Greenhouse gas emissions from animal manure

Søren O. Petersen Danish Institute of Agricultural Sciences Tjele, Denmark

Greenhouse gas sources, manure management

Housing Storages Drylots/pastures

C DIAS

Cattle management practises Housing vs. grazing

Day and night grazing45%Day-only grazing45%Zero-grazing10%

(Schils et al., 2002)

Manure management Manure storage conditions

In-house storage time?

Slurry storage cover?

Mitigation measures?

Composting or not?

IPCC methodology N₂O emission factors, AWMS

Main categories	EF	Uncertainty (%)
Liquid/slurry	0.001	-50 to +100
Solid manure [#]	0.02	-50 to +100
Dry lots	0.02	-50 to +100
Pastures	0.02	-50 to +100

[#] ≥20% DM

IPCC methodology Methane conversion factors (Cool)

Source	MCF
Pasture/drylot	1%
Solid storage	1%
Liquid storage	39%
Slurry channels	
<1 month	0%
>1 month	39%
Anaerobic digestion	0-100%

Manure management Sources of variability

Solid manure storage conditions

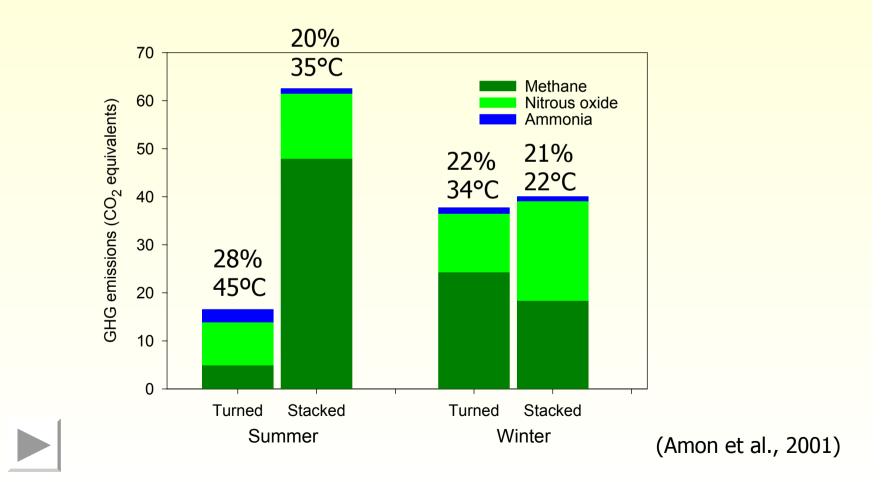
- effects of aeration

Liquid manure storage conditions

- effects of climate and cover

Excretal returns to the pasture

- effects of spatial heterogeneity



Solid manure storage Effect of aeration on MCF

Source	IPCC
Pasture/drylot	1%
Solid storage	1%
Liquid storage	39%
Slurry channels	
<1 month	0%
>1 month	39%
Anaerobic digestion	0-100%

Solid manure storage Effect of season, turning and DM content on GHG emissions

CIAS

Solid manure storage Distinction, composting or not?

Manure, composting Manure, not composting	MCF = 1%? MCF = 5%?
Gibbs & Woodbury (1993)	1-2%
US EPA	0.1-5%
Amon (2001)	0.4-3.9%

Solid manure storage IPCC emission factor for N₂O

Main categories	EF	Uncertainty (%)
Liquid/slurry	0.001	-50 to +100
Solid manure [#]	0.02	-50 to +100
Dry lots	0.02	-50 to +100
Pastures	0.02	-50 to +100

[#] ≥20% DM

Solid manure storage Experimental N₂O emission factors

Material	Storage time (d)	EF	Ref.
FYM, cattle	120	0.003-0.007	1
+ straw	120	0.003-0.005	
FYM, cattle + turned FYM, cattle	80 (winter) 80 (summer)	0.004 0.007 0.003	2
+ turned FYM, cattle	?	0.004 <0.01	3
FYM, pig	90	<0.005	4

¹ Yamulki (MIDAIR); ² Amon et al. (2001, recalc.);³ Amon et al. (1997); ⁴ Petersen et al. (1998)

Solid manure storage Conclusions

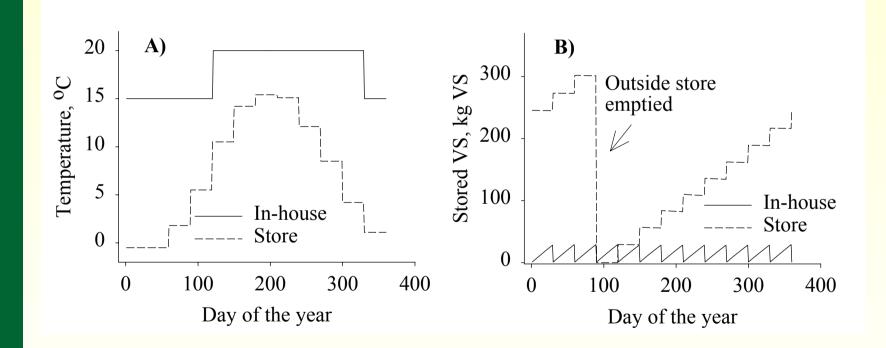
- composting may significantly reduce CH_4 emissions from solid manure
- trade-off with NH_3 volatilization; losses during composting can exceed 10% of total N
- an N_2O emission factor of 0.02 may be too high

Liquid manure storage IPCC emission factors for CH₄

Source	MCF
Pasture/drylot	1%
Solid storage	1%
Liquid storage	39%
Slurry channels	
<1 month	0%
>1 month	39%
Anaerobic digestion	0-100%

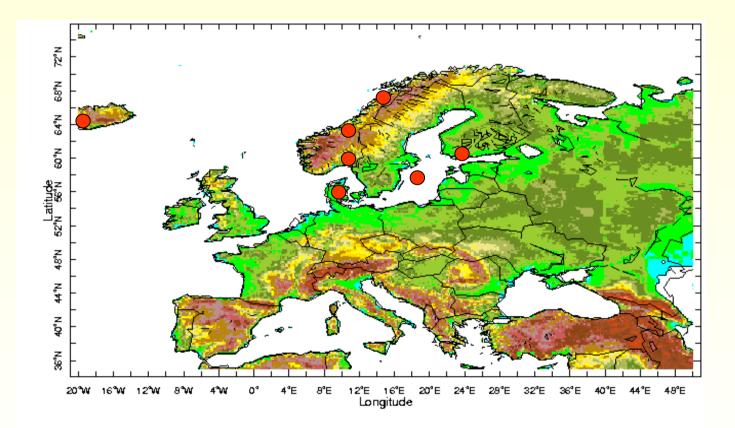
Liquid manure storage IPCC emission factors for CH₄

$F_{T} = [VS_{d} \times b_{1} + VS_{nd} \times b_{2}] \times exp[In(A) - E/RT]$

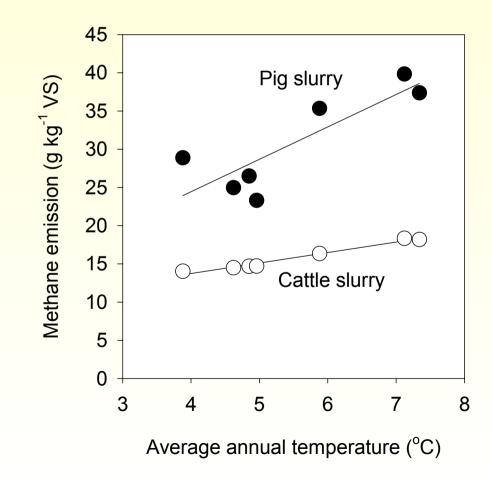

- F_T CH₄ emission rate (g CH₄ d⁻¹)
- VS_d digestible volatile solids (g kg⁻¹)
- VS_{nd} 'non-digestible' volatile solids (g kg⁻¹)
- b₁, b₂ rate correcting factors (no dimensions)
- A Arrhenius parameter (g CH_4 kg⁻¹ VS h⁻¹)
- E apparent activation energy $(J mol^{-1})$
- R gas constant (J K⁻¹ mol⁻¹)
- T temperature (K)

Time steps: 1 day.

(Sommer et al., unpublished)

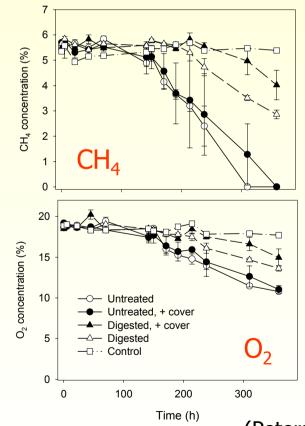


Liquid manure storage Storage conditions modelled



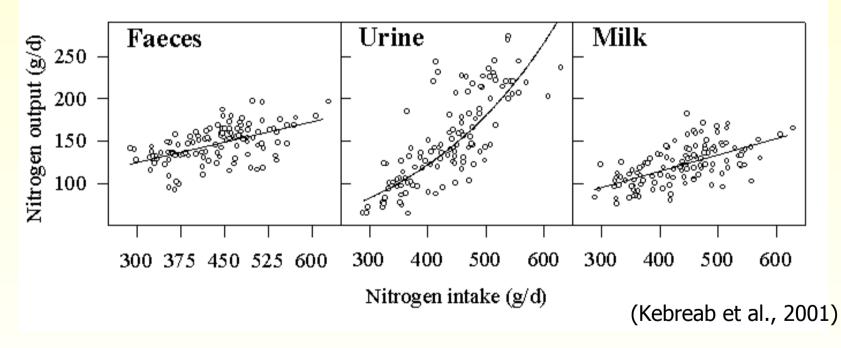
Manure management Methane emissions from slurry, locations

Manure management Methane vs. average annual temperature



Liquid manure storage Methane oxidation in surface crust

(Petersen, MIDAIR)



Liquid manure storage Conclusions

- storage temperature has strong effect on CH₄ emissions from slurry, and should be more welldefined
- a simple algorithm may be able to account for seasonal and geographic temperature variation
- interactions of surface crusts and covers with CH₄ emissions should be investigated

Excretal returns Urine vs. dung

Surplus N in diet \rightarrow Urea-N in urine

IPCC methodology N₂O emission factors, AWMS

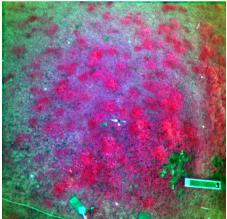
Main categories	EF	Uncertainty (%)
Liquid/slurry	0.001	-50 to +100
Solid manure [#]	0.02	-50 to +100
Dry lots	0.02	-50 to +100
Pastures	0.02	-50 to +100

[#] ≥20% DM

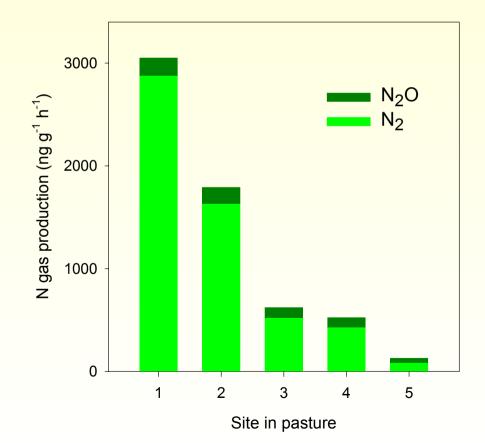
Excretal returns N₂O emission factor, urine patches

Soil type	N ₂ O-N (fraction of urine-N)	Length of period	Application rate (g N m ⁻²)	Ref.
		(d)		
Silt loam	0.008	406	100	1
Sandy loam	0.010	406	100	1
Peat	0.019	406	100	1
Clay	0.019	406	100	1
Silty clay loam	0.010	100	54	2
Peat	0.022	31	c. 210	3
Sandy silty loam	0.014-0.042	357	101 (spring)	4
	0.003-0.009	357	101 (autumn)	4
¹ Clough et al. (1998); ² Yamulki et al (1998); ³ Koops et al. (1997); ⁴ Anger et al. (2003)				

Excretal returns N₂O emissions, influencing factors


- urine composition
- excretion rate
- WFPS
- compaction
- soil inorganic N

Excretal returns Field-scale heterogeneity



Excretal returns Heterogeneity in winter pasture

Excretal returns Denitrifying enzyme activity

(Simek et al., MIDAIR)

Excretal returns Conclusions

Interactions between excreta, soil conditions and N_2O emissions not well understood.

Field-scale gradients of animal impact can be identified, but there is no simple relation to N_2O emissions.

Possibly the only effective mitigation strategy is to reduce the N excretion via optimized feeding or extensification.

Case: Dairy cattle grazing GHG balance for the grazing season 1994

Two systems: Fertilized grass and grass-clover
N intake (from pasture and feeds): 505 g N/cow/d)
Length of grazing season: 162 d
Stock density: 5.2 or 4.4 cows/ha for grass and grass-clover

Not included: GHG associated with feed production, manure application

Case: Dairy cattle grazing N balance for the grazing season 1994

	Fertil. grass	Grass-clover	
	(kg N/ha)		
Fertilizer N	300	0	
BNF	0	232	
N excretion	222	194	
N deposition	14	14	
Grass intake	-293	-249	
Manure storage	95	83	

(Søegaard et al., 2001)

Case: Dairy cattle grazing GHG emissions for grazing season 1994

Fertilized grass			Grass-c	lover	
	(CO ₂ -C eq/ha)				
	CH_4	N_2O		CH_4	N_2O
Fertilizer N	_	488	· -	_	0
BNF	-	0		-	385
N excretion	-	472		-	412
NH3 volatilization	-	67		-	52
N leaching	-	520		-	424
Manure storage	297	13		252	11
Animals	1582	_		1338	-

COCO DIAS

Case: Dairy cattle grazing GHG emissions for grazing season 1994

	Fertilized grass	Grass-clover
t CO ₂ -C eq/ha	3.4	2.9
t CO ₂ -C eq/LU	0.66	0.65

C sequestration potential by grassland management (Soussana et al., in press):

Annual rate

0.2-0.5 t C/ha

Conclusions

• The large uncertainty of IPCC default emission factors for manure management is partly due to ill-defined storage conditions and manure properties, and further disaggregation is needed.

- The potential for composting has a large impact on C and N transformations in solid manure, and a distinction between composting and non-composting manure is proposed.
- Nitrous oxide emissions from solid manure may be less than 2%.
- Methane production in stored slurry is strongly temperature dependent, simple methods may account for seasonal and geographic variation in temperature.

• There is little potential for reducing N_2O emissions from excretal returns to pastures, except by an increase in N use efficiency.

Acknowledgements

Jørgen E. Olesen, DIAS Sven G. Sommer, DIAS Willem Asman, DIAS Karen Søegaard, DIAS Martin R. Weisbjerg, DIAS Finn P. Vinther, DIAS Barbara Amon, ILUET Miloslav Simek, ISB Arjan Hensen, ECN Sirwan Yamulki, IGER

