential

The total glucosinolate production of the
different plant tissues as well as of the whole
plant was calculated on the basis of the
glucosinolate concentration and the biomass
production (Table 2). The maximum values
were achieved at the last harvest, when both
the total glucosinolate concentration in the
plant and the biomass produced are at a maxi-
mum. The final glucosinolate concentration
per g of soil was also estimated based on a
plant density of 100 plants m?, a depth of
10 cm for incorporation of the plant material
and a soil bulk density of 1.4 g cm™.

DISCUSSION
Glucosinolate profiles

The dominance of aliphatic glucosinolates
in plant parts of B. carinata, B. nigra and B.
juncea has been previously reported, with
prop-2-enylglucosinolate described as the
major glucosinolate present in these species
(Mnzava and Olson, 1989; Rangkadilok et
al., 2002; Sang et al., 1984; Sarwar and
Kirkegaard, 1998). B. rapa showed a rela-
tively higher proportion of indol-3-
ylmethylglucosinolates when compared to
the other species, especially in roots and re-
productive tissues. This may be due to the
lower relative concentration of the aliphatic
fraction of glucosinolates typical for a “dou-
ble-low” species.

The relative glucosinolate concentrations
described in our experiment can be expected
to remain constant for a given species inde-
pendently of the screening environment,
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since it has been described that major
glucosinolates and their relative proportions
are relatively stable for particular species
(Sarwar and Kirkegaard, 1998).

Total glucosinolate concentration and
distribution among plant parts

The differences in total glucosinolate con-
centration among the four species might re-
flect the different characteristics of the
cultivars used, since B. rapa was the only
“double-low” cultivar tested as mentioned
above.

Greenhouse screening is not considered
optimal for the estimation of total
glucosinolate production of a cultivar, since
environmental conditions have an influence
on glucosinolate concentration (Sarwar and
Kirkegaard, 1998). This might explain why
in the present experiment values of total
glucosinolate concentration at a particular
growth stage were in most cases, greater than
those described in the literature (Rangkadilok
et al., 2002; Sarwar and Kirkegaard, 1998).
The pattern of change of the glucosinolate
concentration along the growth cycle was
however, similar to what has been previously
described for Brassica species (Fieldsend
and Milford, 1994; Rangkadilok ez al., 2002;
Sarwar and Kirkegaard, 1998). The higher
glucosinolate content observed in the repro-
ductive organs compared to the other veg-
etative parts in all species, suggests that the
exploitation of the biofumigation potential
of these species might be optimal at the later
stages of their growth, if the agronomic con-
ditions allow it and always avoiding the risk

NON-TARGET MICROORGS .

TARGET &

SUSCEPTIBILITY OF TARGET
MICROORG.

INTERACTIONS & SOIL
EQUILIBRIUM

of seed-set. The decrease in glucosinolate
content of the root tissues throughout the
growth cycle has also been reported (Sarwar
and Kirkegaard, 1998) and the high propor-
tion of root glucosinolates in B. rapa com-
pared to the other species is probably due to
the fact that is a “double-low” cultivar. The
high glucosinolate content of roots of the
species at the first growth stage might make
it interesting to utilize them at this early stage,
however, the low biomass of the roots would
almost certainly not be sufficient for a
biofumigation effect to occur (Table 2).

Biofumigation potential

Differences in the biofumigation potential
of the species studied can be expected on the
basis of their glucosinolate profiles as well
as of their total glucosinolate production. In
general, the combination of a high
glucosinolate production with the highest dry
matter production towards the end of the
growing period would make these stages op-
timal for biofumigation. However, these
should not be the only factors to take into
account, since many other parameters might
influence the outcome of biofumigation (Fig.
3). Incorporation of plant material into the
soil plays an important role in determining a
maximum glucosinolate release and different
techniques for an appropriate tissue break-
down have already been investigated
(Matthiessen et al., 2004). Knowledge on
the cycle of the pathogen in the soil and po-
tential side-effects towards beneficial micro-
organisms is also necessary (Bending and
Lincoln, 2000). Finally, the involvement of



other bioactive compounds present in the
plant tissue, which may act independently
or synergistically with glucosinolate derived
products has also been suggested (Brown
and Morra, 1997).

Determining the type of glucosinolates
present in a certain species might be the first
step for the assessment of its biofumigation
potential, since transformation products re-
sulting from glucosinolate hydrolysis have
different toxicities due to their variation in
structural types, physical and chemical prop-
erties (Bjergegaard et al., 1994; Buskov et
al., 2000a; Buskov et al., 2000b; Buskov et
al., 2000c; Palmieri et al., 1998). However,
environmental conditions, such as pH or the
presence of certain ions, influence the out-
come of the myrosinase hydrolysis of a given
glucosinolate (Brown and Morra, 1997).
Further investigation of the different types
of products resulting from myrosinase
catalyzed hydrolysis of glucosinolates at
different reaction conditions is therefore im-
portant in order to better define the oppor-
tunities of biofumigation as a realistic con-
trol method of soil-borne pathogens.
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