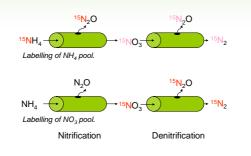
grass-clover pastures

Per Ambus

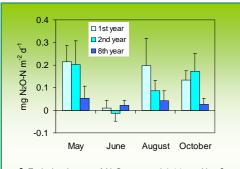
CORE

Plant Research Department, Risø National Laboratory, Roskilde, Denmark.


Background

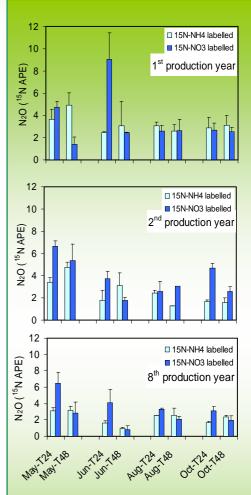
Organic farming practises, and in particular dairy production systems based on grass-clover pastures are becoming increasingly abundant within Danish agriculture. Grass-clover pastures may provide a mitigation option to reduce grassland nitrous oxide (N₂O) emissions (Velthof et al. 1998).

The objectives of this work was to examine the relationship between N₂O emissions and transformations of inorganic N in organically managed grass-clover pastures of different ages. Results from the project will be used for calibration of the FASSET whole-farm nitrogen transformation model.



Injection of $^{15}\text{N}\text{-labelled}$ NH_4 and NO_3 (10 APE) in 30 cm diam. x 25 cm high monoliths of the grass-clover pastures.

Principles of ¹⁵N isotopic labelling approach used in this study. The fractional contribution of nitrification and denitrification to N₂O emissions is assessed by comparison with enrichments of the NH_{4^-} and NO_{3^-} pools (data not presented).


Production year	Мау	June	August	October	Soil inorganic N (mg N kg ⁻¹ soil; % as NH ₄ in parenthesis). The soil is characterised as a loamy sand (Typic Hapludult).
1 st	20 (58)	25 (29)	33 (21)	28 (25)	
2 nd	15 (37)	25 (26)	26 (22)	29 (21)	
8 th	18 (41)	32 (15)	29 (18)	32 (18)	

- Emission losses of N_2O averaged 0.14 mg N m⁻² d⁻¹ in 1st production year and decreased to 0.08 mg N m⁻² d⁻¹ in 8th production year.
- The N_2O emission losses equals 0.1-0.2 % of the N-fixation measured in same plots (Eriksen and Vinther, 2002).
- The losses of N₂O among pasture age was independent of soil inorganic N. This may be explained by changes in plant-microbial competitive abilities and functioning of N₂O producing bacteria.

Conclusions

- Nitrous oxide emissions losses from organically managed grass-clover pastures were relatively small amounting to 0.8 to 0.14 mg N m⁻² d⁻¹
- The N₂O emission was less than 0.2% of the N-fixation.
- The N₂O emission decreased with increasing pasture age, independent of soil N availability
- Nitrification and denitrification both contributed significantly to the N₂O emissions.
- The proportion of denitrification vs. nitrification appeared to increase with increasing pasture age.

- Nitrogen-15 enrichments of N₂O produced in ¹⁵NH₄ and ¹⁵NO₃ labelled grass-clover monoliths. The enrichment of N₂O was measured 24 hrs and 48 hrs after ¹⁵N-labelling. APE is atom percent excess.
- Nitrification and denitrification both contributed significantly to the N₂O emissions. However, from these data only it can not be determined if the contribution with ¹⁵N-NH4 labelling is from nitrifierdenitrification or 'true' denitrification.
- The proportion of denitrification appears to exceed that of nitrification in 2nd and 8th year pastures, but is independent of time of year.

Poster presented at NJF Seminar no. 342 "Agricultural Soils and Greehouse Gases in Cool-Temperate Climate", 31/7-3/8 2002, Reykholt, Iceland

Acknowledgements

This work forms part of a project financially supported by the Danish Research Centre for Organic Farming (DARCOF) <u>www.foejo.dk</u>

References

Velthof, G.L., van Beusichem, M.L. and Oenema, O. 1998. Mitigation of nitrous oxide emission from dairy farming systems. *Environmental Pollution* **102**, 173-178. Eriksen, J. and Vinther, F. 2002. Nitrate leaching in grazed grasslands of different composition and age. Poster presented at "European Grassland Conference", May, France. Contact Per Ambus Tel. +45 4677 4152 Fax. +45 4677 4160 per.ambus@risoe.dk www.risoe.dk/pbkstaff_uk/peam.htm