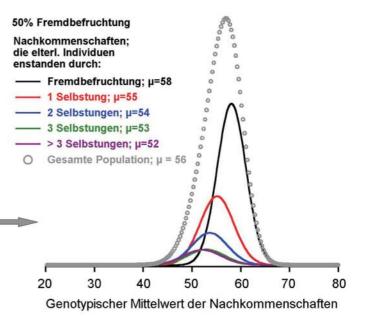

Visualisierung der genotypischen Struktur partiell allogamer Populationen und züchterische Konsequenzen


Stefan Abel und Wolfgang Link

Institut für Pflanzenbau und Pflanzenzüchtung, Georg-August-Universität Göttingen, Siebold-Str. 8, 37075 Göttingen wlink@gwdg.de

Population von Nachkommenschaften

Fakt I Beispiele für partiell allogame Kulturpflanzen

Art	Fremd-	Zitat
	befruchtung (%)	
Ackerbohne	43 - 74	Link et al., 1994
Baumwolle	5 - 30	Poehlman & Sleper, 1994
Cuphea lanc.	61 - 94	Knapp et al., 1991
Hafer	1 – 7	Fischbeck, 1985
Weiße Lupine	8	Cowling et al., 1998
Gelbe Lupine	< 40	Cowling et al., 1998
Lup. mutabilis	4 – 11	Cowling et al., 1998
Mais	85 - 99	Hepting und Oltmann, 1995
Raps	12 - 47	Becker et al., 1992
Rispenhirse	15 - 70	Schuster, 1995
Sorghum	6 - 30	Poehlman & Sleper, 1994
Straucherbse	0 - 48	Saxena at al., 1990
Triticale	5 - 50	Yeung und Larter, 1972

Fakt II

"Standortanpassung und Verbesserung von Sorten kann durch <u>Massen- und Individualauslese</u> erreicht werden - Methoden, die in der landwirtschaftlichen und gärtnerischen Praxis anwendbar sind." (Horneburg/Dreschflegel 2001. Sämereien aus langjährig biologischer Sortenentwicklung. Bioland/Demeter/ANOG, Melle)

Recurrent mass selection is a well suitable breeding technique for organic breeding (Lammerts van Bueren et al., 1998 (www.anth.org/ifgene/breed1.htm)

Partielle Allogamie führt zu einer kaskadenartigen Struktur; die genotypischen Werte der Population folgen nicht der Normalverteilung!

Die Individuen einer Population sind unterschiedlich stark ingezüchtet!

Manche gar nicht, manche aber doch; eben aufgrund von Selbstung;
bei manchen war wenigstens die Eltern-Pflanze nicht ingezüchtet;
bei manche aber doch; eben aufgrund von Selbstung;
bei manchen war wenigstens deren Eltern-Pflanze nicht ingezüchtet;
bei manchen aber doch; etc.

Für heterotische Merkmale wird dadurch die Varianz der genotypischen Werte sehr stark aufgebläht.

Beispiel (siehe die Grafiken): Merkmal mit 100 Loci und je 2 Allelen "a" & "A". Je Locus: "aa" trägt mit 0 Einheiten und "Aa" bzw. "AA" mit 1 Einheit zum Merkmal bei (keine Kopplung, additives Zusammenwirken der Loci).

Genetische Varianz bei reiner Zufallspaarung wäre: $\sigma_A^2 + \sigma_D^2 = 23,04$ Genetische Varianz bei reiner Selbstung wäre: $2\sigma_A^2 = 24,00$ Genetische Varianz bei partieller Allogamie: $\sigma_G^2 = 97,05$ $\sigma_G^2 = (1+F)\sigma_A^2 + (1+F)(1-F)\sigma_D^2 + 4 FD1 + FD2^* + (F"-F^2)(H^2 - \sigma_D^2) = 97,05$ (Wright & Cockerham, 1985. Genetics 109, 585 – 597)

Zwei Punkte in der rekurrenten Züchtung für ein heterotisches Merkmal:

Liegt der Fremdbefruchtungsgrad bei C%, dann ist es falsch, gerade α % = C % bessere Individuen auszulesen. Diese α % wären mehr oder weniger die durch Kreuzung entstandene Fraktion (in der Grafik oben links schwarz), und der zunächst realisierte Selektionsgewinn wäre überwiegend heterotischer Natur und also nicht erblich, von diesem Gewinn bliebe nach weiterer Vermehrung des Materials praktisch nichts übrig! Besser: α % << C %. Seltsam: eine schwächere Selektionsintensität von α % > C % kann besser sein als ausgerechnet α % = C%; der nachhaltige Teil des Selektionsgewinnes hat keinen stetig steigenden Zusammenhang mit der Selektionsintensität.

Statt Massenauslese zwischen Individuen lieber Auslese aufgrund von Nachkommenschafts-Prüfung. Die Fraktionen unterscheiden sich <u>dann</u> nur noch wenig aufgrund unterschiedlicher Heterosis, der größte Teil des zunächst realisierten Selektionsgewinnes ist dann auch nachhaltiger Selektionsgewinn.