
School of Mathematical Sciences
Queensland University of Technology

Modelling Sea Water Intrusion
in Coastal Aquifers Using
Heterogeneous Computing

Benjamin Cumming
Bachelor of Applied Science (Mathematics)

Bachelor of Applied Science (Hons I)
Masters of Applied Science (Mathematics)

A thesis submitted for the degree of Doctor of Philosophy in the Faculty of
Science and Technology, Queensland University of Technology according to

QUT requirements.

Principal Supervisor:
Associate Supervisors:

Professor Ian Turner
Dr Timothy Moroney
Associate Professor Malcom Cox
Associate Professor Les Dawes
Professor Vo Anh

2012

Abstract

The objective of this PhD research program is to investigate numerical meth-
ods for simulating variably-saturated flow and sea water intrusion in coastal
aquifers in a high-performance computing environment. The work is divided
into three overlapping tasks: to develop an accurate and stable finite volume
discretisation and numerical solution strategy for the variably-saturated flow
and salt transport equations; to implement the chosen approach in a high
performance computing environment that may have multiple GPUs or CPU
cores; and to verify and test the implementation.

The geological description of aquifers is often complex, with porous materials
possessing highly variable properties, that are best described using unstruc-
tured meshes. The finite volume method is a popular method for the solution
of the conservation laws that describe sea water intrusion, and is well-suited
to unstructured meshes. In this work we apply a control volume-finite ele-
ment (CV-FE) method to an extension of a recently proposed formulation
(Kees and Miller, 2002) for variably saturated groundwater flow. The CV-FE
method evaluates fluxes at points where material properties and gradients
in pressure and concentration are consistently defined, making it both suit-
able for heterogeneous media and mass conservative. Using the method of
lines, the CV-FE discretisation gives a set of differential algebraic equations
(DAEs) amenable to solution using higher-order implicit solvers.

Heterogeneous computer systems that use a combination of computational
hardware such as CPUs and GPUs, are attractive for scientific computing due
to the potential advantages offered by GPUs for accelerating data-parallel op-
erations. We present a C++ library that implements data-parallel methods
on both CPU and GPUs. The finite volume discretisation is expressed in
terms of these data-parallel operations, which gives an efficient implementa-
tion of the nonlinear residual function. This makes the implicit solution of
the DAE system possible on the GPU, because the inexact Newton-Krylov
method used by the implicit time stepping scheme can approximate the action
of a matrix on a vector using residual evaluations. We also propose precon-
ditioning strategies that are amenable to GPU implementation, so that all
computationally-intensive aspects of the implicit time stepping scheme are
implemented on the GPU.

Results are presented that demonstrate the efficiency and accuracy of the
proposed numeric methods and formulation. The formulation offers excellent
conservation of mass, and higher-order temporal integration increases both
numeric efficiency and accuracy of the solutions. Flux limiting produces
accurate, oscillation-free solutions on coarse meshes, where much finer meshes
are required to obtain solutions with equivalent accuracy using upstream
weighting. The computational efficiency of the software is investigated using
CPUs and GPUs on a high-performance workstation. The GPU version offers
considerable speedup over the CPU version, with one GPU giving speedup
factor of 3 over the eight-core CPU implementation.

Statement of Original Authorship

The work contained in this thesis has not been previously submitted for a
degree or diploma at any other higher educational institution. To the best of
my knowledge and belief, the thesis contains no material previously published
or written by another person except where due reference is made.

Signed:

Date: 18 September 2012

Contents

1 Introduction 1

1.1 Literature Review . 3

1.2 Objectives of The Thesis . 11

1.3 Contribution of The Thesis . 15

1.4 Overview of The Thesis . 15

2 Problem Formulation 19

2.1 Governing equations . 19

2.2 Closure Of The System . 22

2.3 Boundary Conditions . 26

2.4 Formulation . 30

2.5 Conclusions . 34

3 Computational Techniques 35

3.1 The Mesh . 36

3.1.1 The Finite Element Mesh 36

iii

CONTENTS iv

3.1.2 The Dual Mesh . 37

3.1.3 Interpolation . 42

3.2 The Control Volume-Finite Element
Method . 46

3.2.1 Accumulation Terms 48

3.2.2 Source Terms . 51

3.2.3 Surface Fluxes . 51

3.2.4 Discretised Equations 63

3.3 Temporal Solution . 68

3.3.1 Solving the Linear System 71

3.3.2 Preconditioner . 72

3.4 Conclusions . 75

4 Algorithms and Data Structures 77

4.1 Time Stepping with IDA . 78

4.2 Evaluating the Residual:
The CV-FE Discretisation . 80

4.2.1 Time Step Preprocessing 83

4.2.2 Interpolation . 88

4.2.3 Edge-Based Weighting 89

4.2.4 Fluid Properties . 90

4.2.5 Flux Assembly . 94

4.2.6 Residual Assembly . 96

4.3 Domain Decomposition . 97

CONTENTS v

4.4 Preconditioners . 99

4.4.1 The Global Matrix . 100

4.4.2 Finding the Local Block 101

4.4.3 Preconditioning the Local Block 103

4.5 Conclusions . 106

5 GPU Implementation 107

5.1 Using GPUs as Computational Accelerators 108

5.1.1 Fermi Architecture . 110

5.2 The vectorlib Library . 113

5.3 Sparse Matrices . 116

5.4 Domain Decomposition . 118

5.4.1 Sub-Dividing the Computer Into Processes 118

5.4.2 Mesh Generation and Domain Decomposition 119

5.4.3 Communication Between Processes 120

5.5 The IDA Library . 124

5.6 The CV-FE Discretisation . 126

5.6.1 Interface . 126

5.6.2 Edge-Based Weighting 129

5.6.3 Interpolation . 132

5.6.4 Fluid Properties . 132

5.6.5 Flux Assembly . 134

5.6.6 Residual Assembly . 136

CONTENTS vi

5.7 Mesh Renumbering To Optimise Indirect Indexing 138

5.7.1 Indirect Indexing in Computing Relative Permeability . 140

5.8 Implementation of Preconditioners 141

5.8.1 Forming the Preconditioner 142

5.8.2 Applying the Preconditioner 143

5.9 Conclusions . 145

6 Model Verification 148

6.1 Test Cases . 148

6.1.1 Richards’ Equation: Infiltration Into Dry Heteroge-
neous Soil – The dry infiltration Test Case 150

6.1.2 Richards’ Equation: Transient Water Table Experi-
ment – The water table Test Case 152

6.1.3 Transport Model: Flow and Transport in Unsaturated
Soil – The unsaturated transport Test Case 153

6.1.4 Transport Model: Flow Tank Experiments – The tank steady ,
tank plume and tank tidal plume Test Cases of Zhang . 155

6.1.5 Transport Model: Leaching of a Contaminant Plume
in a Shallow Aquifer – The heap leaching Test Case . . 159

6.2 Richards’ equation: the dry infiltration test case 161

6.3 Richards’ equation: the water table test case 173

6.4 Transport Model: Unsaturated flow and transport 180

6.5 Transport Model: Zhang’s Flow Tank Experiments 188

6.6 Transport Model: Heap Leaching Simulation 209

6.7 Time Stepping With IDA . 217

CONTENTS vii

6.7.1 The role of different preconditioners 217

6.7.2 Higher-Order Temporal Integration 221

6.8 Conclusions . 224

7 Computational Performance 229

7.1 Test Setup . 229

7.1.1 Test Hardware . 231

7.2 Results . 231

7.3 Conclusions . 250

8 Conclusions 252

8.1 Summary and Discussion . 252

8.2 Directions For Further Research 257

A Computing Derivative Coefficients 261

A.1 The PR formulation of Richards’ Equation 261

A.2 The PC Formulation of the Full Transport model 262

B Verification of Hydrostatic Boundary Condition 265

C Shape Function Weights 268

C.1 Shape function interpolation on quadrilaterals 268

C.2 Shape function interpolation on hexahedra 269

D Transient Seepage Faces in IDA 271

CONTENTS viii

E G Under Saturated Conditions 272

List of Figures

2.1 Saturation and relative permeability curves determined using
typical parameters for sand, clay and loam soil types. 24

3.1 Heterogeneous two-dimensional domain with mixed triangle-
quadrilateral finite element mesh. 37

3.2 Description of elements used in this work: triangles and quadri-
laterals in two dimensions; tetrahedra and hexahedra in three
dimensions. 38

3.3 Construction of a sub-control volume in two dimensions for
triangle and quadrilateral elements. 39

3.4 Construction of a two-dimensional control volume for a node
that lies on the boundary. 40

3.5 Construction of a sub-control volume for a tetrahedral element. 41

3.6 Description of an edge and the control volume faces associated
with it in two dimensions. 55

3.7 Schematic for the choice of upstream, downstream and 2up
nodes for an edge. 61

4.1 Flow chart of the steps taken for one internal time step of IDA. 79

ix

LIST OF FIGURES x

4.2 Diagram showing the two faces attached to an edge in a two-
dimensional mesh. 86

4.3 Diagram illustrating the method used to determine the 1up
and 2up points. 87

4.4 Approach for finding fluid properties in a domain with few
distinct material properties. 93

4.5 Domain decomposition of a mixed two-dimensional mesh. . . . 98

4.6 Storage of a distributed vector. 99

4.7 The global iteration matrix with four sub-domains. 100

5.1 Schematic of GPU workstation with two GPUs and two sockets.109

5.2 Caching of global memory access for indirect indexing. 111

5.3 Allocation of computational resources in the workstation in
Figure 5.1 for a domain decomposition of two sub-domains. . . 119

5.4 Storage of a distributed vector with overlap. 121

5.5 The nodes, edges and faces accessed by a half warp in the
mapping of permeability, krw, values onto control volume faces
in Listing 5.10. 142

6.1 The domain for the dry infiltration test case due to Forsyth
et al. (1995). 151

6.2 The domain for the water table test case due to Vauclin et al.
(1979). 153

6.3 The domain for the unsaturated transport test case. 154

6.4 Height of the tide for the tank tidal plume experiment. 156

6.5 The laboratory flow tank, and corresponding computational
domain for the laboratory flow tank experiments by Zhang
(2000). 158

LIST OF FIGURES xi

6.6 Top and side views of the domain for the heap leaching test
case. 160

6.7 Fine mesh solution for the dry infiltration test case. 165

6.8 Mass balance errors of the PR and MPR formulations for the
dry infiltration test case with very dry initial conditions. . . . 166

6.9 Comparison of pressure head contours using upstream weight-
ing and flux limiting for the dry infiltration test case with dry
initial conditions at 30 days. 171

6.10 Comparison of pressure head contours using upstream weight-
ing and flux limiting for the dry infiltration test case with very
dry initial conditions at 30 days. 172

6.11 Reference solution for water table test case. 176

6.12 Comparison of the reference solution for the water table test
case to upstream and flux limited solutions. 179

6.13 Comparison of pressure head contours obtained using differ-
ent spatial weighting schemes at t = 48 hours for the unsatu-
rated transport test case . 183

6.14 Comparison of concentration contours obtained using differ-
ent spatial weighting schemes at t = 48 hours for the unsatu-
rated transport test case . 184

6.15 Reference solutions for the water table test case. 187

6.16 Experimental and numerical locations of the water table and
the sea water interface for the tank steady flow tank experiment.190

6.17 Steady state solutions for the tank steady test case. 192

6.18 Time step size before and after the injection of contaminant
at t = 0 min in the tank plume test case. 196

6.19 Comparison between experimental and numerical results (up-
stream and flux limited) on meshes 2 and 4 for the tank plume
experiment. 197

LIST OF FIGURES xii

6.20 Experimental results for the tank plume test case, where con-
taminant is first injected at t = 0 min. 198

6.21 Solution contours for the tank plume test case determined us-
ing upstream weighting and Mesh 3. 199

6.22 The location of the c0 = 0.5 isochlor for the tank plume test
case using the finest mesh (mesh 6 with 214,012 nodes) and
upstream weighting. 200

6.23 Comparison between experimental and numerical results (up-
stream and flux limited) on meshes 1 and 3 for the tank tidal plume
experiment. 204

6.24 Comparison of experimental results for the contaminant plume
with and without tidal variation 205

6.25 Comparison of numerical results for the contaminant plume
with and without tidal variation 206

6.26 Experimental results for the tank tidal plume test case. 207

6.27 Numerical results using flux limiting on the coarsest mesh for
the tank tidal plume test case. 208

6.28 Concentration isosurfaces using of the reference solution for
the heap leaching test case: front view. 211

6.29 Concentration isosurfaces using of the reference solution for
the heap leaching test case after 81 days: back view. 212

6.30 Comparison of high-resolution solutions for the heap leaching
test case. 214

6.31 Concentration contours using upstream weighting for the heap leaching
test case after 81 days. 215

6.32 Concentration contours using flux limiting for the heap leaching
test case after 81 days. 216

6.33 Triangular mesh for testing the efficacy of higher-order inte-
gration methods on the dry infiltration test case. 222

LIST OF FIGURES xiii

6.34 Mass balance error for the dry infiltration test case in terms
of computational work. 224

7.1 The strong scaling for the CPU version. 244

7.2 Breakdown of time spent in each part of the solver for CPU×8 244

7.3 Speedup of physics computation for GPU×1 and GPU×2 (red
and blue respectively) relative to CPU×8 (black) as the num-
ber of nodes in the mesh increases for two dimensions (a) and
three dimensions (b). 245

7.5 Speedup of each step in the residual evaluation due to renum-
bering of nodes, edges and faces to obtain better cache perfor-
mance. 246

7.6 Proportion of time spent in each step of the residual evaluation
on the GPU with and without node, edge and face renumber-
ing for cache performance. 247

7.7 Speedup of IDA on the GPU relative to the eight-core CPU
implementation. 247

7.8 Time spent in each part of the solver for GPU×1 when using
the host preconditioner, with further breakdown of time spent
in different parts of the preconditioner. 248

7.9 Average time to apply the preconditioner for each of the dif-
ferent preconditioners when using the GPU. 248

7.10 Speedup of the entire solver when using GPUs relative to
CPU×8 as the number of nodes in the mesh increases for two
and three dimensions. 249

B.1 Analysis of error in computed pressure head at a beach bound-
ary as the length scale parameter L is varied. 267

List of Tables

2.1 Model parameters, their dimensions and definitions. 22

4.1 The fluid properties used in the PR and MPR formulations of
Richards’ equation. 91

6.1 Material properties for the dry infiltration test case. 151

6.2 Material properties for the water table test case. 152

6.3 Parameters for unsaturated transport test case. 154

6.4 Parameters for experiments by Zhang (2000). 157

6.5 Parameters for heap leaching test case. 160

6.6 Details of the meshes used to verify the dry infiltration test
case. 166

6.7 Statistics for the solution of the dry infiltration test case with
dry initial conditions (ψ0 = −7.34) using each combination of
spatial averaging and mesh resolution with the PR formulation.167

6.8 Statistics for the solution of the dry infiltration test case with
dry initial conditions (ψ0 = −7.34) using each combination of
spatial averaging and mesh resolution with the MPR formula-
tion. 168

xiv

LIST OF TABLES xv

6.9 Statistics for the solution of the dry infiltration test case with
very dry initial conditions (ψ0 = −100m) using each combi-
nation of spatial averaging and mesh resolution with the PR
formulation. 169

6.10 Statistics for the solution of the dry infiltration test case with
very dry initial conditions (ψ0 = −100m) using each combina-
tion of spatial averaging and mesh resolution with the MPR
formulation. 170

6.11 Details of the three-dimensional tetrahedral meshes used to
test the water table test case. 176

6.12 Statistics for the solution of the water table case study us-
ing each combination of spatial averaging and mesh resolution
with the PR formulation. 177

6.13 Statistics for the solution of the water table test case using
each combination of spatial averaging and mesh resolution
with the MPR formulation. 178

6.14 Computational performance and mass balance results for the
unsaturated transport test case using different combinations of
spatial weighting schemes for the PC formulation. 185

6.15 Computational performance and mass balance results for the
unsaturated transport test case using different combinations of
spatial weighting schemes for the MMPC formulation. 186

6.16 Details of the triangular meshes used for testing the unsatu-
rated flow and contaminant transport test case. 187

6.17 Details of the triangular meshes used to for the flow tank ex-
periments. 189

6.18 Computational performance metrics for the tank steady test
case using upstream weighting and flux limiting as mesh res-
olution increases. 193

6.19 Details of the tetrahedral meshes used for testing the heap leaching
test case. 213

LIST OF TABLES xvi

6.20 Computational performance metrics for the heap leaching test
case using upstream weighting and flux limiting as mesh res-
olution increases. 213

6.21 Performance of the different choices of local preconditioner for
the dry infiltration and water table test cases, for serial and
distributed runs. 218

6.22 Computational efficiency and mass balance error for the dry infiltration
test case for both the PR and MPR formulations. 223

7.1 The name and number of nodes in each of the meshes used to
test the parallel performance of FVMPor. 230

7.2 The average time spent evaluating the residual and applying
the preconditioner for baseline 8-core simulations performed
using two-dimensional and three-dimensional meshes with a
similar number of nodes. 235

List of Algorithms

4.1 The steps in evaluating the residual function. 81

4.2 Algorithm for determining the scalar flow direction indicator
FDI(ϕ). 85

4.3 Method for determining the 1up nodes and corresponding flux
for each control volume in the domain. 88

4.4 Algorithm for determining the density at each face using pre-
computed edge weights. 90

4.5 Greedy multi-colouring algorithm used to find the minimal in-
dependent column set. 102

4.6 Forward and backward substitution for sparse triangular factors
that have been reordered according to a multi-coloring. 105

xvii

List of Source Listings

5.1 Definition of Pattern class. 122
5.2 The interface to the Communicator class 123
5.3 Replacing memory allocation in NVector library with a CUDA

call. 125
5.4 Replacing an NVector routine with a CUDA kernel. 126
5.5 Definition of Physics class that implements the residual evalu-

ation for the Richards’ equation model. 128
5.6 Definition of the block variable for the MPR model, and physics

for CPU and GPU implementation. 129
5.7 Code for computing fluid properties for Richards’ equation. . . 133
5.8 Flux assembly for the fluid mass [qw]j in three dimensions. . . 135
5.9 Source code for residual assembly of the PR formulation of

Richards’ equation. 137
5.10 Code for computing relative permeability at control volume

faces in a homogeneous medium. 141

xviii

Acknowledgements

Finishing a project in three years is not possible alone – it is a team effort.

To my principle supervisor Professor Ian Turner, thank you for showing
me just how much fun numerical analysis is in my undergraduate days, for
guiding me through my postgraduate studies, and being patient whenever I
started talking about cache.

I owe an enormous debt to Dr Timothy Moroney, who always had time to
chat about ideas, who taught me to talk object oriented, and without whose
help vectorlib would not have happened. Thanks Tim!

The work with GPUs wouldn’t have happened without the support of Pro-
fessor Kevin Burrage, who generously provided a GPU computer when I
mentioned that I thought GPUs might make my simulations run faster.

Thanks to Mark Harris and Maxim Neumov from NVIDIA for discussing the
inner workings of the CUSPARSE library with me, and to Qi Zhang who
dug up his old experimental results for me.

Thanks the many friends who have helped out, particularly towards the end
when things got strange. Your many acts of kindness made all the difference.

Thank you to my parents, who have been understanding and supportive
(often when they had a right not to be) over the years.

And thank you Joana. You have joined this adventure very late on, and
already made many sacrifices. I love you.

Ben Cumming.

September 2012.

Chapter 1
Introduction

Coastal aquifers are an important source of fresh water for domestic and

agricultural use in many parts of the world. The fresh water resources they

provide are sensitive to over-extraction and contamination due to both sea

water intrusion and anthropogenic pollution. These pressures are particularly

acute in many parts of Australia, where the majority of the population lives

in arid and semi-arid coastal regions.

Coastal groundwater resources require careful management to prevent over

extraction and to both prevent and remediate contamination. Computational

modelling is an important tool for providing insight into the complicated

hydrodynamics of groundwater flow and contamination, and for making pre-

dictions to inform resource management decisions. However, computational

modelling of groundwater flow and contaminant transport is challenging.

There are several reasons for this:

• First, computational models are based on mathematical descriptions of

groundwater flow and contaminant transport. A detailed model must

account for density-dependent flow and transport in porous media, and

in unconfined aquifers the presence of both water and air in the void

space of the aquifer in the unsaturated region directly below the ground

1

CHAPTER 1. INTRODUCTION 2

surface must also be considered. Furthermore, the partial differential

equations in the mathematical models can be very stiff, necessitating

the use of computationally intensive implicit time stepping methods.

• Second, the geology of aquifers can be complex and heterogeneous with

different materials such as sand, silt, clay and rock. The flow rates and

constitutive relationships associated with the different materials can

vary significantly. Unstructured meshes are useful for representing such

complicated geometry, yet they are also more complicated and difficult

than structured meshes to implement in software.

• Third, the regions to which models are applied are typically large, mea-

sured in the scales of hundreds of metres up to many kilometres. This

necessitates very large meshes, particularly for three-dimensional mod-

els, to accurately represent the aquifer and model the relevant physical

phenomena.

To handle the size and complexity of groundwater models, software for mod-

elling groundwater flow requires significant hardware resources. One way to

achieve this is to use clusters, which allow the computational problem to be

distributed across many computational nodes. However, such computational

resources are expensive and require specialist skills to maintain. As such,

they are not available to many scientists and engineers.

The recent advent of multi-core CPUs and many-core processors such as

GPUs1 has greatly increased the computational capabilities of powerful desk-

top computers and small clusters. However, to effectively utilise this com-

putational potential, algorithms must be designed and implemented to take

advantage of multi-core hardware.

Hence, a significant challenge in developing modern software for simulating

the hydrodynamics of coastal aquifers is that the software should not only

accurately model the physical phenomena — it should also be able to run

1Graphics Processing Units, named as such because these devices were originally in-
tended for accelerating graphics operations.

CHAPTER 1. INTRODUCTION 3

efficiently on available computational resources, be they those of a cluster,

GPUs, or a combination thereof.

1.1 Literature Review

Spatial Discretisation

There are many different numerical strategies for the solution of the partial

differential equations (PDEs) used to model density-dependent groundwater

flow and contaminant transport. Finite difference methods implemented in

MODFLOW and its descendants (Langevin and Guo, 2006) are widely used

– see for example Brovelli et al. (2007). However, finite difference methods

are not readily applicable to unstructured meshes.

The finite element method and finite volume method are the most widely-

used spatial discretisations for unstructured meshes. Examples of codes that

use finite elements include SUTRA (Voss, 1994), FEFLOW (Trefry and Muf-

fels, 2007) and Hydrus (Simunek et al., 2008). The HydroGeoSphere code

(Therrien et al., 2010) uses a hybrid control volume-finite element discreti-

sation2, and the TOUGH family of codes (Pruess, 2001) use a cell-centred

finite volume discretisation.

Finite element and finite volume methods discretise the domain using a mesh

composed of non-overlapping cells, with material properties typically taken

to be uniform over each cell. Finite element and cell-centred finite volume

methods form fluxes at cell edges where properties such as permeability may

be discontinuous, which requires some form of averaging to approximate the

permeability. This can have a large impact on accuracy and computational

efficiency of the method (Miller et al., 1998).

2The control volume-finite element discretisation used in HydroGeoSphere (Forsyth and
Kropinski, 1997) should not be confused with the alternative control volume-finite element
method used in this work, which is sometimes referred to as a finite volume element (FVE)
method (Ewing et al., 2002, Martinez, 2006)

CHAPTER 1. INTRODUCTION 4

Care must also be taken to ensure that fluxes across cell faces are consis-

tent to ensure local conservation of mass. The standard Galerkin finite el-

ement method has discontinuous velocity fields across cell faces, which are

not locally mass conservative, and require modification to in order ensure

oscillation-free, mass-conservative solutions (Kees et al., 2008). The mixed

hybrid finite element method (MHFE) and its variants ensure consistent

fluxes, however they require a discrete approximation of the temporal deriva-

tive (Farthing et al., 2003), which excludes the use of general integration

codes via the method of lines (MOL). Younes et al. (2009) and Fahs et al.

(2009) use a lumped MHFE method which can be used with MOL to simulate

density-driven flows and Richards’ equation3 respectively.

The control volume-finite element (CV-FE) discretisation (sometimes re-

ferred to as a finite volume element (FVE) method (Ewing et al., 2002,

Martinez, 2006)) is a vertex-centred finite volume method formulated on a

dual mesh that is based on an underlying finite element mesh. The method

uses shape functions, defined on the underlying finite element mesh, for in-

terpolation. The CV-FE method has been successfully applied to modelling

heat and mass transfer in wood drying (Turner and Perré, 2001, Perré and

Turner, 2002, Truscott, 2004), which is modelled with similar physics to that

for groundwater flow. The method has also been tested for saturated ground-

water flow and transport in two dimensions (Liu et al., 2002, Moroney and

Truscott, 2008).

The CV-FE discretisation is attractive for modelling flow in heterogeneous

porous media because fluxes are evaluated at quadrature points in the in-

terior of elements, where material properties are continuous and consistent

pressure and concentration gradients are reconstructed using finite element

shape functions. This ensures conservation of mass (Martinez, 2006), and

does not require the averaging of physical properties such as permeability.

3Richards’ equation is the most widely used model for describing variably-saturated
flow in porous media. It is a nonlinear parabolic equation derived by coupling a mass
conservation equation with Darcy’s Law (Bear, 1979).

CHAPTER 1. INTRODUCTION 5

The CV-FE method used in this research work should not be confused with

another method with the same name: the control volume-finite element

method proposed by Forsyth et al. (Forsyth, 1991, Forsyth and Kropinski,

1997) that is implemented in the HydroGeoSphere4 software package. The

approach taken by Forsyth et al. assigns material properties to each node,

without explicit treatment of the interface between control volumes and their

faces.

When the transport of the gas phase is considered unimportant in unsat-

urated media, constant gas phase pressure is assumed, and only the fluid

phase is modelled explicitly using Richards’ equation. Richards’ equation

is not particularly sensitive to monotonicity constraints, however under cer-

tain circumstances the use of central weighting on coarse meshes can lead

to oscillatory, non physical solutions (Forsyth and Kropinski, 1997, Diersch

and Perrochet, 1999). To avoid the possibility of this occurring, care must

be taken when reconstructing the relative permeability (mobility term) in

flux terms. Contaminant transport is modelled using a nonlinear advection-

diffusion equation that is more sensitive to spatial weighting (Neumann et al.,

2011), such that fine meshes must be used to obtain monotone solutions for

advection-dominated flows.

Upwind weighting of the mobility and advected terms gives oscillation free

solutions that are unconditionally monotone. However, the solutions can

suffer from excessive numeric diffusion (Patankar, 1980). Numeric diffusion

leads to the smearing of sharp interfaces, such as those formed by infiltrating

wetting fronts in dry soils, and in advection-dominated contaminant trans-

port. Flux limiting (van Leer, 1979) has been shown to significantly reduce

numeric diffusion in the solution of multiphase flow and transport in ground-

water (Forsyth et al., 1996, Unger et al., 1996), and with the CV-FE method

for wood drying (Turner and Perré, 2001, Perré and Turner, 2002, Truscott,

2004).

The pressure head formulation of Richards’ equation, which uses the pres-

4hydrogeosphere.org

hydrogeosphere.org

CHAPTER 1. INTRODUCTION 6

sure head as the primary variable, is generally not mass conservative. The

mixed formulation, proposed by Celia et al. (1990) is mass conservative when

discretised using a mass-conservative spatial discretisation, and can be imple-

mented easily using first-order implicit Euler temporal integration (Forsyth

and Kropinski, 1997). Tocci et al. (1997) investigated using the method of

lines (MOL) to formulating the discretised equations as a system of differen-

tial algebraic equations (DAEs) that were amenable to adaptive higher-order

integration libraries. They showed that higher-order integration improved

the mass balance and computational efficiency of the pressure head formula-

tion, making it preferable to first-order integration of the mixed form.

Kees and Miller (2002) proposed an alternative mixed formulation for Richards’

equation, whereby both fluid mass and pressure head are primary variables,

and an additional algebraic equation is imposed at each node. The resultant

DAE system was solved using higher-order implicit time stepping, and was

shown to be more accurate and mass conservative than the equivalent pres-

sure head formulation. The approach has been extended to mixed hybrid

finite element (Farthing et al., 2003) and stabilised finite element methods

(Kees et al., 2008) for solving Richards’ equation. However, it has not yet

been applied to coupled groundwater flow and contaminant transport.

Temporal Discretisation

Implicit temporal integration methods are used in groundwater modelling

due to their stability for both fine and coarse meshes (Unger et al., 1996),

and because they allow large time steps to be taken when solving the stiff

Richards’ equation. Adaptive first-order implicit time stepping is widely

used: the popular software package FEFLOW (Trefry and Muffels, 2007) uses

an adaptive predictor-corrector method; Hydrus (Simunek et al., 2008) uses

a method that ensures that the Courant and Peclet numbers do not exceed

preset limits; and HydroGeoSphere (Therrien et al., 2010) uses adaptive time

stepping based on the rate of change of variables and heuristic measures

CHAPTER 1. INTRODUCTION 7

relating to convergence of the Newton algorithm.

Using the method of lines (MOL), the spatial discretisation can be decou-

pled from the temporal integration. This gives a system of semi-discrete

differential algebraic equations (DAEs) with the general form

F (t,y,y′) = 0 (1.1a)

y(t0) = y0 (1.1b)

y′(t0) = y′0, (1.1c)

where time t ∈ [t0, tfinal], and y,y′ ∈ RN are vectors of primary variables

and their derivatives at mesh nodes. The nonlinear function F in (1.1a) is

referred to as the nonlinear residual function.

The system of DAEs in (1.1) can be solved using implicit, higher-order tem-

poral integration methods for DAE systems. Such libraries have been shown

to be well-suited to the solution of systems derived from the discretisation

of Richards’ equation (Tocci et al., 1997, Kees and Miller, 2002, Fahs et al.,

2009) and coupled density-driven flow and transport (Younes et al., 2006, Liu

et al., 2002, Moroney and Truscott, 2008). Furthermore, robust DAE solver

codes such as DASPACK and IDA5 (Hindmarsh et al., 2005) offer sophisti-

cated time step, order selection and error control according to user-specified

tolerances.

IDA is a higher-order implicit solver based on backwards differentiation for-

mulae (BDFs), which is part of the SUNDIALS suite of solvers (Hindmarsh

et al., 2005). IDA uses an inexact Newton-Krylov method to solve the nonlin-

ear system at each time step. The solution of nonlinear system using Newtons

method requires the solution of linear systems, for which the Krylov subspace

method GMRES Saad and Schultz (1986) is used.

An important point with the GMRES method is that it only requires the

operation of a matrix on a vector in the form of a matrix-vector product.

5computation.llnl.gov/casc/sundials

computation.llnl.gov/casc/sundials

CHAPTER 1. INTRODUCTION 8

The matrix-vector product can be approximated using difference quotients

of shifted nonlinear residual evaluations, in which case it is not necessary to

explicitly generate the iteration matrix (Kelley, 1995).

Heterogeneous Computing

Heterogeneous computer systems are broadly defined as computer systems

that use a combination of different computing units. In the context of scien-

tific computing, heterogeneous computers often use a combination of CPUs

(central processing units) and GPUs (graphics processing units) to acceler-

ate intensive computational tasks. In this section I will first review previous

work on implementing unstructured mesh codes on GPUs, then look at the

challenges associated with bringing implicit time stepping methods to GPUs.

GPUs were originally designed for specialised tasks in rendering computer

graphics. These tasks require the application of identical operations to large

sets of data, referred to as single instruction multiple data (SIMD), or data

parallel, operations. The use of GPUs in scientific computing is motivated by

the observation that many computationally intensive algorithms in scientific

computing are also data parallel.

To obtain optimal instruction and memory throughput on GPUs, the data-

access patterns of concurrently executing threads on the device6 must con-

form to strict guidelines. These guidelines are imposed by the hardware due

to the difficulty of serving thousands of simultaneous memory requests from

threads.

The connections between nodes, edges and faces in a mesh give rise to the

data access patterns associated with operations on the mesh. For structured

meshes, these connections have a regular structure, that give rise to regular

strided data access patterns. Programmers can take advantage of this a

6In a heterogeneous computer that uses both CPU and GPUs, the GPU and its attached
memory are referred to as the device, and the CPU and its memory are referred to as the
host.

CHAPTER 1. INTRODUCTION 9

priori knowledge of data structure to optimise mesh storage and the order in

which mesh elements are processed to meet these guidelines. Early adoption

of GPUs for the solution of PDEs focussed on structured meshes for this

reason (Göddeke et al., 2007, Walsh et al., 2009, Rostrup and De Sterck,

2010).

With unstructured meshes however, there is no a priori knowledge of the

connections between nodes, edges and faces in the mesh. This necessitates

the use indirect indexing to describe the connections. As a result, codes

for unstructured meshes that use GPUs are considerably more challenging

to implement efficiently that those for structured meshes. Examples of re-

search into implementing solvers for PDEs on unstructured meshes include

(Klöckner et al., 2009, Corrigan et al., 2010, Komatitsch et al., 2010, de la

Asuncin et al., 2011). Each of these papers focussed on steps to improve

memory throughput on unstructured meshes.

Corrigan et al. (2010) investigated a cell-centred finite volume method for

solving the Euler equations. They assigned one thread on the GPU to each

cell in the mesh. Each thread computed the temporal derivatives of local

variables in its cell from variable data at each of its vertices. This approach

minimises the limitations of memory bandwidth on GPUs by loading values

into shared and register memory on the GPU, computing the residuals lo-

cally, then copying the results back without any intermediate copying. The

downside of this approach is that it requires problem-specific and method-

specific kernels written and hand-tuned for a specific combination of physics

and hardware, which limits its portability.

Klöckner et al. (2009) implemented discontinuous Galerkin (DG) methods for

linear hyperbolic conservation laws. The authors focussed on using higher-

order spatial discretisations to improve memory throughput. Evaluation of

the DG discretisation was broken into four distinct stages. Of these stages,

three could be represented using dense matrix vector multiplication, an op-

eration that is more efficient as the order of the method increases.

CHAPTER 1. INTRODUCTION 10

The research in (Klöckner et al., 2009, Corrigan et al., 2010, Komatitsch

et al., 2010, de la Asuncin et al., 2011) focussed on the solution of hyperbolic

conservation laws, for which explicit time stepping methods such as Runge-

Kutta can be used. The main computational expense for explicit methods

is evaluating the spatial discretisation to form the right hand side. The

remaining operations are forming linear combinations of vectors, which can

be efficiently implemented on GPUs.

Implicit methods are generally more complicated to implement than explicit

methods because they require the solution of large, sparse linear systems.

However, as was discussed earlier, the matrix-free Newton-Krylov method

can use the nonlinear residual function to approximate matrix-vector prod-

ucts. If the nonlinear residual function can be implemented efficiently on the

GPU, then the remaining level 1 BLAS7 vector operations in the Newton

and GMRES methods are readily implemented on the GPU.

In the field of computer vision, Wu et al. (2011) investigated such a Newton-

Krylov solver using a preconditioned conjugate gradient method, with ma-

trices that had a special structure for which it was possible to implement an

efficient GPU preconditioner.

The linear systems that arise from the discretisation of the PDEs that govern

groundwater flow are often ill-conditioned. A preconditioner for general ma-

trices is required to ensure the timely convergence of Krylov subspace meth-

ods for such ill-conditioned matrices. Incomplete LU (ILU) factorisations are

very popular preconditioners for general matrices, however the algorithms for

factorising and applying sparse triangular factors are not inherently parallel.

Limited parallelism can be obtained for ILU methods by analysis of the

sparsity pattern of the sparse factors, which must be known a priori . A

7Basic Linear Algebra Subprograms (BLAS) is an interface standard for libraries that
implement basic low-level dense linear algebra operations. Level 1 BLAS contains vector
operations such as linear combinations, dot products and norms. The dense linear algebra
operations in BLAS are typically data-parallel, and can be implemented efficiently on
GPUS.

CHAPTER 1. INTRODUCTION 11

multi-colouring of the matrix graph associated with the sparse factors gives

sets of independent rows that can be computed concurrently (Saad, 2000).

Li and Saad (2010) investigated implementing incomplete Cholesky factori-

sations without fill in on the GPU, in which case the sparse factors have the

same sparsity pattern as the original matrix. Very recently, Heuveline et al.

(2011a,b) applied this approach to general matrices, and factors that have

the same sparsity pattern integer powers of the matrix. A sparse triangle

solver for based on the same principles has also been implemented recently

in the CUSPARSE library Naumov (2011).

1.2 Objectives of The Thesis

The objectives of this PhD research program will now be outlined.

Formulate a mass-conservative control volume finite element method

for modelling variably-saturated groundwater flow and contami-

nant transport in heterogeneous porous media

The control volume-finite element method has been successfully used to

model the drying of wood, a challenging heat and mass transfer problem

governed by similar physics as those that govern the hydrological processes

considered in this work (Turner and Perré, 2001). The method has also been

used to model sea water intrusion in confined aquifers in two dimensions

(Liu et al., 2002), however, to the best of our knowledge, there has been

no detailed attempt to apply the CV-FE discretisation to variably-saturated

groundwater flow and contaminant transport in two and three dimensions.

Due to the size of the domains used in groundwater models, it is necessary

to use relatively coarse mesh resolutions, particularly in three dimensions.

To ensure monotone solutions on coarse meshes, upstream weighting is typ-

ically used, however upstream weighting suffers from well-documented nu-

CHAPTER 1. INTRODUCTION 12

meric diffusion (Patankar, 1980). Flux limiting gives monotone solutions

with significantly reduced numeric diffusion on coarse meshes, and has been

used successfully for the CV-FE method in wood drying (Turner and Perré,

2001, Perré and Turner, 2002), and for other discretisations in multi-phase

groundwater flows (Forsyth et al., 1996, Unger et al., 1996). An important

part of this project will be to investigate flux limiters for the CV-FE discreti-

sation of groundwater flow and contaminant transport.

Extend the mixed formulation for Richards’ equation due to Kees

and Miller (2002) to the CV-FE method and coupled contaminant

transport

A modification of the mixed formulation for Richards’ equation was proposed

for finite difference methods by Kees and Miller (2002), and later applied to

mixed hybrid finite element methods (Farthing et al., 2003). The formula-

tion was shown to have superior accuracy and conservation of mass compared

to the pressure head formulation. In this work, the formulation will be in-

vestigated in the context of the CV-FE discretisation, and extended to the

coupled model for groundwater and contaminant transport.

An important feature of the modified mixed formulation is that, unlike the

mixed formulation of Celia et al. (1990), it is amenable to solution using

higher-order implicit methods for solving systems of DAEs. In this thesis

IDA (Hindmarsh et al., 2005), a library for solving DAE systems, will be

used. IDA uses a higher-order implicit time stepping scheme that uses a

matrix-free Newton-Krylov method. The Newton-Krylov method is well-

suited to solving very large problems, due to scalability of Krylov methods

on distributed memory computers (Saad, 2000, Chapter 11).

Compared to the pressure head formulation for Richards’ equation, the modi-

fied mixed formulation imposes an additional algebraic equation at each node

of the mesh, which doubles the size of the iteration matrix. Previous work

with the formulation (Kees and Miller, 2002, Farthing et al., 2003) showed

CHAPTER 1. INTRODUCTION 13

that size of the linear system can be reduced by half, to remove the com-

putational overhead imposed by the additional equation. In this thesis this

approach is applied to the preconditioner, so that the modified fixed formu-

lation can be implemented in a matrix-free context.

Implement the proposed methods in a flexible software package

that can be used on a desktop computer, and scale up to run on

large clusters

The large meshes and implicit time stepping methods make the solution of

detailed large-scale groundwater models computationally expensive. An aim

of this work is to write an efficient, modular and extensible software package

for density-dependent groundwater flow and contaminant transport.

The software package, called FVMPor (F inite V olume M ethod for Porous

Media) will be implemented in C++. Object oriented methods will pro-

vide modularity and flexibility in the code, while allowing for efficient imple-

mentation of performance-critical functions. Domain decomposition and the

message passing library MPI will be used for implementation on clusters.

The software has the following requirements:

• The software will model both unsaturated flow via Richards’ equation

and the full coupled model of Richards’ equation with contaminant

transport.

• Handle both two-dimensional and three-dimensional models with the

same code.

• Be able to be run on computers a wide range of computers, so that

small to medium-sized problems can be run on desktop computers,

and large-scale simulations on clusters.

• The code should be easy to extend to model other applications for

multi-phase flow and transport problems in heterogeneous media. To

CHAPTER 1. INTRODUCTION 14

facilitate this, the back end such as the temporal integration, precon-

ditioners and meshing should be independent of the model in question.

Investigate using GPUs to accelerate FVMPor

The vectorlib library8 is a templated C++ library that provides an intuitive

interface, familiar to users of MATLAB, for vector and matrix operations.

An aim of this work is to extend the vectorlib library so that it can store

and operate on data using different computational hardware. Two hardware

back-ends will be implemented: one for multiple-core CPUs; and another

that uses the CUDA programming language to utilise GPUs developed by

NVIDIA.

The CV-FE spatial discretisation of the governing equations will be imple-

mented using data-parallel operations provided by the vectorlib library. To

improve the GPU performance of the indirect indexing operations necessi-

tated by unstructured meshes, a numbering scheme for the nodes, edges and

faces in the mesh will be investigated. The numbering scheme will aim to

increase the correlation between the location of entities in space, and the

location of data associated with them, in memory.

To perform the entire implicit time stepping scheme on the GPU, the DAE

solution package IDA will be modified to use GPUs, and an ILU(0) pre-

conditioner for general matrices will also be implemented on the GPU. The

GPU implementation will then be benchmarked against the CPU code on a

high-performance workstation.

8Originally developed by Dr Timothy Moroney.

CHAPTER 1. INTRODUCTION 15

1.3 Contribution of The Thesis

The original contributions of the research presented here are summarised

below:

• The adaptation of the modified mixed formulation for Richards’ equa-

tion for the CV-FE method, and extending the formulation to the cou-

pled density dependent groundwater flow and contaminant transport,

is new work, presented in Chapter 3. The preconditioning strategy

presented in §3.3.2 for the modified mixed formulation, is also novel.

The results of this work were published (Cumming et al., 2011).

• The GPU implementation of a matrix-free Newton-Krylov framework

for implicit time stepping. To implement this, the popular open source

package IDA (Hindmarsh et al., 2005) was modified, and the source

code has been released under the BSD license, and can be downloaded

from github.com/bencumming/NVectorCUDA.

• The novel numbering and storage scheme designed to improve instruc-

tion and data throughput on GPUs for unstructured meshes presented

in §5.7.

• The GPU method for solving sparse triangle linear systems using multi-

colouring, used to apply an ILU(0) preconditioner on the GPU.

1.4 Overview of The Thesis

Chapter 1 – Introduction

The motivation for using high-performance computing methods in modelling

sea water intrusion is given. A review of the relevant literature is then pre-

sented. The chapter closes by stating the aims and novel contributions of

this research program.

github.com/bencumming/NVectorCUDA

CHAPTER 1. INTRODUCTION 16

Chapter 2 – Problem Formulation: Groundwater Flow and Salt

Transport

The mathematical model for variably-saturated groundwater flow and con-

taminant transport is given. The modified mixed formulation of Kees and

Miller (2002) for Richards’ equation is extended to include contaminant

transport. The aim of this chapter is to clearly state the mathematical de-

scription of the physics in a form suitable for the methods introduced in the

Chapter 3.

Chapter 3 – Computational Techniques: Control Volume-Finite

Element Method with Implicit Time Stepping

The first part of this chapter introduces the control volume-finite element

spatial discretisation, and formulate it for the variably-saturated flow and

contaminant transport equations. Close attention is paid to the treatment

of accumulation terms in the different formulations, and to methods for ac-

curately and consistently calculating fluxes at cell faces using flux limiting

and finite element shape functions.

The second part of the chapter gives an overview of the multi-step implicit

solution method employed by the IDA library for solving the system of dif-

ferential algebraic equations (DAEs) that arises from the finite volume dis-

cretisation. An efficient preconditioner suitable for the modified mixed for-

mulations is proposed.

Chapter 4 – Implementation: Algorithms and Data Structures

This chapter presents a high-level discussion of the algorithms, data struc-

tures and of the CV-FE discretisation and implicit time stepping imple-

mented in FVMPor. The chapter starts with an overview of steps taken in

an internal time step of IDA, followed by a discussion of the CV-FE spatial

CHAPTER 1. INTRODUCTION 17

discretisation. Then the method of domain decomposition used to distribute

the model over different computational nodes is presented. Finally meth-

ods are discussed for obtaining fine-grained and coarse-grained parallelism of

preconditioners based on sparse factorisations.

Chapter 5 – Implementation on GPU Clusters using C++, MPI

and CUDA

This chapter presents a description of the implementation of the algorithms

developed in Chapter 4 to run efficiently in on multi-core and GPU computer

sytems. This chapter starts with a discussion of general-purpose computing

on GPUs, with a focus on the issues that arise when using unstructured

meshes and an implicit time stepping scheme. Then the vectorlib library,

which implements data parallel operations on both multi-core CPU and GPU

hardware will be introduced. The rest of the chapter will discuss in detail the

implementation of the CV-FE discretisation, the IDA time stepping library

and preconditioners.

Chapter 6 – Model Verification

In this chapter the accuracy and numerical performance of the proposed

methods are investigated along with the computational performance of the

implementation.

In the first part of this chapter, the CV-FE discretisation and implicit solu-

tion strategy proposed in Chapter 3 are verified. Benchmark problems for

Richards’ equation, and for the full coupled model from the literature are

used to investigate accuracy of the solutions using the modified mixed for-

mulation, mass balance errors, and the accuracy of upstream weighting and

flux limiting.

The second part of this chapter investigates the performance of the higher-

CHAPTER 1. INTRODUCTION 18

order time stepping scheme. The efficacy of different preconditioners for the

serial and cluster implementations are investigated. Then, the effect of the

order of the time stepping method and error tolerances on mass balance

errors is discussed in detail.

Chapter 7 – Computational Performance

This chapter investigates the computational performance of the implemen-

tation. Residual evaluation, which involves computing the finite volume for-

mulation, is the main computational bottleneck of the CPU code. The GPU

version of the code performs this task very well, such that application of the

preconditioner in the Krylov method becomes the bottleneck. We investigate

different preconditioning strategies, and show that a combination of precon-

ditioning on CPU and GPU depending on the problem size and properties

produces very good speedup for the GPU over the whole solution process.

Chapter 8 – Conclusion and Discussion

The findings of this research project are discussed, and extensions of the work

are proposed.

Chapter 2
Problem Formulation: Groundwater
Flow and Salt Transport

The physics and associated mathematical descriptions of variably-saturated

flow coupled with salt transport in aquifers are well-established. In this chap-

ter we state the relevant conservation equations, boundary conditions and

closure relations that govern the flow phenomena considered in this thesis, in

a form that is amenable to solution using the numerical methods proposed in

Chapter 3. Except for the MMPC formulation presented in §2.4, the mate-

rial presented in this chapter is not original work, and the interested reader

can find detailed derivations of the equations in the definitive books by Bear

et al. (Bear, 1979, Bear and Verruijt, 1987, Bear and Cheng, 2010), and

the excellent review of numerical modelling for density dependent flow and

transport by Diersch and Kolditz (2002).

2.1 Governing equations

Flow in the shallow, unsaturated vadose zone is treated as a two-phase flow,

with a liquid (water) phase and a gas (air) phase. It is certainly possible to

19

CHAPTER 2. PROBLEM FORMULATION 20

model both phases explicitly using a two-phase formulation (Forsyth et al.,

1995, Kees and Miller, 2002). However, if the vadose zone is thin relative to

the depth of the aquifer it is reasonable to make the simplifying assumption

of constant gas-phase pressure (Bear and Cheng, 2010), such that only the

water phase, or wetting phase1, needs to be modelled explicitly.

Richard’s Equation is the most widely used model for variably-saturated flow

in porous media, derived by coupling a mass balance law with Darcy’s law

for flow in porous media. We consider the following mixed form of (Kees and

Miller, 2002, Farthing et al., 2003)

∂(ρθ)

∂t
= −∇ · (ρq) + ρS, (2.1)

where ρ is the density of the water, θ is the moisture content (see equa-

tion (2.13)) and S is a source term that accounts for the volumetric rate of

extraction, or injection of water.

The flow is assumed to have low Reynolds number, that is, the flow is slow and

the viscous terms outweigh the momentum terms. As such, the momentum

of the fluid is ignored, and the volumetric flux of fluid, q, is assumed to be

driven by a pressure gradient and gravity alone

q = −ksρ0gkrw

µ

(
∇ψ +

ρ

ρ0

∇z
)
. (2.2)

Equation (2.2) is often referred to as Darcy’s law, in which the gravitational

force, with acceleration g, is in the direction of the negative z-axis; ρ0 is the

density of fresh water; µ is the viscosity of water; ks and krw are the absolute

and relative permeability of the porous medium; and the pressure head is

defined in terms of fluid pressure p:

ψ =
p

ρ0g
. (2.3)

1The water phase is referred to as the wetting phase because in the presence of both
phases, the water phase adheres to, or wets, the solid matrix, and the air phase occupies
the remaining void space in the porous medium.

CHAPTER 2. PROBLEM FORMULATION 21

The volumetric flux q described by Darcy’s law in equation (2.2) can be

expressed in the simplified form

q = −Kkrw (∇ψ + ρ̂∇z) , (2.4)

where K = ksρ0g/µ is the hydraulic conductivity, and ρ̂ = ρ/ρ0 is the scaled

(dimensionless) density.

The mass balance for salt is described by an advection-dispersion equation

∂(cθ)

∂t
= −∇ · (cq) +∇ · (θDh∇c) + cS, (2.5)

where c is the salt concentration, defined as the mass of salt per unit volume

of water, and the final term on the right hand side is a source term. The flux

of salt is composed of advective and dispersive components. The first term

on the right hand side of equation (2.5) is the advective component, which

accounts for the bulk transport of salt at the water’s average velocity. The

second term accounts for the dispersive components, which are described in

detail in §2.2.

By defining the flux of water mass, qw, and flux of solute mass, qs, respec-

tively as

qw = ρq, (2.6a)

qs = cq − θDh∇c, (2.6b)

the mass balance equations can be written in the following form that is suit-

able for use in developing the finite volume spatial discretisation presented

in Chapter 3:

∂(ρθ)

∂t
= −∇ · qw + ρS; (2.7a)

∂(cθ)

∂t
= −∇ · qs + cS. (2.7b)

CHAPTER 2. PROBLEM FORMULATION 22

Parameter Dimensions Description
α LT 2M−1 coefficient of soil compressibility

αL L longtidudinal dispersivity

αT L transverse dispersivity

αvg L−1 emperical parameter for van Ganuchten-Mualem
model

β LT 2M−1 coefficient of compressibility

η M−1L3 density coupling coefficient

φ0 1 porosity of porous medium under no strain

ρ0 M L−3 density of fresh water, taken as 1000 kg m−3

µ M L−1 T−1 dynamic viscosity, taken as 10−3 kg m−1 s−1.

c0 M L−3 reference salt concentration, taken as 0 kg m−3.

Dm L2T−1 molecular diffusivity

g LT−2 acceleration due to gravity, taken as 9.82 m s−2

krw 1 relative permeability

ks L2 absolute permeability

K LT−1 hydraulic conductivity

nvg 1 emperical parameter for van Ganuchten psk model

mvg 1
emperical parameter for van Ganuchten psk model,
mvg = 1− nvg

p0 M L−1T−2 reference pressure, taken as 0 kg m−1s−2

Sr 1 residual saturation level.

Table 2.1: Model parameters, their dimensions and definitions. The dimensions
are given in terms of length (L), time (T) and mass (M).

2.2 Closure Of The System

The governing equations in the previous section refer to quantities, such as

krw, Dh, and ρ, that must be expressed by phenomenological laws, equations

of state and constitutive functions.

The saturation of water is the proportion of void space in the porous medium

CHAPTER 2. PROBLEM FORMULATION 23

occupied by water, defined as

Sw = Sr + (1− Sr)Se, (2.8)

where Sr is the residual moisture content, and Se is the effective saturation.

Various analytical descriptions have been proposed for the relationship be-

tween fluid pressure and effective saturation, including those of Brooks and

Corey (1966) and van Genuchten (1980). In this work we use the description

of van Genuchten (1980)

Se =

{
1 for ψ ≥ 0

[1 + (αvg|ψ|)nvg]−mvg for ψ < 0
, (2.9)

where the parameters αvg, nvg and mvg are specific to the porous medium,

determined empirically by way of experimental data.

The relative permeability, krw, of the porous medium is dependent on the ef-

fective saturation, with the following relationship proposed by Mualem (1976)

krw = S1/2
e

[
1− (1− S1/mvg

e)mvg
]2
. (2.10)

The functional relationships between saturation and pressure head, and rel-

ative permeability and pressure head in (2.10) by way of (2.9), are very

nonlinear, and are not Lipschitz continuous for 1 ≤ nvg < 2 (Miller et al.,

1998). The relationships also vary significantly between different materials

in a heterogeneous aquifer, as illustrated in Figure 2.1.

When pressure head is greater than or equal to zero (ψ ≥ 0), the wetting

phase completely occupies the void space of the porous medium – which is

said to be fully saturated – and saturation, relative permeability, and effective

CHAPTER 2. PROBLEM FORMULATION 24

−1 −0.8−0.6−0.4−0.2 0
0

0.2

0.4

0.6

0.8

1

ψ (m)

S
e

−1 −0.8−0.6−0.4−0.2 0
0

0.2

0.4

0.6

0.8

1

ψ (m)
k
r
w

(a) (b)

Figure 2.1: Typical saturation (a) and relative permeability (b) curves for dif-
ferent soil types: sand (black), clay (red) and loam (blue). The van Ganuchten
parameters for each soil type were taken from Hodnett and Tomasella (2002).

saturation are unity:

Se = 1,

Sw = 1,

krw = 1.

Density, ρ, depends on both salt concentration c and water pressure p, with

the general form

ρ = ρ0eβ(p−p0)+η(c−c0),

where p0 and c0 are a reference pressure and reference concentration respec-

tively, β is the coefficient of fluid compressibility, and η is the density cou-

pling coefficient. For the range of pressures and concentrations considered in

coastal aquifers, the parameters β and η are treated as small constants, and

the following linear form is assumed (Diersch and Kolditz, 2002)

ρ = ρ0 (1 + β(p− p0) + η(c− c0)) .

CHAPTER 2. PROBLEM FORMULATION 25

Taking the reference pressure to be atmospheric pressure, equivalent to ψ =

0, and the reference concentration to be that of fresh water, equivalent to

c0 = 0, and recalling the relationship between pressure head and pressure in

equation (2.3), density can be expressed as a function of pressure head and

concentration:

ρ = ρ0 (1 + ρ0gβψ + ηc) . (2.11)

In the general case, the solid matrix is also assumed to be deformable. If

only small volume changes are considered, then the matrix can be assumed

to behave like an elastic material, which gives the following functional form

for the porosity

φ = 1− (1− φ0)e−α(p−p0),

where α is the coefficient of matrix compressibility. Again, taking reference

pressure head to be atmospheric, and linearising gives the following approx-

imation for porosity as a function of pressure head

φ = φ0 + (1− φ0)αρ0gψ. (2.12)

The moisture content, θ, is the volumetric proportion of the medium occupied

by water

θ = φSw, (2.13)

and is a function of pressure head only. Given the moisture content, we define

two further variables, the mass of fluid per unit volume, M , and mass of salt

per unit volume, C:

M = ρθ, (2.14a)

C = cθ, (2.14b)

which are functions of both pressure and salt concentration.

The transport of salt is affected by both dispersive and diffusive fluxes. The

combined effect of these fluxes is accounted for in the coefficient of hydrody-

CHAPTER 2. PROBLEM FORMULATION 26

namic dispersion, Dh, a symmetric tensor defined by

Dh = D + D∗m, (2.15)

where D is the coefficient of dispersion and D∗m is the coefficient of molecular

diffusion.

The dispersive flux is due to small variations from the average flux of salt

arising from variations in the fluid velocity due to the structure of the porous

medium. The coefficient of dispersion is dependent on the average fluid

velocity, described using the Bear–Scheidegger dispersion relationship

D = (aL − aT)
vvT

‖v ‖2

+ aT ‖v ‖2 δij, (2.16)

where aL and aT are the longitudinal and transversal dispersivity respec-

tively; δij is the Kronecker delta; and v is the average fluid velocity, which

has the following relationship with the Darcy flux

q = θv. (2.17)

Diffusion of salt due to the random motion of salt molecules in the water

is modelled as a linear Fickian process, with the coefficient of molecular

diffusion defined

D∗m = DmT, (2.18)

where Dm is the molecular diffusivity, and the tensor T is the tortuosity of

the porous medium.

2.3 Boundary Conditions

At the boundary, two boundary conditions are assigned: one for the fluid

mass-balance equation, and one for the salt mass-balance equation. Detailed

CHAPTER 2. PROBLEM FORMULATION 27

derivations of the boundary conditions discussed here are given by Bear et

al. (Bear and Verruijt, 1987, Bear and Cheng, 2010). For the mass-balance

equations defined on a domain Ω with boundary Γ, we define the follow-

ing five boundary conditions. Types 1–3 pertain to the fluid-mass balance

equation (2.1), and Types 4–6 to the salt mass-balance equation (2.5).

Type 1: Prescribed Pressure Head

The Dirichlet boundary condition on pressure head has the general form

ψ(x, t) = ψb(x, t) on Γ, (2.19)

where the prescribed pressure head ψb is a function of space and time. If

the boundary is in contact with a body of water, a hydrostatic boundary

condition prescribes the pressure head as a function of the depth of the

water at the boundary:

ψb(z, t) = (1 + ηcb)(h(t)− z), (2.20)

where h(t) is the height of the surface of the external water body, η is the

density coupling coefficient, and cb is the concentration of salt in the external

water body.

Type 2: Prescribed Fluid Flux

When the flux of fluid normal to the boundary is known, such as rainfall on

the surface or recharge from an adjacent aquifer, the normal component of

the volumetric flux is prescribed using a Neumann boundary condition

q · n = qb(x, t) on Γ, (2.21)

CHAPTER 2. PROBLEM FORMULATION 28

where n is the outwards-facing unit normal to the boundary. Because the

normal is outwards-facing, a positive qb indicates flow leaving the domain,

and a negative qb indicates influx of fluid.

A special case of the prescribed flux boundary condition is the no-flux con-

dition:

q · n = 0 on Γ, (2.22)

which is imposed on impermeable boundaries.

Type 3: Mixed Beach

The hydrostatic boundary condition in (2.20) is only physically realistic at

points below the surface external water body, that is when z > h(t). When

modelling the shore line next to a body of water, such as a beach, parts of the

boundary may be above the surface of the external water body. Under such

conditions a mixed boundary condition is imposed: below the external water

level the hydrostatic Dirichlet condition in equation (2.20) is imposed, with

the sea level specified by h(t); and the no flow boundary condition in (2.22)

is imposed above the external water level, that is, for z > h(t).

When the water level changes over time, for example due to tidal fluctuations,

imposing two separate boundary conditions can cause convergence difficulties

for numerical time stepping schemes. An alternative way of formulating the

boundary condition is using a Cauchy condition, where the flux over the

boundary is formulated as

q · n = Rb(ψ − ψb(z, t)), (2.23)

where the prescribed pressure head at the boundary, ψb, is dictated by the

height of the tide, namely

ψb(z, t) = (1 + η)(h(t)− z). (2.24)

CHAPTER 2. PROBLEM FORMULATION 29

The penalty term Rb in equation (2.23) is chosen as follows

Rb =

{
0, z > h(t)
K
L
, z ≤ h(t)

, (2.25)

where K is hydraulic conductivity (under the assumumption of isotropic

conditions), and L is the length coupling scale (Chui and Freyberg, 2009).

At points above the tide, that is when z > h(t), the penalty term Rb is

zero so that a no flow boundary condition is imposed in equation (2.23), and

there is a flux over the boundary at points below the level of the tide. This

approach is equivalent to applying a free drainage boundary condition at

nodes on or below the level of the tide, where the value of Rb corresponds to

an equivalent conductance (Therrien et al., 2010). Small values of the length

coupling scale L give a large value of Rb, and enforce the Dirichlet boundary

condition more strictly. Analysis of the accuracy of this boundary condition

is presented in Appendix B.

Type 4: Prescribed Solute Concentration

A Dirichlet boundary condition can be applied when the salt concentration

is known at the boundary, with the general form:

c(x, t) = cb(x, t) on Γ. (2.26)

Type 5: Advective Solute Exchange

If fluid is allowed to pass through the boundary, and the concentration of

salt in the fluid external to the domain is known, such as at the sea–land

interface, the following Cauchy boundary condition can be imposed

qs · n = c∗(x, t)q · n on Γ, (2.27)

CHAPTER 2. PROBLEM FORMULATION 30

where the interchange concentration c∗ is defined by

c∗(x, t) =

{
c(x, t) q · n ≥ 0

cb(x, t) q · n < 0
.

Thus, if the flux of fluid is out of the domain, the concentration of the fluid

is that of the interior of the domain. Conversely, if flux is into the domain,

the concentratation of the fluid flowing over the boundary is that of the fluid

in the external body of water, cb. This type of boundary condition assumes

that the dispersive flux is small relative to the flux of solute due to advection

at the boundary, and is often written ∂c/∂n = 0.

2.4 Formulation

The choice of primary variables used in formulating the mass balance equa-

tions (2.1) and (2.5) dictates the formulation of the numerical method used

to solve the equations. In this work, we seek formulations that are amenable

to solution using the method of lines (MOL). The method of lines requires

that the temporal derivative in the accumulation term of each mass balance

equation is in terms of a primary variable. For example, the pressure head

formulation of Richards’ equation expresses the accumulation term in (2.1)

as a function of pressure head and its temporal derivative only (Tocci et al.,

1997). The pressure head formulation is not mass-conservative when solved

with first order time stepping, so the mixed formulation is used with first

order implicit time stepping (Celia et al., 1990). Tocci et al. (1997) showed

that the pressure head formulation is mass conservative when solved using

higher-order time stepping.

Kees and Miller (2002) proposed a variation on the mixed formulation of

Richards’ equation, that we call the modified mixed formulation. The pro-

posed formulation is amenable to solution using the method of lines and

higher-order implicit time stepping schemes, and is more accurate and mass

CHAPTER 2. PROBLEM FORMULATION 31

conservative than the pressure head formulation (Kees and Miller, 2002, Kees

et al., 2008). In this section the pressure head and modified mixed formula-

tions of Richards’ equation due to Kees and Miller (2002) are first presented.

Then, both formulations are extended to the coupled flow and salt transport

equations.

PR: The pressure head formulation for Richards’ equation

To derive the pressure head formulation of Richards’ equation, the chain

rule is applied to the accumulation term in the mixed formulation given in

equation (2.7a)

∂(ρθ)

∂t
=

d(ρθ)

dψ

∂ψ

∂t

=

(
θ

dρ

dψ
+ ρ

dθ

dψ

)
∂ψ

∂t

= n(ψ)
∂ψ

∂t
, (2.28)

where the functional form of the storage term

n(ψ) = θ
dρ

dψ
+ ρ

dθ

dψ
, (2.29)

can be determined from the closure relations in §2.2 (see Appendix A for

details). Substituting (2.28) for the accumulation term in (2.7a) gives the

pressure head form of Richards’ equation

n(ψ)
∂ψ

∂t
= −∇ · qw + ρS. (2.30)

The pressure head formulation as given by equation (2.30) is referred to

throughout this thesis as the PR formulation.

CHAPTER 2. PROBLEM FORMULATION 32

MPR: The modified mixed formulation for Richards’ equation

Kees and Miller (2002) proposed a formulation for the mixed form of Richards’

equation, where the variable M = ρθ, defined in (2.14a), is a primary variable

in addition to pressure head. The accumulation term in the mass balance

equation (2.7a) is then the derivative of the new variable

∂M

∂t
= −∇ · qw + ρS, (2.31)

and an additional algebraic relationship is also imposed, namely

M = ρθ. (2.32)

This particular formulation for Richards’ equation is referred to as the mod-

ified mixed formulation, or the MPR formulation, throughout this thesis.

PC: The two-variable formulation for the coupled flow and trans-

port model

Similarly to the PR formulation in equation (2.30), which formulates Richards’

equation in terms of pressure head in equation, the coupled flow and trans-

port equations (2.7a) and (2.7b) can be formulated in terms of pressure head

and concentration alone (Liu et al., 2006, Boufadel et al., 2011). The chain

rule is applied to the accumulation term of equation (2.7a)

∂(ρθ)

∂t
=
∂(ρθ)

∂ψ

∂ψ

∂t
+

d(ρθ)

dc

∂c

∂t

= n(ψ, c)
∂ψ

∂t
+ θηρ0

∂c

∂t
, (2.33)

and to the accumulation term in equation (2.7b):

∂(cθ)

∂t
= ca(ψ)

∂ψ

∂t
+ θ

∂c

∂t
. (2.34)

CHAPTER 2. PROBLEM FORMULATION 33

A detailed derivation of the analytical expressions for the coefficients, such

as n(ψ, c) = ∂(ρθ)/∂ψ and a(ψ) = dθ/dψ, of the temporal derivatives in

equations (2.33) and (2.34) are given in Appendix A.

Substituting (2.33) and (2.33) into the mass balance equations (2.7a) and (2.7b)

gives the pressure–concentration of the coupled flow and transport system

n(ψ, c)
∂ψ

∂t
+ θηρ0

∂c

∂t
= −∇ · qw + ρS, (2.35a)

ca(ψ)
∂ψ

∂t
+ θ

∂c

∂t
= −∇ · qs + cS. (2.35b)

The two variable formulation in (2.35) is referred to as the PC formulation

throughout this thesis.

MMPC: The modified mixed formulation for the coupled flow and

transport model

The modified mixed formulation for Richards’ equation was proposed by Kees

and Miller (2002) so that it would be possible to solve the mixed formulation

using the method of lines (MOL) in conjunction with higher-order implicit

time stepping. In this work, the formulation is extended to the transport

model described in equations (2.7).

The MPR formulation for Richards’ equation introduced the primary variable

M . To extend the mixed formulation to the coupled transport model, we

introduce primary variables for both the fluid mass and solute, M and C

respectively, defined in equation (2.14). The mass balance equations in (2.7)

are formulated explicitly in terms of the new primary variables, along with

pressure head and concentration

∂M

∂t
= −∇ · qw + ρS, (2.36a)

∂C

∂t
= −∇ · qs + cS. (2.36b)

CHAPTER 2. PROBLEM FORMULATION 34

These equations are coupled with the following algebraic expressions for mass

and concentration

M = ρθ, (2.37a)

C = cθ. (2.37b)

This modified mixed formulation for the coupled flow and transport model has

four variables and four equations, and is referred to as the MMPC formulation

throughout this thesis.

2.5 Conclusions

This chapter introduced a set of governing equations and boundary condi-

tions used to model variably-saturated fluid flow and coupled contaminant

transport. The equations were expressed in a form that is amenable to solu-

tion using the control volume-finite element spatial discretisation and time

stepping scheme that will be introduced in the following chapter.

Chapter 3
Computational Techniques:
Control Volume-Finite Element
Method with Implicit Time Stepping

Numerical solution of the transient mass balance equations for variably-

saturated flow and contaminant transport specified in Chapter 2 involves

both spatial and temporal discretisation. This chapter introduces these dis-

cretisations, along with their associated numerical techniques, and is organ-

ised as follows. In §3.1 the finite element mesh and the dual mesh used in

the spatial discretisation are introduced. The control volume-finite element

spatial discretisation of the mass balance equations is formulated in §3.2, to

give semi-discrete systems of differential algebraic equations by means of the

method of lines. The final part of the chapter, §3.3, discusses a higher-order,

implicit time stepping scheme that uses an inexact Newton-Krylov method.

35

CHAPTER 3. COMPUTATIONAL TECHNIQUES 36

3.1 The Mesh

The control volume-finite element (CV-FE) method discretises the continu-

ous mass balance formulations1 in space. To this end, it employs a discrete

geometric representation of the domain and its boundary using a mesh. More

precisely, the CV-FE formulation is carried out using a dual mesh, which is

itself derived from a finite element mesh. In this section, the finite element

mesh is first presented, followed by a description of the dual mesh.

3.1.1 The Finite Element Mesh

An example of a two-dimensional domain comprising two different porous

media and a corresponding finite element mesh of triangle and quadrilateral

elements is illustrated in Figure 3.1. The finite element mesh discretises the

domain Ω into a set of non-overlapping convex polyhedra, called elements,

such that

Ω =
nε⋃

j=1

εj, (3.1)

where E = {ε1, ε2, . . . , εnε} is the set of all elements, and nε is the number of

elements, in the mesh. The vertices of the elements are called nodes, and the

set of all nodes is labelled N = {n1, n2, . . . , nnn}, where nn is the number

of nodes in the mesh. The nodes that form the vertices of each element are

connected by one-dimensional line segments, called edges2. The set of all

edges in the domain is labelled E = {e1, e2, . . . , ene}, where ne is the number

of edges in the domain.

Finite element meshes can be constructed using a wide variety of element

types. The software developed in this thesis, called FVMPor, uses the ele-

ment types illustrated in Figure 3.2: triangle and quadrilateral elements in

1The PR and MPR formulations for Richards’ equation, and the PC and MMPC for-
mulations for the coupled flow and transport model, as formulated in §2.4.

2It is important to note that edges are one-dimensional line segments between adjacent
nodes in the mesh in both two and three dimensions.

CHAPTER 3. COMPUTATIONAL TECHNIQUES 37

(a)

(b)

Figure 3.1: (a) A heterogeneous two-dimensional domain, where the colour rep-
resents the material. (b) A finite element mesh of the domain, composed of both
quadrilaterals and triangles. Material properties are specified on a per-element
basis, such that the material properties are uniform in each element.

two dimensions; and tetrahedral and hexahedral elements in three dimen-

sions. These are the most widely-used element types supported by mesh

generation software, and can be used to form both structured and unstruc-

tured representations of domains.

3.1.2 The Dual Mesh

The CV-FE method is a vertex-centred finite volume method, formulated on

a dual mesh composed of control volumes. The first step in constructing the

dual mesh is to form sub-control volumes and their faces. In two dimensions,

CHAPTER 3. COMPUTATIONAL TECHNIQUES 38

e1

e2e3

e1

e2

e3

e4

n1

n2

n3

n1

n2

n3n4

(a) (b)

n1

n3

n2

n4e1

e5e2

e4e3

e6

n1

n2

n3

n4

n5

n8

n7

n6

e1

e2

e3

e4

e8

e11

e12

e9

e7

e5

e6

e10

(c) (d)

Figure 3.2: Elements with nodes and edges marked. Note that for both two-
dimensional and three-dimensional elements, edges are one-dimensional line seg-
ments that join two ajacent nodes in an element. (a) A two-dimensional triangle.
(b) A two-dimensional quadrilateral. (c) A three-dimensional tetrahedron. (d) A
three-dimensional hexahedron.

a sub-control volume is a quadrilateral formed by joining the centroid of

an element with the midpoint of each of the element’s edges, as illustrated

in Figure 3.3(a)–(b). The sub-control volume faces are the line segments

that join the element centroid and edge midpoints. In three dimensions,

control volume faces are quadrilaterals, formed by joining edge midpoints,

face centroids and the centroid of an element, and the resultant sub-control

CHAPTER 3. COMPUTATIONAL TECHNIQUES 39

element
entroid
sub-
ontrol
volume

nij

xc
j

CV
fa
es

fa
e
area
Aj

ni ni

(a) (b)

Material 1

Material 2

ni

Ωi

Γi

(c)

Figure 3.3: Construction of a sub-control volume around a node, ni, for triangular
(a) and quadrilateral (b) elements. Control volume faces are formed by joining the
centroid of the element with the midpoint of the element edges, and the centre of
face fj is denoted xcj with outward facing normal nij . A control volume Γi and
its boundary Γi are illustrated in (c). Each sub-control volume is assigned the
material properties of its element.

volume is a hexahedron as illustrated Figure 3.5. Sub-control volumes that

are adjacent to the domain boundary are formed in the same manner as

for interior sub-control volumes, with additional faces on the boundary, as

illustrated in Figure 3.4.

CHAPTER 3. COMPUTATIONAL TECHNIQUES 40

boundary
ontrol volume fa
es

interior
ontrol volume fa
es

ni

Figure 3.4: Construction of a control volume for a node ni that lies on the bound-
ary. Extra boundary control volume faces are defined on boundary edges.

A control volume is then formed around each node in the finite element mesh.

The control volume for a node is composed of the sub-control volumes that

share the node as a vertex. For example, the two-dimensional control vol-

ume in Figure 3.3(c) is composed of six sub-control volumes – one from each

of the elements that share the node as a vertex. Material properties of the

porous media are defined on a per-element basis, so that material proper-

ties are constant in each element, and each sub-control volume and control

volume face has the same material properties as its parent element. In this

manner, material properties are defined in a piecewise constant manner over

the volume and surface of each control volume, as illustrated in Figure 3.3(c).

The set F = {f1, f2, . . . , fnf} is the set of all control volume faces in the dual

mesh, where nf is the number of control volume faces in the dual mesh. The

set of interior control volume faces (those that do not lie on the boundary)

is denoted FI , while the set of boundary faces is denoted FB. The set of all

sub-control volumes in the domain is denoted S = {s1, s2, . . . , sns}, where ns

is the number of sub-control volumes. The sets of control volume faces and

sub-control volumes that define the control volume Ωi and its boundary Γi

are labelled Fi and Si respectively.

CHAPTER 3. COMPUTATIONAL TECHNIQUES 41

b

b

b

b

b
b

b

ni
edge

midpoint

element

entroid

element fa
e

entroid

(a)

(b)

Figure 3.5: (a) Construction of a sub-control volume for a tetrahedral element.
The sub-control volume has three quadrilateral faces whose edges are formed by
joining the centre of the element, its faces, and its edges. Sub-control volumes have
the same hexahedral shape for both tetrahedral and hexahedral three-dimensional
meshes. (b) A control volume for an unstructured tetrahedral mesh.

The volume of the control volume Ωi is the sum of the volumes of its sub-

control volumes

∆i =
∑

sj∈Si
δj, (3.2)

where ∆i is the volume of Ωi, and δj is the volume of the sub-control volume

sj. Additionally, the area of the control volume face fj is Aj. We note that

to allow the mesh description to apply in both two and three dimensions,

CHAPTER 3. COMPUTATIONAL TECHNIQUES 42

we have used semantic flexibility when assigning the properties of “volume”

and “area” to two-dimensional control volumes and faces respectively (these

quantities actually describe area and length.)

An important property of the dual mesh is that the description of sub-control

volumes and their faces is independent of the element type in the finite el-

ement mesh; in two dimensions sub-control volumes are quadrilaterals with

line segment faces, and in three dimensions sub-control volumes are hex-

ahedra with quadrilateral faces. This simplifies the use of mixed meshes,

composed of different element types, such as that illustrated in Figure 3.1.

3.1.3 Interpolation

The CV-FE method uses interpolation to reconstruct values of pressure head

and concentration, along with their gradients, at the centre of each control

volume face. To this end it uses finite element shape functions defined on

the finite element mesh (Pepper and Heinrich, 2006).

The nodal shape functions, Ni(x), are defined for each node of the element

ε`, such that the following constraints are satisfied:

Ni(xj) = δij, at node nj, (3.3a)
∑

k∈Nε`

Nk(x) = 1, everywhere in the solution domain, (3.3b)

where xj is the location of node nj, δij is the Kronecker delta, and Nε` is the

set of node indices for the vertices of the element ε`.

Shape function interpolation seeks to reconstruct a continuous function

ϕ(x), x ∈ Ω, (3.4)

given the value of ϕ at the nodes of the finite element mesh. For each element

ε` of the mesh, we define an interpolation function s`(x) that reconstructs

CHAPTER 3. COMPUTATIONAL TECHNIQUES 43

the value of ϕ inside the element as a linear combination of the value of ϕ at

the vertices of the element, with weights given by the shape functions:

s`(x) =
∑

k

ϕkNk(x), ∀x ∈ ε`, (3.5)

where ϕ = [ϕ1, ϕ2, . . . , ϕnn]T is a vector of the nodal values of ϕ. In (3.5)

the summation is implicitly over the vertices of ε`, that is k ∈ N`, for brevity

of exposition. The interpolation function (3.5) has the important property

that it recovers the value of ϕ exactly at each vertex of ε` by virtue of the

constraint in (3.3a)

s`(xi) = ϕi, ∀i ∈ Nε` , (3.6)

Furthermore, the gradient ∇ϕ(x) can then be approximated by taking gra-

dients of the individual shape functions in (3.6):

∇s`(x) =
∑

k

ϕk∇Nk(x), ∀x ∈ ε`. (3.7)

We will now derive shape function interpolation weights for triangular and

tetrahedral elements. The weights for quadrilaterals and hexahedra are given

in Appendix C.

Shape function interpolation on triangles

For a triangular element we use the following linear interpolation function

s`(x) = α1 + α2x+ α3y, (3.8)

where x = (x, y)T in two dimensions. By specifying that the interpolation

function (3.8) recovers the values of ϕ at the three vertices of the triangle

CHAPTER 3. COMPUTATIONAL TECHNIQUES 44

according to (3.6), the following system of equations is obtained

ϕ1 = α1 + α2x1 + α3y1

ϕ2 = α1 + α2x2 + α3y2 , (3.9)

ϕ3 = α1 + α2x3 + α3y3

where the subscripts denote a local numbering of coordinates and variables

at the vertices of the triangle. The linear system in (3.9) has the following

matrix form



ϕ1

ϕ2

ϕ3


 =




1 x1 y1

1 x2 y2

1 x3 y3






α1

α2

α3


 (3.10a)

or

ϕε` = Cε`αε` , (3.10b)

where ϕε` is a vector of ϕ at the vertices of ε`, and αε` is a vector of the

coefficients in the interpolation function (3.8). From (3.8) and (3.10), the

value of ϕ can be reconstructed at a point x ∈ ε` as follows

sε`(x) =
[
1 x y

]
C−1
ε`
ϕε` . (3.11)

This defines the shape function weights

N (x) =
[
1 x y

]
C−1
ε`
, (3.12)

where N (x) is a vector of the shape function weights. Writing the weights

as a vector in (3.12) makes it possible to express the summation in (3.5) as

a dot product

s`(x) = N (x) ·ϕε` ∀x ∈ ε`. (3.13)

It is interesting to note that the shape function weights in (3.12) are de-

pendent only on the geometry of the element ε`, and not the value of the

CHAPTER 3. COMPUTATIONAL TECHNIQUES 45

function ϕ. This means that the same weights can be used to interpolate dif-

ferent variables (for example pressure head and concentration in the models

considered in this thesis.)

The partial derivatives of ϕ can be found by differentiating (3.12)

∂N

∂x
=
[
0 1 0

]
C−1
ε`

(3.14a)

∂N

∂y
=
[
0 0 1

]
C−1
ε`
, (3.14b)

which are constant in ε`, and as such the gradient may not be continuous

at the interface between elements. However, the CV-FE discretisation uses

shape functions to determine gradients at the centroid of control volume

faces, where the reconstructed gradient is continuous.

Shape function interpolation on tetrahedra

For a tetrahedron the following linear interpolation function is used

s`(x) = α1 + α2x+ α3y + α4z, (3.15)

where x = (x, y, z)T in three dimensions. The coefficient matrix in this case

is

Cε` =




1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4



, (3.16)

CHAPTER 3. COMPUTATIONAL TECHNIQUES 46

and the shape functions and their derivatives are defined by

N (x) =
[
1 x y z

]
C−1
ε`

(3.17a)

∂N

∂x
=
[
0 1 0 0

]
C−1
ε`

(3.17b)

∂N

∂y
=
[
0 0 1 0

]
C−1
ε`

(3.17c)

∂N

∂z
=
[
0 0 0 1

]
C−1
ε`

(3.17d)

where, as was the case for triangles, the gradient weights are constant, re-

sulting in a piecewise constant gradient reconstruction.

3.2 The Control Volume-Finite Element

Method

The CV-FE discretisation proceeds by integrating the mass balance laws

for the fluid and solute, equations (2.7a) and (2.7b) respectively, over each

control volume

∫

Ωi

∂(ρθ)

∂t
dV +

∫

Ωi

∇ · qw dV =

∫

Ωi

ρS dV, (3.18a)

∫

Ωi

∂(cθ)

∂t
dV +

∫

Ωi

∇ · qs dV =

∫

Ωi

cS dV. (3.18b)

Gauss’ divergence theorem is applied to the integrals of the flux terms in

(3.18) to express them as surface integrals

∫

Ωi

∇ · qα dV =

∫

Γi

qα · n dσ, (3.19)

where n is the unit outward-facing normal to the control volume surface Γi.

Equations (3.18a) and (3.18b) can be represented in the following general

CHAPTER 3. COMPUTATIONAL TECHNIQUES 47

form

volume integral︷ ︸︸ ︷∫

Ωi

∂Xα

∂t
dV

︸ ︷︷ ︸
accumulation term

+

surface integral︷ ︸︸ ︷∫

Γi

qα · n dσ

︸ ︷︷ ︸
surface flux

=

volume integral︷ ︸︸ ︷∫

Ωi

Sα dV

︸ ︷︷ ︸
source term

, (3.20)

where Xα is the conserved quantity (Xw = M = ρθ for the water, and

Xs = C = cθ for salt), qα is the flux (qw and qs in equation (2.6)), and Sα

is the appropriate source term (Sw = ρS and Ss = cS).

The finite volume method seeks to approximate the integrals in the conser-

vation equation (3.20) using the values of the variables at the nodes, and

information provided by boundary conditions for control volumes that lie on

the boundary (Ferziger and Perić, 2002).

Volume averaging

Before discussing the discretisation of the accumulation and source terms,

the concept of a volume average must be introduced. The volume average of

a quantity γ is the average value of γ over a control volume, which has the

integral definition:

γi =
1

∆i

∫

Ωi

γ dV, (3.21)

where ∆i is the volume of the control volume Ωi. In the most general case, γ is

a function of pressure head, concentration and material properties γ(ψ, c;P),

where P denotes the material properties. The volume average in (3.21) can be

approximated in terms of nodal values for pressure head and concentration:

γi ≈
1

∆i

∫

Ωi

γ(ψi, ci;P) dV. (3.22)

If γ is not dependent on material properties (as is the case for density ρ, which

is only dependent on concentration and pressure head), the approximation

CHAPTER 3. COMPUTATIONAL TECHNIQUES 48

to the volume average in (3.22) simplifies to

γi ≈ γ(ψi, ci)

= γi, (3.23)

where the value of γ at the node is taken as the volume average.

If γ is dependent on material properties (for example moisture content θ),

the approximation to the volume average in (3.22) is a weighted sum of the

average value in each of its constituent sub-control volumes

γi =
1

∆i

∑

sj∈Si

∫

sj

γ dV

≈ 1

∆i

∑

sj∈Si
δjγ(ψi, ci;Pj), (3.24)

where δj is the volume of sub-control volume sj, and γ(ψi, ci;Pj) is a function

of pressure head and concentration at node ni and the material properties

defined for the sub-control volume sj. In the heterogeneous case, the value

of γ(ψi, ci;Pj) is not defined at the node, because material properties P are

discontinuous at that point, and the volume average is used instead to define

the variable at the node

γi ≡
1

∆i

∑

sj∈Si
δjγ(ψi, ci;Pj). (3.25)

3.2.1 Accumulation Terms

The treatment of the accumulation terms is dependent on the formulation.

First, we consider the modified mixed formulations: the MPR and MMPC

formulations for Richards’ equation and the coupled transport model respec-

tively. For both of these formulations, the temporal derivative can be taken

CHAPTER 3. COMPUTATIONAL TECHNIQUES 49

outside the integral

∫

Ωi

∂Xα

∂t
dV =

d

dt

∫

Ωi

Xα dV, (3.26)

to which we apply the volume average definition in (3.21)

∫

Ωi

∂Xα

∂t
dV = ∆i

d

dt
Xα
i . (3.27)

We define a primary variable for the discretised system Xi as the volume

average as per (3.24)

Xα
i =

1

∆i

∑

j∈Si
δjX

α(ψi, ci;Pj); (3.28)

specifically, we define the primary variables Mi and Ci:

Mi = Xw
i =

ρi
∆i

∑

j∈Si
δjθ(ψi;Pj) (3.29)

Ci = Xs
i =

ci
∆i

∑

j∈Si
δjθ(ψi;Pj). (3.30)

Then, the accumulation terms for the modified mixed formulation in equa-

tions (3.18a) and (3.18b) can be expressed as derivatives of the primary

variables:

1

∆i

∫

Ωi

∂(ρθ)

∂t
dV ≈ dMi

dt
(3.31a)

1

∆i

∫

Ωi

∂(cθ)

∂t
dV ≈ dCi

dt
. (3.31b)

The discretisation of the accumulation terms is different for the reduced PR

and PC formulations, where the conserved quantities Xα are not primary

variables. The accumulation term for the PR formulation in equation (2.30),

CHAPTER 3. COMPUTATIONAL TECHNIQUES 50

is partitioned into the contributions from each sub-control volume

∫

Ωi

n(ψ;P)
∂ψ

∂t
dV =

∑

sk∈Si

∫

sk

n(ψ;Pk)
∂ψ

∂t
dV .

The accumulation term is then approximated by using the nodal pressure

head value ψi over the control volume:

∫

Ωi

n(ψ;P)
∂ψ

∂t
dV ≈

∑

sk∈Si

∫

sk

n(ψi;Pk)
∂ψi
∂t

dV

=
∑

sk∈Si
δkn(ψi;Pk)

dψi
dt

.

This is in the form of the volume average in (3.25), so that the discretised

accumulation term is

∫

Ωi

n(ψ;P)
∂ψ

∂t
dV ≈ ∆ini

dψi
dt

, (3.32)

where we note that the volume average of the storage term ni is determined

using equation (3.25).

Similarly, for the PC formulation, the discrete form of the accumulation term

for the fluid mass balance equation (2.35a) is

∫

Ωi

(
n(ψ, c)

∂ψ

∂t
+ ηρ0θ

∂c

∂t

)
dV ≈ ∆i

(
ni

dψi
dt

+ ηρ0θi
dci
dt

)
, (3.33a)

and for the solute conservation law (2.35b)

∫

Ωi

(
ca(ψ)

∂ψ

∂t
+ θ

∂c

∂t

)
dV ≈ ∆i

(
ciai

dψi
dt

+ θi
dci
dt

)
. (3.33b)

The volume average of ai, ni and θi are dependent on material properties, and

are determined using equation (3.25). The nodal value of concentration, ci,

is used for the volume average, and the parameters η and ρ0 are independent

of material properties.

CHAPTER 3. COMPUTATIONAL TECHNIQUES 51

3.2.2 Source Terms

The volume integrals of the source terms are independent of material prop-

erties, and can be approximated as

1

∆i

∫

Ωi

ρS dV = (ρS)i ≈ ρ∗iSi, (3.34a)

1

∆i

∫

Ωi

cS dV = (cS)i ≈ c∗iSi, (3.34b)

where Si is the volume average of the volumetric source term for water, and

ρ∗i and c∗i are selected dependent on whether there is a source or sink, for

example with the concentration:

c∗i =

{
ci Si < 0,

c of source fluid Si ≥ 0.
(3.35)

3.2.3 Surface Fluxes

The surface integral of flux over the control volume surface in (3.20) is the

sum of contributions from individual control volume faces

∫

Γi

qα · n dσ =
∑

fj∈Fi

∫

fj

qα · nij dσ, (3.36)

where nij is the outward-facing normal to the face fj. The integral over each

face in (3.36) is approximated using the midpoint rule

∫

fj

qα · nij dσ ≈ Aj [qα]j · nij, (3.37)

where [qα]j is the flux at xcj the barycentre of face fj.

At this point we introduce some new notation to distinguish between quan-

tities that are known at xcj, and quantities that must be approximated from

CHAPTER 3. COMPUTATIONAL TECHNIQUES 52

variables defined at nodes:

λj, λ known at xcj,

[λ]j , λ approximated at xcj.
(3.38)

This notation was used when specifying the midpoint approximation of the

flux integral in equation (3.37), where the face area Aj is known, and the

flux [qα]j is approximated.

The functional forms of the fluxes defined in equations (2.6a)–(2.6b), are

repeated here for reference

fluid mass flux: qw = ρq, (3.39a)

solute flux: qs = cq − θDh∇c, (3.39b)

where q is the Darcy flux

q = −krwK (∇ψ + ρ̂∇z) . (3.40)

To approximate the fluid and solute fluxes in equation (3.39) at each control

volume face fj, the value and gradient of pressure head and concentration,

secondary variables, and parameters associated with the material properties

must be determined at the centroid, xcj, of the face.

First, we consider parameters associated with material properties of the

porous medium. The material properties are defined in a piecewise-constant

manner, with discontinuities at the interface between elements. Each face

centroid xcj is on the interior of an element, where material properties are

continuous and may expressed exactly using the notation in (3.38) (for ex-

ample, the hydraulic conductivity Kj). This is an advantage of the CV-FE

method over finite element and cell-centred finite volume methods, which

evaluate fluxes at element edges, where material properties may be discon-

tinuous. Some form of averaging is required to determine the material prop-

erties for these methods, which can have a considerable negative impact on

the convergence of the chosen numerical scheme (Miller et al., 1998).

CHAPTER 3. COMPUTATIONAL TECHNIQUES 53

The gradient of pressure head and concentration is reconstructed using the

nodal shape function interpolation function defined in (3.6)

[∇ψ]j =
∑

k

ψk∇Nk(x
c
j), (3.41a)

[∇c]j =
∑

k

ck∇Nk(x
c
j). (3.41b)

The shape function interpolation function defined in (3.5) is also used to

approximate the scaled density in the buoyancy term, ρ̂ = ρ/ρ0

[ρ̂]j =
1

ρ0

∑

k

ρkNk(x
c
j). (3.42)

Given the material properties, the pressure head gradient in (3.41a) and the

density in the buoyancy term in (3.42), the Darcy flux at face fj can be

written

[q]j = − [krw]j Kj

(∑

k

ψk∇Nk(x
c
j) +

1

ρ0

(∑

k

ρkNk(x
c
j)

)
∇z
)
, (3.43)

where the relative permeability [krw]j is to be determined using edge-based

weighting discussed later in this section.

We note that the approximation of the Darcy flux in equation (3.43) is con-

sistent by virtue of both the material properties and the gradient being con-

tinuous at the point xcj. The consistent flux approximations make the CV-FE

discretisation mass conservative (Martinez, 2006).

Dispersion terms

The dispersion tensor Dh defined in (2.15)–(2.18) is a function of average fluid

velocity v. In equation (3.39b) the dispersion tensor is scaled by moisture

content. The resultant tensor, θDh, can be expressed in terms of the Darcy

CHAPTER 3. COMPUTATIONAL TECHNIQUES 54

flux by recalling the relationship between flux and velocity in (2.17), namely

q = θv:

θDh = θDmT + (αL − αT)
qqT

‖ q ‖2

+ αT ‖ q ‖2 I,

which is approximated at the face fj

[θDh]j = [θ]j DmjTj + (αLj − αT j)
[
qqT

‖ q ‖2

]

j

+ αT j

∥∥∥ [q]j

∥∥∥
2

I. (3.44)

Turner and Perré (2001) investigated harmonic and arithmetic averaging for

approximating the moisture content [θ]j, and Truscott (2004) used shape

functions. They found that there was little difference between these ap-

proaches, so in this work we use the arithmetic average

[θ]j =
1

2

(
[θ]front

j + [θ]back
j

)
, (3.45)

where [θ]front
j and [θ]back

j are the moisture contents determined at the front

and back nodes of the edge to which face fj is attached3, as illustrated in

Figure 3.6.

Advection and mobility terms

Careful treatment of advection terms is essential to obtain physically realistic

numerical solutions. There are three such terms in the flow and transport

models considered in this thesis: the mobility term [krw]j, and the advected

variables [ρ]j and [c]j. If shape function interpolation is used to determine

these values at control volume faces, as they are for the gradients and the

buoyancy term in (3.41) and (3.42), the solution can exhibit physically un-

realistic, non-monotone behaviour (Patankar, 1980, Turner and Perré, 2001,

Truscott, 2004). Edge-based spatial weighting schemes, such as upstream

weighting and flux limiting, are used instead to ensure physically realistic

3This approach is valid in both two and three dimensions, because in both cases edges
are one-dimensional line segments.

CHAPTER 3. COMPUTATIONAL TECHNIQUES 55

nba
k = nup

nfront = ndown

[λ]upj

[λ]downj

xc
j

nj

edge ek

fa
es on

edge ek

�ow

dire
tion

Figure 3.6: An edge and the control volume faces attached to it in a two-
dimensional mesh. The edge has a front and back node, which are assigned as
upstream or downstream according to the net flow along the edge.

solutions.

In §3.1.2 control volume faces were constructed by joining the centroid of

an element to the midpoint of one of the element’s edges, such that each

control volume face is attached to only one edge. This is illustrated for

a two-dimensional mesh in Figure 3.6, where two control volume faces are

attached to each edge4.

Edge-based methods take the weighted sum of the value at the front and

back nodes of the edge to which the face fj is attached, so that the value of

a variable λ constructed at a control volume face is

[λ]j = wfront
k [λ]front

j + wback
k [λ]back

j , (3.46)

with edge weights wfront
j and wback

j , and [λ]front
j and [λ]back

j are the values of λ

4The process is more complicated in three dimensions (see Figure 3.5(a)), where the
quadrilateral control volume face is formed by joining the element centroid with an edge
midpoint and the two element faces adjacent to the edge. However, as for the two-
dimensional case, each control volume face is attached to only one edge.

CHAPTER 3. COMPUTATIONAL TECHNIQUES 56

at the front and back nodes5.

Flow direction indicators

In this thesis three edge-based spatial weighting schemes are investigated:

central weighting, upstream weighting and flux limiting. The upstream and

flux limiting methods use information about the direction of flow along each

edge. To this end, a flow direction indicator (FDI) is employed to indicate

whether the direction of flow is from the front node to the back node, or

vice-versa.

The FDI is a scalar quantity computed for each edge, the sign of which

indicates the direction of flow along the edge as follows:

FDIk > 0 :

{
flow from back to front

nup = nback and ndown = nfront

FDIk < 0 :

{
flow from front to back

nup = nfront and ndown = nback

, (3.47)

where FDIk is the FDI for edge ek. One possible choice of indicator is the

net flux of fluid over the faces attached to the edge ek

FDIk(q) =
∑

fj∈Fek

Aj [q]j · nj, (3.48)

where Fek is the set of control volume faces on the edge, and the normal nj

to the face fj is chosen to point from the back to the front nodes of the edge,

as shown in Figure 3.6.

It is not possible to compute the flow direction indicator FDI(q) using up

to date information, because the relative permeability [krw]j – used to de-

5The subscript j is used instead of subscript k on the front and back values, for example
[λ]

front
j because the value of λ may be dependent on material properties, which are uniquely

defined for each face, such that two faces that share an edge may have different material
properties

CHAPTER 3. COMPUTATIONAL TECHNIQUES 57

termine the flux [q]j in (3.43) – is itself dependent on the value of FDI(q).

To overcome this, Turner and Perré (2001) and Truscott (2004) use the [q]j
computed at the previous Newton iteration, however this value is not avail-

able in the software library used for time stepping in this thesis6. Instead, to

determine the value of [q]j for finding the FDI in (3.48), arithmetic averaging

is used to determine the relative permeability at fj, namely

[krw]j =
1

2

(
[krw]front

j + [krw]back
j

)
, (3.49)

which is equivalent to using central weighting (see equation (3.54)).

Truscott (2004) proposed several alternative edge-based flow direction indi-

cators, two of which we will investigate in this work. Both indicators are

based on the water phase potential ϕ, whose gradient is defined

∇ϕ =∇ψ + ρ̂∇z. (3.50)

The first indicator uses the gradient of the phase potential

FDIk(∇ϕ) =
∑

j∈Fek

−Aj [∇ϕ]j · nj, (3.51)

where [∇ϕ]j is determined using shape function interpolation. The second

proposed indicator uses the difference in potential between the back and front

nodes of the edge

FDIk(ϕ) = ϕfront
ek
− ϕback

ek
. (3.52)

To determine the potential at the nodes in (3.52), it is assumed that the ratio

of density and the reference density is unity, that is ρ̂ = ρ/ρ0 ≈ 1, such that

ϕ = ψ + z, (3.53)

which is the hydraulic head, H. FDI(ϕ) is only used for Richards’ equation

6The IDA library is used for time stepping in this project, details of which are given in
§3.3.

CHAPTER 3. COMPUTATIONAL TECHNIQUES 58

because the assumption that ρ̂ = 1 is reasonable in the absence of salt,

where the dependence of density on pressure head is very weak7. However,

for density driven flows due to salinity the assumption in (3.53) does not

hold, giving erroneous results for the full transport model.

Central weighting and upstream weighting

Central weighting reconstructs a value λ at the face fj by taking an average

of the value at the front and back nodes of the edge to which the face is

attached

[λ]j =
1

2

(
[λ]back

j + [λ]front
j

)
, (3.54)

which is equivalent to setting the edge weights in equation (3.46) to wfront
k =

wback
k = 1/2. Because the edge weights are constant, the central weighting

method does not use flow direction information. However, central weighting

requires the use of fine meshes to avoid non-physical oscillations in the solu-

tion of both Richards’ equation (Forsyth and Kropinski, 1997) and advection-

dominated contaminant transport (Neumann et al., 2011).

Upstream weighting uses the value of the variable defined at the upstream

node as the representative value at the control volume face fj

[λ]j = [λ]up
j , (3.55)

where the upstream point is chosen according to the flow direction indicator

as in (3.47). Upstream weighting is guaranteed to give monotone solutions,

however these solutions can exhibit excessive numerical diffusion and smear-

ing, particularly on coarse meshes (Patankar, 1980).

7The parameter β in equation (2.11) is typically very small.

CHAPTER 3. COMPUTATIONAL TECHNIQUES 59

Flux limiting

Flux limiting is a more general method for determining the edge weights in

equation (3.46), which has been shown to produce oscillation-free solutions

with sharp saturation fronts for coarse meshes in the solution of multiphase

porous flows (Forsyth et al., 1996, Unger et al., 1996, Turner and Perré, 2001,

Perré and Turner, 2002, Truscott, 2004).

Flux limiting reconstructs a value λ at the control volume face as a weighted

average of front and back values

[λ]j = [λ]up
j +

σ(r)

2

(
[λ]down

j − [λ]up
j

)
, (3.56)

where r is the smoothness sensor and σ is the limiter function.

The smoothness sensor r is calculated using information from the upstream

and downstream nodes, as well as information from a second upstream (2up)

node. The 2up node can be determined using a geometric approach based on

the direction of flow, or by the maximum potential approach that chooses the

2up node as the neighbouring node of the upstream node with the maximum

flow into the upstream node, as illustrated in Figure 3.7. Both geometric and

maximum potential approaches were investigated by Forsyth et al. (1996)

for two-phase flow. The maximum potential method was found to be more

accurate and efficient than the geometric approach, and easier to implement

on unstructured meshes. For these reasons, the maximum potential method

is used here.

There are various methods available for determining the smoothness sensor,

and here we consider three approaches for the mobility term, and one for the

advection terms. For the mobility term, the choice of smoothness sensor is

based on the flow direction indicator (Truscott, 2004). The first sensor for

CHAPTER 3. COMPUTATIONAL TECHNIQUES 60

the mobility term is based on FDI(q), and takes the ratio of net flux

r =

∑
j∈Fe2up

Aj [q]j · nj∑
j∈F

ek
Aj [q]j · nj

. (3.57)

The second sensor, based on FDI(ϕ), takes the ratio of the difference between

the difference in potential

r =
ϕ2up − ϕup

‖x2up − xup ‖/
ϕup − ϕdown

‖xup − xdown ‖ . (3.58)

The third sensor for the mobility term is based on FDI(∇φ), and is found

by replacing the flux in (3.57) with the gradient of the potential

r =

∑
j∈Fe2up

Aj [∇ϕ]j · nj∑
j∈F

ek
Aj [∇ϕ]j · nj

. (3.59)

The sensor for the advection term takes the ratio of concentration values

r =
c2up − cup

‖x2up − xup ‖/
cup − cdown

‖xup − xdown ‖ . (3.60)

The limiter function, σ(r) in equation (3.56), is selected such that the spa-

tial weighting is total variation diminishing (TVD), which implies that the

solution is non-osciliatory (van Leer, 1974). Furthermore, for the scheme

to be second order accurate, the limiter must be chosen as a weighted con-

vex average of a centrally-weighted scheme and a two-point upwind weighted

scheme (Sweby, 1984). Here we investigate two limiter functions that satisfy

these criteria: the van Leer limiter (van Leer, 1979) and the parabolic limiter

(Arminjon and Dervieux, 1993).

The van Leer flux limiter has the following form

σ(r) =
2r

1 + r
, (3.61)

CHAPTER 3. COMPUTATIONAL TECHNIQUES 61

down

up

2up

max �ux into upstream node

edge ek

Figure 3.7: Schematic for the choice of upstream, downstream and 2up nodes for
the edge ek, which has faces marked blue. The upstream and downstream nodes are
chosen according to the direction of flow along the edge (direction and magnitude
indicated by arrows). The 2up node is then chosen using the maximum potential
method, with the node corresponding to the maximum flux into the control volume
around the node nup.

which has range σ ∈ [0, 2). We note the for the van Leer limiter (3.61), when

the sensor r > 1 the weighting will be biased towards the downstream node.

The parabolic limiter uses the following limiter function

σ(r) =

{
r(2− r), r < 1

1, r ≥ 1
, (3.62)

which has a range σ ∈ [0, 1].

Fluxes at the boundary

The formulation of fluxes above is for interior control volume faces, i.e. faces

that are not on the boundary. The flux at boundary faces is prescribed,

either directly or indirectly, by the boundary conditions. At boundary faces

where the fluid flux is specified by a Neumann boundary condition, the fluid

CHAPTER 3. COMPUTATIONAL TECHNIQUES 62

flux is specified according to (2.21) as a function of space and time

[q]j · nij = qb(t,x). (3.63)

The flux is not explicitly specified at boundaries subject to Dirichlet bound-

ary conditions on pressure head (Type 1 boundary condition in §2.3). To

determine the flux over the boundary, we assume that the prescribed pres-

sure head at the boundary is constant (or changes slowly over time)

ψi = ψb. (3.64)

Under the assumption in (3.64), the moisture content is constant, which

implies that the net volumetric flux of fluid over the surface Γi is zero

∫

Γi

q · n dσ = 0.

The net flux over the control volume surface Γi can be broken into flux over

the Dirichlet and non-Dirichlet parts of the surface, ΓDi and Γ�Di respectively,

to get the following expression for flux over the Dirichlet boundary

∫

ΓDi

q · n dσ = −
∫

Γ�Di

q · n dσ. (3.65)

The flux over each of the non-Dirichlet faces is then approximated using the

midpoint rule according to (3.37), so the net flux over the Dirichlet boundary

of Γi can be expressed in terms of the fluxes over the non-Dirichlet faces

∫

ΓDi

q · n dσ ≈ −
∑

j∈F�Dj

Aj [q]j · nij, (3.66)

where F�Dj is the set of non-Dirichlet faces of Γi. The net volumetric flux

computed using equation (3.66) can be used as a volumetric source term

in equation (3.34) when computing mass balances, and for the well-mixed

advective solute transport boundary condition defined in equation (2.27).

CHAPTER 3. COMPUTATIONAL TECHNIQUES 63

Assembling the flux

We can now write an expression for the the surface flux integral in the general

form of the conservation equation (3.20) using the expressions for the different

components of the flux at control volume faces. The scaled surface flux over

the control volume surface Γi is defined by

Qα
i =

1

∆i

∫

Γi

qα · n dσ,

which can be approximated as the sum of discrete fluxes over each face ac-

cording to equations (3.36)–(3.37)

Qα
i ≈

1

∆i

∑

j∈Fi
Aj [qα]j · nij. (3.67)

The fluid and solute fluxes, qw and qs respectively, can be approximated at

the control volume face fj using the volumetric flux (3.43), advected density

and concentration determined using flux limiting (3.56), dispersion (3.44),

and the concentration gradient (3.41b):

[qw]j = [ρ]j [q]j , (3.68)

[qs]j = [c]j [q]j − [θDh]j [∇c]j . (3.69)

3.2.4 Discretised Equations

Given the approximations for the accumulation terms, source terms and flux

integrals derived in §3.2.1, §3.2.2 and §3.2.3 respectively, we can derive finite

volume discretisations for the conservative form of the governing equations

that are defined in (3.18a)–(3.18b). In this section we apply the CV-FE

discretisation to each of the equations in the four formulations presented in

§2.4, to generate a semi-discrete system of differential algebraic equations

(DAEs) for each formulation.

CHAPTER 3. COMPUTATIONAL TECHNIQUES 64

Richards’ equation: the PR formulation

For the PR formulation of Richards’ equation, the mass balance equation (2.30)

is discretised as per the integral form in (3.20). Then, the approximations

for the accumulation term (3.32), the source term (3.34a) and the flux (3.67)

are applied. The resultant semi-discrete system has one implicit differential

equation for each node

fi(t,ψ, ψ
′
i) = ni(ψi)ψ

′
i +Qw

i (ψ)− ρiSi = 0, (3.70)

with one variable, pressure head ψi, to be solved for at each node. In (3.70)

ψ is a vector of the nodal pressure head values, and ψ′i is the derivative of

pressure head at the node. The variable ψi is a differential variable in (3.70)

because its derivative ψ′i is explicitly part of the formulation. Indeed, the

equation can be written explicitly as an ordinary differential equation

ψ′i = − 1

ni(ψi)
(Qw

i (ψ)− ρiSi) , (3.71)

so long as ni(ψi) 6= 0. However, under fully saturated conditions the value of

ni(ψi) is very small, and is zero if furthermore the porous medium is inelastic

and the fluid is incompressible. It is known that division by ni(ψi) causes

numeric difficulties when attempting to solve (3.71) using an explicit ODE

solver (Tocci et al., 1997) where ni(ψi) is small.

Instead, the system of equations is written in the form of a general DAE

system

F (t,ψ,ψ′) = 0, (3.72)

where F = [f1, f2, . . . , fnn]T is the vector formed by the nodal equations in

(3.70).

Because the system is formulated as a DAE, it is possible to impose Dirichlet

boundary conditions by replacing the mass balance equation (3.70) with the

CHAPTER 3. COMPUTATIONAL TECHNIQUES 65

following algebraic equation

f(t, ψi) = ψi − ψb(xi, t) = 0, (3.73)

which is the discrete analogue of the definition of the Dirichlet boundary

condition in (2.19).

Richards’ equation: the MPR formulation

There are two primary variables, fluid mass Mi and pressure head ψi, in

the MPR formulation of Richards’ equation, and two equations per node.

The first equation is the mass balance equation (2.31), to which the CV-FE

discretisation is applied to give the following differential equation at each

node

fi(t,ψ,M
′
i) = M ′

i +Qw
i (ψ)− ρiSi = 0. (3.74)

This ordinary differential equation is analogues to equation (3.70) for the

PR formulation, except the temporal derivative is in terms of fluid mass

Mi, which is the differential variable. The second equation in the MPR

formulation is the algebraic equation (2.32), which is integrated over the

control volume to obtain the following equation

gi(t, ψi,Mi) = Mi − ρiθi = 0. (3.75)

Pressure head ψi is an algebraic variable in this formulation because its

temporal derivative does not appear explicitly in the formulation of equa-

tion (3.74) or (3.75).

The set of equations at all nodes in the mesh from (3.74) and (3.75) is

formulated as a semi-explicit DAE system

F (t,y,y′) =

[
f(t,ψ,M ′)

g(t,ψ,M)

]
= 0, (3.76)

CHAPTER 3. COMPUTATIONAL TECHNIQUES 66

where f = [f1, f2, . . . , fnn]T and g = [g1, g2, . . . , gnn]T are vectors of the

differential and algebraic equations defined in (3.74) and (3.75). The global

variable vector y in (3.76) is ordered with the pressure head values first,

followed by the fluid mass

y =

[
ψ

M

]
. (3.77)

Transport model: the PC formulation

The discretisation of the two mass balance equations for the fluid and the

solute for the PC formulation follows the same process as for the fluid mass

balance equation (3.70) for the PR formulation. Pressure head and concen-

tration, ψi and ci, are the two primary variables at each node. Applying

the CV-FE discretisation to equations (2.35a) and (2.35b) gives two coupled

semi-implicit differential equations per node, namely

fwi (t,y,y′) = niψ
′
i + ηρ0θic

′
i +Qw

i (y)− ρiSi, (3.78a)

f si (t,y,y′) = ciaiψ
′
i + θic

′
i +Qs

i (y)− ciSi, (3.78b)

where both ψi and ci are differential variables.

The equations in the resultant DAE system are ordered as follows

F (t,y,y′) =

[
fw(t,y,y′)

fs(t,y,y′)

]
= 0, (3.79)

where fw = [fw1 , f
w
2 , . . . , f

w
nn]T and f s = [f s1 , f

s
2 , . . . , f

s
nn]T are vectors of the

nodal equations for fluid and salt mass balance in (3.78a) and (3.78b) respec-

tively. The global variable vector y in (3.76) is ordered with the pressure head

values first, followed by the concentration values

y =

[
ψ

c

]
. (3.80)

CHAPTER 3. COMPUTATIONAL TECHNIQUES 67

Transport model: the MMPC formulation

The mixed formulation for the coupled flow and transport model has two

additional primary variables for the conserved quantities: fluid mass and

solute, Mi and Ci respectively. The mass balance equations for fluid (2.36a)

and solute (2.36b) in the MMPC formulation are discretised using the CV-FE

method to give two coupled differential equations for each node

fwi (t,y,y′) = M ′
i +Qw

i (y)− ρiSi = 0, (3.81a)

f si (t,y,y′) = C ′i +Qs
i (y)− ciSi = 0. (3.81b)

The differential equations in (3.81) correspond to (3.78), where the temporal

derivatives are of the volume average variables for the conserved quantities,

Mi and Ci, which are the differential variables in this formulation. To close

the system, the two algebraic equations (2.37a) and (2.37b) in the MMPC

formulation are integrated over each control volume:

gwi (t,y) = Mi − ρiθi = 0, (3.82a)

gsi (t,y) = Ci − ciθi = 0. (3.82b)

Pressure head ψi and ci are algebraic variables in this formulation because

their derivatives are not used explicitly in the discrete equations in (3.81)

and (3.82).

The discrete equations in (3.81) and (3.82) for all nodes in the mesh are

formulated as a DAE system, with the equations ordered with the differential

equations first, followed by the algebraic equations

F (t,y,y′) =

[
f(t,y,y′)

g(t,y,y′)

]
= 0, (3.83)

CHAPTER 3. COMPUTATIONAL TECHNIQUES 68

where the differential and algebraic equations are ordered as follows:

f(t,y,y′) =

[
fw(t,y,y′)

fs(t,y,y′)

]
and g(t,y,y′) =

[
gw(t,y)

gs(t,y)

]
.

The vector y of nodal values for each of the primary variables is ordered with

the algebraic variables, pressure head and concentration, first, followed by

the differential variables, fluid mass and solute:

y =




ψ

c

M

C



. (3.84)

3.3 Temporal Solution

The CV-FE discretisation of each formulation gives a system of semi-discrete

differential algebraic equations with the general form

F (t,y,y′) = 0 (3.85a)

y(t0) = y0 (3.85b)

y′(t0) = y′0, (3.85c)

where time t ∈ [t0, tfinal], and y,y′ ∈ RN are vectors of primary variables

and their derivatives at mesh nodes. The nonlinear function F in (3.85a) is

referred to as the nonlinear residual function.

Software libraries for the solution of general DAE systems that use implicit,

multi-step methods have been shown to be well-suited for solving the stiff

systems that typically arise from the discretisation of Richards’ equation

(Tocci et al., 1997, Kees and Miller, 1999, 2002, Farthing et al., 2003, Fahs

et al., 2009). In this work the IDA library, which is part of the SUNDIALS

suite of solvers (Hindmarsh et al., 2005), is used to solve the initial value

CHAPTER 3. COMPUTATIONAL TECHNIQUES 69

problem in (3.85). A detailed derivation and analysis of the algorithms used

by IDA is presented in Chapter 5 of Brenan et al. (1996). Here the basic

algorithm is presented, with a focus on the parts of the method that concern

our application.

A backwards differentiation formula (BDF) approximates the derivative of

the solution vector at the nth time step, t = tn, as a linear combination of

the solution at tn and previous time steps:

y′n = αnyn + βn, (3.86)

where

αn = α0/τn and βn =
k∑

j=1

αjyn−j, (3.87)

and τn = tn−tn−1, and αj, {j = 0, 1, . . . , k} are the coefficients of the order-k

BDF.

Substituting the derivative approximation (3.86) into the DAE system (3.85a)

gives the discrete algebraic system

F (t,y, αy + β) = 0, (3.88)

where all subscript notation has been dropped for clarity, and all variables

are evaluated at t = tn. The system of discrete algebraic equations in (3.88)

is solved using an inexact Newton method, with the mth Newton update

vector, y(m+1) = y(m) + s(m) determined by solving the linear equation

Gs(m) = −F (t,y(m), αy(m) + β). (3.89)

The iteration matrix G is defined by

G =
∂F

∂y
+ α

∂F

∂y′
, (3.90)

where we use the notation ∂F /∂y to indicate the Jacobian of F with respect

CHAPTER 3. COMPUTATIONAL TECHNIQUES 70

to y.

Testing for convergence of the inexact Newton method is accomplished using

a weighted root mean squared norm, defined by

‖x ‖rms =

(
1

N

N∑

i=1

(
xi
wi

)2
)1/2

, (3.91)

where the weight wi incorporates the values in the solution vector y(0) at

the beginning of the step and the user-specified absolute and relative error

tolerances, τa and τr:

wi = τr|y(0)
i |+ τa. (3.92)

The Newton iterations are terminated when the following condition, due to

Shampine (1980), is satisfied

ρ

1− ρ
∥∥y(m+1) − y(m)

∥∥
rms
≤ 1/3, (3.93)

where ρ is an estimate of the rate of convergence. The error tolerances are

contained in the definition of the norm (3.91), so that the required accuracy

is obtained when the left hand side of (3.93) is less than one. The value of

1/3 is a safety factor chosen to ensure that the desired accuracy has been

achieved, because the GMRES method used to solve the linear system is not

exact (Hindmarsh et al., 2005).

The estimated rate of convergence ρ used in (3.93) is calculated when two or

more corrector iterations have been performed

ρ =

(∥∥y(m+1) − y(m)
∥∥
rms

‖y(1) − y(0) ‖rms

)1/m

. (3.94)

CHAPTER 3. COMPUTATIONAL TECHNIQUES 71

3.3.1 Solving the Linear System

The linear system (3.89) is solved using a preconditioner GMRES solver (Saad

and Schultz, 1986). The iteration matrix G is only felt through its multiplica-

tion by a vector, which can be approximated using forward differences (Kel-

ley, 1995):

Gv ≈ F (t,y + εv, α(y + εv) + β)− F (t,y, αy + β)

ε
. (3.95)

The value of the residual function F (t,y, αy+β) is computed at the start of

the each Newton iteration, and hence computing the matrix-vector product in

(3.95) requires one additional residual evaluation. The small parameter ε in

(3.95) is chosen based on the values in y and y′ so as to reduce round-off error

in the forward difference (Hindmarsh et al., 2005). This is called a matrix-

free method, because the iteration matrix G is not explicitly required to solve

the linear system (with the possible excpetion of periodically computing G

to determine a preconditioner, see §3.3.2).

An advantage of this matrix-free approach is that up-to-date matrix infor-

mation is always used, by virtue of the approximation for the matrix-vector

product in (3.95) performing the approximation with the value of y from

the start of the time step. This is advantageous, because using out-of-date

matrix information can require more Newton iterations to resolve the non-

linear system, and has been shown to cause premature termination of the

Newton iterations when solving Richards’ equation (Kelley et al., 1998). If

the iteration matrix G is used explicitly, a Chord method is used whereby

the matrix is recomputed only periodically, to avoid the considerable com-

putational expense of forming G (Kelley, 1995).

CHAPTER 3. COMPUTATIONAL TECHNIQUES 72

3.3.2 Preconditioner

Preconditioning is required to ensure the timely convergence of the GMRES

iterations. The role of the preconditioner is to transform the linear system

such that the spectral properties of the transformed linear system are more

amenable to solution using GMRES (Saad, 2000). A copy of the iteration

matrix is required to form the preconditioners that are considered in this

thesis, so that the iteration matrix must be recomputed each time the pre-

conditioner is formed. IDA attempts to minimise the number of times the

preconditioner is formed by recomputing the preconditioner only when the

value of α in (3.90) changes (that is, when the time step size or integra-

tion order changes), or when an out-of-date preconditioner fails to accelerate

GMRES convergence acceptably.

The iteration matrix is computed using the forward difference approximation

for matrix-vector multiplication in equation (3.95). The jth column of the

iteration matrix can be approximated using the following formula

G(:, j) =
F (t,y + εej, α(y + εej) + β)− F (t,y, αy + β)

ε
, (3.96)

which is equivalent to multiplying the matrix by ej, the jth canonical vector

in RN . In §4.4.2 an efficient method that exploits the sparsity in G to form

G with a small number of residual evaluations will be presented.

Efficient preconditioners for the modified mixed formulations

The modified-mixed formulations of the governing equations, the MPR for-

mulation (3.76) and MMPC formulation (3.83), have twice as many variables

as their reduced counterparts, the PR formulation (3.72) and PC formulation

(3.79) respectively. An important novel development in this thesis (Cumming

et al., 2011) is a preconditioning method that reduces the computational cost

of the mixed formulations to that of the reduced forms. Similar observations

were made by Kees and Miller (2002) and Farthing et al. (2003) for the direct

CHAPTER 3. COMPUTATIONAL TECHNIQUES 73

solution of the linear systems, however the approach proposed here allows the

solution of the mixed formulations in general purpose time stepping packages.

The approach is based on analysis of the structure of the iteration matrix

for the mixed forms. The variables for the MPR formulation in (3.77) and

MMPC formulation in (3.84) are ordered such that the algebraic variables

are first

y =

[
ya

yd

]
, (3.97)

where ya and yd are vectors of the algebraic and differential variables re-

spectively8. The DAE system is semi-explicit (Brenan et al., 1996), with

differential equations first, followed by the algebraic equations

F (t,y,y′d) =

[
f(t,ya,y

′
d)

g(ya,yd)

]
. (3.98)

To determine the structure of the global iteration matrix G, we substitute

the variable and residual definitions, (3.97) and (3.98) respectively, into the

general equation for the iteration matrix (3.90)

G =

[
∂f
∂ya

∂f
∂yd

∂g
∂ya

∂g
∂yd

]
+ α

[
∂f
∂y′

a

∂f
∂y′

d
∂g
∂y′

a

∂g
∂y′

d

]

which is simplified due to the semi-eplicit formulation to

G =

[
∂f
∂ya

0
∂g
∂ya

I

]
+

[
0 αI

0 0

]

=

[
A αI

D I

]
. (3.99)

We see from (3.99), that only the columns of the matrix corresponding to dif-

ferentiation with respect to algebraic variables (the D and A blocks) need to

8For the MPR formulation ya = ψ and yd = M , and for the MMPC formulation
ya = [ψ; c] and yd = [M ;C].

CHAPTER 3. COMPUTATIONAL TECHNIQUES 74

be found, which reduces the number of residual evaluations to the equivalent

of those required for the PR and PC formulations.

The sub-matrix A = ∂Fd/∂ya in (3.99) is the Jacobian matrix associated

with the spatial discretisation of the mass balance equations. For the MPR

formulation the matrix D = ∂Fa/∂ya is a diagonal matrix, with diagonal

entries defined

dii =
∂gi
∂ψi

, (3.100)

and for the MMPC formulation the D matrix can be reordered as a block

diagonal matrix with diagonal nonzero 2× 2 blocks

Dii =

[
∂gwi
∂ψi

∂gsi
∂ψi

∂gwi
∂ci

∂gsi
∂ci

]
. (3.101)

The cost of computing and applying the preconditioner for the mixed system

(3.99) can be reduced to be similar to that of preconditioning for just the A

block. We consider the linear system

[
A αI

D I

][
xa

xd

]
=

[
ba

bd

]
. (3.102)

Under the assumption that the Schur Complement A − αD is nonsingular,

the solution of (3.102) can be solved in two steps as follows

solve for xa : xa = (A− αD)−1 (ba − bd), (3.103a)

solve for xd : xd = bd −Dxa. (3.103b)

Forming the Schur complement involves only an update to the diagonal of

the matrix A. Thus, to calculate the preconditioner for the full system, we

only need to compute a preconditioner for the Schur complement. When

applying the preconditioner, the second step (3.103) is trivial to perform

because D is a diagonal matrix, and the first step (3.103a) is the dominant

cost, equivalent to the cost of applying the preconditioner for the reduced

CHAPTER 3. COMPUTATIONAL TECHNIQUES 75

PR and PC formulations.

3.4 Conclusions

In this chapter the control volume-finite element (CV-FE) spatial discretisa-

tion was applied to the governing equations for variably-saturated flow and

contaminant transport in porous media. The CV-FE discretisation was cho-

sen due to its suitability for heterogeneous media and unstructured meshes.

The method computes consistent fluxes by virtue of material properties and

gradients being continuous at control volume faces, where the fluxes are eval-

uated. This ensures local conservation of mass, and avoids any approximation

of material properties in the flux formulation.

Upstream weighting is typically used for mobility and advection terms in

groundwater modelling, but can suffer from excessive numerical diffusion. In

this chapter we discussed flux limiting methods that have been successfully

applied problems in wood drying9 in the context of our CV-FE discretisation

for groundwater flow and contaminant transport. In Chapter 6 the accuracy

of flux limiters will be investigated for test cases that suffer from numerical

diffusion when upstream weighting is used.

The mixed modified formulation due to Kees and Miller (2002) was adapted

to the CV-FE discretisation for Richards’ equation, and extended to the cou-

pled flow and transport model. The resultant “modified mixed” formulations

were expressed naturally in the finite volume framework, by using volume

averages of the conserved quantities (fluid mass M and solute C) as pri-

mary variables in the semi-discrete system of differential-algebraic equations

(DAEs) that arises from applying the spatial discretisation in conjunction

with the method of lines (MOL).

The system of DAEs is amenable to solution using DAE solvers that use

9Wood drying is described by similar physics to groundwater flow

CHAPTER 3. COMPUTATIONAL TECHNIQUES 76

advanced adaptive time stepping methods. We gave an overview of the

methods used by one such library, IDA, to solve the nonlinear system of

equations at each time step using a matrix-free Newton Krylov method. The

modified mixed formulations have twice as many variables and equations as

their reduced counterparts, however we presented a simple Schur-complement

method for reducing the size of the system that is preconditioned by half.

This allows the efficient solution of the modified mixed formulations in gen-

eral solver packages, with little computational overhead relative to the for-

mulations with fewer variables.

The two chapters that follow, Chapter 4 and Chapter 5, will investigate the

implementation of the spatial and temporal discretisations presented in this

chapter. It will be shown that the CV-FE discretisation, and the matrix-free

Newton-Krylov solver, can be implemented efficiently on clusters that use

multi-core CPU and many-core GPU processors.

Chapter 4
Implementation: Algorithms and Data
Structures

This chapter presents a high-level discussion of the algorithms, data struc-

tures and of the CV-FE discretisation and implicit time stepping for cluster

computing implemented in FVMPor, which is the software package developed

in this thesis (see §1.2). The discussion here will be kept general, without

details for any specific hardware implementation, and the following chapter

will outline the implementation of the algorithms and approaches discussed

here for multi-core and GPU hardware platforms in C++.

The chapter starts with an overview of steps taken in an internal time step of

IDA in §4.1, followed by a discussion of the CV-FE spatial discretisation in

§4.2. The method of domain decomposition used to distribute the model over

different computational nodes is presented in §4.3. Finally, in §4.4, methods

are discussed for obtaining fine-grained and coarse-grained parallelism of pre-

conditioners based on sparse factorisations.

77

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 78

4.1 Time Stepping with IDA

IDA1 is an open source code for solving initial value problems in differential-

algebraic equations (DAEs) (Hindmarsh et al., 2005). It uses an implicit

higher-order time stepping method based on backwards differentiation for-

mulae (BDFs). IDA was chosen for solving the DAE systems that arise from

discretising the governing equations in this thesis for the following reasons:

• Implicit, higher-order solvers that use BDFs have been shown to be

well-suited for solving the stiff systems that typically arise from the

discretisation of Richards’ equation (Tocci et al., 1997, Kees and Miller,

1999, 2002, Farthing et al., 2003, Fahs et al., 2009) and for density-

dependent flow and transport problems (Liu et al., 2002, Younes et al.,

2009).

• The robustness and accuracy of the solver has been tested on a wide

range of applications, and its sophisticated methods for selecting time

step size, integration order and error control based on user-specified

tolerances have been verified for variably saturated flow in porous me-

dia (Tocci et al., 1997).

• The library has a very modular design. The main numerical operations

performed by IDA are on data vectors, which are implemented in a

separate library. The vector library performs memory allocation and

parallel communication where necessary, so that it is relatively straight-

forward to add support for GPUs in IDA by replacing this library with

a GPU library that supports the same interface.

• Support for cluster implementations is provided using the message pass-

ing library MPI. The parallel implementation uses an inexact Newton-

Krylov method, which is highly scalable on large clusters, and is amenable

to implementation with GPUs.

1IDA is part of the SUNDIALS suite of codes for solving ODE and DAE systems:
computation.llnl.gov/casc/sundials/main.html.

computation.llnl.gov/casc/sundials/main.html

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 79

IDA time step

set initial conditions : y0, y′
0, t0, τ0, i = 0

set ti+1 = ti + τi

preprocess time step at ti+1

if





new τi
OR

new BDF order

update preconditioner

solve Newton:
find yi+1 and y′

i+1 such that
F (ti+1,yi+1,y

′
i+1) = 0

if converged

i = i+ 1
ti = ti−1 + τi−1

update τi and BDF order

decrease τi
AND/OR

decrease BDF order

postprocess timestepb

yes

no

yesno

Figure 4.1: Flow chart of the steps taken for one internal time step of IDA (see
§3.3 for definition of mathematical symbols). The step preprocess time step is
highlighted because it is a modification used in this thesis.

IDA interacts with user code through calls to a user-supplied nonlinear resid-

ual function, and user-supplied routines for computing, and applying, a pre-

conditioner. The solution is advanced in time by calling IDA to take internal

time steps until the final solution time has been reached. The flowchart in

Figure 4.1 gives an overview of the internal steps taken by IDA when per-

forming a time step. IDA can be treated as a “black box” solver, however

an understanding of the steps taken within IDA is necessary to utilise it

effectively.

IDA attempts to take a time step of size τi+1, however if the Newton iterations

fail to converge2, IDA will reduce the time step and the order of the BDF,

2The Newton iterations are judged to have failed if the nonlinear residual is not reduced
sufficiently within a maximum number of iterations; or if the convergence is not super-
linear; or if the GMRES method fails to converge at any point. See Hindmarsh et al.
(2005) for a detailed discussion.

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 80

then retry. This process continues until the Newton iterations converge, or

until the time step size falls below a minimum threshold value. If the Newton

iterations are successful, IDA will increase the time step or integration order

if possible in preparation for the next time step, before returning control to

the calling code.

Each time step performed by FVMPor has user-defined preprocessing and

postprocessing steps. The postprocessing step performs user-defined opera-

tions on the solution, such as computing mass balances, and is undertaken

outside the time step loop when IDA returns the solution to the calling code.

The preprocessing step is performed inside the IDA time step loop, because

it sets state information3 that may depend on the target time ti+1.

4.2 Evaluating the Residual:

The CV-FE Discretisation

In this section, we consider the algorithms and data structures used in each

step of the nonlinear residual evaluation. The discussion is kept at a high-

level to facilitate clear discussion of the methods. However, most of the data

structure and algorithm choices are made with the GPU implementation in

mind, so references are made to the hardware implementation described in

Chapter 5 where it motivates the algorithm and data structure choices.

The same steps are taken in evaluating the residual for all of the PR, MPR,

PC and MMPC formulations, however the formulations for Richards’ equa-

tion (the PR and MPR formulations) are simpler to describe because they

have fewer equations. Hence, for clarity of exposition, the residual func-

tion for the PR and MPR formulations of Richards’ equation are discussed

here, with reference to the PC and MMPC formulations where clarification

is required.

3State information is held constant through throughout a time step, see §4.2.1.

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 81

Algorithm 4.1: The steps in evaluating the residual function.

Input : time t, the primary variable vector y and its derivative y′

Output: the residual vector r
if t 6= told then

preprocess time step (1);
told = t;

interpolate to find gradient ∇ψ at faces (2);
set edge weights for flux limiting (3);
find fluid properties ρ, θ, krw, . . . etc. (4);
form fluxes qα (5);
gather fluxes and form residual r (6);

Consider the residual function at each node for the PR formulation of Richards’

equation (3.70):

fi(t,y,y
′) = ni(ψi)ψ

′
i +

1

∆i

∑

j∈Fi
Aj [qw]j · nij − ρiSi. (4.1)

Evaluation of the residual function for the PR formulation, F in equation

(3.72), sees equation (4.1) evaluated at each node. This entails evaluating

the accumulation term, fluxes and source term in the spatial discretisation

given the nodal values of pressure head and its derivative specified in y and

y′. This in turn requires the computation of intermediate values, such as

interpolated gradients at control volume faces to evaluate fluxes.

The residual function evaluation is broken into a sequence of steps or stages,

shown in Algorithm 4.1, and summarised below:

1. Time Step Preprocessing: Set state variables that are fixed during

the time step. In Figure 4.1, the preprocess time step task is highlighted

because it is not explicitly performed by IDA, but is instead performed

the first time that the residual function is called in the time step.

2. Interpolation: Interpolate values at nodes to values and gradients at

control volume faces using shape function interpolation.

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 82

3. Spatial Weighting: Compute spatial weightings for advected quan-

tities due to flux limiting.

4. Secondary Variables: Compute secondary variables such as density

ρ(ψ, c), moisture content θ(ψ) and relative permeability krw(ψ).

5. Compute Fluxes: Compute the flux over each control volume face

using the values computed in steps 3, 4 and 5.

6. Assemble Residual: Compute the residual function for each node by

gathering the fluxes for each control volume face, and adding with the

accumulation and source terms, as per the PR formulation in equa-

tion (4.1).

The remainder of this section will discuss step 1 to step 6 of the residual

evaluation in more detail.

Data structures

Before discussing the implementation, we briefly discuss the data structures

used within the spatial discretisation. The approach taken here was moti-

vated by the requirement that the software should run on both multi-core

CPUs and GPUs without modification. To this end, the residual evaluation is

expressed in terms of basic vector-vector operations, and sparse matrix-vector

operations, for which efficient multi-core CPU and GPU implementations are

provided in the vectorlib library described in §5.2.

To facilitate the implementation using vector and sparse matrix operations,

a flat data model is used, in which values associated with components of the

dual mesh are stored in vectors. For example, the values of density for each

control volume in the mesh are stored in vectors of length nn, and the values

of density at each control volume face are stored in a vector of length nf
4.

4We recall from §3.1 that nn and nf are the number of nodes and control volume faces
in the dual mesh respectively.

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 83

Because we use unstructured meshes, the mappings between values in the

node, edge and face vectors in the residual evaluation are specified explicitly

using indirect indexing. In the flat model, index vectors are used to specify

the mapping between values in the node, edge and face vectors. Each of

the operations in the residual evaluation can then be expressed using simple

indirect indexing with vectors, the implementation of which on both GPU

and multi-core CPUs is discussed in §5.2. Furthermore, some global gather

operations, such as interpolation, can be expressed as sparse matrix-vector

multiplication (SPMV). Where possible, SPMV operations are used due to

the availability of highly-optimised libraries for performing them on different

hardware.

4.2.1 Time Step Preprocessing

The preprocessing step computes state information that is fixed through-

out the time step. Examples of state information include time-dependent

boundary conditions, and the flow direction information (upstream, down-

stream and 2up points) used in upstream weighting and flux limiting. The

IDA library does not provide a mechanism for performing a preprocessing

step, so the information is computed the first time that the residual function

is called during a time step. In Algorithm 4.1, this is performed in step 1 by

keeping track of the time t with which the residual is called, and recomputing

the state information when the value changes between residual calls.

Transient boundary conditions

We consider two types of transient boundary condition. The first is a pre-

scribed fluid flux boundary condition (type 2 in §2.3), for example infiltration

due to rainfall at the surface. In the preprocessing stage the value of the flux

is set for each face on the boundary using an analytic formula, or from a

user-provided input file.

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 84

The second type of transient boundary condition we consider is the hydro-

static beach boundary condition (Type 3 in §2.3). At each boundary face,

the penalty term Rb in equation (2.23) is set according to the height of the

tide at the target time step ti+1.

Seepage boundary conditions are not implemented in this thesis due to lim-

itations imposed by the IDA library, which are discussed in Appendix D.

Setting the flow direction indicators: 1up and 2up points

Upwind weighting and flux limiting use information about the upstream

points (1up and 2up) to compute the mobility term and advected quanti-

ties at control volume faces. It is necessary to hold the choice of 1up and

2up points fixed for the duration of a time step. For otherwise, if the choice

of upstream points were allowed to change during the Newton iterations, the

assumption that the residual function is smooth would be violated. In prac-

tice, it was found that failing to do this led to convergence difficulties for the

Newton iterations.

In §3.2.3 the flow direction indicator (FDI) was introduced. The FDI is a

scalar quantity computed for each edge in the domain, the sign of which

indicates the edge’s upstream and downstream points:

FDIk > 0 → flow from back to front

FDIk < 0 → flow from front to back
, (4.2)

where FDIk is the FDI for the edge ek. This is illustrated graphically for

a two-dimensional mesh in Figure 4.2, however it is important to note that

for three-dimensional meshes an edge is also a line segment, and the same

approach is used.

The scalar FDI(ϕ) defined in equation (3.52) determines the direction of flow

on an edge according to the difference of fluid flow potential ϕ at the front

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 85

and back nodes of the edge5

FDI(ϕ)k = ϕback − ϕfront. (4.3)

Algorithm 4.2 determines FDI(ϕ) for every edge in the domain with a single

for -loop, using the indices in edge back and edge front to indicate the front

and back nodes of each edge. The algorithm is relatively trivial, however it

is shown here to illustrate the use of precomputed index vectors in the flat

data model.

Algorithm 4.2: Algorithm for determining the scalar flow direction
indicator FDI(ϕ).

Input : array potential of nodal ϕ values
index arrays edge front and edge back

Output: array FDI with FDI for each edge in mesh

for e← 0 to ne − 1 do
FDI [e] = potential [edge back [e]]-potential [edge front [e]];

The vector FDIs, FDI(q) and FDI(∇φ) in (3.48) and (3.51), find the net

contribution from each of the faces attached to an edge. For example, the

net flux on edge ek according to FDI(q) in equation (3.48) is

FDI(q)k =
∑

j∈Fek

Aj [q]j, (4.4)

where [q]j = [q]j · nj. The global operation of determining the vector of

FDI values for all edges using (4.4) can be expressed in terms of a sparse

matrix-vector multiplication:

FDI = Agather × qfaces, (4.5)

where qfaces ∈ Rnf is a global face array of the [q]j values, and the edge

5The fluid flow potential for Richards’ equation, under the assumption that dρ/dψ ≈ 0,
is the hydraulic head H: ϕ = H = ψ + z.

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 86

gathering matrix Agather = (aij) ∈ Rne×nf is a sparse matrix with entries

defined:

akj =

{
Aj, j ∈ Fek
0, otherwise

. (4.6)

This approach allows us to exploit efficient implementations of sparse matrix-

vector multiplication, which is discussed in §5.3.

nba
k = nup

nfront = ndown

[λ]upj

[λ]downj

xc
j

nj

edge ek

fa
es on

edge ek

�ow

dire
tion

Figure 4.2: Diagram showing the two faces attached to an edge in a two-
dimensional mesh. The value of the mobility term krw, and advected variables
ρ and c are determined at the face as a weighted sum of the values at the front
and back nodes of the edge.

Upstream weighting chooses the value of the variable at the upstream node

according to equation (3.47). Because the upstream node is fixed through-

out the time step, the spatial weights wfront
k and wback

k are computed in the

preprocessing phase:

FDIk ≥ 0 →
{
wback
k = 0

wfront
k = 1

FDIk < 0 →
{
wback
k = 1

wfront
k = 0

. (4.7)

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 87

Flux limiting requires additional information about the 2up point, which is

determined using the method of maximum potential illustrated in Figure 4.3.

The method of maximum potential selects as n2up the neighbour of nup that

has the largest flow into nup. It is not necessary to compute the 2up point

for every edge in the mesh, because edges with the same 1up point also

have the same 2up point. Instead, it is sufficient to find the 1up point for

each edge, and the neighbour of maximum potential for each node. The

upstream, downstream and 2up nodes for every edge in the mesh can then

be determined in a for -loop, as implemented in Algorithm 4.3.

The algorithm first sets the maximum recorded flux into each point to zero,

then loops over each edge in the mesh. The upstream point is determined

for the edge, then the neighbour of maximum potential for the edge’s down-

stream node is set to be the edge’s upstream node if the flux along the edge

exceeds the previously set maximum flow into the downstream point. In

this manner, once every edge in the mesh has been visited, the neighbour of

maximum potential will have been determined for each node in the mesh.

down

down

down

up

2up

max. �ux into upstream node

Figure 4.3: Each of the downstream nodes of the upstream node has the same
1up point. Furthermore, each of the downstream points have the same 2up point,
which is the node with maximum flux into the control volume of the 1up point.

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 88

Algorithm 4.3: Method for determining the 1up nodes and corre-
sponding flux for each control volume in the domain.

Input : array FDI edges of FDI values for each edge
index arrays edge down node and edge up node

Output: array CV 1up flux with maximum flux into each CV
array CV 1up of 1up points for each CV
index array edge 1up of 1up points for each edge

initialise CV max 1up flux(:) to 0;
for e← 0 to ne − 1 do

if FDI edges[e] < 0 then
down node ← edge up node[e];
up node ← edge down node[e];

else
down node ← edge up node[e];
up node ← edge down node[e];

flux ← abs(FDI edges [e]);
if flux > CV 1up flux[down node] then

CV 1up flux [down node] ← flux;
CV 1up [down node] ← up node;

edge 1up [e] ← up node;

4.2.2 Interpolation

Shape function interpolation reconstructs variables at a control volume face

as a weighted sum of the variable at the vertices of the element in which the

face lies. For example, consider the shape functions for a tetrahedral element

described in §3.1.3. The value of a variable ϕ is reconstructed at the centroid

of face fj using a dot product

s(xcj) = Nj ·ϕε` , (4.8)

where Nj ≡ N (xcj) is a vector of the shape function weights defined using

(3.17a), and ϕε` is a vector of the value of ϕ at the nodes of the element

ε`. To express the per-element local operation in (4.8) as a global operation

for all faces in the mesh, the weight vector Nj is first expanded as a sparse

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 89

vector of length nn, and the inner product (4.8) is expressed:

s(xcj) = N s
j ·ϕ, (4.9)

where N s
j is the sparse vector, and ϕ ∈ Rnn is a vector of all nodal values

for ϕ. The global operation of interpolating ϕ to all control volume face

midpoints can now be expressed as a sparse matrix-vector multiplication

(SPMV)

ϕf = Sϕ, (4.10)

where row j of the sparse matrix S ∈ Rnf×nn is the sparse weight vector

N s
j , and ϕf is the vector of values at control volume faces. In the same way,

the global operation of computing each component of the gradient at con-

trol volume face midpoints for a tetrahedron using the weights in equations

(3.17b)–(3.17d) can be expressed using sparse matrix vector multiplication.

The shape function weights are dependent only on the mesh geometry. Hence,

they can be stored in matrix form at startup, and applied using efficient

SPMV routines discussed in §5.3.

4.2.3 Edge-Based Weighting

The edge weights for upstream weighting are set along with the flow direc-

tion information during the time step preprocessing stage in §4.2.1, and the

weights for central averaging are constant throughout the simulation accord-

ing to (3.54).

The flux limiter weights are functions of the solution at the downstream,

upstream and 2upstream nodes. The location of the points is fixed for the

time step, however the value of the solution changes with each residual eval-

uation, so the edge weights are set for each residual evaluation when flux

limiting is used. The sensor r and limiter σ are determined, then used to set

the edge weights according to (3.56). The exception to this rule is when the

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 90

flux-based flow direction indicator FDI(q) is used, in which case the sensor

r in equation (3.57) and the edge weights are set in the preprocessing stage

because they are impractical to compute at each residual evaluation6.

Once the edge weights have been set, they can be used to find the advection

terms [ρ]j and [c]j. Algorithm 4.4 is used to compute the advected quantities

at each face by looping over each edge, computing the weighting of the value

at the front and back nodes, then setting the value at each face attached to

the edge to the weighted value. The method used to compute the relative

permeability at a face, [krw]j, is more complicated due to the dependence of

the relative permeability on material properties, and is discussed in §4.2.4.

Algorithm 4.4: Algorithm for determining the density at each face
using precomputed edge weights.

Input : array adv node of nodal values
index arrays edge front and edge back
edge weights weight back and weight front

Output: array adv face with face values

for k = 0 to ne − 1 do
adv edge = weight back [k]×adv node [edge back [k]]

+ weight front [k]×adv node [edge front [k]];
for j ∈ Fek do

adv face [j] = adv edge;

4.2.4 Fluid Properties

The fluid properties that close the model are functions of the primary vari-

ables and of parameters associated with material properties. Some are used

in volume averages (for example moisture content θ), others are used at con-

6The flux-based sensor in equation (3.57) is not practical to compute because it requires
an approximation to the flux q at each face, which is computationally expensive to form.
Truscott (2004) used the value of the flux computed during the previous Newton iteration.
Although the value of the flux computed during the previous residual evaluation is available
in IDA, it is not possible to determine the context in which the last call was made.

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 91

trol volume faces to determine fluxes (relative permeability krw), and some

are used for both (density ρ). The way that the properties are computed

depends on whether the property is a function of material properties, and

whether it is used as a volume average or a face value. Here we consider the

fluid properties for the MPR formulation of Richards’ equation, which are

summarised in Table 4.1.

variable material dependent at faces volume average defined

ρ · 3 3 (2.11)
θ 3 · 3 (2.13)
n 3 · 3 (2.29)
krw 3 3 · (2.10)
φ 3 · · (2.12)
Sw 3 · · (2.8)

Table 4.1: The fluid properties used in the PR and MPR formulations of Richards’
equation. The density of the fluid is used as both a volume average and as a face
value. Both saturation Sw and porosity φ are used as intermediate values for
computing moisture content θ and the storage term n.

Take, for example, the density ρ, which is used as both a volume average and a

face value. The volume average is computed at each node as a function of the

nodal value for pressure head ψ (and concentration c for the coupled transport

model), using the linear relationship in equation (2.11). The dimensionless

density, [ρ̂]j, in the buoyancy term of the Darcy flux (3.43) is interpolated

from the nodal values using shape functions. Conversely, the density in

the advection term, [ρ]j in equation (3.68), is determined using edge-based

weights.

The volume average of moisture content θi and the face value of relative

permeability [krw]j, are more complicated to determine than density because

they are functions of both material properties and pressure head. Given the

definition of the volume average in (3.25), the volume average of moisture

content in Ωi is the weighted sum of the moisture content computed according

to the pressure head ψi and the material properties Pj of each sub-control

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 92

volume:

θi =
1

∆i

∑

sj∈Si
δjθ(ψi;Pj). (4.11)

The value of relative permeability at the face fj according to Figure 4.2 is a

weighted sum of relative permeability computed in the sub-control volumes

either side of the face

[krw]j = wback
j [krw]front

j + wfront
j [krw]back

j . (4.12)

A näıve approach to finding the values in (4.11) and (4.12) would be to loop

over each sub-control volume in the dual mesh, compute the fluid properties

according the pressure and material properties of the sub-control volume, and

add their weighted contribution to the appropriate volume average (4.11) and

face values (4.12). This would be computationally expensive, because the

number of sub-control volumes far exceeds the number of nodes in the mesh,

and computing individual moisture content and permeability values in each

sub-control volume uses expensive power functions in the van Genuchten-

Mualem model (see equations (2.9) and (2.10)).

The number of moisture content and permeability values that need to be

computed can be reduced using the observation that there are typically rela-

tively few distinct materials, such as clay, sand and rock types in a model. If

this is the case, the formula for the volume average of moisture content (4.11)

can be rewritten

θi =
∑

Pk∈Pi
wkθ(ψi;Pk), (4.13)

where Pi is the set of unique material properties in Ωi, and wk are the weights

for the relative volume of each material in Ωi. This is illustrated graphically

in Figure 4.4, which shows a control volume with sub-control volumes com-

posed of two materials. The moisture content θ(ψi;Pk) is identical in each

sub-control volume with the same material properties, so only two moisture

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 93

content values are required to determine the volume average using (4.13),

instead of five values using the näıve approach in (4.11). Similarly, the rel-

ative permeability krw(ψi;Pk) is computed once for each material property

Pk, and its contribution added to each face with the material property Pk
using (4.12).

Determining the volume averages and face values that are dependent on

material properties is a performance-critical part of the code, because of

the amount of indirect indexing required to map nodal values to material

properties and faces. For each material property, the weights in (4.13) are

precomputed along with indices of the nodes have contributions from the

material property. The volume averages and face values are then computed

efficiently by looping over the material properties, using the approach dis-

cussed in §5.6.4.

f1

f2

f3

f4

f5f6

f7

f8

f9

f10

Material 1

Volume δ1
Weight w1 =

δ1
δ1+δ2

ontribution to θi = w1θ(ψi;P1)
krw(ψi;P1) → f1, f2, f3, f4

Material 2

Volume δ2
Weight w2 =

δ2
δ1+δ2

ontribution to θi = w2θ(ψi;P2)
krw(ψi;P2) → f5, f6, . . . , f10

Figure 4.4: A control volume composed of sub-control volumes with two different
material properties, denoted by colour. Moisture content and relative permeabil-
ity are calculated for each material property, and mapped onto the sub-control
volumes and control volume faces that share the material property.

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 94

4.2.5 Flux Assembly

The net flux of fluid mass over a control volume face fj is a scalar value, that

the CV-FE discretisation approximates using the midpoint rule (3.37)

[qw]j = Aj [qw]j · nj. (4.14)

For interior control volume faces (faces that are not on the domain boundary)

the volumetric flux vector at the centre of the control volume face is the

approximation to the Darcy flux defined in (3.43)

[qw]j = − [ρ]j [krw]j︸ ︷︷ ︸
weighting

Kj


[∇ψ]j︸ ︷︷ ︸

shape

+
1

ρ0

[ρ]j︸︷︷︸
shape

∇z


 , (4.15)

where the subscripts shape and weighting indicate the method used to re-

construct the face values from nodal information. The gradient and density

values from the shape function interpolation, and the mobility and advection

terms computed using edge-based weighting are stored in vectors. Once the

vectors of face values have been computed, the global vector of [qw]j values

is formed using a series of basic vector operations discussed in §5.6.5.

At boundary faces with Neumann boundary conditions specified, the volu-

metric flux over the face is defined as a function of space and time:

[q]j = qb(t,x). (4.16)

The fluxes specified by (4.16) at each face do not change throughout a time

step, and are computed and stored in place in the flux vector during the

preprocessing phase in §4.2.1.

The flux is not computed over boundaries subject to Dirichlet boundary

conditions for Richards’ equation because the residual function based on the

mass balance equation at nodes subject to Dirichlet boundaries is replaced

with the algebraic equation (3.73). However, the flux is needed in the full

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 95

transport model to determine the mass-balance for the solute at the bound-

ary, and when computing mass balances for Richards’ equation.

The net flux QD
i over the Dirichlet faces of a control volume on a Dirichlet

boundary was computed in equation (3.66), namely

QD
i = −

∑

j∈F�Dj

Aj [q]j · nij. (4.17)

To determine the flux over each of the control volume’s Dirichlet faces, the

net flux can be expressed as a weighted sum of the flux over the Dirichlet

faces

QD
i =

∑

fj∈FDi

wjqj, (4.18)

where the weight at each face is proportional to the face’s area

wj =
Aj∑

k∈FDi Ak
. (4.19)

To form a vector of fluxes over every Dirichlet face in the domain, we note

that the net flux for each control volume in equation (4.17) can be written as

the inner product of a weight vector and a vector of the volumetric flux over

each face of the domain. Using this observation and with equation (4.18), one

can find a sparse matrix7 Ad that can be multiplied against the global vector

of volumetric face fluxes to determine a vector of fluxes over each Dirichlet

face

qd = Ad × qfaces, (4.20)

where Ad ∈ Rnd×nf , qd ∈ Rnd is a vector of fluxes at the Dirichlet faces and

nd is the number of Dirichlet faces in the mesh.

7The derivation is relatively simple, though tedious, and is not given here.

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 96

4.2.6 Residual Assembly

The residual assembly gathers the net flux at each face, which it adds to

the accumulation term and the source term to determine the residual for

each control volume. Take for example the residual function for the PR

formulation at each node, defined in (3.70) as

fi(t,ψ, ψ
′) = niψ

′
i +Qw

i (ψ)− ρiSw
i . (4.21)

At this point, all of the terms in the residual function (4.21) have been

computed, except for the net surface flux Qw
i . The net flux Qw

i is defined

using (3.67) as the weighted sum of the flux over each face (4.14)

Qw
i (ψ) =

∑

j∈Fi
±

[qw]j
∆i

, (4.22)

where the sign of the term ±1/∆i is positive if the face normal nj is outward

facing relative to Γi, and negative otherwise.

The global operation of determining the net flux over all control volume sur-

faces can be performed given a sparse matrix Agather ∈ Rnn×nf with nonzero

entries defined

aij =

{
1

∆i
, j ∈ Fi

0, otherwise
. (4.23)

Then a vector of the net flux over each control volume surface can be com-

puted using a sparse matrix-vector product as follows

Qnodes = Agather × qfaces, (4.24)

where qfaces is a vector of the flux [q]j over the faces and Qnodes is the vector

of net fluxes.

Once the face fluxes have been gathered to each control volume using the

SPMV product implied by equation (4.22), the other steps in forming the

residual are straightforward to implement using vector operations, as will be

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 97

discussed in §5.6.6.

4.3 Domain Decomposition

Domain decomposition is a coarse-grained approach for sub-dividing the com-

putational work between computational processes8 (Chan and Mathew, 1994,

Quarteroni and Vialli, 1999). Domain decomposition divides the domain into

smaller regions called sub-domains, by assigning each node in the mesh to a

sub-domain, as illustrated in Figure 4.5(a). Each sub-domain is then assigned

to a computational process, which performs computations such as residual

evaluation and preconditioning for the part of the mesh represented by the

sub-domain.

The message passing library MPI (Pacheco, 1997) is used to execute the

program in parallel. Multiple instances of FVMPor (one for each sub-domain)

are started by MPI, each of which performs computation for its sub-domain

on a separate computational units. In this thesis, the FVMPor instances are

referred to as MPI processes (see §5.4 for more detail). Each process sees

only its sub-domain, and uses MPI for communication with other instances.

In order for a process to perform local operations, information from the neigh-

bouring sub-domains may be required. For example, to evaluate the residual

for a node at the interface between sub-domains, the value of pressure head

and concentration at nodes in the neighbouring sub-domain are required.

This leads us to identify two classifications for nodes within a sub-domain:

• local nodes are those that were assigned to the sub-domain during do-

main decomposition.

• halo nodes are nodes in neighbouring domains from which information

8The computational units in a computer are divided into discrete sets called processes.
A process may be a single CPU core, or multiple CPU cores and a GPU: see §5.4 for a
detailed discussion.

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 98

is required, as illustrated in Figure 4.5(b).

We distinguish between the “global” view of the domain, and each sub-

domain’s “local” view. Globally, the values of nodal variables over the entire

domain exist in a single distributed vector. Locally, each process stores only

a portion of this vector: the values associated with local and halo nodes

on that process’ sub-domain. Figure 4.6(a) illustrates this for a distributed

vector associated with the two sub-domain decomposition in Figure 4.5(a).

Asynchronous communication between neighbouring sub-domains is used to

update the value of variables at halo nodes by performing separate send and

receive operations, as illustrated in Figure 4.6(b). This allows computation

and communication to be overlapped by performing computation between

(a)

halo nodes

(b)

Figure 4.5: Domain decomposition of a mixed two-dimensional mesh into two sub-
domains. (a) The global mesh, with the control volumes coloured according to the
sub-domain, while control volume faces at the interface between the sub-domains
are coloured black. (b) A sub-domain, with halo nodes assigned to the other
sub-domain coloured black.

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 99

the send a receive phases of communication, as is discussed in detail in §5.4.

Global

view

lo
al

halo

Pro
ess 1

view

lo
al

halo

Pro
ess 0

view

Step 1: send

lo
al to neighbour

Step 2: re
eive

halo from neighbour

(a) (b)

Figure 4.6: Storage of a distributed vector. The blue arrow in (b) is dashed because
the communication is not completed until receive is finalised in Step 2.

4.4 Preconditioners

Preconditioning is required to ensure timely convergence of GMRES itera-

tions. In this thesis, preconditioners based on sparse factorisations are used.

The preconditioner is formed by computing and factorising an approxima-

tion to the iteration matrix G in (3.90). Then the preconditioner is applied

at each inner iteration of GMRES, which requires the solution of two sparse

triangular linear systems. In this section we discuss the matrix structure im-

posed on G by the domain decomposition, before looking at efficient methods

for forming and applying the sparse factorisations.

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 100

4.4.1 The Global Matrix

The global iteration matrix is stored in a distributed manner, similarly to

distributed vectors in §4.3. This introduces a block structure to the matrix,

which is illustrated for a domain decomposition with four sub-domains in

Figure 4.7. The global iteration matrix has one diagonal block for each sub-

domain that represents connections between local nodes in each sub-domain,

and off-diagonal blocks that represent the connections between local nodes

and halo nodes.

Global preconditioning approaches such as Schur complement and additive

Schwarz form a local preconditioner for each diagonal block, and use iterative

approaches to introduce coupling between sub-domains (Saad, 2000, Chapter

13). In this thesis a block Jacobi approach is used, whereby a preconditioner

is formed for each local block, and the connections between sub-domains are

ignored. Any reference made here to the iteration matrix will imply the local

diagonal block.

Figure 4.7: The global iteration matrix with four sub-domains.

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 101

4.4.2 Finding the Local Block

The first step in forming the local preconditioner, is to form an approximation

to the local diagonal block of the iteration matrix. This can be performed

efficiently using a small number of residual evaluations. To see how, we first

revisit equation (4.25) for approximating the jth column of the iteration

matrix G with a shifted residual evaluation:

G(:, j) =
F (y + εej,y

′ + εαej)− F (y,y′)

ε
(4.25)

where references to time t have been dropped for clarity, and the vectors y

and y′ contain variables associated with nodes local to the sub-domain. If

the columns of G were to be computed separately, the cost of performing

the shifted residual evaluations would be prohibitively expensive for large

matrices.

However, it is possible compute multiple columns of the matrix using a single

residual evaluation by analysing the connections between nodes. The residual

function for each node is dependent only on the value of variables at the

node and its immediate neighbours. This means that the shift in (4.25) can

actually be performed for multiple variables at once, provided these variables

correspond to nodes which have no common neighbours. That is, for an

independent set of variables J , we can evaluate (4.25) with the following

shift vector

es = ε
∑

j∈J
ej, (4.26)

to determine the set of columns G(:,J).

A multi-colouring of the nodes in the mesh is used to identify sets of inde-

pendent variables. The multi-colouring assigns a colour to each node of the

mesh, such that no two nodes with the same colour have common neighbours.

The simple greedy algorithm in Algorithm 4.5 is used (Saad, 2000), and only

needs to be computed once at startup, because the sparsity pattern of the

matrix is fixed throughout the course of a simulation.

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 102

Algorithm 4.5: Greedy multi-colouring algorithm used to find the min-
imal independent column set.

Input : adjacency set for each node adj
number of nodes in mesh N

Output: vector of colours for each node colour
mark = array(N, -1);
colour = array(N, N-1);
maxcol ← 0;
for i = 0 : N− 1 do

for j ∈adj(i) do
mark [colour [j]]← i;

mincol ← 0;
while mincol < maxcol and mark[mincol] = i do

increment(mincol);

if mincol =maxcol then
increment(maxcol);

colour[i] ← mincol;

We note that the multi-colouring in Algorithm 4.5 does not account for de-

pendencies on values at 2up nodes introduced by flux limiting. Because of

these 2up dependencies, the iteration matrix for flux limiting is more dense,

and requires considerably more computational effort to form and use. Indeed,

previous investigations have shown that the computational overhead of form-

ing and using the more dense matrix outweigh any gains in faster convergence

rates (Forsyth et al., 1996). This is especially true for matrix-free methods,

where the iteration matrix is not used directly, and the matrix-vector prod-

ucts in the GMRES method are approximated using shifted residual evalua-

tions that include the 2up information (Moroney and Turner, 2006). Hence,

the local block is always formed using only nearest neighbour information in

this thesis.

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 103

4.4.3 Preconditioning the Local Block

To form a preconditioner based on sparse factorisation of the iteration matrix

G, we seek two triangular matrices, L and U , such that

G ≈ LU. (4.27)

To apply the preconditioner to a vector v, the following linear system is

solved

LUz = v,

which is performed by solving two triangular linear systems as follows

forward substitution w = L−1v, (4.28a)

backward substitution z = U−1w. (4.28b)

Numerical experiments in Chapter 7 reveal that the dominant cost of pre-

conditioning for the problems investigated in this thesis is in the application

phase in equations (4.28a) and (4.28b). This is because the preconditioner is

formed relatively infrequently9, whereas it is applied in every inner iteration

of the GMRES method. For this reason, a method for applying the precon-

ditioner that is amenable to GPU implementation is the focus of the rest of

this chapter.

The solution of the triangular linear systems using the forward and backward

substitution in (4.28) is an inherently serial operation if the triangular factors

are dense10. However, a multi-colouring of the matrix graph associated with

the iteration matrix can be used to parallelise the solution of sparse triangle

9The preconditioner is reformed periodically by IDA (Figure 4.1 shows the criteria for
recomputing the preconditioner during the IDA time step loop) when the information in
the iteration matrix becomes out of date. When this occurs, the matrix is recomputed
using forward differences in equation (4.25), then the matrix is factorised.

10Take for example the forward substitution phase in (4.28a): to find the value of wj ,
the values of wi, ∀i < j must first be computed.

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 104

equations (Saad, 2000, Li and Saad, 2010, Naumov, 2011, Heuveline et al.,

2011b). Given a colouring of the matrix graph with p colours, the iteration

matrix G can be reordered into p blocks by colours. The reordered system

matrix then has the following block structure

G(q, q) =




D1 Up

L2 D2 Up−1

. . .

Lp−1 Dp−1 U2

Lp Dp



, (4.29)

where the Di blocks are diagonal, and the index vector q(1 : N) is the

permutation for the new row and column ordering.

Given the matrix stored in the permuted form (4.29), the rows in each block

may be processed simultaneously during each of the forward and backward

substitution phases (Saad, 2000, Chapter 11). For each phase, the solution

for the variables in each block is determined using sparse matrix-vector mul-

tiplication and vector-vector operations in Algorithm 4.6. For example, the

forward substitution phase uses one matrix-vector product and one axpy op-

eration11, both of which are operations that can be performed efficiently in

parallel. We note that Algorithm 4.6 does not explicitly use the permutation

vector q because the matrix is already stored in block form (4.29); instead it

uses an index array idx(i), i = 1, 2, . . . , p + 1 that points to the beginning of

the ith colour in q.

Three sparse factorisations are investigated as preconditioners in this thesis,

a full sparse LU factorisation, and two incomplete (ILU) factorisations12.

The first incomplete factorisation is a dual threshold incomplete factorisation

(ILUT) (Saad, 1994), and the second is an incomplete factorisation with

no fill in (ILU(0)). The full LU and the ILUT factorisations introduce fill

11The axpy operation is a BLAS operation for finding a linear combination of two
vectors, y ← ax+ y, where a is a scalar.

12All three of the sparse factorisations are in the Intel MKL. See §5.8 for details.

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 105

Algorithm 4.6: Forward and backward substitution for sparse trian-
gular factors that have been reordered according to a multi-coloring.

Input : index idx that points to the start of each block
lower triangle blocks Li
upper triangle blocks Ui

diagonal blocks Di as vectors
number of colours p
right hand side vector b of length N

Output: preconditioned vector z
z← b
for i = 2 : p do

r1 ← idx[i];
r2 ← idx[i+ 1];
z(r1 : r2 − 1)← z(r1 : r2 − 1)− Li × z(1, r1 − 1);

for i = p : −1 : 1 do
r1 ← idx[i];
r2 ← idx[i+ 1];
if i < p then

z(r1 : r2 − 1)← z(r1 : r2 − 1)− Ui × z(r2,N);

z(r1 : r2 − 1)← Di
−1 × z(r1 : r2 − 1);

in, or additional nonzeros, to the triangular factors L and U . The ILU(0)

preconditioner does not introduce fill-in, so that the sparsity pattern is of the

triangular factors is identical to that of the iteration matrix, which is fixed

throughout the simulation.

To use the method for applying the preconditioner in Algorithm 4.6, an

analysis phase must first be performed to compute the multi-colouring of

the sparse factors, which imposes a considerable computational overhead if

it is performed each time the preconditioner is formed. To avoid frequently

recomputing the multi-colouring, we seek sparse factorisations for which the

sparsity pattern is known a priori and is fixed throughout the simulation.

This is possible for the ILU(0) preconditioner, which has the same (fixed)

sparsity pattern as the iteration matrix. Furthermore, the multi-colouring

computed in Algorithm 4.5 can also be used for the ILU(0) factors.

CHAPTER 4. ALGORITHMS AND DATA STRUCTURES 106

4.5 Conclusions

This chapter introduced the algorithms and data structures used in FVMPor

to implement the CV-FE spatial discretisation from Chapter 3 for solution in

IDA. The chapter started with an overview of the internal steps taken inside

an IDA time step.

The flat data model, that is be amenable to implementation on data par-

allel compuation architectures was then introduced for the residual evalua-

tion. This was followed by a detailed discussion of each the steps involved

in performing the residual evaluation from §3.2 in §4.2. Care was taken to

emphasise how each step in the residual evaluation can be expressed in terms

of data parallel vector and sparse matrix-vector operations.

Then, the domain decomposition approach used to obtain coarse-grained

parallelism was introduced, with a brief introduction to distributed vectors

and asynchronous communication. Finally, the block Jacboi preconditioner

for distributed matrices was introduced, along with a method for efficiently

solving linear systems with sparse triangular matrices in parallel.

To summarise, this chapter has shown the specific steps that must be taken

to solve, and shown how each step can be expressed using data-parallel op-

erations that can be implemented efficiently on multi-core and many-core

hardware. The following chapter will discuss the low-level details of imple-

menting these operations using OpenMP for multi-core CPUs and the CUDA

language for GPUs.

Chapter 5
Implementation on GPU Clusters
using C++, MPI and CUDA

This chapter presents a description of the implementation of the algorithms

developed in Chapter 4 to run efficiently in on multi-core and GPU com-

puter sytems. We start with a discussion about general-purpose computing

on GPUs, with a focus on the issues that arise when using unstructured

meshes and an implicit time stepping scheme. Then the vectorlib library,

which implements data parallel operations on both multi-core CPU and GPU

hardware will be introduced. The rest of the chapter will discuss in detail the

implementation of the CV-FE discretisation, the IDA timestepping library

and preconditioners.

Of the work presented in this Chapter, there is considerable novelty in the

methods employed to implement the solution process in a hardware-agnostic

manner. This requires that we address two tasks that are challenging on

the GPU: discretistion on unstructured meshes; and implicit time stepping

methods. The simple syntax for vector and indexing operations provided

by vectorlib library in §5.2 facilitates clear, concise and efficient code that

runs on both CPU and GPU. Using vectorlib, the CV-FE discretisation on

unstructured meshes is implemented using flat data structures and index

107

CHAPTER 5. GPU IMPLEMENTATION 108

vectors in §5.6. The novel renumbering scheme for nodes, edges and faces

in §5.7 improves performance of the implicit indexing that arises from the

unstructured meshes. Efficient implicit time stepping is acheived on GPU

clusters using a matrix-free Newton-Krylov method, performed using a mod-

ified version of IDA in §5.5, which combined with an efficient application of

an ILU(0) preconditioner in §5.8, sees the computationally-intensive parts of

the implicit time stepping process implemented entirely on the GPU.

5.1 Using GPUs as Computational Accelera-

tors

Graphics processing units (GPUs) were, as their name suggests, originally

designed for the specific task of performing the arithmetically intense, data

parallel computations associated with graphics rendering. The data parallel

operations for which GPUs are specialised are often encountered in scientific

computing, and other fields such as image processing. This has lead to an

explosion of interest in using GPUs for general purpose computing.

Dedicated GPU accelerators used in high performance computing have sep-

arate memory to the main system memory, and communicate with the CPU

and main memory via PCI-Express bus. The GPU and its memory are la-

belled as the device, and the CPUs and the main system memory are referred

to as the host. Figure 5.1 describes a high-performance GPU desktop com-

puter similar to the one used in our testing, with two GPU devices and two

sockets, each with four CPU cores1.

An important consideration when designing computer processors is memory

latency. Memory latency occurs because the time taken for a memory request

to be served by is typically in the order of hundreds of processor clock cycles.

1The test machine used for this thesis had two four-core Intel Xeon E5620 CPUs rated
at 2.4Ghz with 12 Gigabytes of DRAM, and two NVIDIA Tesla C2050 GPU cards each
with 3 Gigabytes of DRAM

CHAPTER 5. GPU IMPLEMENTATION 109

Devi
e Memory

GPU 0

Devi
e Memory

GPU 1

So
ket 0 So
ket 1

Host Memory

PCI-Express 2.0

Core 2

Core 0

Core 3

Core 1

Core 6

Core 4

Core 7

Core 5

Figure 5.1: Schematic of GPU workstation with two GPUs and two sockets, each
with 4 cores.

CPUs and GPUs differ in how they overcome memory latency according to

the type of operations they are designed to perform.

CPUs are designed to general purpose computing, so that they must perform

well for inherently serial computational tasks. In this context, memory la-

tency is addressed by adding large on-chip caches to buffer memory transfers

between the processor and off-chip memory, and performing sophisticated

prediction and memory prefetching to hide latency. The downside of this

approach is that a large proportion of the silicon, and power consumption,

on a CPU is devoted to cache and memory control hardware.

The graphical operations for which GPUs were designed are data parallel,

or single instruction-multiple data (SIMD), operations that repeat the same

CHAPTER 5. GPU IMPLEMENTATION 110

operation on structured data sets. GPUs are designed under the assumption

that memory access will follow regular patterns, common in graphics applica-

tions. This allows chip designers to remove much of the memory controlling

hardware, and replace it with many cores for parallel processing. Thus, GPUs

can outperform CPUs by orders of magnitudes for data-parallel algorithms,

however the opposite is also true: algorithms that are not well-suited to

GPU implementation perform very poorly. For this reason GPU codes are

particularly sensitive to Amdahl’s law, which states that any gains in parallel

sections of an algorithm will be limited by any parts of the algorithm that

can not be parallelised.

5.1.1 Fermi Architecture

The Fermi architecture is the third-generation GPU for general purpose com-

puting manufactured by NVIDIA. Fermi devices have either 480 or 512 cores

and global DRAM that can be read and written by all cores. For example,

the Tesla C2050 cards used in this work have 480 cores and 3 GB of global

memory.

The cores on the GPU are packaged into units called streaming multi proces-

sors (SMs) that each contain 32 cores. Each SM schedules threads in groups

of 32, called warps, which are launched concurrently to hide memory latency.

In addition to the cores, each SM has 64 kB of on chip memory that can be

used as either shared memory or, unlike previous GPU generations, L1 cache.

The L1 cache is a new feature of the Fermi architecture, that improves the

performance of global memory access (NVIDIA, 2009).

One of the main motivations for the addition of L1 cache on the Fermi ar-

chitecture was to improve the performance of indirect indexing in global

memory. This is an important development for implementing the unstruc-

tured mesh code for FVMPor on the GPU, because indirect indexing is used

extensively to map between the nodes, edges and control volume faces in the

mesh. Specifically, the flat data model introduced in §4.2 uses index vectors

CHAPTER 5. GPU IMPLEMENTATION 111

global

memory

0 128 256 384

1/2 warp : 16 threads

warp : 32 threads

(a)

global

memory

0 128 256 384

1/2 warp : 16 threads

(b)

global

memory

0 128 256 384

1/2 warp : 16 threads

(c)

Figure 5.2: Caching of global memory access for indirect indexing, where different
colours represent different cache lines. Memory requests are always performed for
128-byte blocks, which for doubles equates to 16 threads, or half a warp. In (a)
three cache lines are fetched from global memory to satisfy the memory requests
from the half warp; in (b) two cache lines are read because the two read values lie
in different cache lines of global memory; and in (c) one cache line is read.

CHAPTER 5. GPU IMPLEMENTATION 112

that index into vectors of node, edge and face values. An example of such

an operation in the MATLAB programming language is:

u = v (p) ;

% which i s e q u i v a l e n t to

for i =1: l e n g t h (p)

u (i) = v (p (i)) ;

end

where the index vector p contains indices into v.

Despite the addition of L1 cache, the performance of indirect indexing on the

Fermi architecture is sensitive to the memory access patterns implied by the

indices. The remainder of this section will investigate the restrictions placed

on the indices to obtain good performance, which will inform the derivation

of the numbering scheme for nodes, edges and faces in the dual mesh that is

presented in §5.7.

The role of L1 cache in indirect indexing on a Fermi GPU is illustrated in

Figure 5.2. When indexing arrays of double precision floating point numbers

(which we will refer to as doubles), as is the case in this work, memory

requests are issued per half warp, or set of 16 threads. Each memory request

fetches a cache line of length 128 bytes from global memory to L1 cache,

where the threads in the half warp can simultaneously access the data. The

SM issues as many memory requests for cache lines as needed to load all

the values required by the threads in the half warp. Figure 5.2 illustrates

that the order of the indices has a large impact on the number of cache lines

that have to be read by each half warp: if the index values are scattered

as in Figure 5.2(a), a large number of of cache lines have to be read; and if

contiguous indices are closely clustered or contiguous as in Figure 5.2(c), the

number of cache lines read from global memory is minimised.

Memory bandwidth is the main bottleneck on the GPU because fetching

one cache line from global memory takes hundreds of clock cycles (NVIDIA,

2011a). And so, minimising the number of memory requests that have to be

CHAPTER 5. GPU IMPLEMENTATION 113

issued by each half warp is the key to optimising indirect indexing2. To do

this we must ensure that the index vectors reference locations that are close

together, or clustered, in memory.

The indices used in the CV-FE method map between nodes, edges and faces

in the unstructured mesh. The level of clustering in the index vectors can

be changed by renumbering the nodes, edges and faces. In this thesis, this is

achieved using a numbering scheme based on analysis of the adjacency graph

of the finite element mesh, that is discussed in §5.7.

5.2 The vectorlib Library

The vectorlib library3 is a minimal C++ template library for linear algebra

with MATLAB-like syntax that was adapted as part of this research program

to provide a hardware-agnostic interface to optimised vector and matrix op-

erations used in FVMPor. A brief overview of the capabilities of the library is

presented in this section, with an emphasis on features that facilitate writing

high-level linear algebra code that runs efficiently on a range of architectures.

A basic knowledge of C++, particularly templates and the standard library

containers is assumed. Recommended references for background reading are

the guide to the C++ language by Stroustrup (1993), and the thorough

treatment of C++ templates by Vandevorde and Josuttis (2003).

A key template in vectorlib is the Vector class template:

template<typename T, typename Coord = De f au l tCoo rd i n a t o r<T> > class Vector ;

The template parameters T and Coord represent the scalar type (e.g. double)

and the so-called coordinator respectively. The coordinator plays a similar

role to that of the allocator in the C++ standard library. Indeed, it shares

many of the same roles, including allocating and deallocating storage for the

2Closely clustered indices in also improve memory reuse on the SM level, because the
same cache is shared by all of the concurrently running warps on an SM.

3The vectorlib library was originally developed by Timothy Moroney in 2009, at the
Queensland University of Technology.

CHAPTER 5. GPU IMPLEMENTATION 114

container, as well as “coordinating” access to that storage vis the provided

pointer and reference types. However, in vectorlib, the coordinator plays an

additional role in dispatching to appropriate hardware-optimised implemen-

tations of linear algebra and associated routines.

The default coordinator allocates memory on the host. Hence, a double-

precision vector residing on the host can be defined simply as

Vector<double> v ho s t (/∗ constructor arguments ∗/) ;

The class template Vector provide numerous constructors, for creating empty

vectors, vectors filled with given values, vectors copied from other vectors,

and so on. All of these constructors forward to the coordinator to perform

the actual allocation and initialisation.

This separation of interface and implementation allows vectors residing on

the device to be created and manipulated, by simply defining an appropriate

coordinator type. In vectorlib a vector residing on the device is defined by

using the device coordinator, gpu::Coordinator. The key differences between

gpu::Coordinator, and the default coordinator are

1. gpu::Coordinator forwards calls such as memory allocation and fill to

GPU (device) implementations, rather than standard library (host)

implementations

2. gpu::Coordinator utilises auxiliary “smart-pointer” and “smart-reference”

types

The forwarding of calls to device implementations is quite natural. Device

manufacturers supply platforms and associated libraries with their hardware,

which provide implementations of standard primitives such as allocating and

filling. In vectorlib these are wrapped by functions with names such as allocate

and fill which provide a common interface to this functionality. This permits

different platforms, such as CUDA (NVIDIA, 2011a) and OpenCL (Khronos

Group, 2010) to be used, simply by implementing these wrapper functions

to forward to the appropriate hardware-specific library calls.

CHAPTER 5. GPU IMPLEMENTATION 115

The auxiliary smart pointer and smart reference types abstract away the

details of GPU memory access and traversal, thereby facilitating the famil-

iar model of traversal and element access through pointer arithmetic and

dereferencing. This abstraction ensures that expressions such as

v (i) = q ;

where v is a vector type, i is an index and q is a value, remain valid even

when v has been allocated on the device. Naturally, when working on the

device it is usually preferable to process entire vectors at a time, rather than

individual elements. However, individual element accesses such as the above

do sometimes occur in code (see, for example, updating the source term in the

residual function in §5.6.6). In these situations, the overhead of individual

store and fetch operations is not significant, and hence it is beneficial to

the programmer that such code need not be re-written when running on the

device.

The greatest benefit however comes when vectors are processed as a whole

unit, and vectorlib provides a rich set of such operations that benefit from

acceleration whether implemented on the host or the device. As an example,

consider the expression, in MATLAB notation

v = v + x .∗ y ;

where v, x and y are all vector types. In C++ there is no equivalent to MAT-

LAB’s element-wise multiplication operator .∗, but there is a compound as-

signment operator for addition, +=. The equivalent expression using vectorlib

is

v += mul (x , y) ;

Once again, the coordinator is involved in dispatching to the correct imple-

mentation of operations such as these, depending on whether the operands

reside on the host or the device.

The previous compound assignment statement can also be performed where

all three vectors are indirectly indexed:

v (p) += mul (x (q) , y (r)) ;

CHAPTER 5. GPU IMPLEMENTATION 116

That is, the expressions p, q and r are vectors of indices, representing non-

contiguous subranges of the vectors v, x and y respectively.

Sub-ranges, with strided access, are also supported:

v (0 , 2 , end) = x ; // assign the values in x to every second entry in v

v (a l l) = 3 ; // set every value in v to equal 3

Another supported operation that occurs frequently is the copying of a vector

from host to device, or from device to host. Such a copy would be triggered,

for example, by the following code.

typedef Vector<double> HostVector ;

typedef Vector< double , gpu : : Coo rd ina to r<double> > Dev i c eVec to r ;

HostVector h o s t v (n) ;

// Fi l l vector on host

for (HostVector : : d i f f e r e n c e t y p e i = 0 ; i < n ; ++i)

h o s t v (i) = /∗ i n i t i a l i s e r ∗/

// Copy to device

Dev i c eVec to r d e v i c e v = ho s t v ;

This is the typical idiom for non-trivial initialisation of a vector on the device.

It is assumed that the commented /∗initialiser∗/ in fact represents a complex

operation that is not straightforward to perform efficiently on the device.

Instead, the initialisation takes place on the host, and the resulting vector is

then copied from host to device.

5.3 Sparse Matrices

Sparse matrix-vector multiplication (SPMV) is used throughout the solver,

for example for shape function interpolation in §4.2.2 and in the application

of the multi-colour optimised sparse triangle solves in Algorithm 4.6. This

approach is taken, instead of writing custom optimised CPU and GPU rou-

tines for such operations, because optimised SPMV codes are provided by

hardware vendors. On the CPU, the Intel Math Kernel Library (MKL) (Intel,

2010) is used, and the GPU implementation uses the CUSPARSE library pro-

CHAPTER 5. GPU IMPLEMENTATION 117

vided by NVIDIA (NVIDIA, 2011c). By writing a vectorlib wrapper around

each of these implementations, future generations of CPU and GPU hardware

will be supported as the vendors add support to the their libraries.

The sparsity patterns of the matrices in used for gather operations in the

residual evaluation are determined by the structure of the mesh. Because

the mesh is fixed, the structure of the matrices is also fixed, and the sparsity

pattern and memory used by the matrices can be precomputed and allocated

at startup. The coefficient matrices are initially generated on the host in

compressed sparse row (CSR) format when the mesh is loaded. If a GPU is

used, the matrices are then copied to device memory so that computations

can be performed entirely on the GPU with no further copying of memory

between host and device.

Storing the matrices on the GPU in this manner limits the size of meshes

that can be processed, due to the storage requirements of the matrices, which

increase in size with the number of nodes and elements in the mesh. It is

possible to minimise the memory footprint of the matrices by noting that

some of the matrices have the same sparsity pattern, for example the inter-

polation matrices for scalar and gradients. A mechanism that allows index

information to be shared by multiple matrices with the identical sparsity

patterns is provided, to minimise the memory costs associated with storing

the matrices.

The GPU devices used in this work have 3 Gigabytes of memory, which is

enough for single GPU to store index and sparse matrix information for a two-

dimensional mesh of about 1,000,000 nodes, and three-dimensional meshes of

200,000 nodes. The size of meshes that can be processed can be increased by

using multiple GPUs. Mesh sizes will also increase as the amount of memory

available on devices increases (the latest C2090 model of the Fermi compute

devices at the time of writing doubles the available memory to 6 Gigabytes),

and if there is a move towards unification of host and device memory spaces.

CHAPTER 5. GPU IMPLEMENTATION 118

5.4 Domain Decomposition

Domain decomposition implements course-grained parallelism by assigning

the computational work to separate computational resources by means of

sub-dividing the mesh. In §4.3 the method of domain decomposition was

introduced, and in this section, three key aspects of the low level implemen-

tation of domain decomposition are considered.

• How the hardware resources are assigned to MPI processes. This is

especially important in a heterogeneous computational environment,

where different types of computational unit such as CPU cores and

GPUs are available.

• The method used to perform the domain decomposition of the mesh.

• How communication between the sub-domains is performed. We use

the widely-used standard message passing library MPI, for which we

consider how to overlap communication and computation, and how to

communicate data stored in device memory.

5.4.1 Sub-Dividing the Computer Into Processes

There are a variety of ways that the computational units can be assigned to

processes on a heterogeneous computer such as that illustrated in Figure 5.1,

with CPU cores and GPU co-processors as the basic computational units.

In this thesis two different approaches will be investigated, with the message

passing library MPI (Pacheco, 1997) used for communication between the

sub-domains in each case:

• Hybrid MPI-OpenMP: Hybrid MPI-OpenMP-CUDA: To ac-

commodate GPUs, the hybrid MPI-OpenMP model is extended by as-

signing a GPU to each process. This is illustrated in Figure 5.3, where

CHAPTER 5. GPU IMPLEMENTATION 119

four CPU cores and one GPU device are assigned to each sub-domain

in a two sub-domain decomposition.

Pro
ess 0 Pro
ess 1

Devi
e Memory

GPU 0

Devi
e Memory

GPU 1

MPI

So
ket 0 So
ket 1

Core 2

Core 0

Core 3

Core 1

Core 6

Core 4

Core 7

Core 5

Figure 5.3: Allocation of computational resources in the workstation in Figure 5.1
for a domain decomposition of two sub-domains.

5.4.2 Mesh Generation and Domain Decomposition

The finite volume meshes are generated, and the domain decomposition per-

formed, in a separate preprocessing stage. The open source mesh generation

program Gmsh (Geuzaine and Remacle, 2009) is used to generate the finite

element mesh. Domain decomposition is then performed in a stand-alone

program that uses the ParMetis library (Karypis and Kumar, 1999) to per-

form the decomposition. The mesh for each sub-domain, and the connection

CHAPTER 5. GPU IMPLEMENTATION 120

information between sub-domains, is written to file. When the simulation

code starts, each process reads the part of the mesh corresponding to its sub-

domain from disk, generates the dual mesh for the sub-domain (see §3.1.2),

then builds data structures for MPI communication based on the connection

information.

5.4.3 Communication Between Processes

In the inexact Newton-Krylov solver communication is performed on dis-

tributed vectors. A distributed vector is a vector of nodal values, for example

concentration values, defined at every node in the domain. Distributed vec-

tors can be defined in two ways: with and without overlap. Storing without

overlap stores only values that correspond to local nodes on each process. A

distributed vector with overlap also stores copies of values at halo nodes in

addition to values at local nodes, as illustrated in Figure 5.4.

Two forms of communication are performed with distributed vectors in FVM-

Por and IDA. The first form consists of reduction operations such as dot prod-

ucts and norms. A mechanism is provided by MPI for performing reduction

operations, whereby each process first performs the reduction operation for

local values, then a global reduction is performed by all processes making an

MPI reduction call.

The second type of communication is updating the halo values between neigh-

bouring sub-domains, or halo communication. Two C++ classes are used to

implement halo communication. The first is the Pattern class, which describes

the connectivity of local and halo nodes between sub-domains. The Commu-

nicator class performs communication according to the pattern described by

the Pattern class.

The definition of the Pattern class is shown in Listing 5.1. The class stores

a list of neighbouring sub-domains, and for each neighbour a list of local

variables to be sent to the neighbour, and a list of halo values received from

CHAPTER 5. GPU IMPLEMENTATION 121

Global

view

lo
al

halo

Pro
ess 1

view

lo
al

halo

Pro
ess 0

view

Step 1: send

lo
al to neighbour

Step 2: re
eive

halo from neighbour

(a) (b)

Figure 5.4: (a) Storage of a distributed vector with overlap for two-subdomains.
Each process stores entries in the vector that correspond to its local nodes, as
well as the value of halo nodes from neighbouring sub-domains, which are stored
after the local values. (b) Asynchronous communication to update the halo values
on neighbouring sub-domains. The blue arrow for the send in Step 1 is dashed
because the communication is not completed until receive is finalised in Step 2.

the neighbours. The Pattern class also provides a public interface to this

information.

The definition of the Communicator class is shown in Listing 5.2(a). The con-

structor for the class uses the communication pattern implied by the Pattern

class. The Communicator class is templated on a vectorlib coordinator and

a storage type. The storage type, for example double, specifies the storage

class of the distributed vectors to be communicated. Listing 5.2(b) shows a

simple example of how the Communicator is used to handle communication of

two distributed vectors. Each vector, which has the same storage class as the

Communicator, is first added to the Communicator so that the Communicator

CHAPTER 5. GPU IMPLEMENTATION 122

class Pat t e rn {
public :

Pa t t e rn (mpi : : MPICommPtr) ;

// return a l i t s of neighbour sub−domains
const s t d : : v e c to r<int>& n e i g h b o u r l i s t () const ;
// number of neighbouring sub−domains
int num ne ighbours () const ;
// get the id of the nth neighbour
int ne i ghbou r (int n) const ;
// get index of local nodes to send to sub−domain n
const s t d : : v e c to r<int>& send i n d e x (int n) const ;
// get index of halo nodes to receive from sub−domain n
const s t d : : v e c to r<int>& r e c v i n d e x (int n) const ;

// add a neighbour to the pattern
void add ne i ghbou r (int n ,

s t d : : v e c to r<int>& send ,
s t d : : v e c to r<int>& rec v) ;

private :
mpi : : MPICommPtr comm ;
// l i s t of neighbour sub−domains
s t d : : v e c to r<int> n e i g hbou r s ;
// l i s t s of local/halo nodes to send/receive for each neigbbour
s t d : : map<int , s t d : : v e c to r<int> > s e n d i n d e x ;
s t d : : map<int , s t d : : v e c to r<int> > r e c v i n d e x ;

} ;

Listing 5.1: Definition of Pattern class.

can allocate communication buffers for the vector. Once a vector has been

added, the Communicator can perform asynchronous communication of the

vector’s halo information. The communication is explicitly broken into asyn-

chronous send and receive phases so that communication and computation

can be overlapped.

The Communicator is also templated on a vectorlib coordinator because the

location of the vector data affects how the communication is performed.

For vectors allocated in host memory using a host coordinator, the send and

receives are performed directly to and from the host memory using predefined

MPI Type indexed data types (Pacheco, 1997), that do not require buffering.

To perform halo updates for vectors that are stored on the GPU, two small

buffers are required: one in host memory and one in device memory. To

perform a send, the local values that are to be sent to neighbours are gath-

CHAPTER 5. GPU IMPLEMENTATION 123

template <typename Coord , typename Type>
class Communicator{

public :
Communicator (const mesh : : Pa t t e rn&) ;

// add and remove vectors to and from the communicator
int vec add (TVec&);
int vec remove (int) ;

// communication
int r e c v (int) ;
int send (int) ;
int r e c v a l l () ;

// . . .
} ;

(a)

// create a communicator for vectors of double distributed by mesh nodes
mpi : : Communicator<CoordDeviceDouble , double> comm(mesh . p a t t e r n ()) ;

// create device vectors :
// mesh. nodes() i s the combined number of local+halo nodes
TVecDevice p r e s s u r e (mesh . nodes ()) ;
TVecDevice c o n c e n t r a t i o n (mesh . nodes ()) ;

// add vectors to the communicator
int ptag = comm. vec add (p r e s s u r e) ;
int c tag = comm. vec add (c o n c e n t r a t i o n) ;

// in i t i a l i s e vectors by copying in vectors of length mesh. local nodes ()
// into the local part of the distributed vectors
p r e s s u r e (0 , mesh . l o c a l n o d e s ()−1) = p r e s s u r e l o c a l ;
c o n c e n t r a t i o n (0 , mesh . l o c a l n o d e s ()−1) = c o n c e n t r a t i o n l o c a l ;

// send
comm. send (ptag) ;
comm. send (c tag) ;

// . . . do work on local values

// f inish a l l pending receives so both vectors have up−to−date halo values
comm. r e c v a l l () ;

// . . . do work on halo values

(b)

Listing 5.2: (a) The interface to the Communicator class. (b) An example
of how communication is performed for distributed vectors of pressure and
concentration values.

CHAPTER 5. GPU IMPLEMENTATION 124

ered into the device buffer, which is copied to host memory before sending.

The same host and device buffers are used to receive values from neighbours,

copy them to the device, then insert them into the global vector. Typically,

the overhead of performing the intermediate copies between host and device

memory are very small, because only the local/halo values that are sent/re-

ceived are copied, and these are relatively few compared to the total number

of nodes in a sub-domain.

5.5 The IDA Library

The matrix-free Newton-Krylov method used by IDA has three significant

computational operations, each of which operates on distributed vector and

matrix data. Residual function evaluation and the preconditioner represent

the most significant computational overheads, and both are implemented in

user-supplied routines that are discussed later in §5.6 and §5.8. The re-

maining operations in the Newton-Krylov solver are the vector operations

(equivalent to Level 1 BLAS) applied to distributed vectors in IDA.

The vector operations in IDA are implemented in a separate library called

NVector, which provides an interface to the hardware implementation of

memory allocation and operations for the vector data. The abstraction of

the hardware implementation via NVector makes it possible to add support

for GPUs to IDA simply by writing a version of NVector that implements all

the vector-vector operations on the GPU.

NVector provides an interface that hides the low-level memory and hardware

implementation from the calling code. The only data passed between the

calling code and NVector are scalar values, such as the return values of re-

duction operations like dot products. This design allows IDA to be adapted

to different hardware platforms by using a version of NVector that supports

that hardware.

CHAPTER 5. GPU IMPLEMENTATION 125

Two implementations of NVector are provided with the standard IDA library:

a serial implementation; and a implementation for distributed memory ma-

chines that uses MPI for communication called NVector Parallel. To add

support for GPU clusters to IDA in FVMPor, the parallel implementation

NVector Parallel was altered to perform local vector operations on the GPU.

Reduction calls were the most challenging part of NVector to implement on

the GPU, because of the challenges inherent in reducing an array of length

N to a single scalar value over many threads (Harris, 2007). Once the local

reduced value had been computed on the GPU, the scalar value is copied to

the host and the global reduction is performed using the same MPI reduction

as the original version of NVector Parallel.

For the non-reduction vector operations, such axpy4, the CUBLAS library5

was used when possible, otherwise CUDA kernels were written and compiled

separately using CUDA. For example, CUBLAS provides routines for allo-

cating device memory that are a like-for-like replacement for the equivalent

CPU code in Listing 5.3. An example of an operation in NVector for which

there is no direct equivalent in BLAS is the inverse in Listing 5.4(a), which

was replaced with the CUDA kernel in Listing 5.4(c).

The MPI-CUDA implementation of NVector developed in this thesis can be

downloaded from GitHub at github.com/bencumming/NVectorCUDA.

data = (r e a l t y p e ∗)
ma l l o c (l o c a l l e n g t h ∗

s izeof (r e a l t y p e)) ;

c u b l a s S t a t u s s t a t =
c u b l a s A l l o c (l o c a l l e n g t h ,

s izeof (r e a l t y p e) ,
(void∗∗)&data) ;

Original CUBLAS

Listing 5.3: Replacing memory allocation in NVector library with a CUDA
call.

4The axpy operation is a BLAS operation for finding a linear combination of two
vectors, y ← ax+ y, where a is a scalar.

5CUBLAS is an implementation of BLAS on the GPU provided by NVIDIA (2011b).

github.com/bencumming/NVectorCUDA

CHAPTER 5. GPU IMPLEMENTATION 126

N = NV LOCLENGTH P(x) ;
xd = NV DATA P(x) ;
zd = NV DATA P(z) ;

for (i = 0 ; i < N; i++)
zd [i] = ONE/xd [i] ;

N = NV LOCLENGTH P(x) ;
xd = NV DATA P(x) ;
zd = NV DATA P(z) ;

c uda i n v (N, zd , xd) ;

(a) (b)

extern ”C” void cuda i n v (int N, double ∗ l h s , double ∗ r h s){
int b l o c k sPe rG r i d = (N+threadsPe rB lock −1) / th r e ad sPe rB l o ck ;
b l o c k sPe rG r i d = b l o c k sPe rG r i d > maxBlocksPerGr id ?

maxBlocksPerGr id : b l o c k sPe rG r i d ;
cu i nv<<<b l o ck sPe rG r i d , th r ead sPe rB lock>>>

(l h s , rhs , N) ;
}

g l o b a l void c u i n v (double∗ l h s , double ∗ rhs , int N)
{

int i = blockDim . x ∗ b l o c k I d x . x + th r e a d I d x . x ;
while (i < N){

l h s [i] = 1 ./ r h s [i] ;
i += blockDim . x ∗ gr idDim . x ;

}
}

(c)

Listing 5.4: (a) A for loop in NVector for determining the inverse operation
zi ← 1/xi, i = 1, 2, . . . , N . (b) Replacing the for -loop with a call to a CUDA
kernel. (c) The CUDA implementation of the inverse operation.

5.6 The CV-FE Discretisation

The algorithms, data structures and steps taken in the residual evaluation

were introduced in §4.2. In this section we discuss the implementation of

the residual evaluation that supports both CPU and GPU implementation

by virtue of using vectorlib to store and operate upon vector data.

5.6.1 Interface

All of the operations and data structures for the CV-FE discretisation are

implemented in a Physics class. The Physics class is derived from a generic

base class, and implements a generic residual callback to interface with IDA.

CHAPTER 5. GPU IMPLEMENTATION 127

Listing 5.5 shows the definition of the Physics class for Richards’ equation.

The first template parameter in the definition of the Physics class is value type ,

which is a structure of the primary variables at each node in the mesh. In the

MPR formulation value type is the type hM defined at the top of Listing 5.6.

The type is stored in a struct with static members that specify the number

of algebraic and differential variables, which specifies whether the member

function residual evaluation returns the residual for the PR or for the MPR

formulation, and is used by the preconditioner to determine if the optimal

Schur complement method from §3.3.2 can be used.

The Physics class stores persistent information used to evaluate the residual.

This includes the data structures, such as index vectors, sparse matrices

and working vectors required to perform the residual evaluation, which are

generated at startup. State information such as upwind points and boundary

condition information is computed in the time-step preprocessing step (see

§4.2.1) of the first callback of the residual function at each time step, and

then used for subsequent calls.

The Physics class in Listing 5.5 is templated on two coordinators: a host

coordinator, and a device coordinator. The host coordinator is used for data

that resides on the host, such as that used for the initialisation phase and

MPI communication6. The device coordinator can be thought of as the

computation coordinator, because it specifies the coordinator for the data-

parallel operations in the residual evaluation.

Listing 5.6 shows how to use either the CPU or GPU for the Physics class

by means of setting the device coordinator. With this approach, the physics

class does not contain any hardware-specific code, because the vectorlib co-

ordinators determine where memory is allocated, and dispatch appropriate

hardware-optimised kernels for each operation. This allows either the CPU

or GPU implementation to be chosen at compile time by changing the tem-

6The host template parameter is explicitly stated to allow the user to specify their
own specialised host coordinator, for example, different coordinators that allow the user
to choose between OpenMP or pthreads for multi-core processing.

CHAPTER 5. GPU IMPLEMENTATION 128

plate parameter for the device coordinator, without making any changes to

the Physics code.

template <typename v a l u e t y p e , typename CoordHost , typename CoordDevice>
class VarSa tPhy s i c s :

// derive from base class
public fvm : : Phys i c sBase< VarSatPhys i c s<v a l u e t y p e , CoordHost , CoordDevice >,

v a l u e t y p e , CoordDevice >,
{
public :

// expose types that describe data storage
typedef typename l i n : : r eb ind<CoordHost , double> : : t ype CoordHostDouble ;
typedef typename l i n : : r eb ind<CoordHost , int > : : t ype CoordHost In t ;
typedef typename l i n : : r eb ind<CoordDevice , double> : : t ype CoordDev iceDouble ;
typedef typename l i n : : r eb ind<CoordDevice , int > : : t ype Coo rdDev i c e I n t ;

// host and compute vectors
typedef l i n : : Vector<double , CoordHostDouble> TVec ;
typedef l i n : : Vector<int , CoordHost Int> TIndexVec ;
typedef l i n : : Vector<double , CoordDeviceDouble> TVecDevice ;
typedef l i n : : Vector<int , CoordDev i ce In t> TIndexVecDev ice ;

// interface for Integrator
void p o s t p r o c e s s t im e s t e p (double t ,

const mesh : : Mesh& m,
const TVecDevice &so l ,
const TVecDevice &d e r i v) ;

void r e s i d u a l e v a l u a t i o n (double t ,
const mesh : : Mesh& m,
const TVecDevice &so l ,
const TVecDevice &de r i v ,
TVecDevice &r e s) ;

// . . .
}

Listing 5.5: Definition of Physics class for the Richards’ equation model. The
class, VarSatPhysics, is derived from an physics base class. The first template
parameter is the variable type, which for the PR model is a scalar for pressure
head, and is a structure of pressure head and fluid mass for the MPR model
(see Listing 5.6). The second and third template parameters are the host
and device coordinators, which are used to define the vectorlib vectors used
in the class.

CHAPTER 5. GPU IMPLEMENTATION 129

// define variable structure for the mixed Richards ’ model
struct hM {

double h ; // pressure head
double M; // f luid mass
// the following information i s used by the preconditioner
// to determine matrix structure
stat ic const int v a r i a b l e s = 2 ;
stat ic const int d i f f e r e n t i a l v a r i a b l e s = 1 ;

} ;

// define CPU and GPU coordinators
typedef l i n : : De f au l tCoo rd i n a t o r<int> CPUCoord ;
typedef l i n : : gpu : : Coo rd ina to r<int> GPUCoord ;

// define physics that run on GPU
typedef VarSatPhys i c s<hM, CPUCoord , GPUCoord> PhysicsGPU ;
// define physics that run on CPU
typedef VarSatPhys i c s<hM, CPUCoord , CPUCoord> PhysicsCPU ;

Listing 5.6: Definition of the block variable for the MPR model, and physics
for CPU and GPU implementation.

5.6.2 Edge-Based Weighting

Edge-based weighting is used to determine the value of mobility terms and

advection terms at control volume faces. It is performed by the use of edge

weight vectors, that specify a weighting of variables at the front and back

nodes of each edge, which we recall from (3.46)

[λ]j = wfront
k [λ]front

j + wback
k [λ]back

j . (5.1)

Two vectors, edge weights front and edge weights back, are used to store the

edge weights, and the indices for the front and back nodes for each edge are

stored in two index vectors, edge nodes front and edge nodes back respectively.

The type of spatial weighting (upstream, central averaging or flux limiting)

dictates how the weight vectors for each edge are determined. The simplest

case is for central weighting in equation (3.54), that takes the average of the

front and back nodes by setting the front and back weights for each edge to

0.5:

CHAPTER 5. GPU IMPLEMENTATION 130

e d g e w e i g h t s f r o n t (a l l) = 0 . 5 ;

e dg e we i gh t s ba ck (a l l) = 0 . 5 ;

Because the edge weights are constant for central averaging, the weights

vector is fixed throughout the simulation.

The upstream and flux limiting methods first compute the flow direction

indicator for each edge during time step preprocessing. FDI(ϕ) is computed

using Algorithm 4.2, which is performed using a single vector subtraction

and indirect indexing in vectorlib as follows

p o t e n t i a l (a l l) = head + z node s ;

FDIvec (a l l) = p o t e n t i a l (edge back) − p o t e n t i a l (e d g e f r o n t) ;

In the first step, the potential ϕ = ψ + z is computed for every node using

vector addition, then the FDI for each edge is determined using indirect

indexing and vector subtraction.

The vector FDIs, FDI(q) and FDI(∇φ), are found using sparse matrix-vector

product described in equations (4.5) and (4.6).

The edge weights for upstream weighting are set according to the sign of the

FDI on each edge using equation (4.7). For each edge, the upwind node is

selected, its weight set to 1, then the weight at the downstream node is set to

0. Operations such as this are specific to the finite volume implementation,

and as such are not implemented in vectorlib. Instead, such operations are

implemented in an FVMPor routine that dispatches to OpenMP and CUDA

kernels according to the device coordinator.

Algorithm 4.3 is used to find the upstream and downstream nodes for each

edge, and the neighbour of maximum potential for each node that is used

to determine the flux limiter weights. To implement Algorithm 4.3 on the

GPU, care has to be taken to avoid a race condition that occurs if two threads

simultaneously attempt to update the neighbour of maximum potential for

the same node7. However, because Algorithm 4.3 is only performed once per

7A race condition occurs when two threads attempt to write to the same location on
memory at the same time, in which case the result is not well-defined.

CHAPTER 5. GPU IMPLEMENTATION 131

time step, in the preprocessing step, it was implemented in serial on the host.

This requires that data is copied from the device to the host for processing,

then the weights copied back to the device. To ameliorate the overhead of

copying data between the device and host, page-locked memory buffers in

host memory were used8.

The edge-based weighting operations discussed above are all performed in the

time step preprocessing in §4.2.1. We now consider the operations that are

performed every time the residual is evaluated, namely finding edge weights

for flux limiting and using the edge weights to approximate the value of

mobility and advection terms at control volume faces.

Flux limiting requires inter-process communication to determine 2up infor-

mation for interface edges9. This is because, to determine 2up information

on interface edges, the neighbour of maximum potential must be known for

halo nodes, which requires information about each of a halo node’s neigh-

bours, some of which are not stored only on a neighbouring process. Hence,

when the residual is evaluated, the upstream information from the neighbour

of maximum potential is first determined for each local node, then commu-

nicated to neighbouring sub-domains using a halo update. This updates

the information pertaining to the neighbour of maximum potential at halo

nodes and 2up information for interface edges. Then the weights can the be

determined efficiently in parallel.

Once the edge weights have been set, they are used to compute the value of

advected quantities [ρ]j and [c]j using Algorithm 4.4, which was implemented

using OpenMP and CUDA in FVMPor. The same edge weights are used to

find the relative permeability [krw]j, however a different approach is used in

§5.6.4 due to the dependence of permeability on material properties.

8Page locked host memory is guaranteed not to be swapped into virtual memory, so that
copies between host and device can be performed without buffering, which significantly
reduces the copying time (NVIDIA, 2011a). A specialised vectorlib coordinator that uses
an allocator for page-locked memory was used for this purpose.

9An interface edge has both a local node and a halo node as end points.

CHAPTER 5. GPU IMPLEMENTATION 132

5.6.3 Interpolation

Interpolation from nodal values to control volume faces is performed using

a sparse matrix vector multiplication in equation (4.10). For example, to

interpolate the concentration values to control volume faces the following

matrix vector product is used

ψf = Sψ, (5.2)

where ψf is a vector of pressure head values at control volume faces. This

operation is performed using the following code:

// create vector for storing the pressure head at faces

TVecDevice h e ad f a c e s (mesh . c v f a c e s ()) ;

// use SPMV to to interpolate to faces by multiplying the interpolation

// matrix by the vector of nodal head values

h e ad f a c e s (a l l) = S ∗ head ;

5.6.4 Fluid Properties

Volume averages of fluid properties that are independent of material proper-

ties, such as density, are computed directly using the nodal pressure head and

concentration values according to (3.23), and face values for these variables

are found using using shape function interpolation or edge-based weighting

of the nodal values. Volume averages and face values of fluid properties that

depend on material properties are more complicated and computationally ex-

pensive to form. In §4.2.4 it was proposed that the number of fluid property

computations could be minimised by grouping nodes according to material

properties. We now describe how this is implemented.

The first step, performed at startup, is to generate the required index and

weight vectors. Nodes with the same material property are grouped into

sets, called zones, where a node is deemed to have a material property if

any of its the sub-control volumes has the property. Next, the weight wk in

equation (4.13) is found for the nodes in each zone, along with indices of the

CHAPTER 5. GPU IMPLEMENTATION 133

control volume faces that have the material property. The index and weight

information is used in Listing 5.7 to compute the volume average moisture

content θi, and the face value of relative permeability [krw]j.

// zero the vector containing CV average of moisture content theta
t h e t a . z e r o () ;

// loop over material properties/zones
for (k=0; k<num zones ; k++){

// load head values of CVs in zone k into vector h zone
head zone = head (p zone [k]) ;

// ca l l kernel that computes psk values (saturation and krw) using
// parameters for zone k
psk (Sw zone , krw zone , head zone , pa ramete r s [k]) ;
p o r o s i t y (ph i zone , head zone , pa ramete r s [k] , c o n s t a n t s ()) ;

// find moisture content as product of saturation and porosity
t h e t a z on e = mul (Sw zone , ph i z on e) ;

// add contribution to CV average of moisture content
t h e t a (p zone [k]) += mul (the ta zone , we i gh t zone [k]) ;

// add contribution to permeability at faces
// performed in two steps to avoid al iasing on LHS
k rw f a c e s (q f r o n t [k]) =

mul (krw zone (n f r o n t [k])CPU
e d g e w e i g h t s f r o n t (p f r o n t [k])) ;

k rw f a c e s (q back [k]) +=
mul (krw zone (n back [k]) ,

e dg e we i gh t s ba ck (p back [k])) ;
}

// density i s not dependent on material properties , and can be
// determined outside the zone loop
d e n s i t y = d e n s i t y (h , c on s t a n t s ())

Listing 5.7: Code for computing fluid properties for Richards’ equation. The
method loops over each zone, evaluating the moisture content and relative
permeability theta zone and krw zone for each node that lies in the zone, then
adding each value’s contribution to the relevant volume average and face
respectively.

The outer loop is over the material zones, so that the volume averages and

control faces values in a zone are computed together. A vector of pressure

head at nodes in zone k is gathered using the index vector p zone[k], then the

functions psk and porosity 10 compute saturation Sw, permeability krw, and

10psk and porosity dispatch to optimised OpenMP or GPU kernels according to the
compute coordinator of Physics.

CHAPTER 5. GPU IMPLEMENTATION 134

porosity φ using the pressure head values and material properties of zone k.

The moisture content is then found as the product of saturation and porosity.

The contribution of the moisture content from each node in zone k is added

to the volume averages according to (4.13), using the index vector p zone and

the weights vector for the wk. Then, the contribution of the relative perme-

abilities is added to the control volume faces in zone k. This is performed in

two steps, first adding contributions from front nodes of each face, followed

by the contribution from back nodes, to avoid a race condition when a face

value is simultaneously updated with front and back values.

The mapping of relative permeability values onto control volume faces uses

indirect indexing of nodal values, faces and edge weights. The computa-

tional efficiency of this operation is sensitive to the order of indices in the

index vectors. Further investigation of how this operation was optimised by

renumbering of nodes, edges and faces is discussed in detail in §5.7.

5.6.5 Flux Assembly

Once the values at faces have been reconstructed using shape function inter-

polation and edge weighting, we can form the net fluid mass flux over each

face

[qw]j = −Aj [ρ]j [krw]j Kj

(
[∇ψ]j +

1

ρ0

[ρ]j∇z
)
· nj, (5.3)

which is a scalar value. The face values11 used to compute [qw]j in (5.3)

are stored in vectors of length nf , with vector-valued quantities, such as

pressure head gradient [∇ψ]j, stored with one vector for each component.

The vector of net flux values, qw faces, is computed using the sequence of

vectorlib operations in Listing 5.8.

11The face values are: face area Aj ; density [ρ]j , which is found using edge weights in
the advection term, and using shape functions in the buoyancy term; relative permeability
[krw]j ; hydraulic conductivity Kj which is a diagonal tensor; the gradient of pressure head
[∇ψ]j ; and the control volume face normal nj .

CHAPTER 5. GPU IMPLEMENTATION 135

// x component of grad potential
p o t f a c e s . x = mul (K fa c e s . x , g rad h . x) ;
p o t f a c e s . y = mul (K fa c e s . y , g rad h . y) ;

// y component of grad potential : include buoyancy term
p o t f a c e s . z () (a l l) = g r a d h f a c e s . z ;
p o t f a c e s . z () += (1 . / rho 0)∗ r h o f a c e s l i m ;
p o t f a c e s . z () ∗= K face s . z ;

// take dot product with face normals
q f a c e s = mul (p o t f a c e s . x , f a ce no rms . x) ;
q f a c e s += mul (p o t f a c e s . y , f a ce no rms . y) ;
q f a c e s += mul (p o t f a c e s . z , f a ce no rms . z) ;

// scale saturated flux by relative permeability to get volumetric flux
q f a c e s ∗= k rw f a c e s l im ;
// mass flux i s product of volumetric flux and f luid density
qw face s = mul (r h o f a c e s l im , q f a c e s) ;
// scale mass flux by face area
qw face s ∗= f a c e a r e a s ;

Listing 5.8: Flux assembly for the fluid mass [qw]j in three dimensions.

We note that the sequence of operations in Listing 5.8 could be performed

more efficiently if all or some of the operations were fused, which would

reduce the number of global memory accesses. The approach taken here is to

first write the application in terms of basic operations, and implement fused

operations only in parts of code that are identified as bottlenecks during

profiling and tuning.

If the volumetric flux over the boundary is prescribed by the boundary con-

dition, as per (2.21), the flux at each face is computed on the host12, then

copied to the device during the time step preprocessing. They are then sub-

stituted into the q faces each time the residual is evaluated in Listing 5.8.

12The specified flux is a function of space and time, and may have an arbitrary functional
form or be interpolated from an input file, so it is easier to compute on the host. The
overhead of performing the copy is negligible, because the boundary faces are relatively
few compared to internal faces, and the copy is performed only once each time step.

CHAPTER 5. GPU IMPLEMENTATION 136

Computing the flux at the Dirichlet faces using the matrix-vector multipli-

cation in (4.20) is performed as follows

// create temporary vector to store fluxes

TVecDevice f l u x tmp (d i r i c h l e t f a c e s . s i z e ()) ;

// use SPMV to gather fluxes at Dirichlet faces into the temporary vector

f l u x tmp = d i r i c h l e t m a t r i x ∗ q f a c e s ;

// insert fluxes into global face flux vector

q f a c e s (d i r i c h l e t f a c e s) = f l u x tmp ;

The flux at Dirichlet faces are first gathered in the temporary vector using

a matrix-vector product, then substituted back into the global flux vector

using the index vector dirichlet faces .

5.6.6 Residual Assembly

Once the fluxes over each face and the control volume averages are computed,

the residual is assembled. Here we consider residual assembly for the PR and

MPR formulations, which have one and two equations per node respectively.

The residual function for the PR formulation is a differential equation, de-

fined in (3.70) as

fi(t,ψ, ψ
′) = niψ

′
i +Qw

i (ψ)− ρiSw
i . (5.4)

The accumulation term, niψi, and the net flux for each control volume,

Qw
i (ψ), are computed in two steps in Listing 5.9, where flux matrix is the

sparse matrix defined in (4.23), qw faces is the vector of face values of [qw]j
computed in Listing 5.8, h p is a vector with the derivatives of the pressure

head ψ′i, and storage is a vector of the volume average of the storage term ni.

CHAPTER 5. GPU IMPLEMENTATION 137

r e s = f l u x m a t r i x ∗ qw face s ; // col lect fluxes for each control volume
r e s += mul (s to r age , h p) ; // add accumulation term

Listing 5.9: Source code for residual assembly of the PR formulation of
Richards’ equation.

The contribution of the source term, ρiS
w
i , is added one-by-one for each

source term in the domain

for (int i =0; i<s ou r c e S . s i z e () ; i ++){
// Note : source S , sourec idx and source rho are std : : vector

// containers on the host ,

// while res and density are minlin device vectors

double S = sou r c e S [i] ;

int i d x = s o u r c e i d x [i] ;

i f (S<0.)

r e s (i d x) += d e n s i t y (i d x)∗S ;

else

r e s (i d x) += sou r c e r h o [i]∗S ;

}

The above code manipulates individual values stored in the device vectors

res and density from the host, which requires copying scalar values between

the host and device. The overhead for this operation is negligible, so long as

there are only a few source terms. In this situation, the simplicity of using

host code outweighs the computational benefits of implementing the source

term update entirely on the GPU.

The MPR formulation of Richards’ equation has two residual functions per

node, defined in (3.74) and (3.75). The first is the differential equation

fi = M ′
i +Qw

i (ψ)− ρiSw
i , (5.5)

and the second is the algebraic expression

gi = Mi − ρiθi. (5.6)

Assembling the residual is very similar to the PR formulation, with an extra

step to compute the algebraic expression gi in (5.6), and with the fluid mass

CHAPTER 5. GPU IMPLEMENTATION 138

Mi as primary variable

int NL = mesh . l o c a l n o d e s () ;

// store f values in f i r s t half of residual vector

r e s (0 ,NL−1) = f l u x m a t r i x ∗ qw face s ; // col lect fluxes

r e s (0 ,NL−1) += M p ; // add accumulation term

// store g values in second half of residual vector

r e s (NL , end) = M;

r e s (NL , end) −= mul (theta , d e n s i t y) ;

The residual function for the mass balance, (5.4) and (5.5) in the PR and

MPR formulations respectively, is replaced with an algebraic expression (3.73)

for nodes on Dirichlet boundaries

ψi − ψb(t,x), (5.7)

where ψb(t,x) is the pressure head prescribed by the boundary condition.

This is performed using indirect referencing to restrict the operation to the

Dirichlet nodes

r e s (d i r i c h l e t n o d e s) = head (d i r i c h l e t n o d e s) − head b ;

The index vector dirichlet nodes lists the nodes on Dirichlet boundaries, and

head b has the corresponding head values prescribed by the Dirichlet condi-

tion, which are set during the time step preprocessing.

5.7 A Mesh Renumbering To Optimise Indi-

rect Indexing On GPUs

Indirect indexing is used extensively throughout the residual evaluation via

flat index vectors and sparse matrix-vector multiplication. The computa-

tional performance of these operations is very sensitive to the order of the

indices, for reasons discussed in §5.1.1. Here a novel method for renum-

CHAPTER 5. GPU IMPLEMENTATION 139

bering the components13 in the dual mesh is presented, which improves the

performance of operations that use indirect indexing.

The indirect indexing operations that are computational bottlenecks in FVM-

Por can be categorised as either gather or scatter operations.

• Examples of gather operations include: gathering values at the vertices

of an element to compute a face value using shape functions as described

in (4.9); gathering the flux over control volume faces to form the net

control volume flux in (4.22); gathering fluxes at the faces on an edge

to form a vector FDI (3.48).

• An example of a scatter operation is adding the contribution of a nodal

krw value to each face of the node’s control volume in Listing 5.10.

In each of these gather/scatter operations, values are mapped from/to mesh

components that are directly adjacent in the mesh. This reflects the local

nature of the finite volume operator, whereby the face and edge values that

contribute to the residual function at each node are adjacent (local) to the

node in the mesh.

Cache reuse is optimised when threads in a warp access memory locations

that are close in memory, preferably in the same cache line. For this to occur,

the indices into the node, face and edge arrays used for the spatially-local

gather and scatter operations must refer to entries that are close together

in memory. This suggests numbering the nodes, edges and faces such that

consecutively-numbered components are close together spatially.

To ensure that nodes that are near-by in space are also near-by in memory,

we analyse the matrix of the adjacency graph of the nodes in the finite

element mesh. The upper bandwidth of the matrix represents the maximum

distance between any two adjacent nodes in memory. This distance is reduced

13We refer to nodes, edges and faces collectively as components of the dual mesh.

CHAPTER 5. GPU IMPLEMENTATION 140

by renumbering nodes according to the bandwidth-reducing reverse Cuthill-

McKee (RCM) permutation (Cuthill and McKee, 1969).

Following the renumbering of nodes, the edges and faces are numbered ac-

cording to their nearest-neighbour node in the mesh. This is done by first

sorting the edges according to the minimum index of the nodes at their end

points. Then, when the dual mesh is constructed, control volume faces are

formed by traversing the edges in order, and numbering the faces attached

to each edge in ascending order.

With this renumbering, not only are the faces and edges associated with a

single node close together in memory – edges and faces associated with a set

of nodes with contiguous indices are also clustered locally in memory. This

approach has the benefit of being straight-forward to implement when the

mesh is loaded, without requiring any geometric or spatial analysis (Corrigan

et al., 2010), which makes it well-suited to irregularly-shaped domains.

5.7.1 Indirect Indexing in Computing Relative Perme-

ability

To illustrate the renumbering, we now look at a specific indirect indexing

operation in the residual evaluation: finding the relative permeability at

control volume faces. For simplicity, it is assumed that the porous medium

is homogeneous in Listing 5.10 14. This operation is the most computationally

expensive indirect indexing operation in the residual evaluation, because it

uses indirect indices into node, edge and face vectors.

The mapping of front values in Listing 5.10 uses indexing as follows: assign

to each face (indexed with q front) the permeability at the face’s front node

(indexed with n front) multiplied by the edge’s front weight (indexed with

14We note that the homogeneous case in Listing 5.10 is simpler than the heterogeneous
case in Listing 5.7. Indeed, it is equivalent to using indirect indexing on flat vectors to
perform Algorithm 4.4.

CHAPTER 5. GPU IMPLEMENTATION 141

// compute krw for each node from nodal head values and parameters
psk (krw , head , pa ramete r s ()) ;

// add contribution to permeability at faces
// performed in two steps to avoid al iasing on LHS
k rw f a c e s (q f r o n t) = mul (krw (n f r o n t) , // front mapping

e d g e w e i g h t s f r o n t (p f r o n t)) ;
k rw f a c e s (q back) += mul (krw (n back) , // back mapping

edg e we i gh t s ba ck (p back)) ;

Listing 5.10: Code for computing relative permeability at control volume
faces in a homogeneous medium.

p front). Figure 5.5 shows both the physical location and memory indices

of nodes, edges and faces accessed by a half warp on an unstructured two-

dimensional mesh for the front mapping 15. Each node is referenced multiple

times in index n front , once for each face onto which it is mapped. By sorting

it in ascending order, at most two cache lines are read from krw by each half

warp 16. The indices of the faces onto which the nodes are mapped also show

a high degree of clustering. Furthermore, The spatial clustering of the nodes,

edges and faces referenced by the indices is apparent in Figure 5.5(b).

5.8 Implementation of Preconditioners

The block-Jacobi preconditioner for distributed matrices was introduced in

§4.4, along with a method for applying block preconditioners efficiently on

the GPU. Here we give more detail about the different techniques used to

factorise and apply the preconditioners on the local block of each sub-domain.

First, the steps involved in forming the preconditioner, along with three

different sparse factorisations are presented in §5.8.1. Then, in §5.8.2, the

different methods used to apply the preconditioner are outlined.

15A two-dimensional triangle mesh was loaded and sorted, then the nodes, edges and
faces referenced by a random warp were recorded.

16Most often only one cache line will have to be read, however there will be times when
the clustered node indices fall either side of the boundary between cache lines.

CHAPTER 5. GPU IMPLEMENTATION 142

node indices
[235, 235, 235, 236, 236, 236, 236, 236, 236, 237, 237, 237, 237, 237, 237, 237]

edge indices
[692, 694, 694, 698, 698, 699, 699, 700, 700, 597, 597, 697, 697, 701, 701, 702]

face indices
[1341, 1344, 1345, 1352, 1353, 1354, 1355, 1356, 1357, 1152, 1153, 1350, 1351, 1358, 1359, 1360]

(a)

(b)

Figure 5.5: (a) The indices of nodes, edges and faces accessed by a half warp when
mapping the front faces in Listing 5.10. (b) The physical location of the nodes,
edges (red) and faces (blue). There are 16 faces (one for each thread in the half
warp), nine edges and three nodes accessed.

5.8.1 Forming the Preconditioner

An analysis step is performed the first time that a preconditioner is formed.

The analysis step first determines a multi-colouring of the columns using

Algorithm 4.5 so that the columns of the iteration matrix can be computed

efficiently. Additional analysis may also need to be performed at this point,

depending on the specific preconditioner being used.

Each time the preconditioner is formed, the local block of the iteration matrix

is approximated efficiently using the multi-colouring introduced in §4.4.2.

The factorisation is always performed on the host, using sparse factorisations

from the Intel MKL library (Intel, 2010). Hence, if the GPU is being used,

the matrix is formed on the device, then copied to the host for factorisation.

Once the local block of the iteration matrix G is stored on the host, it is

CHAPTER 5. GPU IMPLEMENTATION 143

factorised using one of the following methods:

• LU : A full sparse LU factorisation is performed using the PARDISO17

library (Schenk and Gärtner, 2004), which is included in the Intel MKL.

Both the factorisation and application phases are performed on the

host, and are optimised to use OpenMP. This improves the precon-

ditioner’s performance using both MPI-OpenMP and MPI-OpenMP-

CUDA.

• ILUT : An incomplete factorisation with thresholding (ILUT) precon-

ditioner (Saad, 1994). The factorisation and triangle solution routines

in MKL are both single threaded.

• ILU(0): An incomplete factorisation without fill in from the Intel MKL

library. The factorisation and application routines in the MKL are

single threaded, however the fixed sparsity pattern makes it possible to

use the multi-colouring that will be discussed in the following section

to parallelise the application phase on the GPU.

If the application phase is to be conducted on the device, the factorised

matrix is copied to the device.

5.8.2 Applying the Preconditioner

There are six different methods used to apply the preconditioner computed

in the previous section: four of which apply the preconditioner on the host;

and two of which apply the preconditioner on the device.

Applying the preconditioner on the host requires communication between

host and device memory every time the preconditioner is applied. Analysis

in Chapter 7 shows that the time spent copying is a significant proportion

17http://www.pardiso-project.org

CHAPTER 5. GPU IMPLEMENTATION 144

of all time spent in the preconditioner, so to ameliorate the cost of copying,

the vectorlib host vectors used for the copying use page-locked host memory.

The remainder of this section will discuss each of the methods for applying

the preconditioners in turn.

• LU (host): The LU preconditioner applies the full sparse LU de-

composition to the local block on the host. The full factorisation is

very effective18, however the computational overhead associated with

applying this preconditioner are considerably higher than the other

preconditioners.

• ILU(0) (host): This preconditioner applies the ILU(0) precondi-

tioner on the host.

• ILUT (host): This preconditioner applies the ILUT preconditioner

on the host.

• B-ILU(0) (host): This preconditioner applies a block Jacobi pre-

conditioner to the local block, where the number of blocks is equal to

the number of OpenMP threads on each process, and the ILU(0) pre-

conditioner is used on each block. OpenMP is used to factorise and

apply the preconditioner for each block on separate host CPU cores19.

• MC-ILU(0) (device):

The MC-ILU(0) preconditioner applies the ILU(0) preconditioner on

the device using Algorithm 4.6. The factorised matrix is stored in the

permuted block form (4.29) on the device, with a data structure that

stores the Li and Ui blocks as sparse matrices in CSR format, and the

diagonal blocks Di as vectors.

18The full LU factorisation is exact when used the first time on the matrix for which
it is calculated, however because it is reused over multiple time steps during which the
matrix G changes, it is no longer exact.

19To ensure optimal performance, thread affinity is fixed, so that the memory allocation,
factorisation and application are performed on the same core for each block.

CHAPTER 5. GPU IMPLEMENTATION 145

• CUSP-ILU(0) (device): The CUSP-ILU(0) preconditioner uses the

sparse triangle solve implemented in the CUSPARSE library (Naumov,

2011) to apply an ILU(0) preconditioner on the device. CUSPARSE

uses the same multi-colouring method to determine independent sets of

rows for processing as the MC-ILU(0) preconditioner. However, where

the MC-ILU(0) method stores the matrix in permuted form of (4.29),

the CUSPARSE library does not permute the matrix. Instead, the

permutation matrix q and idx are used to process the rows of the matrix

in place.

5.9 Conclusions

With the emergence of new many-core processor architectures, such as GPUs,

designed for fine-grained parallelism, one of the key challenges of in scientific

computing is writing software that will perform well across a range of different

computational units. Another related issue is ensuring that software will be

able to support future hardware platforms with as little rewriting as possible.

The method chosen to meet these aims in this thesis is to implement the low-

level hardware implementation of memory management and data-parallel

operations in the vectorlib library. The library supports multiple hardware

platforms, and provides a flexible, hardware-agnostic syntax. This allows

the FVMPor code written with vectorlib to be compiled to run for different

hardware through changing a template parameter.

A significant challenge to implementing unstructured mesh codes on the GPU

is the indirect indexing operations they necessitate, which can lead to inef-

ficient global memory access patterns. This was addressed in §5.7, where

a renumbering of nodes, edges and faces in the dual mesh was proposed to

increase cache reuse on the Fermi architecture when performing gather and

scatter operations in the residual evaluation.

In §5.5 the NVector library used by IDA was rewritten to store and process

CHAPTER 5. GPU IMPLEMENTATION 146

local vectors used in the Newton and GMRES iterations on the GPU, and

use MPI for communication between sub-domains. Finally, six methods for

applying sparse factorisations as preconditioners were described in §5.8.2. Of

these, four were applied on the host. The remaining two methods apply the

preconditioner on the device using the multi-colouring method described in

§4.4.3.

In this chapter each of the significant computational overheads of the Newton-

Krylov method used by the implicit time stepping scheme has been imple-

mented on the GPU, namely the residual evaluation, vector operations in

NVector and preconditioner application. In Chapter 7 the computational ef-

ficiency of the CPU and GPU implementations of FVMPor presented in this

chapter will be presented. The next chapter will verify the CV-FE discreti-

sation and the different formulations on several challenging test problems.

CHAPTER 5. GPU IMPLEMENTATION 147

Chapter 6
Model Verification

In this chapter the methods introduced in this thesis are verified and analysed

by applying them to several test problems. The first section introduces test

problems for both Richards’ equation and the coupled transport model. The

following two sections present results from these test problems, focussing on

the accuracy and computational efficiency of the different spatial schemes

and formulations. The final section of the chapter investigates the effect of

options relating to the time stepping scheme, namely the order of integration

and the choice of preconditioner, on the efficiency and accuracy of the scheme.

Throughout this chapter, results are computed using both the CPU and

GPU implementation. In each case, it is noted which implementation was

used to obtain then results. More detailed analysis of the computationaly

performance of the GPU and CPU codes will follow in Chapter 7.

6.1 Test Cases

Each test case is chosen to analyse specific aspects of the numerical scheme.

All of the test cases, except for the test cases presented in §6.1.3 and §??, have

148

CHAPTER 6. MODEL VERIFICATION 149

been investigated previously in the literature, so that the solutions obtained

here may be verified against numerical and experimental results.

There are two test problems for Richards’ equation. The first was proposed

by Forsyth et al. (1995) to test the efficacy of numerical methods for ac-

curately modelling sharp infiltrating fronts in very dry soil, and has subse-

quently been investigated by Diersch and Perrochet (1999), Therrien et al.

(2010) and Carr et al. (2011). The exact mass balance is also available in

this test case, which makes it possible to verify conservation of mass for the

different formulations.

The second test problem for Richards’ equation is based on laboratory ex-

periments performed by Vauclin et al. (1979), who investigated the transient

location of the water table. The experimental results were reproduced nu-

merically by Fahs et al. (2009), so that results can be validated against both

experimental and numerical results.

Another three test cases are used to verify the full coupled flow and transport

model. The first models the injection of a contaminated fluid into an unsat-

urated heterogeneous box. It was formulated to test both the efficacy of the

flux limiters and conservation of mass for simulating transport in unsaturated

heterogeneous media.

The second test problem is based on the experimental results of Zhang et

al. (Zhang, 2000, Volker et al., 2002, Zhang et al., 2004), who investigated

the density-dependent transport of contaminant plumes in unconfined coastal

aquifers. The experiments were performed in a laboratory model of an uncon-

fined coastal aquifer with time-varying boundary conditions on the seaward

boundary and the evolution of contaminant plumes of different densities was

investigated.

The final test case is formulated to verify the formulation for variably-

saturated flow and transport on an unstructured mesh three-dimensional

mesh. The test case simulates a contaminant plume, that is leached from a

CHAPTER 6. MODEL VERIFICATION 150

contaminated heap into a shallow aquifer.

6.1.1 Richards’ Equation: Infiltration Into Dry Het-

erogeneous Soil – The dry infiltration Test Case

The dry infiltration test case was proposed by Forsyth et al. (1995, Problem

2) to assess the efficacy and efficiency of numerical methods for simulating

infiltrating fronts under very dry initial conditions. The domain has four

regions, illustrated in Figure 6.1, each with different material properties that

are summarised in Table 6.1. Water infiltrates through the 2.25 metre-wide

gap in the top left hand boundary at a constant rate of qb = −0.02m/d. The

domain is initially dry, with a uniform pressure head.

In a separate numerical analysis of the problem, both Forsyth et al. (1995)

and Diersch and Perrochet (1999) investigated two different uniform values

for initial pressure head: the first was ψ0 = −7.34m; and the second had

very dry soil at ψ0 = −100 m. In both papers, a Galerkin finite element

discretisation on a uniform, 1891-node quadrilateral mesh was used.

It is possible to verify the accuracy of the conservation of mass of the nu-

merical solutions to this test case because both the exact initial mass of fluid

in the domain, and the fixed mass flux of fluid over the gap at the top left

boundary, are known.

CHAPTER 6. MODEL VERIFICATION 151

Zone K [m/s] φ [1] Sr [1] αv [1/m] nv [1]
1 9.153 · 10−5 0.3680 0.2771 3.34 1.982
2 5.445 · 10−5 0.3510 0.2806 3.63 1.632
3 4.805 · 10−5 0.3250 0.2643 3.45 1.573
4 4.805 · 10−4 0.3250 0.2643 3.45 1.573

Table 6.1: Material properties for the dry infiltration test case.

5
.1
m

0
.5
m

0
.4
m

4
m

1
m

8m

1m 2m

2.25m

zone 1

zone 2

zone 3

zone 4

Figure 6.1: The domain for the dry infiltration test case due to Forsyth et al.
(1995).

CHAPTER 6. MODEL VERIFICATION 152

6.1.2 Richards’ Equation: Transient Water Table Ex-

periment – The water table Test Case

The water table test case is based on the laboratory experiments investigated

by Vauclin et al. (1979) for determining the transient position of a water

table. The experiment was performed in a soil box of dimensions 6 m×2 m.

Water infiltrated through a 1 m-wide strip at the top of the centre of the

domain, and a hydrostatic condition was imposed for the lower 65 cm at the

sides of the tank. Due to the symmetric nature of the problem, only the right

hand half of the domain is modelled, with a no flow condition imposed along

the axis of symmetry, as illustrated in Figure 6.2. The system is assumed

to initially be at hydrostatic equilibrium with the water table at a height

of 65 cm specified by a hydrostatic Dirichlet condition on the right hand

side. The parameters for the homogeneous material properties are listed in

Table 6.2.

Previous numerical investigations of this problem (Vauclin et al., 1979, Fahs

et al., 2009) treated the problem as two-dimensional. To test the efficacy

of our discretisation in three-dimensions, we extend the tank to a width of

0.5 m.

parameter value
K 9.72 · 10−5 m·s−1

φ 0.3
Sr 0.033
αv 3.3 m−1

nv 4.1
Ss 1 · 10−8 m−1

Table 6.2: Material properties for the water table test case.

CHAPTER 6. MODEL VERIFICATION 153

hydrostati

initial water table

qb=-3.55m/day

0.5m 2.5m

0.625m

2m

Figure 6.2: The domain for the water table test case due to Vauclin et al. (1979).
Only the right hand side of the full problem is illustrated here.

6.1.3 Transport Model: Flow and Transport in Un-

saturated Soil – The unsaturated transport Test

Case

The unsaturated transport test case is designed to test the upstream weight-

ing and flux limiters, and the conservation of mass, for the coupled transport

model. The domain is the two-dimensional box exhibited in Figure 6.3, that

is initially unsaturated with a uniform pressure head of ψ0 = −2 m and a salt

concentration of zero. All of the boundaries have zero flux, so that the only

source of fluid and salt is a point source of fluid with a salt concentration

of c = 1 at the point (x = 1 m, y = 0.5 m) at a rate of 1 · 10−6 m3/s. The

density of the water is computed with equation (2.11), given a reference fresh

water density of ρ0 = 1000 g/L, density coupling coefficient η = 0.025 and

by assuming it is an incompressible fluid (β = 0).

As for the dry infiltration test case, it is possible to measure mass balance

CHAPTER 6. MODEL VERIFICATION 154

errors because the only source of fluid and salt is the constant source term.

high-permeability zone
parameter value
K 5 · 10−5 m·s−1

φ 0.368
Sr 0.3261
αv 3.55 m−1

nv 2
αL 1 · 10−3 m
αT 1 · 10−3 m
Dm 0 m2·s−1

η 0.025 m3kg−1

low-permeability zone
parameter value
K 5 · 10−7 m·s−1

φ 0.2
Sr 0.1261
αv 3.55 m−1

nv 1.8
αL 1 · 10−3 m
αT 1 · 10−3 m
Dm 0 m2·s−1

η 0.025 m3kg−1

(a) (b)

Table 6.3: Parameters for unsaturated transport test case.

sour
e term = 10−6m3/s

low permeability

high permeability

2m

2m

0.2m

0.2m 1m

Figure 6.3: The domain for the unsaturated transport test case. The domain has
no-flux conditions imposed over each boundary, so that the only source of fluid
and solute is at the injection point at x = 1, y = 0.5.

CHAPTER 6. MODEL VERIFICATION 155

6.1.4 Transport Model: Flow Tank Experiments – The

tank steady , tank plume and tank tidal plume

Test Cases of Zhang

These test cases are based on a series of experiments performed in the PhD

work of Zhang (2000), some of which was subsequently published (Zhang

et al., 2002, 2004). The experiments were performed in a laboratory flow

tank filled with a homogeneous porous medium, with a sea water interface

on a sloping beach, and constant fresh water head on the inland side of the

domain, illustrated in Figure 6.5(a).

The flow tank had dimensions 1.65 m long, 0.6 m high, and 0.1 mm wide,

with a homogeneous porous medium composed of uniform glass beads, for

which it was possible to accurately determine the material properties listed

in Table 6.4(a). A series of experiments were performed using the flow tank

by Zhang (2000), three of which are investigated in this work.

tank steady : This test was performed to determine the steady state location

of the sea water interface in the absence of both tidal variation of sea levels

and contaminant plumes. On the inland side of the domain a constant fresh

water level of 0.463 m was maintained, and the sea level was kept constant at

0.439 m, as illustrated in Figure 6.5(b). The sea water interface was allowed

to form, until it obtained a steady state.

tank plume: The fresh water head and sea level were fixed at the same levels

as for the tank steady test case and the steady state sea water interface was

allowed to form. Then, a contaminant plume of density 1015.7 g/L (corre-

sponding to concentration c = 0.689, where c = 1 is the normalised concen-

tration of salt in the sea water), was injected at a constant rate of 0.14 mm/s

along the .18 m-long injection boundary above the beach.

tank tidal plume: These experiments investigated the evolution of contami-

nant plumes of different densities with periodic tidal forcing. The sea level

CHAPTER 6. MODEL VERIFICATION 156

had an average height 0.439 m, and the tide had an amplitude of 40 mm with

a period of 40 minutes. Initially, the conditions for this test were identical

to those for the tank plume test case, however tidal variations were initiated

along with the injection of the contaminant when the steady state solution

had formed. Contaminant plumes with four different densities were inves-

tigated, with densities that ranged from that of fresh water to the same

density as sea water. The density of the plumes was varied by altering the

concentration of salt in the injected fluid. The effect of tidal fluctuations was

minimal for the lightest plume, while the most dense plume exhibited large

unsteady fingering patterns due to the density differences between the plume

and the fresh water, which makes modelling it a challenge (Brovelli et al.,

2007). In this chapter we investigate the evolution of the second-most dense

contaminant plume, which was also investigated by Brovelli et al. (2007),

with details in Table 6.4(b).

Zhang (2000) also performed numerical simulations to reproduce the experi-

mental results, for which a two-dimensional model was used, with computa-

tional domain in Figure 6.5(b). Limits imposed by computational resources

when the original study was published restricted the numerical analysis to

a relatively coarse quadrilateral mesh of 3,840 nodes, and did not consider

tidal variation, which adds considerably to the computational cost of the

simulations.

0 10 30 50 70 90 110 120
0.399

0.439

0.479

time (minutes)

h
ei

gh
t

of
ti

d
e

Figure 6.4: Height of the tide for the tank tidal plume experiment.

CHAPTER 6. MODEL VERIFICATION 157

parameter value
η 0.03
ρ0 995.1 g/L
αL 0.65 mm
αT 0.1 mm
η 0.025 m3kg−1

Dm 0 mm2/s
K 4 mm/s
φ 0.37
αvg 8.6 m−1

nvg 9.5
Sr 0.3261

(a) Parameters

concentration density of relative
of solute solute density

fresh water 0 995.1 1
contaminant plume 0.689 1015.7 1.021

sea water 1 1025.0 1.03

(b) Properties of the contaminant plume.

Table 6.4: Experimentally determined parameters for experiments by Zhang
(2000). The density of fresh water is 995.1 g/L, and the sea water has salt concen-
tration of c = 1.

CHAPTER 6. MODEL VERIFICATION 158

(a) Experimental flow tank

335mm

100mm

1650mm

610mm

535mm

463mm

439mm

365mm

(b) Computational domain

Figure 6.5: The laboratory flow tank, and corresponding computational domain
for the laboratory flow tank experiments by Zhang (2000).

CHAPTER 6. MODEL VERIFICATION 159

6.1.5 Transport Model: Leaching of a Contaminant

Plume in a Shallow Aquifer – The heap leaching

Test Case

This test case was formulated to investigate the spatial weighting methods

for variably-saturated flow and contaminant transport in three dimensions.

The domain, as illustrated in Figure 6.6, is a homogeneous shallow aquifer

with a heap of contaminated porous media situated above the aquifer. The

material properties of the aquifer and heap are summarised in Table 6.5.

Hydrostatic initial conditions are imposed everywhere in the domain, with

the water table 20 cm below the surface. No flow boundary conditions are

imposed along the sides and bottom of the domain, except for the left hand

boundary (x = 0), where a hydrostatic boundary condition consistent with

the initial conditions is imposed. A fluid source term is located at [x, y, z] =

[1, 0,−1.5], with a constant injection rate of 0.1728 m3/day.

The initial concentration of the contaminant in the heap satisfies the condi-

tion C = φ, or c = 1/Sw. This concentration is imposed to ensure that the

total volumetric average of contaminant is initially constant everywhere in

the heap. The surface of the heap is subject to a constant inflow of 5 mm/day,

with a no flow boundary condition imposed elsewhere on the top surface. The

simulation period is 81 days, during which a contaminant plume is formed

in the aquifer due to leaching of the contaminant from the heap.

CHAPTER 6. MODEL VERIFICATION 160

aquifer
parameter value
K 5 · 10−5 m·s−1

φ 0.351
Sr 0.2806
αv 3.63 m−1

nv 1.632
αL 1 · 10−3 m
αT 1 · 10−3 m
Dm 5 · 10−8 m2·s−1

η 0 m3kg−1

contaminated heap
parameter value
K 2 · 10−4 m·s−1

φ 0.37
Sr 0.3261
αv 3.5 m−1

nv 1.5
αL 1 · 10−3 m
αT 1 · 10−3 m
Dm 5 · 10−8 m2·s−1

η 0 m3kg−1

Table 6.5: Parameters for heap leaching test case.

z

x

y

x

1 m
1 mheap

qb =5 mm/day

2.05 m

8 m

1.5 m

4.1 m

1.3 m
source 0.1728 m3/day

Figure 6.6: The domain for the heap leaching test case.

CHAPTER 6. MODEL VERIFICATION 161

6.2 Richards’ equation: the dry infiltration

test case

Mesh convergence tests were performed, and a fine 23,555 node triangular

mesh was chosen for the reference solution, which was was determined for

both the dry initial conditions (ψ0 = −7.34 m) and the very dry initial con-

ditions (ψ0 = −100 m) using central weighting and a very tight relative and

absolute tight tolerances for the convergence of the Newton method (see

equation (3.92)) of τr = τa =1 · 10−8. The resultant saturation contours

for the very dry case after 30 days are in good agreement with the fine-mesh

solution for the same problem by Diersch and Perrochet (1999) in Figure 6.7.

To compare the computational efficiency and accuracy of the edge weighting

methods (upstream weighting the flux limiting), and of the different formu-

lations for Richards’ equation (the PR and MPR formulations), the solution

was computed on meshes with different resolutions using FVMPor compiled

for the CPU. Table 6.6 summarises the properties of the three meshes used.

Each successive mesh was formed by halving the typical edge length such that

the medium resolution mesh has 1406 nodes, which is similar to the 1890-

node quadrilateral meshes used in previous analysis of this problem (Forsyth

et al., 1995, Diersch and Perrochet, 1999, Therrien et al., 2010).

The computational performance of each combination of limiter and formula-

tion, measured in terms of residual evaluations, wall time and mass balance

error, for each mesh is illustrated in Table 6.7 and Table 6.8 for the PR and

MPR formulations respectively with the dry initial conditions. The same

information is tabulated for the more computationally-challenging very dry

initial conditions in Tables 6.9 and 6.10.

For this test case, it is possible to determine the mass balance error of the

computed solutions. The initial mass of fluid in the system, MΩ(t(0)), can be

computed exactly given that the pressure head is constant everywhere in the

domain. Furthermore, the only source of mass is the constant flux over the

CHAPTER 6. MODEL VERIFICATION 162

top left boundary, so that the mass of water in the system at t(m) can then

be determined exactly

MΩ(t(m)) = MΩ(t(0)) + net total flux over boundary (6.1)

The total mass of fluid in the computed solution at t = tn is computed using

equation (3.29)

MΩ(t(m)) =
Nn∑

i=1

∆iM
(m)
i . (6.2)

The relative mass balance error for the fluid, water phase, ewmb, is then

ew
mb(t(m)) =

∣∣MΩ(t(m))−MΩ(t(m))
∣∣

MΩ(t(m))
. (6.3)

The same approach is used to determine mass balance error for both the

fluid mass and solute mass, ew
mb and es

mb respectively, for the coupled flow

and transport model.

Comparison of upstream weighting and flux limiters

We now compare the mesh convergence and efficiency of solutions computed

using upstream weighting and flux limiting. First, it is important to note

that for a given weighting the solutions determined using the PR and MPR

formulations are found to be visually indistinguishable. Furthermore, for

this test case, the difference between solutions computed using the different

limiters are very small. Hence, we take PR solutions computed using the

parabolic limiter with the flow direction indicator FDI(q) (defined in (3.48))

as being representative of flux limiting, and compare them to contours for

upstream weighting with FDI(q) in Figures 6.9 to 6.10.

The upstream solutions exhibit significant numerical diffusion, whereby con-

tours of higher-saturation values are under-estimated, and the lower satura-

tion contours are over-estimated. The numerical diffusion decreases as the

CHAPTER 6. MODEL VERIFICATION 163

mesh is refined, however the fine mesh solution is a poor match to the refer-

ence solution on the left hand side of the domain where the infiltrating front

moves fastest, for both the dry and the very dry initial conditions.

The solutions computed using flux limiting on the medium mesh are consid-

erably more accurate than the most accurate fine mesh solution. The fine

mesh solution using flux limiting captures the reference solution very well for

both the dry and the very dry initial conditions, and the flux limited solu-

tions on the medium mesh are more accurate than the fine mesh solutions

for upstream weighting.

There is a small computational overhead, both in terms of residual evalua-

tions and wall time, associated with using flux limiting compared to upstream

weighting. However, upstream weighting requires much finer meshes to com-

pute solutions with equivalent accuracy to flux limited solutions on coarse

meshes. Indeed, the flux limited solutions on the medium mesh were more

accurate than those computed using upstream weighting on the fine mesh,

while requiring about 5 times and 7 times less computational effort to com-

pute for the dry and very dry initial conditions respectively (in terms of wall

time).

Comparison of the flux limiters

As already mentioned, the solutions for each of the van Leer and parabolic

limiters are very similar, capturing the location of the infiltrating front bet-

ter than the upstream solution. There is no clear trend to favour choosing

one flow direction indicator over another from the convergence and error

measurements in Tables 6.7–6.10, save for the observation that the van Leer

limiter is less efficient for FDI(q) in some test runs.

CHAPTER 6. MODEL VERIFICATION 164

Comparison of the PR and MPR formulations

There is a computational overhead of between 10-20% in terms of wall time

imposed by the MPR formulation over the PR formulation. Both formula-

tions require roughly the same number of residual evaluations, which implies

that the additional wall time is due to the expense imposed by solving the

additional equation at each node for the MPR formulation. The overhead

is small when we consider that the system of equations for the MPR for-

mulation has twice as many equations and variables as the PR formulation.

The relatively small overhead illustrates the effectiveness of the Schur com-

plement preconditioner (3.103), and the relatively low cost of evaluating the

additional equation (3.75).

Both the PR and MPR formulations are mass conservative, as illustrated

in Figure 6.8. After a small initial increase, the magnitude of the mass

balance error does not grow for either formulation, which reflects the mass-

conservative nature of the CV-FE spatial discretisation. We note that while

both formulations are mass conservative, the mass balance error for the MPR

formulation is between one to two orders of magnitude lower than that for

the PR formulation for the different meshes and edge weighting schemes in

Tables 6.7–6.10. A more detailed analysis of the conservation of mass for

each formulation is presented in §6.7.2.

CHAPTER 6. MODEL VERIFICATION 165

0 2 4 6 8
0

1

2

3

4

5

6

0.3

0.4

0.5

0.6

(a) Fine mesh results from this work.

(b) Fine mesh contours from Diersch and Perrochet (1999).

Figure 6.7: Fine mesh solution for the dry infiltration test case with very dry
initial conditions of ψ0 = −100 m after 30 days. The contours are for saturation:
Sw = 0.6, Sw = 0.5, Sw = 0.4 and Sw = 0.3.

CHAPTER 6. MODEL VERIFICATION 166

edge length nodes edges faces
coarse 0.4 m 367 1,030 2,128

medium 0.2 m 1406 4,076 8,291
fine 0.1 m 5,850 17,265 34,812

Table 6.6: Details of the meshes used to verify the dry infiltration test case.

10 days 20 days 30 days
10−8

10−7

10−6

10−5

10−4

m
as

s
b
al

an
ce

er
ro

r

Figure 6.8: Time evolution of the mass balance error for the PR (red) and MPR
(black) formulations solving the dry infiltration test case with very dry initial
conditions (ψ0 = −100 m), with upstream weighting on the medium resolution
mesh.

CHAPTER 6. MODEL VERIFICATION 167

Upwind Weighting
Metric FDI(q) FDI(∇φ) FDI(ϕ)

coarse
Wall Time (s) 0.47 0.44 0.77

F eval 1260 1275 2300
mass balance 2.0 · 10−5 2.7 · 10−5 2.5 · 10−5

medium
Wall Time (s) 4.08 3.76 3.98

F eval 3247 3095 3297
mass balance 9.5 · 10−5 9.1 · 10−5 1.0 · 10−4

fine
Wall Time (s) 31.90 31.49 30.85

F eval 6062 6142 6028
mass balance 1.0 · 10−4 9.9 · 10−5 1.0 · 10−4

van Leer Limiter
Metric FDI(q) FDI(∇φ) FDI(ϕ)

coarse
Wall Time (s) 0.77 1.12 0.99

F eval 2124 2684 2591
mass balance 9.6 · 10−5 5.3 · 10−5 3.0 · 10−5

medium
Wall Time (s) 7.21 5.84 5.52

F eval 5723 3822 3932
mass balance 3.0 · 10−4 1.1 · 10−4 7.2 · 10−5

fine
Wall Time (s) 45.87 39.57 42.75

F eval 8554 6138 7258
mass balance 2.5 · 10−4 2.3 · 10−4 1.2 · 10−4

Parabolic Limiter
Metric FDI(q) FDI(∇φ) FDI(ϕ)

coarse
Wall Time (s) 0.65 0.72 0.93

F eval 1800 1691 2419
mass balance 3.3 · 10−5 3.2 · 10−5 2.1 · 10−5

medium
Wall Time (s) 4.42 5.52 5.03

F eval 3479 3610 3594
mass balance 1.3 · 10−4 8.6 · 10−5 8.4 · 10−5

fine
Wall Time (s) 30.96 38.36 37.29

F eval 5808 5950 6307
mass balance 2.7 · 10−4 2.4 · 10−4 2.1 · 10−4

Table 6.7: Statistics for the solution of the dry infiltration test case with dry
initial conditions (ψ0 = −7.34) using each combination of spatial averaging and
mesh resolution with the PR formulation.

CHAPTER 6. MODEL VERIFICATION 168

Upwind Weighting
Metric FDI(q) FDI(∇φ) FDI(ϕ)

coarse
Wall Time (s) 0.49 0.48 0.98

F eval 1212 1238 2637
mass balance 5.3 · 10−6 5.3 · 10−6 5.3 · 10−6

medium
Wall Time (s) 4.68 4.45 4.48

F eval 3337 3252 3292
mass balance 5.3 · 10−6 5.6 · 10−6 5.3 · 10−6

fine
Wall Time (s) 33.77 36.21 32.98

F eval 5702 6253 5700
mass balance 3.9 · 10−6 3.9 · 10−6 3.1 · 10−6

van Leer Limiter
Metric FDI(q) FDI(∇φ) FDI(ϕ)

coarse
Wall Time (s) 1.01 0.91 1.38

F eval 2562 1968 3247
mass balance 7.7 · 10−6 8.9 · 10−6 8.0 · 10−6

medium
Wall Time (s) 7.00 5.66 5.49

F eval 4941 3358 3507
mass balance 1.1 · 10−5 4.1 · 10−6 2.9 · 10−6

fine
Wall Time (s) 30.31 44.79 39.19

F eval 4907 6267 5891
mass balance 2.3 · 10−5 5.3 · 10−6 3.9 · 10−6

Parabolic Limiter
Metric FDI(q) FDI(∇φ) FDI(ϕ)

coarse
Wall Time (s) 0.68 0.90 0.62

F eval 1720 1941 1422
mass balance 4.6 · 10−6 4.9 · 10−6 1.1 · 10−5

medium
Wall Time (s) 5.99 6.81 5.51

F eval 4273 4038 3508
mass balance 5.8 · 10−6 8.9 · 10−6 4.5 · 10−6

fine
Wall Time (s) 39.40 44.16 48.08

F eval 6603 6161 7216
mass balance 6.8 · 10−6 5.9 · 10−6 3.4 · 10−6

Table 6.8: Statistics for the solution of the dry infiltration test case with dry
initial conditions (ψ0 = −7.34) using each combination of spatial averaging and
mesh resolution with the MPR formulation.

CHAPTER 6. MODEL VERIFICATION 169

Upwind Weighting
Metric FDI(q) FDI(∇φ) FDI(ϕ)

coarse
Wall Time (s) 1.16 1.17 1.08

F eval 3323 3505 3242
mass balance 1.6 · 10−4 1.2 · 10−4 1.5 · 10−4

medium
Wall Time (s) 7.52 7.23 6.92

F eval 6041 5990 5776
mass balance 7.9 · 10−5 7.2 · 10−5 7.9 · 10−5

fine
Wall Time (s) 52.26 51.01 50.49

F eval 10017 10137 10059
mass balance 2.6 · 10−5 2.5 · 10−5 2.6 · 10−5

van Leer Limiter
Metric FDI(q) FDI(∇φ) FDI(ϕ)

coarse
Wall Time (s) 1.42 1.12 1.10

F eval 4001 3311 3237
mass balance 7.5 · 10−5 1.4 · 10−4 1.1 · 10−4

medium
Wall Time (s) 10.30 6.71 6.44

F eval 8122 5518 5297
mass balance 3.9 · 10−4 6.8 · 10−5 6.7 · 10−5

fine
Wall Time (s) 94.89 57.70 58.01

F eval 18175 11359 11455
mass balance 6.0 · 10−4 3.7 · 10−4 2.7 · 10−4

Parabolic Limiter
Metric FDI(q) FDI(∇φ) FDI(ϕ)

coarse
Wall Time (s) 1.23 1.05 1.11

F eval 3453 3101 3302
mass balance 1.7 · 10−4 1.6 · 10−4 1.4 · 10−4

medium
Wall Time (s) 7.68 6.19 6.28

F eval 6091 5074 5186
mass balance 1.0 · 10−4 7.3 · 10−5 8.4 · 10−5

fine
Wall Time (s) 55.24 56.47 56.06

F eval 10549 11070 11073
mass balance 3.4 · 10−5 2.7 · 10−4 3.6 · 10−4

Table 6.9: Statistics for the solution of the dry infiltration test case with very dry
initial conditions (ψ0 = −100m) using each combination of spatial averaging and
mesh resolution with the PR formulation.

CHAPTER 6. MODEL VERIFICATION 170

Upwind Weighting
Metric FDI(q) FDI(∇φ) FDI(ϕ)

coarse
Wall Time (s) 1.28 1.28 1.13

F eval 3296 3383 3026
mass balance 3.0 · 10−6 2.8 · 10−6 2.8 · 10−6

medium
Wall Time (s) 7.15 6.94 6.70

F eval 5063 5088 4914
mass balance 1.1 · 10−5 4.4 · 10−6 7.8 · 10−6

fine
Wall Time (s) 60.54 56.94 58.46

F eval 10323 9904 10231
mass balance 3.8 · 10−6 4.6 · 10−6 3.7 · 10−6

van Leer Limiter
Metric FDI(q) FDI(∇φ) FDI(ϕ)

coarse
Wall Time (s) 1.71 1.29 1.45

F eval 4348 3408 3830
mass balance 4.4 · 10−6 3.4 · 10−6 3.5 · 10−6

medium
Wall Time (s) 13.36 8.22 9.13

F eval 9492 5970 6685
mass balance 1.0 · 10−5 3.7 · 10−6 3.0 · 10−6

fine
Wall Time (s) 85.43 70.91 74.13

F eval 14273 12311 12893
mass balance 9.9 · 10−6 5.4 · 10−6 6.9 · 10−6

Parabolic Limiter
Metric FDI(q) FDI(∇φ) FDI(ϕ)

coarse
Wall Time (s) 1.16 1.30 1.14

F eval 2938 3404 3029
mass balance 5.1 · 10−6 3.1 · 10−6 6.1 · 10−6

medium
Wall Time (s) 7.58 7.86 8.18

F eval 5365 5707 5974
mass balance 6.4 · 10−6 5.6 · 10−6 2.9 · 10−6

fine
Wall Time (s) 66.52 75.44 70.54

F eval 11211 13046 12274
mass balance 6.2 · 10−6 1.3 · 10−5 5.5 · 10−6

Table 6.10: Statistics for the solution of the dry infiltration test case with very dry
initial conditions (ψ0 = −100m) using each combination of spatial averaging and
mesh resolution with the MPR formulation.

CHAPTER 6. MODEL VERIFICATION 171

Coarse – Upstream

0 2 4 6 8
0

1

2

3

4

5

6

Coarse – Flux Limited

0 2 4 6 8
0

1

2

3

4

5

6

Medium – Upstream

0 2 4 6 8
0

1

2

3

4

5

6

Medium – Flux Limited

0 2 4 6 8
0

1

2

3

4

5

6

Fine – Upstream

0 2 4 6 8
0

1

2

3

4

5

6

Fine – Flux Limited

0 2 4 6 8
0

1

2

3

4

5

6

Figure 6.9: Pressure head contours for the dry infiltration test case at 30 days
with the dry initial conditions (ψ0 = −7.34m). Pressure head contours are -7 m,
-1.5 m, -1 m, -0.8 m and -0.7 m.

CHAPTER 6. MODEL VERIFICATION 172

Coarse – Upstream

0 1 2 3 4
2

3

4

5

6

Coarse – Flux Limited

0 1 2 3 4
2

3

4

5

6

Medium – Upstream

0 1 2 3 4
2

3

4

5

6

Medium – Flux Limited

0 1 2 3 4
2

3

4

5

6

Fine – Upstream

0 1 2 3 4
2

3

4

5

6

Fine – Flux Limited

0 1 2 3 4
2

3

4

5

6

Figure 6.10: Pressure head contours for the dry infiltration test case at 30 days
with the very dry initial conditions (ψ0 = −100m). Pressure head contours are
-7 m, -1.5 m, -1 m, -0.8 m and -0.7 m.

CHAPTER 6. MODEL VERIFICATION 173

6.3 Richards’ equation: the water table test

case

This test case differs from the previous dry infiltration test case because it has

both saturated and unsaturated conditions, and because it has experimen-

tal results against which the numerical results can be verified. The original

experiment was performed in a three-dimensional flow tank, however sub-

sequent computational models of the experiment have been performed with

two-dimensional meshes (Vauclin et al., 1979, Fahs et al., 2009). To test the

efficacy of the different edge-based weighting schemes and formulations in

three dimensions, the numerical investigation presented here compare results

computed using a three-dimensional mesh of the flow tank against a reference

solution found on a fine two-dimensional mesh.

The reference solution was determined using a fine two-dimensional triangu-

lar mesh with 25,318 nodes and central weighting for the mobility term. The

height of the water table in the reference solution is shown in Figure 6.11.

The reference solution agrees very well with the observed water table heights

from the experiment, which are also illustrated in Figure 6.11.

To form the three-dimensional meshes used in the numerical experiments,

the domain was extruded in the third dimension (along the y-axis) by 0.5 m,

and meshed with unstructured tetrahedra. Meshes of varying resolutions are

described in Table 6.11, with the finest mesh offering equivalent resolution

to the triangular mesh in the analysis of Fahs et al. (2009). Relative and

absolute tolerances of τa =1 · 10−3 and τr =1 · 10−7 respectively were used,

along with an ILUT preconditioner1. Computation was performed on the

GPU due to the computational cost of three-dimensional simulations.

The number of residual evaluations and the wall time required to solve the

problem for each mesh and spatial weighting scheme are illustrated in Ta-

ble 6.12 and Table 6.13 for the PR and MPR formulations respectively. Mass

1See §6.7.1 for more information about the choice of preconditioner for this test case.

CHAPTER 6. MODEL VERIFICATION 174

balance errors are not given because an exact analytic expression is not avail-

able for flux over the hydrostatic boundary.

Comparison of upstream weighting and flux limiters

The height of the water table for coarse, medium and fine mesh solutions

using upstream weighting and the parabolic flux limiter with FDI(ϕ) are

compared to the reference mesh solution in Figure 6.122. We note that, as

for the dry infiltration test case, solutions obtained using either the PR or

MPR formulation are visually indistinguishable, as are solutions for the van

Leer and parabolic flux limiters.

At t = 8 hours, the location of the water table in Figure 6.11 is very close to

the steady state solution for this test case. Solutions computed using both

upstream weighting and flux limiting capture the solution well at this point,

with the exception of upstream weighting on the coarse mesh. The location

of the water table at earlier times is more challenging to reproduce, with the

upstream solutions all under-predicting its height at t =2, 3 and 4 hours.

Compared to upstream weighting, flux limiting reproduces the location of the

water table far better: the flux limited solution on the coarse mesh is more

accurate than the fine mesh solution computed using upstream weighting,

and the flux limited solution on the medium mesh reproduces the water table

location very well at all times. Hence, substantial gains in efficiency are made

by using flux limiting for this test case, by virtue of being able to use coarser

meshes: the coarse and medium mesh solutions take less than 2 seconds and

approximately 11 seconds to compute using flux limiting, compared to the

upstream solutions that take approximately 40 seconds.

2The two-dimensional contours were taken from the pressure head values at the front
of the tank.

CHAPTER 6. MODEL VERIFICATION 175

Comparison of different flux limiters

The computational performance of the edge weighting schemes is more sen-

sitive to the choice of the flow direction indicator for this test case. Both

upstream weighting and the van Leer limiter failed to converge when using

FDI(ϕ) for some of the test runs, and the van Leer limiter was significantly

more expensive than other methods on fine meshes for some runs, requir-

ing 40%–50% more computational effort (c.f. the fine mesh solutions using

FDI(q) and FDI(∇φ) in Table 6.12). There were no such problems for the

parabolic limiter, which was efficient for all combinations of FDI and mesh

resolution. Finally, we note that the flux limited results are very accurate on

the medium mesh, for which there is little or no additional computational

cost associated with using either the van Leer or parabolic limiters in place

of upstream weighting.

The parabolic limiter is selected as the best edge-based weighting for this

test case. It computed the solution accurately and efficiently for each flow

direction indicator on all of the meshes. The van Leer limiter was also accu-

rate, however it was less reliable: it failed to converge using FDI(ϕ) in some

cases, and was inefficient for some of the fine mesh solutions.

Comparison of the formulations

As was observed earlier, the solutions for the PR and MPR formulations are

visually indistinguishable. In terms of computational effort required to find

the solution, the PR formulation requires less effort than the MPR formu-

lation when using upstream weighting by 15% and 25% respectively for the

medium and fine mesh resolutions. However, the difference between the two

approaches is less significant when using either of the flux limiters on the

medium mesh. Given that the mass balance error is not available for this

problem, it is not possible to draw any conclusions about the relative merits

of either formulation in terms of conservation of balance.

CHAPTER 6. MODEL VERIFICATION 176

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2 hours

3 hours
4 hours

8 hours

Figure 6.11: Reference solution for water table test case. The computed water
table height (the black lines), along with the measured water table heights from
the experiment (the black boxes) are shown for t =2, 3, 4, and 8 hours.

edge length nodes edges faces
coarse 0.2 m 869 4,843 23,850

medium 0.1 m 5,515 34,142 171,768
fine 0.067 m 15,943 102,603 519,966

Table 6.11: Details of the three-dimensional tetrahedral meshes used to test the
water table test case.

CHAPTER 6. MODEL VERIFICATION 177

Upwind Weighting
Metric FDI(q) FDI(∇φ) FDI(ϕ)

coarse
Wall Time (s) 1.12 1.09 -

F eval 1305 1305 -

medium
Wall Time (s) 10.98 10.41 15.64

F eval 3578 3479 5410

fine
Wall Time (s) 39.95 47.37 41.91

F eval 5054 5982 5698

van Leer Limiter
Metric FDI(q) FDI(∇φ) FDI(ϕ)

coarse
Wall Time (s) 1.90 1.35 -

F eval 2170 1575 -

medium
Wall Time (s) 13.70 11.11 14.84

F eval 4554 3692 4884

fine
Wall Time (s) 100.88 100.31 42.03

F eval 12152 12034 5623

Parabolic Limiter
Metric FDI(q) FDI(∇φ) FDI(ϕ)

coarse
Wall Time (s) 1.18 1.12 1.10

F eval 1345 1299 1317

medium
Wall Time (s) 10.65 13.49 11.03

F eval 3350 4403 3655

fine
Wall Time (s) 58.50 59.12 51.04

F eval 7122 7103 6462

Table 6.12: Statistics for the solution of the water table case study using each
combination of spatial averaging and mesh resolution with the PR formulation.

CHAPTER 6. MODEL VERIFICATION 178

Upwind Weighting
Metric FDI(q) FDI(∇φ) FDI(ϕ)

coarse
Wall Time (s) 1.33 1.30 -

F eval 1524 1524 -

medium
Wall Time (s) 12.87 12.26 16.15

F eval 4271 4146 5543

fine
Wall Time (s) 53.36 61.36 -

F eval 6613 7688 -

van Leer Limiter
Metric FDI(q) FDI(∇φ) FDI(ϕ)

coarse
Wall Time (s) 1.99 1.80 -

F eval 2194 2121 -

medium
Wall Time (s) 14.97 11.91 17.81

F eval 4933 3913 5997

fine
Wall Time (s) 98.22 60.26 52.39

F eval 12054 7749 7068

Parabolic Limiter
Metric FDI(q) FDI(∇φ) FDI(ϕ)

coarse
Wall Time (s) 2.19 1.48 2.13

F eval 2562 1672 2636

medium
Wall Time (s) 13.00 12.99 11.49

F eval 4207 4242 3776

fine
Wall Time (s) 58.20 54.78 58.91

F eval 7178 6929 7542

Table 6.13: Statistics for the solution of the water table test case using each com-
bination of spatial averaging and mesh resolution with the MPR formulation.

CHAPTER 6. MODEL VERIFICATION 179

Coarse – Upstream

0 0.5 1 1.5
.6

.8

1

1.2

Coarse – Flux Limited

0 0.5 1 1.5
.6

.8

1

1.2

Medium – Upstream

0 0.5 1 1.5
.6

.8

1

1.2

Medium – Flux Limited

0 0.5 1 1.5
.6

.8

1

1.2

Fine – Upstream

0 0.5 1 1.5
.6

.8

1

1.2

Fine – Flux Limited

0 0.5 1 1.5
.6

.8

1

1.2

Figure 6.12: Comparison of the water table height in the reference solution (black
lines) for the water table test case to upstream and flux limited solutions (red
lines). The flux limited solutions were computed using the parabolic limiter with
FDI(ϕ). Only the region of interest, where the greatest change in the water table
height takes place, is illustrated.

CHAPTER 6. MODEL VERIFICATION 180

6.4 Transport Model: Unsaturated flow and

transport

Mesh convergence was reached for this test case on a triangular mesh with

94,101 nodes, which was selected for computing the reference solution. The

pressure head and concentration contours of the reference solution after 48

hours are illustrated in Figure 6.15. After 48 hours, the contaminated fluid

from the point source has flowed downwards where it pools on top of, then

flows around, the low-permeability region. Due to the very small dispersion

values of αL = αT = 1 mm this test case is advection-dominated, which

makes the solution for the solute concentration particularly prone to numer-

ical diffusion.

To analyse the different edge weighting schemes and formulations, test were

performed on three meshes described in Table 6.16. Computation was per-

formed on the GPU with the ILU(0) preconditioner, and error tolerances of

τr=1× 10−3 and τa=1× 10−6. The wall time, number of residual evaluations

and the mass balance error for the water and solute (ew
mb and es

mb respec-

tively, computed using equation (6.3)) are tabulated for the PC and MMPC

formulations in Table 6.14 and Table 6.15.

Comparison of upstream weighting and flux limiters

Comparisons of the solutions for pressure head and concentration using dif-

ferent edge weighting schemes are illustrated in Figure 6.13 and Figure 6.14

respectively. Because the solution is symmetric about the vertical axis, only

solutions in the half plane are shown, although the solution was computed

for the entire domain in each case. Solutions are illustrated for both the

parabolic and van Leer limiters applied to the mobility term, because they

exhibit significant qualitative differences. On the other hand, the choice of

limiter for the advection terms has very little qualitative effect on the solu-

tion, so only results for the van Leer limiter are shown.

CHAPTER 6. MODEL VERIFICATION 181

First, we investigate the edge weighting method applied to the mobility term.

The contours of pressure head, illustrated in Figure 6.13, are most difficult

to compute accurately inside and below the low-permeability region. Of the

upstream and flux limiter variants, the parabolic limiter performs the best,

matching the reference solution well at all points on the medium mesh except

for the ψ = −0.6 m contour directly below the low-permeability region. All of

the methods fail to reproduce this contour accurately at any mesh resolution,

with the van Leer limiter performing best on the fine mesh. However, the

van Leer limiter produces results that are less accurate than the parabolic

limiter elsewhere in and below the low-permeability zone.

Furthermore, inspection of the wall times in Tables 6.14 and 6.15 shows that

the van Leer limiter also requires up to two times the computational effort

of the parabolic limiter. The overhead of using the parabolic limiter on the

mobility term instead of upstream weighting is between 15% and 25% in

wall time. However the medium mesh solution for the parabolic limiter is

more accurate than the fine mesh solution using upstream weighting, and

takes 3.8/5.3 times less computational work for the PC/MMPC formulations

respectively.

The choice of edge weighting method for the advection terms is important

for this test case, due to numeric diffusion in solutions of the advection-

dominated solute transport. This is apparent in the concentration solutions

computed using upstream weighting in Figure 6.14, which exhibit excessive

numeric diffusion, even on the fine mesh. Flux limiting captures the concen-

tration solution reasonably well on the medium resolution mesh (considerably

better than the fine mesh upstream solution), however the fine mesh is re-

quired to match the reference solution closely. From Tables 6.14 and 6.15,

both the parabolic and van Leer limiters require almost identical computa-

tional work3, and produce visually-indistinguishable solutions. Hence, there

is no preference for choosing one limiter over the other for this test case. We

also note that the choice of limiter on the mobility term appears to have

3Here we assume that the parabolic limiter is used for the mobility term.

CHAPTER 6. MODEL VERIFICATION 182

negligible effect on the solution for the concentration, even though it clearly

affects the pressure head solution in Figure 6.13.

Comparison of PC and MMPC formulations

The mass balance errors given in Tables 6.14 and 6.15 show that both the

PC and MMPC formulations offer excellent conservation of mass due to the

mass conservative CV-FE discretisation. The MMPC formulation has better

mass balance on average than the PC formulation, however the difference

between the two formulations is less pronounced than was the case with the

PR and MPR formulations for Richards’ equation.

For this test case, the MMPC formulation has a computational overhead of

approximately 15% relative to the PC formulation, with a large discrepancy

of 51% for the fine mesh solution with upstream weighting. Take for example

the medium mesh solutions with the parabolic limiter applied to the mobility

term in Tables 6.14 and 6.15, where the MMPC formulation has wall times

approximately 14% larger than the PC formulation.

In §6.7.2 it will be shown that the PR formulation of Richards’ equation

requires higher-order temporal integration to produce good conservation of

mass relative to the modified mixed MPR formulation. This is also true for

the PC and MMPC formulations, however the difference between the formu-

lations for higher-order integration is less pronounced, as is evident in these

results, which were computed using third-order temporal integration. Hence,

for this test case there is little benefit in terms of mass balance to justify using

the MMPC formulation, with the additional computational overhead that it

requires, over the PC formulation.

CHAPTER 6. MODEL VERIFICATION 183

Upstream–Upstream
Coarse

Parabolic–van Leer
Coarse

van Leer–van Leer
Coarse

Upstream–Upstream
Medium

Parabolic–van Leer
Medium

van Leer–van Leer
Medium

Upstream–Upstream
Fine

Parabolic–van Leer
Fine

van Leer–van Leer
Fine

Figure 6.13: Comparison of pressure head contours obtained using different spatial
weighting schemes at t = 48 hours for the unsaturated transport test case. The lim-
iter used on the mobility and advection terms are written Mobility–Advection
above each plot. The contours are the same as those in the reference solution
Figure 6.15.

CHAPTER 6. MODEL VERIFICATION 184

Upstream–Upstream
Coarse

Parabolic–van Leer
Coarse

van Leer–van Leer
Coarse

Upstream–Upstream
Medium

Parabolic–van Leer
Medium

van Leer–van Leer
Medium

Upstream–Upstream
Fine

Parabolic–van Leer
Fine

van Leer–van Leer
Fine

Figure 6.14: Comparison of concentration contours obtained using different spatial
weighting schemes at t = 48 hours for the unsaturated transport test case. The lim-
iter used on the mobility and advection terms are written Mobility–Advection
above each plot. The contours are the same as those in the reference solution
Figure 6.15.

C
H
A
P
T
E
R

6.
M
O
D
E
L
V
E
R
IF
IC

A
T
IO

N
185

mobility advection time steps F evaluations wall time (s) ew
mb es

mb

coarse
upwind upwind 171 1536 1.9 1.3 · 10−5 2.1 · 10−4

van Leer van Leer 312 4672 5.7 1.2 · 10−4 1.3 · 10−4

van Leer parabolic 305 5224 6.4 1.2 · 10−4 5.2 · 10−5

parabolic van Leer 190 2320 2.8 5.4 · 10−6 2.5 · 10−4

parabolic parabolic 191 1978 2.5 9.6 · 10−6 2.1 · 10−4

medium
upwind upwind 273 3297 6.7 6.4 · 10−6 7.4 · 10−5

van Leer van Leer 523 7010 14.2 3.1 · 10−5 9.1 · 10−5

van Leer parabolic 517 8360 16.8 3.0 · 10−5 3.7 · 10−5

parabolic van Leer 317 3996 8.1 4.1 · 10−6 7.4 · 10−5

parabolic parabolic 325 4260 8.6 5.8 · 10−6 6.2 · 10−5

fine
upwind upwind 408 6160 31.2 1.9 · 10−5 8.4 · 10−5

van Leer van Leer 685 11489 58.7 3.5 · 10−5 7.7 · 10−5

van Leer parabolic 716 11757 59.8 4.7 · 10−5 1.2 · 10−4

parabolic van Leer 526 8641 44.3 2.3 · 10−5 7.8 · 10−5

parabolic parabolic 525 8231 42.1 3.2 · 10−5 1.3 · 10−4

Table 6.14: Computational performance and mass balance results for the unsaturated transport test case using different
combinations of spatial weighting schemes for the PC formulation.

C
H
A
P
T
E
R

6.
M
O
D
E
L
V
E
R
IF
IC

A
T
IO

N
186

mobility advection time steps F evaluations wall time (s) ew
mb es

mb

coarse
upwind upwind 157 1618 2.4 1.2 · 10−5 3.6 · 10−5

van Leer van Leer 289 4698 6.1 2.3 · 10−6 1.2 · 10−4

van Leer parabolic 303 4392 5.8 2.4 · 10−6 9.9 · 10−6

parabolic van Leer 182 2214 3.1 2.2 · 10−6 1.4 · 10−4

parabolic parabolic 183 1996 2.8 5.1 · 10−6 3.9 · 10−5

medium
upwind upwind 258 3066 7.7 5.1 · 10−6 1.9 · 10−5

van Leer van Leer 498 5177 12.4 2.9 · 10−6 3.9 · 10−5

van Leer parabolic 618 11372 24.3 2.4 · 10−6 8.0 · 10−6

parabolic van Leer 306 4024 9.7 2.0 · 10−6 1.1 · 10−4

parabolic parabolic 307 3885 9.3 2.4 · 10−6 1.6 · 10−5

fine
upwind upwind 450 7410 47.3 3.5 · 10−6 1.8 · 10−5

van Leer van Leer 802 11785 73.5 5.0 · 10−6 3.2 · 10−5

van Leer parabolic 739 10158 64.5 8.8 · 10−6 2.2 · 10−5

parabolic van Leer 463 7750 50.2 8.5 · 10−6 3.7 · 10−5

parabolic parabolic 474 7934 50.2 8.2 · 10−6 3.2 · 10−5

Table 6.15: Computational performance and mass balance results for the unsaturated transport test case using different
combinations of spatial weighting schemes for the MMPC formulation.

CHAPTER 6. MODEL VERIFICATION 187

edge length nodes edges faces
coarse 0.05 m 1,054 2,820 5,760

medium 0.025 m 3,792 11,133 22,506
fine 0.0125 m 14,870 44,127 88,734

Table 6.16: Details of the triangular meshes used for testing the unsaturated flow
and contaminant transport test case.

Pressure Head

−1.0

−0.8

−0.6
−0.4

−0.2

−0.6
−0.4

Concentration

0.1

0.9

0.9

0.1

Figure 6.15: Reference solutions for the water table test case after 48 hours. The
solutions were found with averaging for the mobility term, and a van Leer limiter
for the solute.

CHAPTER 6. MODEL VERIFICATION 188

6.5 Transport Model: Zhang’s Flow Tank Ex-

periments

The flow tank experiments performed in the PhD work of Zhang (2000)

included variably-saturated flow and transport, density-driven flow and time-

dependent tidal boundary conditions, which makes them challenging to model

numerically. The numerical simulations performed by Zhang (2000) were lim-

ited by the computational expense of modelling this complicated problem. A

coarse 3,840-node quadrilateral mesh was used, and while the effect of tidal

fluctuation of sea level was investigated experimentally, it was not included

in the corresponding numerical models due to the computational expense it

entails. As a result, while the simulations reproduced some gross features of

the experiment, such as the extent and location of contaminant plumes, it

was unable to capture more detailed phenomena such as the effect that tidal

fluctuation has on the location of the sea water interface and the shape of

the plume.

More detailed numerical investigation of the tank steady and tank tidal plume

test cases that incorporated tidal fluctuations was performed by Brovelli et al.

(2007). They were able to more accurately model the evolution of the con-

taminant plume in the tank tidal plume test case using a mesh with 50,000

nodes. However, flow and transport in the unsaturated zone was not consid-

ered in their model. The analysis performed here is the first computational

model of Zhang’s experiments that includes both flow in the unsaturated

zone and tidal variation.

Unstructured triangular meshes of varying resolutions, ranging from 3,883

nodes to 214,012 nodes (see Table 6.17), are used here to represent the domain

in Figure 6.5(b). We note that the coarsest triangular mesh has a similar

resolution to the quadrilateral mesh in Zhang’s work.

Due to the large computational costs involved in performing these simula-

tions, particularly those that involve tidal fluctuations, the GPU implemen-

CHAPTER 6. MODEL VERIFICATION 189

mesh 1 2 3 4 5 6
nodes 3,883 11,277 23,149 53,026 92,356 214,012

Table 6.17: Details of the triangular meshes used to for the flow tank experiments.

tation is used for all tests. The PC formulation is used, given that the PC

and MMPC formulations produce qualitatively consistent solutions. The van

Leer limiter applied to the mobility term required considerably more com-

putational effort relative to the parabolic limiter, as was observed for the

unsaturated transport test case in §6.4. However, when applied to the advec-

tion term, the van Leer limiter was slightly more efficient than the parabolic

limiter. Hence, the flux limiter results presented here were computed using

the parabolic limiter for the mobility term, and the van Leer limiter for the

advection terms.

The tank steady experiment: steady state location of the sea water

interface

This experiment fixed the height of the water table at the inland boundary

and the sea level at 463 mm and 439 mm respectively, then allowed the steady

state water table level and sea water interface to develop. The steady state

results from the experiment and the numerical solution by (Zhang, 2000) are

illustrated in Figure 6.16(a). The corresponding reference solution, computed

on mesh 5 with flux limiting, is illustrated in Figure 6.16(b).

The location of the water table in the numerical results of Zhang and the

reference solution are in very good agreement with the experimental results.

However, the difference between the fixed water table level and the inland

and beach interfaces is very small, which makes it difficult to draw conclu-

sions about the accuracy of the estimated water table. More interesting is

the difference between the location of the c = 0.5 isochlor in the numerical

and experimental results. The numerical results of Zhang (2000) match the

foot of the sea water wedge quite well, slightly over-estimating the height of

CHAPTER 6. MODEL VERIFICATION 190

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

(b)

Figure 6.16: (a) Zhang’s experimental and numerical results for the tank steady
flow tank experiment. The measured experimental isochlor is dashed, and the nu-
merical isochlor solid. (b) The reference fine mesh solution, with the experimental
water table level indicated by blue squares and the experimental isochlor marked
with black squares.

the interface at the beach by approximately 20 mm. However, the reference

solution in Figure 6.16(b) differs more significantly from the experimental re-

sults, over-estimating the location of the interface at both the toe and beach

by about 50 mm.

However, the upstream solution on the coarsest mesh in Figure 6.17, which

has the same resolution as that used in Zhang’s numerical tests, provide

better agreement with the experimental results, closely matching the numer-

ical results of Zhang. Then, as the mesh is refined, both the upstream and

flux limited solutions approach the reference solution. The salt transport is

almost entirely advection-driven for this test case because the dispersion val-

CHAPTER 6. MODEL VERIFICATION 191

ues are very small, small enough that setting them to zero has no qualitative

effect on the solution. Such advection-driven processes suffer considerably

from numerical diffusion, and require very fine meshes to obtain accurate

results when using upstream weighting, or careful treatment of the advection

terms using flux limiting (Neumann et al., 2011).

This suggests that the agreement for the sea water interface between the

numerical and experimental results in the original work may have been a

coincidence, caused by numerical diffusion on the coarse mesh. While this

may explain the disparity between the numerical result in Zhang (2000) and

the reference solution, it does not address why the reference solution differs

from the experimental result.

The difference between the reference solution and the experimental results

can’t be explained by inaccuracies in the measured parameters. To determine

this, a sensitivity analysis of the hydraulic conductivity K and dispersion

values αL and αT was performed. Varying the hydraulic conductivity in the

range 3 mm/s to 5 mm/s had minimal effect on the location of the interface4.

Additionally, dispersion is so small that it has almost no effect on the solution,

and increasing its value causes excessive smearing of the interface, which does

not agree with the sharp interface observed in the experimental results and

the reference solution.

Another hypothesis is that the experiment was not run until it had reached

the full steady state. However, in later simulations based on the same flow

tank the numerical results from the methods in this work over-estimate the

location of the foot of the interface. This suggests that the difference is

more likely due to inaccuracies inherent in mapping the three-dimensional

experimental domain to the two-dimensional computational domain, and/or

in the treatment of the boundary condition at the sea-beach interface.

However, if the reference solution is taken to be the most accurate given

4This is a much larger range than the estimated range of between 3.9 mm/s to 4.2 mm/s
measured by Zhang et al. (2004) and others (Ataie-Ashtiani, 1997) for the porous medium
used in the experiments.

CHAPTER 6. MODEL VERIFICATION 192

the parameters and model at hand, it is apparent that the flux limited solu-

tions converge towards the solution much faster than the upstream results.

The effect of numerical dispersion is particularly evident here, given that

the upstream solution on a relatively fine 23,149 node mesh significantly

under-estimates the location of the c = 0.5 isochlor. However, the results

in Table 6.18 show that solutions obtained using flux limiting require con-

siderably more computational work, between two to three times, than the

upstream solutions on the same mesh. The flux limited solution on mesh 2

is more accurate than the upstream weighted solution on the finer mesh 3,

however the computational benefits of using flux limiting on a coarser mesh

are less obvious in this case.

Upstream–Upstream
Mesh 1

0.9 1 1.1 1.2 1.3 1.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Upstream–Upstream
Mesh 2

0.9 1 1.1 1.2 1.3 1.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Upstream–Upstream
Mesh 3

0.9 1 1.1 1.2 1.3 1.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Parabolic–van Leer
Mesh 1

0.9 1 1.1 1.2 1.3 1.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Parbolic–van Leer
Mesh 2

0.9 1 1.1 1.2 1.3 1.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Parbolic–van Leer
Mesh 3

0.9 1 1.1 1.2 1.3 1.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 6.17: Steady state solutions for the tank steady test case.

CHAPTER 6. MODEL VERIFICATION 193

upstream flux limited

Mesh 1
F evaluations 3515 9057
wall time (s) 5.8 16.3

Mesh 2
F evaluations 3802 8672
wall time (s) 16.4 41.2

Mesh 3
F evaluations 4154 11825
wall time (s) 31.2 104.5

Table 6.18: Computational performance metrics for the tank steady test case using
upstream weighting and flux limiting as mesh resolution increases.

The tank plume experiment: the evolution of a dense contaminant

plume with stationary sea level

This experiment was performed in two phases. First, the height of the tide

and inland fresh water head were held fixed at the values prescribed for the

tank steady experiment, and the steady state sea water interface was allowed

to form. Then, contaminated water with density 1015.7 g/L was injected

over the 180 mm wide injection site above the beach in Figure 6.5(b) at a

constant rate of 1.4 · 10−4 m/s for 80 minutes.

The location of the plume of contaminated water from the injection site in

the experimental results is shown in Figure 6.20 at times of 30, 40, 50 and

60 minutes, where t = 0 minutes corresponds to the introduction of the con-

taminant. The plume travels downward and towards the shore, with flow

of contaminant into the sea, below the water table and above the sea water

interface, established between 50 and 60 minutes. The higher density of the

plume relative to the fresh water into which it is injected has a significant

impact on the shape of the plume. The plume develops a “heel” that drops

towards the bottom of the aquifer, and draws the plume closer to the sea

water interface, as labelled at Figure 6.20(c). The plume also exhibits small

irregular fingers due to instabilities introduced by the flow of the dense con-

taminated fluid above the fresh water, particularly along the leading edge of

the plume.

CHAPTER 6. MODEL VERIFICATION 194

To investigate the effect of upstream weighting and flux limiting on the shape

of the contaminant plume, test runs were performed with mesh 2 and mesh 4.

The results, illustrated in Figure 6.19, show the 0.5 c0 contour, where c0 is the

concentration of salt in the injected contaminant (equivalent to c = 0.345),

alongside the equivalent contours from the experimental results5.

The numerical results agree well with the experimental results at the inland

side of the plume, with the diffuse region around the pocket (illustrated in

Figure 6.20(c)), reproduced in the upstream solution in Figure 6.21. However,

the location of the flat leading front and the depth of the contaminant plume

are under-estimated at later times in each numerical solution.

The most obvious difference between the upstream and flux limited solutions

is the unstable fingers observed in the flux limited solution along the leading

edge of the plume. The fingers become more pronounced as the resolution

of the mesh is increased, with the onset of fingering evident at 30 minutes

for mesh 4 in Figure 6.19(b). The fingers develop in the same place, along

the leading edge of the plume, for both the experimental and flux limited so-

lutions. However, the numerical fingers grow in size as the plume descends,

becoming significantly more pronounced than those in the experimental re-

sults after 60 minutes.

The formation of density-dependent fingers is a complicated process that can

be initiated by a number of different physical phenomena, including uneven

injection of the contaminant at the boundary and small heterogeneities in the

porous medium (Schincariol et al., 1994). No such effects are included in the

modelling presented here. Instead, the fingering in the numerical results is

initiated by small perturbations in the numerical solution. To reproduce ex-

perimental fingering patterns numerically, it is necessary to explicitly model

the cause for the onset of the instabilities in the experiments (Schincariol

et al., 1994, Brovelli et al., 2007), which is beyond the scope of this thesis.

5The open source program G3Data http://www.frantz.fi/software/g3data.php

was used to digitise the experimental results.

http://www.frantz.fi/software/g3data.php

CHAPTER 6. MODEL VERIFICATION 195

While it is not possible to use the numerical results to draw conclusions about

the exact nature of the fingering patterns in the experimental observations,

it is interesting to note the effect that the upstream weighting and flux lim-

iting schemes have on the development of fingering in the numerical results.

The numerical diffusion introduced by upstream weighting may smooth over

the numerical perturbations that cause the initial onset of fingering. Indeed,

sensitivity analysis tests (not illustrated here) showed that fingering was not

present in flux limited solutions for larger diffusion or dispersion parameters.

Furthermore, this suggestion is supported by the observation that the up-

stream solutions on the very fine 214,012 node mesh 6, on which the effect of

numerical diffusion is reduced, exhibit fingering on the leading edge in Fig-

ure 6.22. Hence, without attempting to include the cause for the fingering

in the numerical model, we choose the upstream weighted solution on a fine

mesh as the most representative of the experimental results. The upstream

weighted solution computed on mesh 3 is shown in Figure 6.21, and is in

good agreement with the experimental solutions in Figure 6.20.

Another significant feature of the plume in the experimental results is the

diffuse zone that develops in the unsaturated region between the main body

of the plume and the beach at 30 minutes in Figure 6.20. As the plume

migrates down through the saturated region towards the beach, the extent of

the diffuse region becomes larger. The diffuse region has not been reproduced

in numerical solutions, both in past investigations (Zhang, 2000, Volker et al.,

2002, Brovelli et al., 2007), and in the simulations presented here.

In their analysis of the experimental and numerical results from Zhang’s

thesis, Volker et al. (2002) suggest that the diffuse region arises due to mixing

in the unsaturated zone at the beach. However, the diffusion region is not

captured in either the original numerical models where the unsaturated region

was modeled explicitly (Zhang, 2000, Volker et al., 2002), nor in this work.

A possible explanation for the formation of the diffuse region near the beach

may be the method by which the contaminant was injected into the domain.

The contaminant was injected through rows of small holes, which are not

CHAPTER 6. MODEL VERIFICATION 196

directly adjacent to the edge of the tank. This might suggest that a three-

dimensional model, which explicitly includes the location of the injection

points may be required to explain the development of the diffuse region at

the beach.

Finally, we investigate how the time step size selection in IDA is affected by

the change in the boundary condition at t = 0 minutes at the contaminant

injection site. The representative solution in Figure 6.21 required a wall time

of 225 seconds, and took 721 time steps to compute on the 23,149 node mesh.

The time step before and after the commencement of contaminant injection

at t = 0 min is shown in Figure 6.18, which illustrates the effectiveness of

the automatic time step size selection by IDA. The time step decreased when

the contaminant was first injected, to capture the initial infiltration of fluid

through the unsaturated region, before increasing as the flow in the unsatu-

rated region became steady.

−60 min 0 min 60 min

0.01

0.1

1

10

100

∆
t

 (
s)

Figure 6.18: Time step size before and after the injection of contaminant at t =
0 min in the tank plume test case.

CHAPTER 6. MODEL VERIFICATION 197

Upwind – 30 Minutes Flux Limited – 30 Minutes

Upwind – 60 Minutes Flux Limited – 60 Minutes

(a) Mesh 2

Upwind – 30 Minutes Flux Limited – 30 Minutes

Upwind – 60 Minutes Flux Limited – 60 Minutes

(b) Mesh 4

Figure 6.19: Comparison between experimental and numerical results (upstream
and flux limited) on meshes 2 and 4 for the tank plume experiment. The numerical
results are coloured red, and the experimental black. Contours are at c0 = 0.5,
where c0 = 0.689 is the concentration of salt at the contaminant source.

CHAPTER 6. MODEL VERIFICATION 198

(a) t = 30 min

(b) t = 40 min

(c) t = 50 min

(d) t = 60 min

Figure 6.20: Experimental results for the tank plume test case, where contaminant
is first injected at t = 0 min.

CHAPTER 6. MODEL VERIFICATION 199

0 400 800 1200 1600
0

200

400

(a) t = 30 min

0 400 800 1200 1600
0

200

400

(b) t = 40 min

0 400 800 1200 1600
0

200

400

(c) t = 50 min

0 400 800 1200 1600
0

200

400

(d) t = 60 min

Figure 6.21: Solution contours for the tank plume test case determined using up-
stream weighting and Mesh 3. The contours are for 0.3 c0 (black), 0.5 c0 (red) and
0.8 c0 (blue), where c0 is the concentration of salt in the injected contaminant.
The location of the sea water interface at c = 0.5 is marked in green.

CHAPTER 6. MODEL VERIFICATION 200

30 Minutes

0 400 800 1200 1600
0

200

400

40 Minutes

0 400 800 1200 1600
0

200

400

60 Minutes

0 400 800 1200 1600
0

200

400

60 Minutes

0 400 800 1200 1600
0

200

400

Figure 6.22: The location of the c0 = 0.5 isochlor for the tank plume test case
using the finest mesh (mesh 6 with 214,012 nodes) and upstream weighting. The
equivalent ischolors measured in the experiment are shown in black.

The tank tidal plume experiment: the evolution of a dense con-

taminant plume under tidal forcing

The effect of tidal variation on the evolution of a dense contaminant plume

was investigated in this experiment. The experiment proceeded identically

to the tank plume test case, however the height of the sea level was varied

according to the tidal boundary condition specified in Figure 6.4 when the

contaminant was first introduced at t = 0 minutes.

The location of the plume in the experimental results for both the tank plume

and tank tidal plume experiments is illustrated in Figure 6.24. Zhang (2000)

observed that there appear to be significant qualitative differences between

the shape of the plume in each experiment, particularly on the inland side.

However, both plumes exhibit a similar extent of intrusion towards the sea

water interface and the beach, with the plume reaching the beach between

50 and 60 minutes in both experiments. This observation was used to justify

performing numerical experiments without tidal fluctuation to investigate the

CHAPTER 6. MODEL VERIFICATION 201

travel time of the plume in the seawards direction. However, the considerable

difference in the shape of the plume under tidal forcing, particularly on the

inland side, suggests that the tide plays a significant role in the evolution of

the plume, warranting further investigation.

Figure 6.25 shows the c0 = 0.5 isochlors from numerical simulations of the

tank plume and tank tidal plume, computed using upstream weighting on

mesh 3. The numerical results reproduce the shape and location of the

plumes and sea water interface well, though the numerical results slightly

under-predict both the vertical and horizontal intrusion of the plume towards

the sea water interface at later times in both experiments.

There are two distinct flow regimes in the tidal cycle. First, as the tide lowers,

flow from inland towards the sea increases, carrying the plume downwards

and towards the sea. Conversely, as the tide rises, flow of fresh water from

inland towards the sea decreases, then reverses when the level of the tide

rises above the height of the inland water table. When the flow reverses, the

inland side of the plume below the injection site moves inland, which forms a

body of contaminant that is separated from the lower part of the plume. The

first high tide occurs at 30 minutes, at which point the upper inland body

of contaminant is evident in both the experimental and numerical results in

Figure 6.24(a) and Figure 6.25(a) respectively. Then, as the tide lowers to

low tide at 50 minutes, the inland body is carried down and towards the

beach as the flow from inland to the sea increases in Figure 6.24(c) and

Figure 6.25(c).

Figure 6.23 shows a comparison of the solution obtained using upstream

weighting and flux limiting on meshes 1 and 3. It is interesting to note that

the flux limited solution on the fine mesh does not exhibit the extent of

fingering observed in the tank plume experiment. This is likely due to the

action of the tide dispersing the leading edge of the plume, which smooths

out the numerical perturbations that give rise to fingers in the tank plume

experiment. The flux limited solution on mesh 1 reproduces the experimental

results better than the upstream solution on mesh 3. The flux limited solution

CHAPTER 6. MODEL VERIFICATION 202

on the fine mesh reproduces the shape of the inland side of the plume very

well, however it has an exaggerated upwelling of fresh water half way along

the bottom of the plume, an effect that was also observed in the numerical

results of Brovelli et al. (2007). For this reason the flux limited solution

on the coarse mesh is chosen as the best fit for this test case, and the full

solutions are plotted in Figure 6.27.

IDA takes significantly more time steps in the tank tidal plume simulations

due to the tidal boundary condition, which results in considerably longer wall

times than the tank plume simulations. For example, the upstream solution

on mesh 3 took 2,760 seconds to compute, compared to 225 seconds for

the equivalent tank plume simulation. On the other hand, the flux limited

solution computed on mesh 1 took only 186 seconds to compute, which is

a speedup of 14.8 times over the upstream solution. This illustrates the

benefits of using flux limiting to obtain accurate solutions on coarse meshes.

Summary of Zhang’s experiments

The tank plume and tank tidal plume experiments investigated here are both

very challenging to model numerically. Major features of the plumes observed

in the experiments, such as the diffuse region near the shore and the fingering

in the dense plumes have yet to be reproduced in numerical investigations

(Zhang, 2000, Volker et al., 2002, Brovelli et al., 2007). While it is beyond

the scope of this thesis to fully investigate the test cases, we note that the

observations presented here suggest that the following ideas will have to be

studied in more detail to better understand the dynamics of the system.

• It may be necessary to model the transient location of the seepage face

at the beach, which is not possible using the usual approach in IDA (see

Appendix D). Explicitly modelling a transient seepage face has been

shown to more accurately capture the shape of contaminant plumes

near the beach in similar experiments (Boufadel et al., 2011).

CHAPTER 6. MODEL VERIFICATION 203

• The cause of the onset of density-dependent fingering, and the reason

that the fingers do not grow large over time, needs to be explicitly

modelled. This would entail investigating the effect of small hetero-

geneities in the porous medium and the effect of uneven injection of

the contaminant.

• Full three-dimensional simulation should be performed to better un-

derstand the development of the diffuse region near the shore line, and

gain further insight into the development of density-dependent fingers

in three dimensions.

CHAPTER 6. MODEL VERIFICATION 204

Upstream – 30 Minutes Flux Limited – 30 Minutes

Upstream – 60 Minutes Flux Limited – 60 Minutes

(a) Mesh 1

Upstream – 30 Minutes Flux Limited – 30 Minutes

Upstream – 60 Minutes Flux Limited – 60 Minutes

(b) Mesh 3

Figure 6.23: Comparison between experimental and numerical results (upstream
and flux limited) on meshes 1 and 3 for the tank tidal plume experiment. The
numerical results are coloured black, and the experimental red. Contours are at
c0 = 0.5, where c0 is the concentration of salt in the contaminant source.

CHAPTER 6. MODEL VERIFICATION 205

0 400 800 1200 1600
0

200

400

(a) t = 30 min – high tide

0 400 800 1200 1600
0

200

400

(b) time t = 40 min – mid tide

0 400 800 1200 1600
0

200

400

(c) time t = 50 min – low tide

0 400 800 1200 1600
0

200

400

(d) time t = 60 min – mid tide

Figure 6.24: Comparison of experimental results for the contaminant plume sub-
ject to: tidal sea level (black); and stationary sea level (red).

CHAPTER 6. MODEL VERIFICATION 206

0 400 800 1200 1600
0

200

400

(a) time t = 30 min

0 400 800 1200 1600
0

200

400

(b) time t = 40 min

0 400 800 1200 1600
0

200

400

(c) time t = 50 min

0 400 800 1200 1600
0

200

400

(d) time t = 60 min

Figure 6.25: Comparison of numerical results for the contaminant plume subject
to: tidal sea level (black); and stationary sea level (red).

CHAPTER 6. MODEL VERIFICATION 207

(a) time t = 30 min

(b) time t = 40 min

(c) time t = 50 min

(d) time t = 60 min

Figure 6.26: Experimental results for the tank tidal plume test case.

CHAPTER 6. MODEL VERIFICATION 208

0 400 800 1200 1600
0

200

400

(a) time t = 30 min

0 400 800 1200 1600
0

200

400

(b) time t = 40 min

0 400 800 1200 1600
0

200

400

(c) time t = 50 min

0 400 800 1200 1600
0

200

400

(d) time t = 60 min

Figure 6.27: Numerical results using flux limiting on the coarse mesh (mesh 1 with
3,883 nodes) for the tank tidal plume test case. The contours are for 0.3 c0 (black),
0.5 c0 (red) and 0.8 c0 (blue), where c0 is the concentration of salt in the injected
contaminant. The location of the sea water interface at c = 0.5 is marked in green.

CHAPTER 6. MODEL VERIFICATION 209

6.6 Transport Model: Heap Leaching Simu-

lation

This test case was formulated to validate the flux limited weighting scheme in

three dimensions. To that ends, very small dispersion and diffusion param-

eters are prescribed to give advection-dominated transport. In Figure 6.28

and Figure 6.29, isosurfaces for the concentration are shown at 9, 45 and 81

days of the simulation on the 47,264 node reference mesh. Over the first 9

days the contaminant in the heap is leached downwards, into the unsatu-

rated layer above the aquifer and directly below the heap. The contaminant

plume then enters the saturated region, where its movement is affected by

the source term.

In the absence of the source term, the fluid flowing from the heap would flow

directly towards the hydrostatic boundary (on the x = 0 plane), as this is the

only boundary over which fluid can leave the domain. However, the source

term is located between the heap and the hydrostatic boundary. This pushes

fluid that leaches from the heap away from the hydrostatic boundary, forcing

it to flow out of the hydrostatic boundary near the y = 4.1 m boundary. The

concentration isosurfaces in Figures 6.28 and 6.29 show that the contaminant

plume is carried in this flow, towards the boundary at y = 4.1, where it then

moves towards the hydrostatic boundary.

Mesh convergence tests were performed to determine a reference solution. As

was the case for the simulations based on Zhang’s flow tank experiments the

PC formulation is used for these tests because the PC and MMPC methods

produce qualitatively identical results. The Van Leer limiter is used for the

mobility term, because the parabolic limiter failed to converge or required

many iterations on some of the tests. Of the limiters applied to the advec-

tion term, the parabolic limiter was slightly more efficient, and is used in

these numerical experiments. In Figure 6.30(a) the concentration contours

on a slice at z = −0.5 m are illustrated for the upstream weighting and flux

limiting schemes. The solutions are in reasonable agreement, except at the

CHAPTER 6. MODEL VERIFICATION 210

c = 0.25 contour, which the upstream solution underestimates significantly.

The flux-limited solution on the reference mesh is chosen as the reference

solution, illustrated in Figure 6.30(b), for these tests because both the up-

stream and flux limited solutions on coarser meshes converge to this solution,

as will be shown below.

Three meshes with between 7,932 and 28,788 nodes, summarised in Ta-

ble 6.19, were used to compare solutions computed using upstream weighting

and flux limiting against the reference solution. Figure 6.31 shows concen-

tration contours on the plane z = −0.5 m computed on each mesh with

upstream weighting. The solutions converge slowly towards the reference

solution, although it is necessary to include the upstream solution on the

reference mesh in Figure 6.30(a) to verify this for the c = 0.25 contour.

To accurately determine the profile of the contaminant plume, particularly

for the high-concentration region, would require a mesh with much higher

resolution than the reference mesh.

The corresponding solutions computed with flux limiting, shown in Fig-

ure 6.32, converge quickly to the reference solution, and the solution on the

medium mesh accurately reproduces the profile of the plume. Even on the

coarse mesh, flux limiting accurately captures that shape of the contaminant

plume: indeed, it is more accurate than upstream weighing on the reference

mesh.

Metrics for computational performance of each of the spatial weighting schemes

on the different meshes are summarised in Table 6.20. Both flux limiting and

upstream weighting require a comparable number of residual evaluations and

wall times on the coarse and medium meshes, and on the fine and reference

meshes upstream weighting has wall times between 1.4 and 2.3 times lower

than flux limiting. Overall, flux limiting requires much less work to reproduce

the shape of the plume: the coarse flux limited solution is more accurate than

the fine mesh solution with upstream weighting, while requiring 18 times less

wall time to solution.

CHAPTER 6. MODEL VERIFICATION 211

9 Days

45 Days

81 Days

Figure 6.28: Front view of concentration isosurfaces for the reference solution of
the heap leaching test case. The blue surface at c =0.05 shows the extent of the
plume, and the red surface at c =0.3 shows high-concentration centre of the plume.

CHAPTER 6. MODEL VERIFICATION 212

9 Days

45 Days

81 Days

Figure 6.29: Back view of concentration isosurfaces for the reference solution of
the heap leaching test case. The blue surface at c =0.05 shows the extent of the
plume, and the red surface at c =0.3 shows high-concentration centre of the plume.

CHAPTER 6. MODEL VERIFICATION 213

edge length nodes
coarse 0.20 m 7,932

medium 0.15 m 13,322
fine 0.10 m 28,788

reference 0.075 m 47,264

Table 6.19: Details of the tetrahedral meshes used for testing the heap leaching
test case.

upstream flux limited

Coarse
F evaluations 4046 4518
wall time (s) 34.1 37.3
time steps 102 108

Medium
F evaluations 4404 4215
wall time (s) 55.1 52.5
time steps 117 105

Fine
F evaluations 7130 14334
wall time (s) 177.4 339.8
time steps 142 205

Reference
F evaluations 17860 25256
wall time (s) 670.4 940.2
time steps 294 338

Table 6.20: Computational performance metrics for the heap leaching test case
using upstream weighting and flux limiting as mesh resolution increases.

CHAPTER 6. MODEL VERIFICATION 214

0 1 2 3 4 5 6 7 8
0

1

2

3

4

(a)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

0.05

0.10

0.15
0.20

0.25

(b)

Figure 6.30: Concentration contours for the heap leaching test case computed on
a slice of the reference mesh at z = −0.5 m at 81 days. In (a) solutions computed
using flux limiting (black) and upstream weighting (red) are illustrated. In (b) the
same contours are drawn and labelled for the flux limited solution, which is used
as the reference solution in these testss.

CHAPTER 6. MODEL VERIFICATION 215

Coarse – Upstream

0 1 2 3 4 5 6 7 8
0

1

2

3

4

Medium – Upstream

0 1 2 3 4 5 6 7 8
0

1

2

3

4

Fine – Upstream

0 1 2 3 4 5 6 7 8
0

1

2

3

4

Figure 6.31: Comparison of concentration contours for the heap leaching test case
computed using upstream weighting (red) at 81 days on the plane z = −0.5 m.
The reference solution is in black. Concentration contours are c =0.05, c =0.10,
c =0.15, c =0.20, c =0.25.

CHAPTER 6. MODEL VERIFICATION 216

Coarse – Flux Limited

0 1 2 3 4 5 6 7 8
0

1

2

3

4

Medium – Flux Limited

0 1 2 3 4 5 6 7 8
0

1

2

3

4

Fine – Flux Limited

0 1 2 3 4 5 6 7 8
0

1

2

3

4

Figure 6.32: Comparison of concentration contours for the heap leaching test case
computed using flux limiting (red) at 81 days on the plane z = −0.5 m. The ref-
erence solution is in black. Concentration contours are c =0.05, c =0.10, c =0.15,
c =0.20, c =0.25.

CHAPTER 6. MODEL VERIFICATION 217

6.7 Time Stepping With IDA

The accuracy and validity of the spatial discretisation and its implementation

was verified in the test cases in §6.2–§6.5. In each test case the parameters

and choices relating to the temporal solution were given and held fixed, so

as to focus on the spatial discretisation. However, the choice of parameters

and preconditioners used by IDA in the temporal integration also play a

significant role in the computational efficiency and accuracy of solutions.

Thus, in this section, the effect of the choice of preconditioner, temporal

integration order and tolerances used by IDA is investigated.

6.7.1 The role of different preconditioners

Here we investigate the effect that the choice of preconditioner has on both

the efficiency of time stepping and on the accuracy of the solution. It will

be shown that the choice of preconditioner is more important for variably

saturated flows, where fully saturated regions develop. To illustrate this we

investigate the dry infiltration test case in which full saturation never occurs,

and the water table test case that has a transient fully-saturated region.

The block Jacobi preconditioner introduced in §4.4.1 does not include cou-

pling between the sub-domains, because the off-diagonal blocks that rep-

resent sub-domain coupling in the global iteration matrix are ignored. To

understand the importance of including sub-domain coupling in the precon-

ditioner, each preconditioner is tested on two domain decompositions. The

first is the serial run, where no domain decomposition is performed, and no

information is ignored in forming and applying the preconditioner. The sec-

ond is the distributed test run, with two sub-domains, in which sub-domain

coupling is ignored by the preconditioner. For each test case, each of the full

LU, ILUT and ILU(0) preconditioners described in §5.8.1 is tested. We also

test a simple block-jacobi preconditioner with 2×2 diagonal blocks, labelled

BJac(2).

CHAPTER 6. MODEL VERIFICATION 218

The computational performance of different preconditioners for each test case

on the medium resolution meshes (see Tables 6.6 and 6.11) is presented in

Table 6.21. The dry infiltration test case is solved using the CPU implemen-

tation, and the water table runs were performed on the GPU, and in each

case the preconditioner is applied on the host.

serial MPI×1
nt nF npc time average emb

dry infiltration
Full LU 225 3,747 25 4.85 7.9 · 10−5

ILUT 225 3,745 25 4.78 7.9 · 10−5

ILU(0) 231 3,672 25 4.58 6.5 · 10−5

BJac(2) 258 5,505 244 7.24 8.3 · 10−5

water table
Full LU 178 2,516 17 50.0 not available
ILUT 210 2,938 26 57.8 not available

ILU(0) 5,054 128,146 2,847 2331 not available
BJac(2) – – – – –

distributed MPI×2
nt nF npc time average emb

dry infiltration
Full LU 231 3,756 25 2.70 6.2 · 10−5

ILUT 231 3,651 25 2.54 6.1 · 10−5

ILU(0) 230 3,843 25 2.62 6.4 · 10−5

BJac(2) 396 8,544 456 5.84 5.6 · 10−5

water table
Full LU 258 4,293 43 42.9 not available
ILUT 237 4,122 40 40.7 not available

ILU(0) – – – – –
BJac(2) – – – – –

Table 6.21: Performance of the different choices of local preconditioner for the
dry infiltration and water table test cases, for serial and distributed runs. For
each run, the number of time steps (nt), number of residual evaluations (nF),
number of times the preconditioner is formed (npc), wall time (time) and mass
balance error (average emb) are listed. Runs marked with — failed to converge.

Each of the preconditioners based on sparse factorisations have almost identi-

cal computational performance and mass balance error for the dry infiltration

test case. For both serial and distributed runs, each of the sparse factorisa-

tions requires (almost) the same number of time steps and residual evalua-

CHAPTER 6. MODEL VERIFICATION 219

tions to reach the final solution. As a result, the strong scaling of the method

is very good, whereby the distributed run (two sub-domains) has a speedup

of about 1.8 over the one serial (one sub-domain) run.

Because the ILUN preconditioner is very effective with block jacobi for un-

saturated flow, it is worth investigating whether it is possible to use a pre-

conditioner that drops further information. With this in mind, results for

the BJac(2) preconditioner that uses only nonzero values in 2×2 blocks on

the diagonal are also listed in Table 6.21. While solutions with good mass

balance error are obtained using the BJac(2) preconditioner, they take con-

siderably more computational work to obtain. For MPI×1, the number of

time steps increases by only 12%, however the preconditioner is computed far

more frequently (244 times as opposed to 25, or almost once per time step).

The additional residual evaluations required to approximate the Jacobi ma-

trix so frequently impose a considerable computational overhead, which is

reflected in the 60% increase in wall time.

Tests performed on other test cases show that this observation is true in gen-

eral for unsaturated flow problems, including the unsaturated transport test

problem for coupled unsaturated flow and transport (indeed, the ILU(0) pre-

conditioner was used to find the results in §6.4). The system matrices for the

unsaturated flow problems are relatively well-conditioned, so that while pre-

conditioning is required to guarantee timely convergence of the GMRES iter-

ations, a less-accurate ILU(0) preconditioner performed as well as the more

computationally expensive full LU and ILUT preconditioners. It should be

noted that for the relatively small mesh size used for the test case here, with

1,406 nodes, the computational overhead of using the full LU preconditioner

in place of the ILUT or ILU(0) preconditioners6 is not apparent, however for

larger systems this cost becomes very significant.

The solution of saturated flow is more sensitive to the choice of preconditioner

(see Appendix E), as is evident in the results for the water table test case

in Table 6.21. For the serial case, the full LU and ILUT preconditioners

6See §5.8.1 for details of the different sparse factorisations.

CHAPTER 6. MODEL VERIFICATION 220

are both effective, with wall times of 50 and 58 seconds respectively. On

the other hand, the ILU(0) preconditioner is not good enough for the poorly

conditioned linear system that arises under saturated conditions, with a wall

time of 2331 seconds. Additionally, we note that the BJac(2) preconditioner

failed to converge, which is not surprising given the poor performance of the

ILU(0) preconditioner under such conditions.

Furthermore, the block Jacobi preconditioner performs poorly when using

the distributed preconditioner for the water table test. The wall time for

the full LU and ILUT decreases for the distributed case, however only by a

factor of between 1.17 and 1.44 respectively. Furthermore, the block Jacobi

preconditioner failed for the distributed case.

An interesting observation is that for the distributed case, the number of time

steps only increases by 13% for the ILUT preconditioner relative to the serial

case, however the number of residual evaluations increases by 40%. This is

because the number of inner iterations of the GMRES method required at

each time step increases due to the lower-quality preconditioner, and also

because of the residual evaluations to compute the preconditioner matrix,

which is computed more often. This illustrates that when using inexact

Newton methods, the number of inner iterations of the linear solver, or the

number of residual evaluations, is often a better metric of computational

efficiency than the number of time steps.

In this thesis, considerable effort was spent assessing the preconditioners in

the pARMS library (Saad and Sosonkina, 2004) for the distributed matrices.

pARMS provides preconditioners for distributed systems, with ILU precon-

ditioners used to precondition local blocks, and iterative Schur complement

and Schwarz procedures handling coupling between sub domains. However,

it was not possible to implement pARMS in FVMPor due to problems that

we encountered with memory and MPI. To allow the software to model satu-

rated media with multiple sub-domains, further investigation of methods that

introduce coupling between sub-domains, and suitable local preconditioners

need to be considered.

CHAPTER 6. MODEL VERIFICATION 221

6.7.2 Higher-Order Temporal Integration

In §6.2–§6.5 the error tolerance was fixed for each problem, and IDA was

able to use up to third-order integration, so that the relative accuracy of the

different edge weighting methods and formulations could be compared. We

now turn our attention to the effect of integration order and error tolerances

on the accuracy of the solution of Richards’ equation using the PR and MPR

formulations with the CV-FE discretisation. We note that the observations

that follow are also true for the PC and MMPC formulations, however the

effects were less pronounced. The analysis in this section was presented in

the paper Cumming et al. (2011).

The dry infiltration test case is used for this analysis, because exact mass

balance error can be determined. The results were determined for both sets of

initial conditions, ψ0 = −7.34 m and ψ0 = −100 m, using upstream weighting

on an unstructured 1607-node triangular mesh in Figure 6.33, with refinement

in the region of interest on the left hand side of the domain. Finally, the

solution was determined on the host using a single domain with an ILUT

preconditioner.

First, we consider the effect of the order of temporal integration on the

computational efficiency and mass balance errors of the solution for both

formulations by varying both the maximum integration order chosen by IDA,

k ∈ {1, 2, 3, 4, 5}, and the tolerance τa = τr = τ ∈ {10−3, 10−4, 10−5} (see

equation 3.92). For each integration order–tolerance pair, the maximum mass

balance error and total work7 were recorded, and plotted in Figure 6.34. Each

line in the plot shows the effect of tightening the tolerance for a given BDF

order, with a general trend of increasing work and decreasing mass balance

error.

For first-order integration, the PR formulation has relatively poor conser-

7The total number of residual evaluations in each run is used as the metric for total
work because residual evaluation takes over 80% of computation time for this problem,
and the wall time for the solution varies linearly with the number of residual evaluations.

CHAPTER 6. MODEL VERIFICATION 222

Figure 6.33: Triangular mesh for testing the efficacy of higher-order integration
methods on the dry infiltration test case.

vation of mass (two significant digits) compared with the MPR formulation

(five significant digits). For higher-order integration, conservation of mass

improves for both methods, particularly for k ≥ 3, and the MPR formula-

tion is between one and two orders of magnitude more accurate than the PR

formulation. The observation that higher-order integration is necessary to

obtain accurate solutions of the PR formulation is consistent with observa-

tions made elsewhere (Tocci et al., 1997, Kees and Miller, 2002). However,

we note that while it is less accurate, the mass balance error does not grow

with time for the PR formulation and first-order integration, and hence the

CV-FE discretisation is mass-conservative for both formulations.

For the MPR formulation, computational efficiency improves dramatically as

the order is increased to third-order, after which there is stagnation or small

deterioration of performance for fourth-order and fifth-order integration. The

same trend is observed for the PR formulation for τ = 10−3, however the

efficiency and mass balance are superior for k = 5 for τ ≤ 10−4. Nevertheless,

the mass balance error of the fifth-order PR formulation is not competitive

with that for the third-order MPR formulation: to obtain six significant

digits accuracy, third-order solution of the MPR formulation requires 60% of

CHAPTER 6. MODEL VERIFICATION 223

the work for the fifth-order solution PR formulation for both sets of initial

conditions.

The stagnation of performance when using fourth-order and fifth-order BDFs

and the MPR formulation is because in this case IDA rarely uses k > 3,

and when it does, convergence issues force it to reduce the order and time

step size. The computational overheads associated with changing time step

size and order, namely those associated with reforming the preconditioner

each time this occurs, add to the computational overhead of higher-order

integration for the MPR formulation. As the tolerance is tightened, both

formulations take advantage of higher-order time stepping and fourth-order

and fifth-order integration become competitive, particularly for the PR for-

mulation where they outperform third-order.

Table 6.22 shows different performance metrics for each formulation for the

caisson test case for τ = 10−3, with the most competitive BDF order for each

method. The MPR formulation is more mass-conservative, by between one

and two orders of magnitude for both ψ0 = −7.34m and ψ0 = −100m, while

requiring comparable work. Wall times for both the PR formulation and

the MPR formulation are very close, with a small computational overhead of

10% per residual evaluation for the MPR formulation.

formulation order F nt wall time average emb
ψ0 = −7.34m PR 3 3757 258 4.1s 3.7 · 10−5

MPR 3 2932 224 3.6s 3.6 · 10−6

ψ0 = −100m PR 5 6359 452 6.9s 5.0 · 10−5

MPR 3 6762 448 8.2s 8.6 · 10−7

Table 6.22: Computational efficiency and mass balance error for the dry infiltration
test case for both the PR and MPR formulations.

CHAPTER 6. MODEL VERIFICATION 224

2 4 6 8 10 12 14 16

−3

−4

−5

−6

−8

lo
g
1
0
(e

m
b
)

residual evaluations (×1000)

-7

-2

5 10 15 20 25 30

−3

−4

−5

−6

−8

lo
g
1
0
(e

m
b
)

residual evaluations (×1000)

-7

-2

(a) (b)

Figure 6.34: Mass balance error for the dry infiltration test case in terms of com-
putational work, measured as number of residual evaluations, for initial conditions:
(a) ψ0 = −7.34m; (b) ψ0 = −100m. The solid and dashed lines are for the PR
and MPR formulations respectively, with the order of integration for each denoted
by: + k=1; . k=2; ◦ k=3; � k=4; ? k=5.

6.8 Conclusions

In this chapter the formulations and numerical methods introduced in Chap-

ter 3 were verified against some challenging test cases. We summarise the

findings of these numerical case studies in the following paragraphs.

CHAPTER 6. MODEL VERIFICATION 225

The solution of variably-saturated flow with Richards’ equation:

the dry infiltration and water table tests cases.

The dry infiltration and water table test cases presented in §6.2 and §6.3 were

used to test the proposed methods for solving variably-saturated flow. For

both test cases, it was possible to accurately reproduce the references solution

on relatively coarse meshes by applying flux limiting to the mobility term,

whereas very fine meshes were required to obtain solutions with equivalent

accuracy using upstream weighting. By virtue of using coarser meshes, flux

limiting required between 5 times to 20 times less computational work to

determine solutions of equivalent accuracy to upstream weighting.

Of the parabolic and van Leer limiters, the parabolic limiter was more ef-

ficient and converged for all mesh sizes and choice of flow direction indica-

tor. The van Leer limiter produced solutions of equivalent accuracy to the

parabolic limiter, however was slow to converge for fine meshes in the wa-

ter table test case, and also failed using FDI(ϕ) on some meshes. The flow

direction indicator FDI(∇φ) was the best overall choice for the solution of

Richards’ equation, because it is simpler to form than FDI(q) to implement,

and produced good results for each of upstream weighting and the different

limiters.

The solutions for both test cases for Richards’ equation obtained using the

MPR formulation were indistinguishable from those from the PR formulation

in §6.2 and §6.3. The number of residual evaluations required to obtain the

solution for the MPR was equivalent to the PR, and the MPR formulation

had a computational overhead of between 10% to 20% relative to the PR

formulation, despite having twice as many equations and variables. The low

computational overhead for the MPR formulation is due to the efficiency

of the Schur complement preconditioner proposed for the modified mixed

formulations in §3.3.2.

Additionally, in §6.7.2 the MPR formulation was shown to have considerably

better conservation of mass than the PR formulation, particularly for first-

CHAPTER 6. MODEL VERIFICATION 226

order temporal integration. Hence, if conservation of mass is a high priority,

or if first-order implicit time stepping is used, the mixed MPR formulation

should be used. Otherwise the PR formulation may be used because it is

a little easier to implement, and offers a saving of between 10% to 20% in

computational overhead.

The solution of coupled variably-saturated flow and contaminant

transport: the unsaturated transport and heap leaching test cases

The unsaturated transport test case in §6.4 was used to test unsaturated flow

and contaminant transport. Again, the flux limiting improved the quality of

solutions on coarse meshes, required between 4 times to 5 times less work

to find solutions of equivalent accuracy to upstream weighting. This test

case was more sensitive to the choice of limiter for the mobility term than

the two test cases for Richards’ equation. The parabolic limiter was more

accurate and required significantly less computational work than the van Leer

limiter. The unsaturated transport test case had very little dispersion, so that

the solute transport was advection-driven, and flux limiting was required

to reduce numeric diffusion in the concentration solution. However, unlike

the mobility term, both limiters produced equivalent solutions for the same

amount of computational work when applied to the advection term.

The benefits of using the modified mixed MMPC formulation instead of the

PC formulation are less obvious than for Richards’ equation. Indeed, the

MMPC formulation can only be justified with first-order temporal integra-

tion, because for higher-order integration both formulations had equivalent

mass balance errors, while the MMPC formulation imposed a computational

overhead of 10% to 20%.

The heap leaching test case in §6.6 was formulated to verify the efficacy of

flux limiting on unstructured three-dimensional meshes. The test case had

very small diffusion and dispersion parameters, such that the contaminant

transport was advection-dominated. As was the case for the two-dimensional

CHAPTER 6. MODEL VERIFICATION 227

test cases, solutions computed using upstream weighting were prone to nu-

merical diffusion. Numerical diffusion was reduced significantly by using flux

limiting, to the extent that solutions computed on the coarse mesh with flux

limiting were more accurate than those computed on the reference mesh with

upstream weighting.

Contaminant transport on tidal beaches: Zhang’s laboratory ex-

periments

A numerical investigation into the laboratory experiments of near-shore con-

taminant transport under tidal forcing was performed in §6.5. Phenomena

observed in the experiments, performed by Zhang (2000), are very challenging

to reproduce numerically due to unsteady, density-dependent flow. The sim-

ulations reproduced the shape and time evolution of the contaminant plume

both with and without tidal variation of the sea water level. Other features,

such as the formation of density-dependent fingers in the contaminant plume,

and a diffuse contaminant region near the beach, were not reproduced ac-

curately in the numerical solutions. We concluded that to reproduce these

features, it will be necessary to perform further simulations that explicitly

model the underlying causes of the features.

The impact of different preconditioners

The effect of the different preconditioners on the time stepping scheme was

investigated in §6.7.1. It was found that the ideal choice of preconditioner

was dependent on the presence of saturated flow, because the matrices that

arise under saturated flow conditions were not as well-conditioned as those

for unsaturated flow.

For unsaturated flow, the less-accurate ILU(0) factorisation was as effective

as the more expensive LU and ILUT factorisations, and block Jacobi ap-

proach for distributed matrices scaled well as the number of sub-domains

CHAPTER 6. MODEL VERIFICATION 228

increased. For variably-saturated flow, however, tighter restrictions were

placed on the choice of preconditioner. The block Jacobi approach scaled

very poorly compared to the serial preconditioner. Furthermore, the ILU(0)

preconditioner was not sufficiently accurate for the local blocks, and factori-

sations that allowed fill in, specifically the full LU and ILUT preconditioners,

were required.

Higher-order temporal integration

The effect of temporal integration order and tolerances was investigated In

§6.7.2. Higher-order integration (third-order and higher) greatly reduced

computational effort required to compute solutions for both the PR and MPR

formulations. Mass balance error for the MPR formulation was considerably

better (by three orders of magnitude) than the PR formulation when using

first-order integration. For higher-order integration, both formulations exhib-

ited excellent conservation of mass, however the MPR formulation was still

more accurate by two orders of magnitude. These observations suggest that

for first-order temporal integration, the modified mixed formulation should

be used. However for higher-order integration where both formulations are

very accurate, and the modified mixed formulation is only required if very

precise mass balance errors are critical.

Chapter 7
Computational Performance

In this chapter, the compuational performance of the CPU and GPU imple-

mentations of FVMPor will be evaluated. The chapter is organised as follows.

First, in §7.1 the test problems used to evaluate computational performance

will be introduced, along with an overview of the hardware utilised in our

numerical experiments. Then, in §7.2 a detailed comparison and analysis

of computational performance the CPU and GPU implementations will be

presented.

7.1 Test Setup

In this section, two-dimensional and three-dimensional test cases that can

be used to evaluate both coarse-grained and fine-grained parallelism in the

MPI-OpenMP-CUDA framework are chosen1. Coarse-grained parallelism is

implemented through domain decomposition, which uses the block Jacobi

preconditioner for the distributed linear system illustrated in Figure 4.7.

Furthermore, the only local preconditioner that offers fine-grain parallelism

1Recall, that coarse-grained parallelism uses domain decomposition to distribute the
problem across MPI processes, and fine-grained parallelism uses either OpenMP or CUDA
on each sub-domain.

229

CHAPTER 7. COMPUTATIONAL PERFORMANCE 230

on the GPU is the multi-colour version of the ILU(0) preconditioner (MC-

ILU(0)) described in Algorithm 4.6. This restricts the choice of problems that

can be implemented in the full MPI-OpenMP-CUDA framework, because

in §6.7.1 it was shown that the block Jacobi with ILU(0) preconditioner

is unsuitable for saturated flows. Hence, to investigate the performance of

FVMPor when the preconditioner can be applied in parallel, an unsaturated

flow test case is required.

The dry infiltration test case with the dry initial conditions of ψ0 = −7.34 m

that was introduced in §6.1.1 is used for this testing in both two dimen-

sions and three dimensions. The two-dimensional domain is the same as

that described in Figure 6.1. For the three-dimensional test case, the two-

dimensional problem is extruded by 0.5 m, and we focus on the top left region

of the domain (3 m high by 5 m wide). Furthermore, the block of zone 3 is

only extended 0.25m, to guarantee a true three-dimensional flow. The meshes

are constructed using unstructured triangles and tetrahedra, with four lev-

els of refinement in two dimensions, and five in three dimensions, details of

which are provided in Table 7.1. Simulations were run to 30 days and 20

days for the two-dimensional and three-dimensional cases respectively.

Two Dimensions Three Dimensions
Name Nodes Name Nodes
2D1 23,570 3D1 23,316
2D2 95,052 3D2 47,005
2D3 387,818 3D3 83,529
2D4 856,317 3D4 139,561

3D5 184,186

Table 7.1: The name and number of nodes in each of the meshes used to test the
parallel performance of FVMPor.

Only the PR formulation of Richards’ equation is used for all of the tests,

however we note that identical results are observed for the MPR formulation.

This is because the additional steps performed in the residual evaluation and

preconditioner of the MPR formulation are computationally inexpensive, and

can be implemented efficiently on the GPU.

CHAPTER 7. COMPUTATIONAL PERFORMANCE 231

To balance spatial and temporal errors we set the relative tolerance τr and

absolute tolerance τa as follows

τt = δ∆x2
min,

τa = δ × 10−6, (7.1)

where ∆xmin is the minimum element radius2 of the mesh, and δ is a tuning

parameter. This heuristic approach is based on the assumption that spatial

error is second order in space (Ewing et al., 2002, Kees and Miller, 2002). For

the dry infiltration test case used in these tests, it was found that choosing

δ = 0.3 ensured stable convergence for all mesh resolutions in both two and

three dimensions.

7.1.1 Test Hardware

A high-performance desktop machine with a total of 8 cores in 2 sockets

(2 by 4-core Intel Xeon E5620 CPUs rated at 2.4GHz) and two NVIDIA

Tesla C2050 GPU cards, each with 3GB of RAM were used for all of these

tests. The ECC error-checking on the GPU memory was turned off, which

gave a speedup of roughly 10% over the entire solution. The Intel C++

compiler version 11.1 and CUDA toolkit version 4.0 were used to build the

code. Both CPU and GPU versions of the code use double precision floating

point arithmetic.

7.2 Results

The results of the numerical experiments are presented here. Throughout the

discussion that follows, the CPU-only version of the code is run with one core

assigned to each MPI process. Thus, CPU×4 indicates that four CPU cores

2The minimum element radius is the smallest distance between two adjacent nodes, or
the shortest edge length, in the mesh.

CHAPTER 7. COMPUTATIONAL PERFORMANCE 232

were used, each assigned to a sub-domain. For the GPU implementation,

one CPU core and one GPU are assigned to each MPI process, except when

the B-ILU(0) preconditioner is used, in which case all 8 CPU cores are sub-

divided amongst the MPI processes to compute and apply the local block

Jacobi preconditioners in parallel.

The results will be presented as a series of observations, each followed by

justification and references to the associated figures at the end of the chapter.

The strong scaling up to 8 cores is good for the CPU-only MPI

implementation

First, we investigate the speedup of the CPU implementation relative to the

serial version (CPU×1) as the number of sub-domains and cores increases,

that is, the strong scaling. The strong scaling of wall time is plotted against

the ideal speedup for the largest meshes in two and three dimensions, mesh

2D4 and mesh 3D5 respectively, in Figure 7.1. The scaling is close to ideal

when between 2 to 4 CPU cores are used. However the scaling is not as good

for more than 4 cores: 8 cores gives a speedup of 6.1 for the two-dimensional

mesh, and 5.2 for three dimensions.

There are two reasons for the less than ideal scaling for more than 4 cores.

The first reason is that the block Jacobi preconditioner is less accurate as

the number of sub-domains increases, because more inter-domain coupling

information is ignored. Using a less-accurate preconditioner leads to an in-

crease in the number of residual evaluations in two ways: first, the number

of inner iterations taken by the GMRES method increases; and secondly,

the preconditioner is formed more frequently, which entails the shifted resid-

ual evaluations described in equations (4.25) and (4.26). This is the case

for the block Jacobi preconditioner in both the two-dimensional and three-

dimensional tests, where the number of residual evaluations for 8 cores is

approximately 10% higher than for 1 core. However, the increase of 10%

in the number of residual evaluations does not account for all of the scaling

CHAPTER 7. COMPUTATIONAL PERFORMANCE 233

drop of between 20% to 30% in the Figure 7.1 when going from 4 cores to 8

cores.

The second reason for the less than ideal scaling for more than 4 cores is not as

obvious. The problem is not with load balancing, which is very good for the

static domain decomposition precomputed using ParMETIS. Furthermore,

communication overheads are very small when using 8 cores: less than 1% of

time to solution in Figure 7.2.

A key observation is that the performance drops for all of the steps in the

preconditioner and residual evaluation when more than 4 cores are used. The

most likely reason for this is memory affinity for the MPI processes when the

cores in more than one CPU socket are used. The test computer described

in §7.1.1 has two sockets with 4 cores each, and each socket has six memory

slots for a total of 12 memory slots. A CPU core can access memory in any

slot, however the memory latency is higher if the slot is not one of the six

slots associated with the core’s socket (Levinthal, D., 2009). To minimise

memory latency, each MPI process should have fixed affinity with one core,

whereby the process uses that core exclusively, and allocates memory in a

slot associated with that core’s socket. The following steps were taken to

ensure that this is the case:

• OpenMP thread affinity was set so that OpenMP threads in each MPI

process were fixed to run on cores in the same socket (Intel, 2008, §3.2).

In the case of one OpenMP thread per MPI process, each MPI process

is fixed on one core.

• High-performance libraries provided by Intel, the chip manufacturer,

were used for allocating memory in the hope that they would allo-

cate memory in appropriate slots. To this end, the C++ allocator in

the MKL library and the icpcMalloc function in the Intel Performance

Primitives library were both tested.

These approaches did not address the problem, which may suggest that the

CHAPTER 7. COMPUTATIONAL PERFORMANCE 234

problem is due to the affinity of the MPI process not agreeing with the affinity

of the OpenMP thread. Further investigation is required to ensure that the

MPI and OpenMP affinity are in agreement (Zhang et al., 2010).

Despite the less than ideal scaling for more than 4 cores, the performance

of the solver improves significantly as the number of cores increases to the

maximum possible of 8 cores. The scaling of between 5.2 times and 6.1 times

speedup on 8 cores offers the fastest time to solution on our test computer,

and is competitive when compared to similar published results (Cai et al.,

1994). Hence, for the analysis presented in this chapter, the 8 core (CPU×8)

timings on each mesh will be used as the baseline test case for comparison

with the GPU implementation.

Evaluating the residual is the dominant computational cost, rep-

resenting between 80% to 90% of the total computational cost for

the baseline CPU×8 case.

To better understand the computational bottlenecks in the CPU-only imple-

mentation of FVMPor, Figure 7.2 illustrates the the proportion of the time

to solution spent in each part of the solver for the 2D4 and 3D5 meshes. The

first main observation is that the majority of time, 81% in three dimensions

and 91% in two dimensions, is spent performing residual evaluations.

The second important observation from Figure 7.2 is that the cost of evalu-

ating the residual relative to the cost of applying the preconditioner is much

higher in three dimensions3, so that preconditioning costs account for 5 times

as much of the total time to solution in two dimensions compared to three

dimensions. This is because the computational cost of applying the precon-

ditioner is equivalent for two-dimensional and three-dimensional meshes with

the same number of nodes, whereas residual evaluation is significantly more

3The two operations of residual evaluation and preconditioner application are per-
formed on each inner iteration of GMRES, and as such they account for the majority of
computational effort. Later analysis will show that applying the preconditioner accounts
for over 98% of all the costs associated with preconditioning on the host (see Figure 7.8(b)).

CHAPTER 7. COMPUTATIONAL PERFORMANCE 235

expensive in three-dimensions. To illustrate this, Table 7.2 shows the cost

of performing a residual evaluation and applying the preconditioner for the

two-dimensional mesh 2D2 and the three-dimensional mesh 3D3, which have

a similar number of nodes. The time taken to apply the preconditioner is

almost identical for both meshes, with the slightly larger matrix associated

with mesh 2D2 taking 1.12 times longer to apply than for mesh 3D3, whereas

the residual evaluation takes over 6 times longer for the three-dimensional

mesh 3D3. This is because computing and gathering the face fluxes for each

control volume is considerably more expensive in three dimensions where

each control volume has an average of 32 faces, compared to an average of 6

faces in two dimensions.

Furthermore, in both two and three dimensions, the cost of residual eval-

uation relative to the cost of applying the preconditioner, shown as ratios

in Table 7.2, is the same regardless of the number of nodes in the mesh.

That is, both residual evaluation and preconditioner application scale nearly

identically as the number of nodes in the mesh increases, because the sparse

triangle solves and sparse matrix-vector products in the preconditioner ap-

plication and residual evaluation both scale linearly4.

ratio
2D2 3D3 2D2/3D3 (3D3/2D2)

nodes 95,052 83,529 1.14 (0.88)
residual evaluation 1.2 · 10−2 s 7.4 · 10−2 s 0.16 (6.17)

preconditioner apply 1.28 · 10−3 s 1.13 · 10−3 s 1.13 (0.88)

Table 7.2: The average time spent evaluating the residual and applying the pre-
conditioner for baseline 8-core simulations performed using two-dimensional and
three-dimensional meshes with a similar number of nodes.

The remaining computational overheads measured in Figure 7.2 are the in-

ternal operations of IDA, and halo communication. For both two and three

4For dense matrices the combined forward/backward substitution and matrix-vector
products are O(n2). However, for sparse matrices where the number of non zeros in a
row is bounded by a small scalar, such as the maximum number of neighbours for a node,
these operations are linear, or O(n).

CHAPTER 7. COMPUTATIONAL PERFORMANCE 236

dimensions, IDA accounts for less than 10% of the total solution cost, and the

cost of updating halo information using asynchronous MPI communication

is negligible, less than 1%, even with 8 sub-domains5.

From these observations, it is clear that the key to optimising the solution

in the Newton-Krylov framework is to target the residual evaluation, which

takes between 80% to 90% of the total time to solution. The next two obser-

vations focus on performing the residual evaluation on the GPU. Then the

remaining steps, namely the NVector routines in IDA and different methods

for applying the preconditioner on the GPU, will be investigated.

The GPU implementation offers significant speedup over the base-

line case for residual evaluations: up to 3 for one GPU, and 6 for

two GPUs.

We begin the investigation of the GPU implementation by looking at the ef-

ficiency of the residual evaluation on the GPU. Figure 7.3 shows the speedup

of residual evaluation when using one and two GPUs relative to the baseline

CPU×8 case. Performing the residual evaluation on the GPU gives good

weak scaling, that is, the relative performance of the GPUs improves as the

number of nodes in each mesh increases. For fine meshes, the speedup is over

3 on one GPU (between 3.1 and 3.2 for two-dimensional meshes with greater

than 400,000 nodes, and between 3.3 and 3.4 for three-dimensional meshes

with more than 80,000 nodes).

An important observation from Figure 7.3 is that speedup in three dimensions

is considerably better than in two dimensions for meshes with fewer nodes:

the mesh 2D1 offers a speedup of 1.4, whereas the mesh 3D1, which has a

similar number of nodes, offers a speedup of 2.8. The reason for this is the

much higher number of edges and control volume faces per node in three

dimensions (recall that each control volume has over 5 times as many faces

5Communication costs between processes that use shared memory are very small, how-
ever it is reasonable to expect that they would become more significant on clusters.

CHAPTER 7. COMPUTATIONAL PERFORMANCE 237

in three dimensions). Thus, the sparse matrices used for shape function

interpolation have more rows in three dimensions6, and the working vectors

of face and edge values are also longer.

Both SPMV and vector operations exhibit good weak scaling on the GPU,

whereby their performance improves as the size of the matrices and vectors in-

creases. This is illustrated in Figure 7.4, which shows the speedup of the GPU

implementation relative to the baseline CPU case in each stage of the residual

evaluation on the smallest two-dimensional and three-dimensional meshes,

2D1 and 3D1 respectively, each of which has about 23,000 nodes. Each step

of the residual evaluation sees better speedup on the three-dimensional mesh,

for example:

• The sparse matrices used for shape function interpolation in the in-

terpolation step have 5 times more rows in three dimensions, and the

interpolation step has speedup of 2.7 for 3D1 compared to a speedup

of 1.5 for 2D1.

• Flux assembly (see Listing 5.8) uses only vector addition and vector

multiplication with vectors of face values such as pressure head gradient

and relative permeability. The face vectors are longer, again by a factor

of 5, in three dimensions. The good weak scaling of GPU operations

on longer vectors is evident, with speedup of 4.1 on the longer vectors

in three dimensions, relative to speedup of 2.6 in two dimensions.

Finally, we note that the strong scaling for the residual evaluation on two

GPUs is very good. In Figure 7.3 we see that two GPUs is almost twice as

fast as using one GPU.

6Recall from (4.10) that the interpolation matrices have nf rows, where nf is the
number of rows in the mesh.

CHAPTER 7. COMPUTATIONAL PERFORMANCE 238

Renumbering nodes, edges and faces to improve cache performance

accelerates the residual evaluation of both the GPU and CPU im-

plementations.

We now investigate the impact of the renumbering scheme proposed in §5.7 on

the computational performance of the residual evaluation. The scheme was

proposed to improve the GPU performance of indirect indexing in the gather

and scatter operations in the residual evaluation. However, the renumbering

is used for both the CPU and GPU implementation of FVMPor, so its impact

on both the CPU and GPU implementations is presented here.

The speedup of each step in the residual evaluation due to the renumbering

scheme is illustrated in Figure 7.5. Both the CPU and GPU implementations

benefit from the renumbering, with very similar speedup for both two and

three dimensions. Flux assembly is the only step of the residual evaluation

that is not affected by the renumbering scheme. This is because flux assembly

does not use any of the indirect indexing that the scheme was designed to

optimise7.

The renumbering scheme accelerates the other steps in the residual evalua-

tion, all of which use indirect indexing between nodes, edges and faces:

• Interpolation

This step computes the pressure head gradient and the density in the

buoyancy term (using SPMV to perform shape function interpolation

as described in §4.2.2) and the density in the advection term (using

edge-based weighting in Algorithm 4.4). Each of these operations use

indirect indexing, for which the renumbering scheme leads to speedup

of approximately 1.2 on the CPU, and between 1.3 and 1.4 on the GPU.

It is worth noting that the renumbering scheme had a much greater

7The flux assembly in §5.6.5 computes the flux at each control volume face using List-
ing 5.8 using variable values and gradients computed in previous interpolation and fluid
properties steps, in which gather and scatter operations are performed.

CHAPTER 7. COMPUTATIONAL PERFORMANCE 239

impact on the SPMV operations with early versions of CUSPARSE8.

Subsequent versions of CUSPARSE have reduced the sensitivity of the

SPMV to the sparsity pattern of the matrix, which reduced the impact

of the scheme on operations such as interpolation that use SPMV.

• Fluid Properties

Computing the fluid properties with Listing 5.7 involves two large com-

putational expenses. The first is computing the moisture content, rel-

ative permeability and storage term from the van Genuchten-Mualem

model, which is particularly expensive on the CPU9. This computa-

tion is not affected by the renumbering scheme, and is performed very

efficiently in parallel on the GPU.

The second computational overhead is the edge-based weighting used to

compute the permeability at each control volume face, which uses the

scatter operation discussed in detail in §5.7.1. This is a larger overhead

on the GPU than the CPU, because it uses indirect indexing, and due

to the relative efficiency of the van Genuchten-Mualem computations

on the GPU. As such, the renumbering scheme has the greatest impact

here on the GPU, with a speedup of between 2 and 2.2.

• Residual Assembly

The residual assembly is a relatively inexpensive step, taking about

10% of the residual evaluation (see Figure 7.6). The over-riding cost

is in the sparse matrix-vector product that gathers the face fluxes for

each control volume in Listing 5.9. This is the only step of the residual

evaluation for which the renumbering gives a larger speedup on the

CPU than the GPU. The sparse matrix has fewer rows than the inter-

polation matrices, and more nonzero values in each row, particularly

in three dimensions.

8The scheme was first implemented with the first version of CUSPARSE, released with
CUDA 3.0.

9Determining the fluid properties according the van Genuchten-Mualem model involves
expensive floating point operations such as square root and power operations in equa-
tions (2.9), (2.10) and (2.29).

CHAPTER 7. COMPUTATIONAL PERFORMANCE 240

From these observations, we see that the renumbering scheme has a greater

overall impact on the GPU, with a speedup of between 1.4 to 1.5. The larger

cache and more sophisticated memory hardware on the CPU made it less

sensitive to the numbering scheme, however it still had a significant impact

with speedup factor between 1.15 and 1.2.

The MPI-CUDA implementation of NVector is significantly faster

than the MPI-CPU implementation, and exhibits very good weak

scaling.

We now investigate the performance of the Newton-Krylov solver in IDA

with the GPU implementation of NVector that was discussed in §5.5. As

noted earlier, the weak scaling of vector operations such as those in NVector

is very good on the GPU. This is illustrated in the plot of speedup on the

GPU for the two-dimensional mesh in Figure 7.7. For one GPU we observe

a speedup of 2 for small meshes, and a speedup of 7 as the mesh is refined.

Unlike the CPU version, costs associated with preconditioning are

a major bottleneck in the GPU implementation. Furthermore,

costs associated with applying the preconditioner account for 99%

of the total preconditioner cost, with the factorisation accounting

for the remaining 1%.

The relative time spent in each part of the solution process for the 2D4 mesh

on one GPU using the ILU(0) host preconditioner is shown in Figure 7.8(a).

The effect of implementing the residual evaluation and IDA on the GPU

is evident relative to the baseline case in Figure 7.2(a). The residual now

accounts for only 45% of the time, compared to 81% for the baseline case,

and likewise IDA only takes 2% compared to 7%. The remaining 51% of

time is spent on performing preconditioning operations, which is a five-fold

increase from 10% in the CPU implementation. There are two reasons for

CHAPTER 7. COMPUTATIONAL PERFORMANCE 241

this:

• The first reason is that the absolute amount of time spent evaluating

the residual and IDA operations has decreased for the efficient GPU

implementation.

• The second reason is that with only one GPU, there is only one MPI

process. Hence, the entire global iteration matrix is preconditioned in

serial. This is in contrast to the baseline 8-core case, which benefits

from processing eight smaller local diagonal blocks in parallel.

The breakdown of time spent in operations related to preconditioning (fac-

torising, applying and copying data between the host and the device) is

illustrated in Figure 7.8(b). We note that applying the preconditioner (solv-

ing the triangular systems in (4.28) and copying vectors between host and

device each time the preconditioner is applied) dominate the precondition-

ing costs. Remarkably, computing the sparse factorisation takes only 1% of

the total preconditioning time. This is because the preconditioner is formed

and factorised only periodically by IDA (56 times in this case), while it is

applied once for every inner iteration of the GMRES method (21,784 times).

Because factorisation has negligible cost for the problem investigated here,

it is performed on the host, and we focus on methods for accelerating the

application of the preconditioner.

The B-ILU(0) and MC-ILU(0) preconditioners have the fastest ap-

plication times, with the MC-ILU(0) preconditioner outperforming

the host ILU(0) preconditioner by an order of magnitude for fine

meshes.

In the results presented so far in this chapter, the host ILU(0) preconditioner

has been used to compute both the CPU and GPU results. We now inves-

tigate the efficiency of the three additional local preconditioners based on

ILU(0) factorisations that were presented in §5.8.2 for the GPU version:

CHAPTER 7. COMPUTATIONAL PERFORMANCE 242

• The host preconditioner B-ILU(0), which performs a block Jacobi pre-

conditioner to the local matrix. If one GPU is used, then all 8 CPU

cores are used to perform a block Jacobi preconditioner with 8 blocks.

If two GPUs are used, 4 GPUs are assigned to each process where a

block Jacobi preconditioner with 4 blocks is used.

• The device preconditioner MC-ILU(0), which performs the application

phase on the GPU using the matrix stored in block form (4.29).

• The device preconditioner CUSP-ILU(0), which performs the applica-

tion phase on the GPU using the sparse triangle solves implemented in

the CUSPARSE library.

Figure 7.9 shows the average time taken to apply each of the preconditioners

(including time spent copying between host and device for the ILU(0) and B-

ILU(0) methods) using one GPU on the largest two-dimensional mesh, 2D4.

Of the two preconditioners applied on the host, the B-ILU(0) preconditioner

is approximately 4.2 times faster than the ILU(0) preconditioner at all mesh

sizes. The speedup of 4.2 is not ideal, given that B-ILU(0) uses 8 cores

instead of the 1 core used by ILU(0). However, both methods have identical

overheads associated with copying data between host and device, such that

43% of the application time for the B-ILU(0) preconditioner is spent on

copying.

MC-ILU(0) exhibits the best weak scaling of any of the preconditioners. For

small meshes it is more efficient than the ILU(0) preconditioner, but not as

good as B-ILU(0). However, for meshes larger than 100,000 nodes it is the

most efficient preconditioner: up to 11 times faster than the ILU(0) precon-

ditioner, and 2.6 times faster than the B-ILU(0). The benefit of not copying

between the host and device is apparent for the MC-ILU(0) preconditioner.

Applying the preconditioner alone is 1.4 times faster for MC-ILU(0) than

B-ILU(0) on the 2D4 mesh — the total speedup of 2.6 is because no data is

copied between the host and device, which we recall took nearly half of the

total application time for the B-ILU(0) preconditioner.

CHAPTER 7. COMPUTATIONAL PERFORMANCE 243

On the other hand, the CUSP-ILU(0) preconditioner is the least efficient of

all the methods, despite using the same multi-colouring technique as MC-

ILU(0) to obtain fine-grained parallelism. This is because the way that the

factorised matrix is stored is not amenable to good data access patterns on

the GPU. Unlike the MC-ILU(0), the factors are not stored in permuted form.

Instead, the permutation vector is used to traverse the matrix and solution

vector during the triangle solves. In this manner, the matrix rows and entries

in the right hand side vector are not processed contiguously, which leads to

low cache reuse on the GPU.

The optimised preconditioners give us similar speedup over the

entire solution process as for the residual evaluation alone.

We now look at the speedup for the entire time to solution for the GPU

implementation. Figure 7.10 shows the speedup for the 1 GPU and 2 GPU

relative to the 8-core baseline case, for each of the ILU(0), B-ILU(0) and

MC-ILU(0) preconditioners10.

First, consider the two-dimensional case in Figure 7.10(a). The GPU im-

plementation was faster than the 8-core baseline case, however the choice

of preconditioner has a large affect on the total speedup. The 1 GPU code

with the host ILU(0) preconditioner was almost twice as fast for the large

two-dimensional meshes – which is considerably less than the speedup of the

residual function. To obtain scaling across all parts of the solver that is com-

parable to the speedup in residual evaluation alone, either of the B-ILU(0) or

MC-ILU(0) preconditioners must be used. Indeed, with the MC-ILU(0) pre-

conditioner, the speedup for the two-dimensional test case in Figure 7.10(a)

approaches that of the residual evaluation on large meshes.

Figure 7.10(b) shows that the speedup of time to solution is better in three

dimensions than in two dimensions. This is by virtue of the better speedup

10The results for the CUSP-ILU(0) preconditioner are omitted due to their poor perfor-
mance relative to the other preconditioners.

CHAPTER 7. COMPUTATIONAL PERFORMANCE 244

of the residual evaluations in three dimensions, and the lower relative cost of

preconditioning in three dimensions.

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Number of CPU cores

sp
ee
d
u
p

2D

3D

ideal

Figure 7.1: The strong scaling for the CPU version.

Residual

Preconditioner
IDA

MPI

81 %

10 %
9 %

<1 %

Residual

Preconditioner
IDA

MPI

91 %

2 %
7 %

<1 %

(a) (b)

Figure 7.2: Breakdown of time spent in each part of the solver for CPU×8 for
mesh 2D4 (a) and mesh 3D5 (b).

CHAPTER 7. COMPUTATIONAL PERFORMANCE 245

0 2 4 6 8

·105
0

2

4

6

nodes in 2D mesh

sp
ee
d
u
p

0.5 1 1.5

·105
0

2

4

6

nodes in 3D mesh
sp

ee
d
u
p

(a) (b)

Figure 7.3: Speedup of physics computation for GPU×1 and GPU×2 (red and
blue respectively) relative to CPU×8 (black) as the number of nodes in the mesh
increases for two dimensions (a) and three dimensions (b).

interpolation �uid

properties

�ux

assembly

residual

assembly

overall

1

1.5

2

2.5

3

3.5

4

s
p
e
e
d
u
p

Figure 7.4: Speedup of each step in the residual evaluation on the GPU for the
coarse two-dimensional mesh 2D1 (blue); and the coarse three-dimensional mesh
3D1 (red).

CHAPTER 7. COMPUTATIONAL PERFORMANCE 246

interpolation �uid

properties

�ux

assembly

residual

assembly

overall

1

1.25

1.5

1.75

2

s
p
e
e
d
u
p

(a) Two dimensions: mesh 2D4

interpolation �uid

properties

�ux

assembly

residual

assembly

overall

1

1.25

1.5

1.75

2

s
p
e
e
d
u
p

(b) Three dimensions: mesh 3D3

Figure 7.5: Speedup of each step in the residual evaluation due to renumbering of
nodes, edges and faces to obtain better cache performance. The speedup of the
GPU implementation is in blue, and the speedup of the CPU implementation is
in red.

CHAPTER 7. COMPUTATIONAL PERFORMANCE 247

flux

interpolation

fluid props.
residual

13 %

42 %

37 % 8 %
flux

interpolation

fluid props. residual

19 %

44 %

27 % 10 %

(a) (b)

Figure 7.6: Proportion of time spent in each step of the residual evaluation on the
GPU for the 2D4 mesh. (a) Without the renumbering scheme for node, edge and
faces. (b) With the renumbering scheme.

0 2 4 6 8

·105
0

5

10

15

nodes in 2D mesh

sp
ee
d
u
p

Figure 7.7: Speedup of IDA for GPU×1 and GPU×2 (blue and red respectively)
relative to CPU×8 (black) as the number of nodes in the mesh increases for two
dimensions.

CHAPTER 7. COMPUTATIONAL PERFORMANCE 248

Residual

Preconditioner

IDA

47 %

51 %

2 %

Apply

Factorise

Copy

85 %

1 %
14 %

(a) (b)

Figure 7.8: Breakdown of time spent in each part of the solver for GPU×1 and
the mesh 2D4 when using the host preconditioner (a), and further breakdown of
time spent in different parts of the preconditioner in this case (b).

0 1 2 3 4 5 6 7 8 9

·105

10−3

10−2

10−1

nodes in 2D mesh

ti
m
e
(s
)

Figure 7.9: Average time to apply the local preconditioner, including any copying
between host and device, as size of matrix increases for each preconditioner on one
GPU (without MPI). The preconditioners are MC-ILU(0) (red), CUSP-ILU(0)
(black), B-ILU(0) (green) and ILU(0) (blue).

CHAPTER 7. COMPUTATIONAL PERFORMANCE 249

0 2 4 6 8

·105
0

1

2

3

4

5

6

nodes in 2D mesh

sp
ee
d
u
p

0.5 1 1.5

·105
0

1

2

3

4

5

6

nodes in 3D mesh

sp
ee
d
u
p

(a) (b)

Figure 7.10: Speedup of the entire solver when using GPUs compared to CPU×8
as the number of nodes in the mesh increases for (a) two dimensions and (b) three
dimensions. GPU×1 =red, GPU×2 =blue. ILU(0) = solid, B-ILU(0) =dotted,
MC-ILU(0) =dashed. The speedup of the residual evaluation alone for each case
is marked by the solid lines with x markers.

CHAPTER 7. COMPUTATIONAL PERFORMANCE 250

7.3 Conclusions

In this chapter the computational performance of the CPU and GPU im-

plementations of FVMPor was investigated. The dry infiltration test case

was used for testing in both two dimensions and three dimensions, because

it was possible to solve efficiently using both the block Jacobi and ILU(0)

preconditioners.

First, the performance of FVMPor was investigated on the CPU, with a

single core assigned to each MPI process. The strong scaling of the solution

process was very good, despite a small loss of performance for more than 4

cores caused by a loss in accuracy of the block Jacobi preconditioner, and

due to problems with memory affinity. The main bottleneck for the 8-core

CPU simulations was computation of the residual function, which accounted

for at least 80% of the total time to solution.

The next set of tests investigated the performance of the GPU implemen-

tation relative to the 8-core CPU implementation. The residual evaluation

performed very well on the GPU, achieving a speedup of 3 on one GPU rel-

ative to the 8 CPU cores, and speedup of 6 when two GPUs were used. The

level 1 BLAS vector operations in IDA also performed very well relatively to

the baseline results.

This meant that the preconditioner became the bottleneck for the GPU im-

plementation, taking 54% of the total time to solution, compared to only

10% on the CPU. However, a very interesting observation was made: the

preconditioner is dominated by the cost of applying the preconditioner, with

only 1% of time spent forming the preconditioner.

Then several different methods for applying the preconditioner on the host

and device were tested. Of these, the B-ILU(0) method that used OpenMP

to form and apply a block Jacobi preconditioner for the local matrix on

the host was found to be the most efficient approach for small systems with

less than 100,000 nodes. For larger problems, the MC-ILU(0) preconditioner,

CHAPTER 7. COMPUTATIONAL PERFORMANCE 251

which applied an ILU(0) preconditioner on the device using a multi-colouring

algorithm was the best performer, with a speedup of 11 over the ILU(0)

method, and 2.2 over the B-ILU(0) preconditioner.

By applying each step of the implicit time stepping scheme on the GPU, we

achieved very good speedup across the entire solution process, with 6 times

speedup for two GPUs relative to 8 CPU cores on large problems.

The results presented here come with a caveat: we are only able to obtain par-

allel speedup over the entire solution process, both coarse and fine-grained,

for unsaturated flow problems for which the block Jacobi and ILU(0) pre-

conditioners are well suited. However, the GPU implementation is still much

preferable to the CPU implementation for saturated problems, despite hav-

ing to use ILUT and LU preconditioners that are applied on the host. For

example, the numerical experiments for Zhang’s flow tank experiments pre-

sented in §6.5 were performed on the GPU using the host for the full LU

preconditioner on a single domain. By using the GPU for these tests, results

that would took hours to compute on the CPU were obtained in 15 minutes.

Chapter 8
Conclusions

This chapter gives a summary and analysis of the findings of this research

program, followed by proposals for further work based on the findings pre-

sented in this thesis.

8.1 Summary and Discussion

In Chapter 1 the objectives of this work were outlined. In this section I will

restate each of these objectives and discuss how they were addressed.

Investigate a mass-conservative control-volume finite element method

for modelling variably-saturated groundwater flow and contami-

nant transport in heterogeneous porous media

In Chapter 3, the CV-FE spatial discretisation was applied to the governing

equations for variably-saturated groundwater flow and contaminant trans-

port. It was shown that this spatial discretisation is well-suited to modelling

mass balance laws in heterogeneous media because the method finds con-

sistent fluxes at quadrature points where material properties of the porous

252

CHAPTER 8. CONCLUSIONS 253

medium are well-defined. This avoids approximating material properties at

any point in the spatial discretisation, and ensures that the scheme is locally

mass conservative. Furthermore, to reduce the numerical dispersion intro-

duced by upwind weighting on coarse meshes, the van Leer and parabolic

flux limiters were applied to both the mobility term in Richards’ equation

and the advection terms in the transport model.

The spatial discretisation was validated in §6.2–§6.5 by reproducing solutions

for both benchmark problems and laboratory experiments from the literature.

The following observations were made:

• Solutions computed using upstream weighting suffered from numeric

dispersion on all but very fine mesh resolutions. Flux limiting reduced

the amount of numerical dispersion significantly, particularly on coarse

meshes. On average, flux limited solutions were between 10% to 20%

more expensive to compute than solutions with upstream weighting

on the same mesh. However, because they made it possible to obtain

accurate solutions on coarse meshes, the flux limiters were shown to be

between five to twenty times more efficient than upstream weighting to

determine solutions of equivalent accuracy.

• For the solution of Richards’ equation, both the parabolic and van Leer

limiters applied to the mobility term gave equivalent solutions, with

the parabolic limiter being slightly more efficient. For the coupled flow

and transport problems, the choice of limiter applied to the mobility

term was more important, with the parabolic limiter producing more

accurate and efficient solutions in §6.4. However, both limiters were

equivalent in terms of both accuracy and computational overhead when

applied to the advection terms in the full transport model.

• Analysis of the mass balance error for test cases where the mass balance

could be determined exactly showed that our implementation of the

CV-FE method is mass conservative for both Richards’ equation and

the full transport model.

CHAPTER 8. CONCLUSIONS 254

Extend the mixed formulation for Richards’ equation due to Kees

and Miller (2002) to the CV-FE method and coupled contaminant

transport

The CV-FE discretisation was applied to the modified mixed formulation

of Richards’ equation proposed by Kees and Miller (2002), then extended

to the coupled contaminant transport equations. The formulation imposes

an additional algebraic equation for each partial differential equation in the

system, which doubles the size of the nonlinear and linear systems that are

solved at each time step. A Schur-complement preconditioner that used the

structure of the Jacobian to effectively halve the size of the system of linear

equations was proposed in §3.3.2. This preconditioning method made it

possible to solve the modified mixed formulation using general higher-order

implicit time stepping codes for the solution of DAE systems. The findings

of the investigation into the modified mixed formulations in Chapter 6 can

be summarised:

• For the solution of Richards’ equation, the modified mixed MPR formu-

lation had conservation of mass an order of magnitude more accurate

than the PR formulation for the same amount of computational work

for higher-order integration, and two orders of magnitude for first-order

integration. The modified mixed formulation also offered superior con-

servation of mass for the coupled transport model in the tests performed

in §6.4. However, the differences for higher-order integration were not

as large for the transport model.

• The efficiency of the Schur complement preconditioner for the modified

mixed formulation meant that the modified mixed formulation had a

computational overhead of between 10% to 20%, despite having twice

as many equations and primary variables.

• The mass balance error of solutions from the modified mixed formula-

tions was superior to those of the PR and PC formulations, particularly

for first order integration and the formulation of Richards’ equation.

CHAPTER 8. CONCLUSIONS 255

However, all of the formulations are mass conservative, with mass bal-

ance errors that do not grow in time. Ultimately, the choice of which

formulation to use will depend on how important conservation of mass

is in the final solution, and on whether first-order or higher-order tem-

poral integration is being used.

An important motivation for the development of the modified mixed formu-

lation is that the formulation is amenable to solution using robust packages

for higher-order implicit time stepping. The IDA library (Hindmarsh et al.,

2005) was used to perform the time stepping, and the role of higher-order

integration and preconditioner choices was investigated in §6.7:

• Higher-order integration considerably reduced both the mass balance

error, and the time to solution for a given error tolerance. Furthermore,

higher-order integration was required to obtain good conservation of

mass for the PR and PC formulations.

• The Newton-Krylov solver in IDA required a preconditioner to ensure

timely convergence of GMRES. The choice of preconditioner was de-

pendent on the presence of saturated conditions: for unsaturated flow

and transport problems the ILU(0) and block Jacobi preconditioners

performed well; whereas simulations with saturated regions required

sparse factorisations with fill in, specifically the ILUT and full LU de-

compositions, and showed poor weak scaling of the block Jacobi pre-

conditioner.

Implement the proposed methods in a flexible software package

that can be used on a desktop computer, and scale up to run on

large clusters

The software package FVMPor was developed to implement the methods de-

veloped in this thesis. It was written in C++ with a modular design, so that

CHAPTER 8. CONCLUSIONS 256

components such as integrators and preconditioners can be easily changed.

The integrator used in this thesis was based on IDA, and the hybrid MPI-

OpenMP programming model was used to obtain both coarse-grained and

fine-grained parallelism on clusters and multi-core CPUs respectively. The

interface and implementation of FVMPor use the vectorlib library, which pro-

vides a syntax for memory allocation and linear algebra operations.

An important objective in the design of FVMPor was that it could be easily

adapted to other models. The modularity of the software makes it simple to

do this by changing the physics implementation in §5.6. FVMPor has already

been used to model multiphase flow and heat transfer in biomass, and future

work will see it used to develop models of coal seam gas.

To date, FVMPor has been used on a range of different computers. These

include: desktop PCs; the high-performance GPU workstation used in Chap-

ter 7; and on the GPU nodes of the Lyra cluster at the Queensland University

of Technology. With the development of preconditioners better-suited to dis-

tributed problems, future versions of FVMPor will be used on larger clusters.

Investigate using GPUs to accelerate the unstructured mesh solver

for groundwater flow

The vectorlib library was adapted to provide a common interface to low-level

hardware implementations on the GPU and CPU of commonly-used linear

algebra operations. The spatial discretisation in the residual evaluation was

expressed in terms of the data parallel operations implemented in vectorlib,

and some operations specific to the CV-FE method that were implemented in

FVMPor. In this manner, the residual evaluation, which was the biggest com-

putational overhead for the CPU implementation, was implemented entirely

on the GPU.

To improve the performance of the residual evaluation on unstructured meshes,

a novel renumbering scheme for nodes, edges and faces that improved the

CHAPTER 8. CONCLUSIONS 257

correlation between the location of information in memory and in space was

presented developed in §5.7. The renumbering is simple to implement, and

is based on abstract analysis of the connectivity graph of the mesh, so that

it can be applied to arbitrary geometries in two and three dimensions. It

significantly improved the performance of the indirect indexing in the gather

and scatter operations in the residual evaluation, with a speedup of between

1.4 to 1.5 on the GPU, and a speedup of 1.25 on CPU.

After the residual evaluation, the other two computational overheads in FVM-

Por were the vector operations in IDA, and the application of the precon-

ditioner in GMRES. The Newton-Krylov method used by IDA was imple-

mented on the GPU by rewriting the NVector library to support GPU imple-

mentation1. Then, a method for efficiently solving sparse triangular systems

for which a priori knowledge of the sparsity pattern is available was imple-

mented to allow the application of ILU(0) preconditioners on the GPU.

In this manner, each of the steps in the implicit time stepping method were

implemented to run efficiently on the GPU. The performance of the GPU

and CPU implementations of FVMPor were then tested in §7.2. The GPU

version performed very well, with a total speedup of 3 times for one GPU,

and 6 times for 2 GPUs over a baseline 8-core CPU version run. However, to

obtain this speedup it was necessary that an efficient parallel preconditioner

could be used. For the unsaturated flow problem considered in the tests, the

ILU(0) preconditioner worked well.

8.2 Directions For Further Research

The outcomes of this research suggest a number of possible directions for

further research, some of which are currently being pursued, which are briefly

discussed here.

1The CUDA implementation of NVector developed in this thesis is available under an
open source license (BSD) at github.com/bencumming/NVectorCUDA

github.com/bencumming/NVectorCUDA

CHAPTER 8. CONCLUSIONS 258

Further investigation of preconditioning methods, both for dis-

tributed systems and on the GPU

FVMPor showed very good scaling, both coarse-grained using domain decom-

position, and fine-grained on the GPU for unsaturated flow problems, where

a block Jacobi ILU(0) preconditioner was very effective. However, for simu-

lations with variably-saturated conditions, neither the ILU(0) preconditioner

nor block Jacobi approaches were adequate. This limited the extent to which

simulations with saturated conditions could be parallelised.

To model saturated conditions more efficiently in parallel, appropriate pre-

conditioners need to be investigated. One possibility for fine-grained paral-

lelism of the local block on the GPU is the recent work by Heuveline et al.

(2011a,b), who have shown good results for the GPU implementations of

sparse factorisations with fill-in on the GPU. For coarse-grained parallelism,

methods that introduce coupling between sub-domains, such as Schwartz and

Schur complement approaches, will need to be investigated.

Explicit methods for time stepping stiff initial value problems

Implicit methods are preferred for solving Richards’ equation and more de-

tailed treatments of multiphase flows, due to the stability and large time step

sizes that they allow given the stiffness of the governing equations. Explicit

methods are generally simpler to implement than implicit methods, by virtue

of not requiring the solution of a nonlinear system of equations (which in turn

requires the solution of linear systems), at each time step. However, explicit

methods typically take many more time steps than implicit methods for stiff

problems, justifying the extra effort required to implement implicit methods.

Typically, the biggest computational overhead for both implicit and explicit

methods is performing residual evaluations – for the Newton-Krylov approach

taken in this work, residual evaluation was the dominant cost of the CPU

implementation. However, the GPU implementation of the residual evalua-

CHAPTER 8. CONCLUSIONS 259

tion was very efficient, and the cost of applying the preconditioner became a

significant overhead.

Recent research by Carr et al. (2011) investigated using an exponential Euler

method against using second and fifth order BDFs in IDA. The authors

found that the method was outperformed the second order BDFs, however

was not as not as efficient as the fifth-order solver. However, given that the

exponential Euler approach does not require a preconditioner, it is worth

investigating its performance on the GPU.

Investigation of More Realistic Boundary Conditions

Practical applications of software like that developed here involve a wide

variety of boundary conditions, which are often time varying, and may involve

changing the type of boundary condition used. The simulations that involved

time-varying tidal level in §6.5 showed the implicit time stepping method

struggled when changing from a Dirichlet boundary condition to a no flux

boundary condition. For the software to be more useful, a flexible system for

implementing a broad range of boundary conditions is required, as is further

investigation into how best to implement them efficiently in the chosen time

stepping framework.

Further development of vectorlib library

The vectorlib library is currently being rewritten to be more flexible and

efficient. The implementation of vectorlib used in this thesis requires that

a CUDA kernel is written and compiled separately for any operation per-

formed on the GPU. The new version of vectorlib uses the Thrust library

(NVIDIA, 2011d) with lazy evaluation to implement arbitrary GPU opera-

tions at compile time. Thrust is a C++ template library for CUDA based

on the Standard Template Library (STL) that also provides data parallel

operations such as scan, sort and reductions.

CHAPTER 8. CONCLUSIONS 260

The new vectorlib library will also include better support for threading and

vectorisation for data stored on the CPU, and built in support for MPI

communication.

Develop a three-dimensional model for Zhang’s experiments

The laboratory experiments of Zhang (2000) have been investigated numeri-

cally, both by the original researchers (Zhang et al., 2002, Volker et al., 2002,

Zhang et al., 2004) and more recently by Brovelli et al. (2007) and in this

thesis. Although some features of the experiment have been reproduced rea-

sonably well in the numerical investigations, there are other features such

as the density-driven fingering, and the formation of a diffuse contaminant

region near the beach, that have yet to be reproduced. The results presented

in this thesis suggest that to reproduce these features it may be necessary to

perform three-dimensional simulations, that explicitly model heterogeneity,

uneven injection of the contaminant at the surface, and the formation of a

transient seepage face at the beach.

Appendix A
Computing Derivative Coefficients

In the derivation of the PR and PC formulations, for Richards’ equation

and coupled flow and transport respectively, the accumulation terms in the

governing partial differential equations are differentiated with respect to the

primary variables in each formulation. This expresses the accumulation term

as a function of the primary variables and their derivatives. In this appendix

we derive functional forms for the coefficients of the derivatives in the accu-

mulation terms.

A.1 The PR formulation of Richards’ Equa-

tion

The chain rule is first applied to the accumulation term in Richards’ equa-

tion (2.1) to express it as a function of pressure head ψ and its derivative, as

follows
∂(ρθ)

∂t
=
∂(ρθ)

∂ψ

∂ψ

∂t
. (A.1)

261

APPENDIX A. COMPUTING DERIVATIVE COEFFICIENTS 262

Thus, the coefficient of the derivative for the PR formulation is the storage

term n(ψ), which is defined

n(ψ) =
∂(ρθ)

∂ψ
. (A.2)

By substituting the equation for moisture content (2.13) into (A.2), the stor-

age term can be expanded as follows

= θ
∂ρ

∂ψ
+ ρ

[
Sw

∂φ

∂ψ
+ φ

∂Sw
∂ψ

]

= ρ0βψθ + ρ

[
αψSw + φ

∂Sw
∂ψ

]
, (A.3)

where the coefficients αψ and βψ are defined

αψ = (1− φ0)αρ0g, (A.4)

βψ = ρ0gβ. (A.5)

The analytic forms for each of the terms in (A.3) can be found using the

constitutive relationships defined in equations (2.8), (2.9) and (2.13). Finally,

we note that the storage term in (A.3) is dependent on material properties,

and care must be taken to use the appropriate formula (3.25) when finding

the volume average of the storage term.

A.2 The PC Formulation of the Full Trans-

port model

For the PC formulation, the chain rule is applied to the accumulation terms

for Richards’ equation (2.1) and the solute mass balance equation (2.5). First,

APPENDIX A. COMPUTING DERIVATIVE COEFFICIENTS 263

take the accumulation term for Richards’ equation:

∂(ρθ)

∂t
=
∂(ρθ)

∂ψ

∂ψ

∂t
+
∂(ρθ)

∂c

∂c

∂t
. (A.6)

The first coefficient in (A.6) is the storage term in from (A.3)

∂(ρθ)

∂ψ
= ρ0βψθ + ρ

[
αψSw + φ

∂Sw
∂ψ

]
, (A.7)

The expression for the coefficient in front of the concentration derivative

in (A.6) is found using (2.11) and by noting that moisture content is not

dependent on concentration:

∂(ρθ)

∂c
= θ

∂ρ

∂c

= ρ0ηθ. (A.8)

Applying the chain rule to the accumulation term of the solute mass balance

equation (2.5) gives

∂(cθ)

∂t
=
∂(cθ)

∂ψ

∂ψ

∂t
+
∂(cθ)

∂c

∂c

∂t
. (A.9)

The first coefficient in (A.9) can be simplified as follows

∂(cθ)

∂ψ
= c

∂θ

∂ψ

= c

(
αψSw + φ

∂Sw
∂ψ

)
,

where αψ and βψ are defined in (A.4) and (A.5). We introduce the term

a(ψ) = ∂θ/∂ψ to simplify the notation of the PC formulation as follows

∂(cθ)

∂ψ
= ca(ψ). (A.10)

Finally, it is simple to show that the coefficient of the concentration derivative

APPENDIX A. COMPUTING DERIVATIVE COEFFICIENTS 264

in (A.9) is the moisture content

∂(cθ)

∂c
= θ. (A.11)

Appendix B
Verification of Hydrostatic Boundary

Condition

In this appendix the mixed beach boundary condition defined in §2.3 is val-

idated. The boundary condition, defined in equation (2.23), is a Cauchy

condition of the form

qj · nj = Rb(ψi − ψb(z, t)). (B.1)

The prescribed pressure head at the boundary, ψb, is dictated by the height

of the tide, namely

ψb(z, t) = (1 + η)(h(t)− z, (B.2)

where h(t) is the height of the tide at time t. The penalty term Rb in (B.1)

is chosen as follows

Rb =

{
0, z > h(t)
K
L
, z ≤ h(t)

, (B.3)

whereK is the hydraulic conductivity and L is the length coupling scale (Chui

and Freyberg, 2009). For points above the tide, a no flow boundary condition

is imposed, that is qj ·nj = 0. When evaluated at control volume faces below

the level of the tide, there is flux over the interface. This approach can also

265

APPENDIX B. VERIFICATION OF HYDROSTATIC BOUNDARY CONDITION266

be thought of as introducing a source term to the control volume (Forsyth

and Kropinski, 1997). If the parameter Rb is large, the Dirichlet boundary

condition is strictly enforced. Whereas, if the value of Rb is lowered, the

Dirichlet boundary condition is not strictly enforced.

We will now present a simple numerical investigation into the accuracy of

the mixed beach boundary condition, and its sensitivity to the length scale

parameter L. The test case is based on the flow tank experiments performed

by Zhang (2000), that are described in §6.1.5. The experiment is similar to

the tank tidal plume test case, except no contaminant plume is injected, so

that we can focus on the tidal fluctuations. The height of the tide was fixed

for the first 170 minutes, to allow the steady state sea water interface to

form, before the sea level was varied according to Figure 6.4.

Figure B.1(a) shows the effect of varying the parameter L (between 0.01

to 100) on the accuracy of the computed pressure head values, compared

to the prescribed pressure values, at the boundary. The solution is more

accurate for smaller values of L (with corresponding increase in Rb). For the

first 170 minutes, when the prescribed values are held constant, the error

is constant for each case. Then, as the prescribed pressure head values are

varied, the error also varies, however the error is still reduced by using smaller

values of L. In our tests, it was found that if L was decreased even further,

these fluctuations in the error became larger, and the Newton iterations

failed to converge in some cases. The more accurate solutions found using

smaller values of L also required considerably more computational effort, as

illustrated in Figure B.1(b).

It is not pictured here, however the shape of the sea water interface is de-

pendent on the accuracy of the condition at the boundary. However, as

the length coupling parameter decreases, the solution converges such that

the interfaces computed using L = 0.1 and L = 0.01 are indistinguishable

from those computed using the fixed Dirichlet condition, or type 2, boundary

condition for the constant sea level case.

APPENDIX B. VERIFICATION OF HYDROSTATIC BOUNDARY CONDITION267

Based on these observations, a value of L = 0.1 is chosen for our tests,

because it enforces the pressure head at the boundary to agree with the

prescribed value to three significant digits. This corresponds to the relative

error tolerance of τr = 1e-3 used in the numerical experiments in §6.5, while

giving stable and reasonably efficient computation times.

100 200 300
10−5

10−4

10−3

10−2

10−1

time (min)

er
ro
r

20 40 60 80
10−4

10−3

10−2

10−1

time to solution (s)

er
ro
r

(a) (b)

Figure B.1: (a) The maximum error at the boundary over time for different values
of the scaling parameter, labelled as: L = 100–black; L = 10–blue; L = 1–red;
L = 0.1–green; L = 0.01–cyan. (b) The maximum error over the course of a
simulation as a function of work. The work is increased, and the error decreased,
by decreasing the value of L.

Appendix C
Shape Function Interpolation For

Quadrilaterals and Hexahedra

The shape function interpolation weights for triangle and tetrahedral ele-

ments used in FVMPor were derived in §3.1.3. Here we derive additional

weights for quadrilateral and hexahedral elements.

C.1 Shape function interpolation on quadri-

laterals

For a quadrilateral element we use a bilinear interpolation function

s`(x) = α1 + α2x+ α3y + α4xy, (C.1)

268

APPENDIX C. SHAPE FUNCTION WEIGHTS 269

which gives a coefficient matrix, as in (3.10), of the form

Cε` =




1 x1 y1 x1y1

1 x2 y2 x2y2

1 x3 y3 x3y3

1 x4 y4 x4y4



. (C.2)

Using the same arguments as (3.11) and (3.12), the shape functions and their

derivatives are defined by

N (x) =
[
1 x y xy

]
C−1
ε`

(C.3a)

∂N

∂x
=
[
0 1 0 y

]
C−1
ε`

, (C.3b)

∂N

∂y
=
[
0 0 1 x

]
C−1
ε`

(C.3c)

where we note that the derivatives are linear functions on ε`.

C.2 Shape function interpolation on hexahe-

dra

For a hexahedral element a trilinear interpolation function of the form

s`(x) = α1 + α2x+ α3y + α4z + α5xy + α6xz + α7yz + α8xyz, (C.4)

is used. The coefficient matrix in this case is

Cε` =




1 x1 y1 z1 x1y1 x1z1 y1z1 x1y1z1

...
. . .

1 x8 y8 z8 x8y8 x8z8 y8z8 x8y8z8


 , (C.5)

APPENDIX C. SHAPE FUNCTION WEIGHTS 270

and the shape functions and their derivatives are defined:

N (x) =
[
1 x y z xy xz yz xyz

]
C−1
ε`

(C.6a)

∂N

∂x
=
[
0 1 0 0 y z 0 yz

]
C−1
ε`

(C.6b)

∂N

∂y
=
[
0 0 1 0 x 0 z xz

]
C−1
ε`

(C.6c)

∂N

∂z
=
[
0 0 0 1 0 x y xy

]
C−1
ε`

(C.6d)

where, as was the case for quadrilateral elements, the gradient weights vary

linearly.

Appendix D
Transient Seepage Faces in IDA

Seepage boundary conditions are not implemented in this thesis due to lim-

itations imposed by the IDA library. If the location of a seepage face is

transient, its location at each time step has to be determined using an it-

erative procedure (Cooley, 1983). The iterative process first estimates the

location of the seepage face, and then finds the solution for the given seepage

face location. The solution is rejected if there is flux into the domain over any

part of the seepage face, in which case the time step is repeated with a new

estimate for the location of the seepage face. The process is repeated until

flux everywhere on the seepage face is out of the domain. Such an iterative

process is not possible in IDA, which does not provide any mechanism for

rejecting a time step once it has been completed.

271

Appendix E
The Iteration Matrix G Under

Saturated Conditions

We now give a brief analysis of the properties of the iteration matrix G under

saturated and unsaturated flow conditions. Consider the iteration matrix G

for the PR formulation, which is found by substituting the residual function

f(t,ψ,ψ′) in (3.70) into the equation (3.90) as follows

G =
∂f

∂ψ
+ α

∂f

∂ψ′

= A+ αD, (E.1)

where the matrix A = ∂f/∂y, the positive constant α = α0/τ defined

in (3.87) is the ratio of the leading BDF coefficient α0 and the time step

size τ , and the diagonal matrix D has diagonal entries defined as follows

dii = ni(ψi). (E.2)

It is straightforward to show that the storage term ni(ψi) in (E.2) satisfies

272

APPENDIX E. G UNDER SATURATED CONDITIONS 273

the following constraints:

ni > 0, ψi < 0 (unsaturated conditions)

ni ≈ 0, ψi ≥ 0 (saturated conditions)

Thus, under unsaturated conditions, the term αD in (E.1) makes a positive

contribution to the diagonal entries of G that is inversely proportional to the

time step size τ 1.

It can be shown that for upstream weighting the diagonal entries of A in

(E.1) are positive, and the off-diagonal entries are negative. Thus, the iter-

ation matrix can be an M-matrix by adding positive values to the diagonal,

which is possible under unsaturated conditions by choosing an appropriate

time step size. In practice, the adaptive time stepping method used by IDA

automatically chooses the time step sizes that lead to well conditioned iter-

ation matrices that can be solved efficiently using the GMRES method with

an ILU(0) preconditioner.

However, when saturated conditions arise the contribution to the diagonal

is either zero or negligibly small, and it is not possible to improve the con-

ditioning of the iteration matrix by decreasing the time step size. In these

circumstances, it was found that the ILU(0) preconditioner does not guaran-

tee timely convergence of the GMRES iterations, and more robust method

such as ILUT are required (see §6.7.1).

1Note that the expression for the iteration matrix in (E.1) is equivalent to the Schur
complement for the MPR formulation in (3.102).

Bibliography

P. Arminjon and A. Dervieux. Construction of TVD-like artificial viscosi-

ties on two-dimensional arbitrary FEM grids. Journal of Computational

Physics, 106:176–198, 1993.

B. Ataie-Ashtiani. Contaminant transport in coastal aquifers. PhD thesis,

University of Queensland, Brisbane, Australia, 1997.

J. Bear. Hydraulics of Groundwater. McGraw-Hill, Inc., New York, 1979.

J. Bear and A. Cheng. Modeling Groundwater Flow and Contaminant Trans-

port, volume 23 of Theory and Applications in Transport in Porous Media.

Springer, Dordrecht, Holland, 2010.

J. Bear and A. Verruijt. Modeling Groundwater Flow and Pollution. D.

Reidel Publishing Company, Dordrecht, Holland, 1987.

M.C. Boufadel, Y. Xia, and H. Li. Modeling solute transport and transient

seepage in a laboratory beach under tidal influence. Environmental Mod-

elling & Software, 26(7):899–912, 2011.

K.E. Brenan, S.L. Campbell, and L.R. Petzold. Numerical Solution of Initial-

Value Problems in Differential-Algebraic Equations, volume 14 of Classics

In Applied Mathematics. SIAM, 1996.

R.H. Brooks and A.T. Corey. Properties of porous media affecting fluid flow.

Journal of the Irrigation and Drainage Division, 92:61–87, 1966.

274

BIBLIOGRAPHY 275

A. Brovelli, X. Mao, and D.A. Barry. Numerical modeling of tidal influence

on density-dependent contaminant transport. Water Resources Research,

40:W10426, 2007.

X.C. Cai, W.D. Gropp, and D.E. Keyes. A comparison of some domain

decomposition and ILU preconditioned iterative methods for nonsymmet-

ric elliptic problems. Numerical Linear Algebra with Applications, 1(5):

477–504, 1994.

E.J. Carr, T.J. Moroney, and I.W. Turner. Efficient simulation of unsatu-

rated flow using exponential time integration. Applied Mathematics and

Computation, 217(14):6587–6596, 2011.

M.A. Celia, E.T. Bouloutas, and R.L. Zarba. A general mass-conservative

solution for the unsaturated flow equation. Water Resources Research, 26:

1483–1496, 1990.

T.F. Chan and T.P. Mathew. Domain decomposition algorithms. Acta Nu-

merica, 3:61–143, 1994.

T.F.M. Chui and D.L. Freyberg. Implementing hydrologic boundary condi-

tions in a multiphysics model. Journal of Hydrologic Engineering, 14(12):

1374–1377, 2009.

R.L. Cooley. Some new procedures for numerical solution of variably satu-

rated flow problems. Water Resources Research, 19:1271–1285, 1983.

A. Corrigan, F.F. Camelli, R. Löhner, and J. Wallin. Running unstructured

grid-based CFD solvers on modern graphics hardware. International Jour-

nal For Numerical Methods In Fluids, published online, 2010.

B.D. Cumming, T. Moroney, and I.W. Turner. A mass-conservative control

volume-finite element method for solving Richards’ equation in heteroge-

neous porous media. BIT Numerical Mathematics, 51(4):845–864, 2011.

E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric

matrices. In Proceedings of the 1969 24th national conference, ACM ’69,

pages 157–172, New York, NY, USA, 1969. ACM.

BIBLIOGRAPHY 276

M. de la Asuncin, J.M. Mantas, M.J. Castro, and E.D. Fernndez-Nieto. An

MPI-CUDA implementation of an improved roe method for two-layer shal-

low water systems. Journal of Parallel and Distributed Computing, In

Press, Accepted Manuscript, 2011.

H.J.G. Diersch and O. Kolditz. Variable-density flow and transport in porous

media: approaches and challenges. Advances in Water Resources, 25(8-12):

899–944, 2002.

H.J.G. Diersch and P. Perrochet. On the primary variable switching tech-

nique for simulating unsaturated-saturated flows. Advances in Water Re-

sources, 23(3):271–301, 1999.

R.E. Ewing, T. Lin, and Y. Lin. On the accuracy of the finite volume el-

ement method based on piecewise linear polynomials. SIAM Journal on

Numerical Analysis, 39(6):1865–1888, 2002.

M. Fahs, A. Younes, and F. Lehmann. An easy and efficient combination of

the mixed finite element method and the method of lines for the resolution

of Richards’ equation. Environmental Modelling & Software, 24(9):1122–

1126, 2009.

M.W. Farthing, C.E. Kees, and C.T. Miller. Mixed finite element methods

and higher order temporal approximations for variably saturated ground-

water flow. Advances in Water Resources, 26(4):373–394, 2003.

J.H. Ferziger and M. Perić. Computational Methods for Fluid Dynamics.

Springer, Berlin, 3rd edition, 2002.

P.A. Forsyth. A control volume finite element approach to NAPL groundwa-

ter contamination. SIAM Journal on Scientific and Statistical Computing,

12(5):1029–1057, 1991.

P.A. Forsyth and M.C. Kropinski. Monotonicity considerations for saturated–

unsaturated subsurface flows. SIAM Journal on Scientific Computing, 18

(5):1328–1354, 1997.

BIBLIOGRAPHY 277

P.A. Forsyth, Y.S. Wu, and K. Pruess. Robust numerical methods for

saturated–unsaturated flow with dry initial conditions in heterogeneous

media. Advances in Water Resources, 18:25–38, 1995.

P.A. Forsyth, A.J.A. Unger, and E.A. Sudicky. Nonlinear iteration meth-

ods for nonequilibrium multiphase subsurface flow. Advances in Water

Resources, 21:433–449, 1996.

C. Geuzaine and J.F. Remacle. Gmsh: a three-dimensional finite element

mesh generator with built-in pre- and post-processing facilities. Interna-

tional Journal for Numerical Methods in Engineering, 79(11):1309–1331,

2009.

D. Göddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick, S.H.M. Buijssen,

M. Grajewski, and S. Turek. Exploring weak scalability for FEM calcula-

tions on a GPU-enhanced cluster. Parallel Computing, 33(10-11):685–699,

2007.

M. Harris. Optimising parallel reduction in CUDA. NVIDIA developer web-

site: www.developer.download.nvidia.com, 2007.

V. Heuveline, D. Lukarski, N. Trost, and J. Weiss. Parallel smoothers for

matrix-based multigrid methods on unstructured meshes using multicore

CPUs and GPUs. EMCL Preprint Series, 2011a.

V. Heuveline, D. Lukarski, and J. Weiss. Enhanced parallel ILU(p)-based

preconditioners for multi-core CPUs and GPUs – the power(q)-pattern

method. EMCL Preprint Series, 2011b.

A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban, D.E. Shu-

maker, and C.S. Woodward. SUNDIALS: Suite of nonlinear and differe-

tial/algebraic equation solvers. ACM Transactions on Mathematical Sci-

ences, 31(3):363–396, 2005.

M.G. Hodnett and J. Tomasella. Marked differences between van Genuchten

soil water-retention parameters for temperate and tropical soils: a new

BIBLIOGRAPHY 278

water-retention pedo-transfer functions developed for tropical soils. Geo-

derma, 108(3-4):155–180, 2002.

Intel. Intel MPI Library for Linux OS Reference Manual, 2008.

Intel. Intel Math Kernel Library User’s Guide, 2010.

G. Karypis and V. Kumar. A fast and high quality multilevel scheme for

partitioning irregular graphs. SIAM Journal on Scientific Computing, 20

(1):359–392, 1999.

C.E. Kees and C.T. Miller. C++ implementations of numerical methods for

solving differential-algebraic equations: design and optimization consider-

ations. ACM Trans. Math. Softw., 25:377–403, 1999.

C.E. Kees and C.T. Miller. Higher order time integration methods for two-

phase flow. Advances in Water Resources, 25(2):159–177, 2002.

C.E. Kees, M.W. Farthing, and C.N. Dawson. Locally conservative, stabilized

finite element methods for variably saturated flow. Computer Methods in

Applied Mechanics and Engineering, 197(51-52):4610–4625, 2008.

C.T. Kelley. Iterative Methods for Linear and Nonlinear Equations, vol-

ume 16 of Frontiers in Applied Mathematics. SIAM, Philadelphia, 1995.

C.T. Kelley, C.T. Miller, and M.D. Tocci. Termination of Newton/chord

iterations and the method of lines. SIAM Journal on Scientific Computing,

19(1):280–290, 1998.

Khronos Group. OpenCL Reference Pages, 2010.

A. Klöckner, T. Warburton, J. Bridge, and J.S. Hesthaven. Nodal discontin-

uous Galerkin methods on graphics processors. Journal of Computational

Physics, 228(21):7863–7882, 2009.

D. Komatitsch, G. Erlebacher, D. Gddeke, and D. Micha. High-order finite-

element seismic wave propagation modeling with MPI on a large GPU

cluster. Journal of Computational Physics, 229(20):7692–7714, 2010.

BIBLIOGRAPHY 279

C.D. Langevin and W. Guo. MODFLOW/MT3DMS-based simulation of

variable-density ground water flow and transport. Ground Water, 44(3):

339–351, 2006.

Levinthal, D. Performance Analysis Guide for Intel Core i7 Processor and

Intel Xeon 5500 Processors. Intel, 2009.

R. Li and Y. Saad. GPU-accelerated preconditioned iterative linear solvers.

Technical Report umsi-2010-112, MSI, uofmad, 2010.

F. Liu, I. Turner, and V. Anh. An unstructured mesh finite volume method

for modelling saltwater intrusion into coastal aquifers. Journal of Applied

Mathematics and Computing, 9:391–407, 2002.

F. Liu, V.V. Anh, I. Turner, K. Bajracharya, W.J. Huxley, and N. Su. A finite

volume simulation model for saturated-unsaturated flow and application

to Gooburrum, Bundaberg, Queensland, Australia. Applied Mathematical

Modelling, 30:352–366, 2006.

M.J. Martinez. Comparison of Galerkin and control volume finite element for

advection-diffusion problems. International Journal for Numerical Meth-

ods in Fluids, 50(3):347–376, 2006.

C.T. Miller, G.A. Williams, C.T. Kelley, and M.D. Tocci. Robust solution

of Richards’ equation for nonuniform porous media. Water Resources Re-

search, 34(10):2599–2610, 1998.

T.J. Moroney and S.L. Truscott. A three-dimensional finite volume method

for modelling saltwater intrusion in coastal aquifers. ANZIAM Journal,

Pending Publication, 2008.

T.J. Moroney and I.W. Turner. A finite volume method based on radial

basis functions for two-dimensional nonlinear diffusion equations. Applied

Mathematical Modelling, 30(10):1118–1133, 2006.

Y. Mualem. A new model for predicting the hydraulic conductivity of un-

saturated porous media. Water Resources Research, 12:513–522, 1976.

BIBLIOGRAPHY 280

M. Naumov. Incomplete-LU and Cholesky preconditioned iterative methods

using CUSPARSE and CUBLAS. White Paper, 2011.

L.E. Neumann, J. Simunek, and F.J. Cook. Implementation of quadratic

upstream interpolation schemes for solute transport into HYDRUS-1D.

Environmental Modelling & Software, 26(11):1298–1308, 2011.

NVIDIA. NVIDIA’s next generation CUDA compute architecture: Fermi.

White Paper, 2009.

NVIDIA. NVIDIA CUDA C Programming Guide Version 4.0, 2011a.

NVIDIA. CUDA Toolkit 4.0 CUBLAS Library, 2011b.

NVIDIA. CUDA CUSPARSE Library, 2011c.

NVIDIA. Thrust Quickstart Guide, 2011d.

P.S. Pacheco. Parallel Programming With MPI. Morgan Kaufmann Publish-

ers, 1997.

S.V. Patankar. Numerical Heat Transfer and Fluid Flow. Hemisphere Pub-

lishing Corporation, 1980.

D.W. Pepper and J.C. Heinrich. The Finite Element Method. Taylor &

Francis, Boca Raton, FL, 2nd edition, 2006.

P. Perré and I.W. Turner. A heterogeneous wood drying computational

model that accounts for material property variation across growth rings.

Chemical Engineering Journal, 86:117–131, 2002.

K. Pruess. The TOUGH codes – a family of simulation tools for multiphase

flow and transport processes in permeable media. Vadose Zone Journal,

3:738–746, 2001.

A. Quarteroni and A. Vialli. Domain Decomposition Methods for Partial

Differential Equations. Oxford University Press, Oxford, England, 1999.

BIBLIOGRAPHY 281

S. Rostrup and H. De Sterck. Parallel hyperbolic PDE simulation on clusters:

Cell versus GPU. Computer Physics Communications, 181(12):2164–2179,

2010.

Y. Saad. ILUT: A dual threshold incomplete LU factorization. Numerical

Linear Algebra with Applications, 1(4):387–402, 1994.

Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Berlin, 2

edition, 2000.

Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual algo-

rithm for solving nonsymmetric linear systems. SIAM Journal on Scientific

and Statistical Computing, 7(3):856–869, 1986.

Y. Saad and M. Sosonkina. pARMS: A package for the parallel iterative so-

lution of general large sparse linear systems user’s guide. Technical Report

UMSI2004-8, msi, uofmad, 2004.

O. Schenk and K. Gärtner. Solving unsymmetric sparse systems of linear

equations with PARDISO. Journal of Future Generation Computer Sys-

tems, 20(3):475–487, 2004.

R.A. Schincariol, F.W. Schwartz, and C.A. Mendoza. On the generation

of instabilities in variable density flow. Water Resources Research, 30:

913–927, 1994.

L.F. Shampine. Implementation of implicit formulas for the solution of ODEs.

SIAM Journal on Scientific and Statistical Computing, 1(1):103–118, 1980.

J. Simunek, M.Th. van Genuchten, and M. Sejna. Development and appli-

cations of the HYDRUS and STANMOD software packages and related

codes. Vadose Zone Journal, 7:587–600, 2008.

B. Stroustrup. The C++ programming language. Adisson-Wesley, Reading,

MA, 1993.

P. Sweby. High resolution schemes using flux limiters for hyperbolic conser-

vation laws. SIAM Journal on Numerical Analysis, 21(5):995–1011, 1984.

BIBLIOGRAPHY 282

R. Therrien, R.G. McLaren, E.A. Sudicky, and S.M. Panday. HydroGeo-

Sphere – A Three-dimensional numerical model describing fully-integrated

subsurface and surface flow and solute transport. Groundwater Simulations

Group, 2010.

M.D. Tocci, C.T. Kelley, and C.T. Miller. Accurate and economical solution

of the pressure-head form of Richards’ equation by the method of lines.

Advances in Water Resources, 20(1):1–14, 1997.

M.G. Trefry and C. Muffels. FEFLOW: A finite-element ground water flow

and transport modeling tool. Ground Water, 45(5):525–528, 2007.

S. Truscott. A Heterogeneous Three-Dimensional Computational Model for

Wood Drying. PhD thesis, Queensland University of Technology, Brisbane,

Australia, 2004.

I.W. Turner and P. Perré. The use of implicit flux limiting schemes in the

simulation of the drying process: A new maximum flow sensor applied to

phase mobilities. Applied Mathematical Modelling, 25:513–540, 2001.

A.J.A. Unger, P.A. Forsyth, and E.A. Sudicky. Variable spatial and tem-

poral weighting schemes for use in multi-phase compositional problems.

Advances in Water Resources, 19(1):1–27, 1996.

M.Th. van Genuchten. Closed-form equation for predicting the hydraulic

conductivity of unsaturated soils. Soil Science Society of America Journal,

44:892–898, 1980.

B. van Leer. Towards the ultimate conservation difference scheme, II, mono-

tonicity and conservation combined in a second order scheme. Journal of

Computational Physics, 14:361–370, 1974.

B van Leer. Towards the ultimate conservative difference scheme, V. A second

order sequel to Godunov’s method. Journal of Computational Physics, 32:

101–136, 1979.

D. Vandevorde and N.M. Josuttis. C++ templates: the complete guide.

Adisson-Wesley, Boston, MA, 2003.

BIBLIOGRAPHY 283

M. Vauclin, D. Khanji, and G. Vachaud. Experiment and numerical study of

a transient, two-dimensional unsaturated-saturated water table recharge

problem. Water Resources Research, 15(5):1089–1101, 1979.

R.E. Volker, Q. Zhang, and D.A. Lockington. Numerical modelling of con-

taminant transport in coastal aquifers. Mathematics and Computers in

Simulation, 59(1-3):35–44, 2002.

C.I. Voss. SUTRA – A finite-element simulation model for saturated-

unsaturated, fluid-density-dependent ground-water flow with energy trans-

port or chemically-reactive single-species solute transport. U.S. Geological

Survey Report 84-4369, U.S. Geological Survey, Reston, Virginia, 1994.

S.D.C. Walsh, M.O. Saar, P Bailey, and D.J. Lilja. Accelerating geoscience

and engineering system simulations on graphics hardware. Computers &

Geosciences, 35(12):2353–2364, 2009.

C. Wu, S. Agarwal, B. Curless, and S.M. Seitz. Multicore bundle adjustment.

grail.cs.washington.edu/projects/mcba/, 2011.

A. Younes, P. Ackerer, and F. Lehmann. A new mass lumping scheme for the

mixed hybrid finite element method. International Journal For Numerical

Methods in Engineering, 67:89–107, 2006.

A. Younes, M. Fahs, and A. Ahmed. Solving density driven flow prob-

lems with efficient spatial discretizations and higher-order time integration

methods. Advances in Water Resources, 32:340–352, 2009.

C. Zhang, X Yuan, and A. Srinivasan. Processor affinity and MPI perfor-

mance on SMP-CMP clusters. In the 11th IPDPS Workshop on Parallel

and Distributed Scientific and Engineering Computing (PDSEC). IEEE,

2010.

Q. Zhang. Seawater Intrusion and Contaminant Transport in Coastal

Aquifers. PhD thesis, University of Queensland, Brisbane, Australia, 2000.

BIBLIOGRAPHY 284

Q. Zhang, R.E. Volker, and D.A. Lockington. Experimental investigation of

contaminant transport in coastal groundwater. Advances in Environmental

Research, 6(3):229–237, 2002.

Q. Zhang, R.E. Volker, and D.A. Lockington. Numerical investigation of

seawater intrusion at Gooburrum, Bundaberg, Queensland, Australia. Hy-

drogeology Journal, 12(6):674–687, 2004.

	Introduction
	Literature Review
	Objectives of The Thesis
	Contribution of The Thesis
	Overview of The Thesis

	Problem Formulation
	Governing equations
	Closure Of The System
	Boundary Conditions
	Formulation
	Conclusions

	Computational Techniques
	The Mesh
	The Finite Element Mesh
	The Dual Mesh
	Interpolation

	The Control Volume-Finite ElementMethod
	Accumulation Terms
	Source Terms
	Surface Fluxes
	Discretised Equations

	Temporal Solution
	Solving the Linear System
	Preconditioner

	Conclusions

	Algorithms and Data Structures
	Time Stepping with IDA
	Evaluating the Residual:The CV-FE Discretisation
	Time Step Preprocessing
	Interpolation
	Edge-Based Weighting
	Fluid Properties
	Flux Assembly
	Residual Assembly

	Domain Decomposition
	Preconditioners
	The Global Matrix
	Finding the Local Block
	Preconditioning the Local Block

	Conclusions

	GPU Implementation
	Using GPUs as Computational Accelerators
	Fermi Architecture

	The vectorlib Library
	Sparse Matrices
	Domain Decomposition
	Sub-Dividing the Computer Into Processes
	Mesh Generation and Domain Decomposition
	Communication Between Processes

	The IDA Library
	The CV-FE Discretisation
	Interface
	Edge-Based Weighting
	Interpolation
	Fluid Properties
	Flux Assembly
	Residual Assembly

	Mesh Renumbering To Optimise Indirect Indexing
	Indirect Indexing in Computing Relative Permeability

	Implementation of Preconditioners
	Forming the Preconditioner
	Applying the Preconditioner

	Conclusions

	Model Verification
	Test Cases
	Richards' Equation: Infiltration Into Dry Heterogeneous Soil – The dry_infiltration Test Case
	Richards' Equation: Transient Water Table Experiment – The water_table Test Case
	Transport Model: Flow and Transport in Unsaturated Soil – The unsaturated_transport Test Case
	Transport Model: Flow Tank Experiments – The tank_steady, tank_plume and tank_tidal_plume Test Cases of Zhang
	Transport Model: Leaching of a Contaminant Plume in a Shallow Aquifer – The heap_leaching Test Case

	Richards' equation: the dry_infiltration test case
	Richards' equation: the water_table test case
	Transport Model: Unsaturated flow and transport
	Transport Model: Zhang's Flow Tank Experiments
	Transport Model: Heap Leaching Simulation
	Time Stepping With IDA
	The role of different preconditioners
	Higher-Order Temporal Integration

	Conclusions

	Computational Performance
	Test Setup
	Test Hardware

	Results
	Conclusions

	Conclusions
	Summary and Discussion
	Directions For Further Research

	Computing Derivative Coefficients
	The PR formulation of Richards' Equation
	The PC Formulation of the Full Transport model

	Verification of Hydrostatic Boundary Condition
	Shape Function Weights
	Shape function interpolation on quadrilaterals
	Shape function interpolation on hexahedra

	Transient Seepage Faces in IDA
	G Under Saturated Conditions

