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Cattle management practises
Housing vs. grazing

Day and night grazing 45%
Day-only grazing 45%
Zero-grazing 10%

(Schils et al., 2002)
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Manure management
Manure storage conditions

In-house storage time?

Mitigation measures?

Slurry storage cover?

Composting or not?
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IPCC methodology
N2O emission factors, AWMS

Main categories EF Uncertainty (%)

Liquid/slurry 0.001 -50 to +100
Solid manure# 0.02 -50 to +100
Dry lots 0.02 -50 to +100
Pastures 0.02 -50 to +100

# ≥20% DM
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IPCC methodology
Methane conversion factors (Cool)

Source MCF
Pasture/drylot 1%
Solid storage 1%
Liquid storage 39%
Slurry channels
<1 month 0%
>1 month 39%

Anaerobic digestion 0-100%
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Manure management
Sources of variability

Solid manure storage conditions
- effects of aeration

Liquid manure storage conditions
- effects of climate and cover

Excretal returns to the pasture
- effects of spatial heterogeneity
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Solid manure storage
Effect of aeration on MCF

Source IPCC

Pasture/drylot 1%
Solid storage 1%
Liquid storage 39%
Slurry channels
<1 month 0%
>1 month 39%

Anaerobic digestion 0-100%
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Solid manure storage
Effect of season, turning and DM content       

on GHG emissions
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Solid manure storage
Distinction, composting or not?

Manure, composting            MCF = 1%?
Manure, not composting       MCF = 5%?

Amon (2001) 0.4-3.9%

US EPA 0.1-5%

Gibbs & Woodbury (1993) 1-2%
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Solid manure storage
IPCC emission factor for N2O

Main categories EF Uncertainty (%)

Liquid/slurry 0.001 -50 to +100
Solid manure# 0.02 -50 to +100
Dry lots 0.02 -50 to +100
Pastures 0.02 -50 to +100

# ≥20% DM
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Solid manure storage
Experimental N2O emission factors

Material                  Storage time (d) EF                  Ref.

FYM, cattle 120 0.003-0.007 1

+ straw 120 0.003-0.005

FYM, cattle 80 (winter) 0.004 2
+ turned 0.007

FYM, cattle 80 (summer) 0.003
+ turned 0.004

FYM, cattle ? <0.01 3

FYM, pig 90 <0.005 4
1 Yamulki (MIDAIR); 2 Amon et al. (2001, recalc.);3 Amon et al. (1997); 4 Petersen et al. 
(1998)
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Solid manure storage
Conclusions

- composting may significantly reduce CH4
emissions from solid manure

- trade-off with NH3 volatilization; losses 
during composting can exceed 10% of total 
N

- an N2O emission factor of 0.02 may be too 
high
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Liquid manure storage
IPCC emission factors for CH4

Source MCF
Pasture/drylot 1%
Solid storage 1%
Liquid storage 39%
Slurry channels
<1 month 0%
>1 month 39%

Anaerobic digestion 0-100%
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Liquid manure storage
IPCC emission factors for CH4

FT = [VSd × b1 + VSnd × b2] × exp[ln(A) – E/RT]

FT CH4 emission rate (g CH4 d-1)
VSd digestible volatile solids (g kg-1)
VSnd ‘non-digestible’ volatile solids (g kg-1)
b1, b2 rate correcting factors (no dimensions)
A Arrhenius parameter (g CH4 kg-1 VS h-1)
E apparent activation energy (J mol-1)
R gas constant (J K-1 mol-1)
T temperature (K)

Time steps: 1 day. (Sommer et al., unpublished)
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Manure management
Methane emissions from slurry, locations
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Manure management
Methane vs. average annual temperature

Average annual temperature (oC)
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DIAS Time (h)
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Liquid manure storage
Conclusions

- storage temperature has strong effect on CH4
emissions from slurry, and should be more well-
defined

- a simple algorithm may be able to account for 
seasonal and geographic temperature variation

- interactions of surface crusts and covers with CH4 
emissions should be investigated
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Excretal returns
Urine vs. dung

Surplus N in diet → Urea-N in urine

(Kebreab et al., 2001)
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IPCC methodology
N2O emission factors, AWMS

Main categories EF Uncertainty (%)

Liquid/slurry 0.001 -50 to +100
Solid manure# 0.02 -50 to +100
Dry lots 0.02 -50 to +100
Pastures 0.02 -50 to +100

# ≥20% DM
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Excretal returns
N2O emission factor, urine patches

Soil type N2O-N

(fraction of urine-N)

Length of
period

(d)

Application
rate (g N m-2)

Ref.

Silt loam 0.008 406 100 1
Sandy loam 0.010 406 100 1
Peat 0.019 406 100 1
Clay 0.019 406 100 1
Silty clay loam            0.010 100 54 2
Peat 0.022 31 c. 210 3
Sandy silty loam 0.014-0.042 357 101 (spring) 4

0.003-0.009 357 101 (autumn) 4
1 Clough et al. (1998); 2 Yamulki et al (1998); 3 Koops et al. (1997); 4 Anger
et al. (2003)
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Excretal returns
N2O emissions, influencing factors

- urine composition

- excretion rate

- WFPS

- compaction

- soil inorganic N



DIAS

Water

Excretal returns 
Field-scale heterogeneity
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Excretal returns 
Heterogeneity in winter pasture
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DIAS (Simek et al., MIDAIR)
Site in pasture
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Excretal returns 
Conclusions

Interactions between excreta, soil conditions 
and N2O emissions not well understood.

Field-scale gradients of animal impact can be 
identified, but there is no simple relation to 
N2O emissions.

Possibly the only effective mitigation strategy 
is to reduce the N excretion via optimized 
feeding or extensification.
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Case: Dairy cattle grazing
GHG balance for the grazing season 1994

Two systems: Fertilized grass and grass-clover

N intake (from pasture and feeds): 505 g N/cow/d)

Length of grazing season:  162 d

Stock density:  5.2 or 4.4 cows/ha for grass and grass-clover

Not included:  GHG associated with feed production, manure 
application
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Case: Dairy cattle grazing 
N balance for the grazing season 1994

Fertil. grass Grass-clover

(kg N/ha)

Fertilizer N 300 0
BNF 0 232
N excretion 222 194
N deposition 14 14
Grass intake -293 -249

Manure storage 95 83

(Søegaard et al., 2001)
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Case: Dairy cattle grazing 
GHG emissions for grazing season 1994

Fertilized grass Grass-clover

(CO2-C eq/ha)

CH4 N2O CH4 N2O 

Fertilizer N - 488 - 0
BNF - 0 - 385
N excretion - 472 - 412
NH3 volatilization - 67 - 52
N leaching - 520 - 424

Manure storage 297 13 252 11

Animals 1582 - 1338 -
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Case: Dairy cattle grazing 
GHG emissions for grazing season 1994

Fertilized grass Grass-clover

t CO2-C eq/ha 3.4 2.9

t CO2-C eq/LU 0.66 0.65

C sequestration potential by grassland 
management (Soussana et al., in press): 

Annual rate 0.2-0.5 t C/ha
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Conclusions

• The large uncertainty of IPCC default emission factors for manure 
management is partly due to ill-defined storage conditions and 
manure properties, and further disaggregation is needed.

• The potential for composting has a large impact on C and N 
transformations in solid manure, and a distinction between 
composting and non-composting manure is proposed.

• Nitrous oxide emissions from solid manure may be less than 2%.

• Methane production in stored slurry is strongly temperature 
dependent, simple methods may account for seasonal and 
geographic variation in temperature.

• There is little potential for reducing N2O emissions from excretal 
returns to pastures, except by an increase in N use efficiency.
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