
Fast Formulas for Computing

Cryptographic Pairings

by

Craig Costello

Bachelor of Applied Science (Mathematics) with Distinction
(Queensland University of Technology) – 2007

Bachelor of Applied Science Honours (Mathematics) - First Class Honours
(Queensland University of Technology) – 2007

Thesis submitted in accordance with the regulations for

the Degree of Doctor of Philosophy

Information Security Institute
Faculty of Science and Technology

Queensland University of Technology

November 25, 2012

Keywords

Tate pairing, ate pairing, explicit formulas, elliptic curves, Weierstrass curves,

Miller’s algorithm, precomputation, twists, pairing-friendly curves, subfamilies,

pairing implementation, high-security pairings, hyperelliptic curves, group law,

Jacobian arithmetic, genus 2.

i

ii

Abstract

The most powerful known primitive in public-key cryptography is undoubtedly

elliptic curve pairings. Upon their introduction just over ten years ago the com-

putation of pairings was far too slow for them to be considered a practical op-

tion. This resulted in a vast amount of research from many mathematicians

and computer scientists around the globe aiming to improve this computation

speed. From the use of modern results in algebraic and arithmetic geometry

to the application of foundational number theory that dates back to the days

of Gauss and Euler, cryptographic pairings have since experienced a great deal

of improvement. As a result, what was an extremely expensive computation

that took several minutes is now a high-speed operation that takes less than a

millisecond.

This thesis presents a range of optimisations to the state-of-the-art in cryp-

tographic pairing computation. Both through extending prior techniques, and

introducing several novel ideas of our own, our work has contributed to record-

breaking pairing implementations.

iii

iv

For Mum.

v

vi

Contents

Front Matter i

Keywords . i

Abstract . iii

Table of Contents . vii

List of Figures . xiii

List of Tables . xv

List of Algorithms . xvii

Symbols and abbreviations . xix

Declaration . xxiii

Previously Published Material . xxv

Acknowledgements . xxvii

1 Introduction 1

2 Pairings 5

2.1 Elliptic curves as cryptographic groups 8

2.1.1 The group law: the chord-and-tangent rule 10

2.1.2 Torsion, endomorphisms and point counting 24

2.1.3 Section summary . 34

2.2 Divisors . 35

2.2.1 The divisor class group . 38

2.2.2 A consequence of the Riemann-Roch Theorem 40

2.2.3 Weil reciprocity . 45

2.2.4 Section summary . 47

2.3 Elliptic curves as pairing groups 48

2.3.1 The r-torsion . 50

2.3.2 Pairing types . 58

vii

2.3.3 Twisted curves . 62

2.3.4 Section summary . 65

2.4 Miller’s algorithm for the Weil and Tate pairings 66

2.4.1 The Weil pairing . 67

2.4.2 The Tate pairing . 69

2.4.3 Miller’s algorithm . 73

2.4.4 Section summary . 78

2.5 Pairing-friendly curves . 79

2.5.1 A balancing act . 79

2.5.2 Supersingular curves . 83

2.5.3 Constructing ordinary pairing-friendly curves 85

2.5.4 Section summary . 91

2.6 The state-of-the-art . 92

2.6.1 Irrelevant factors (a.k.a. denominator elimination) 92

2.6.2 Projective coordinates . 95

2.6.3 Towered extension fields 97

2.6.4 Loop shortening . 100

2.6.5 Low Hamming weight loops 108

2.6.6 The final exponentiation 109

2.6.7 Other optimisations . 112

2.7 Chapter summary . 113

3 Fast Miller Functions 117

3.1 Computing the ate pairing entirely on the twisted curve 118

3.2 Pairings on y2 = x3 + ax with even embedding degrees 122

3.2.1 Doubling formulas . 123

3.2.2 Line computation for doubling 124

3.2.3 Addition and mixed addition 124

3.2.4 Line computation for addition and mixed addition 125

3.3 Pairings on y2 = x3 + b with even embedding degrees 126

3.3.1 Point doubling and line computation 126

3.3.2 Addition, mixed addition and line computation 127

3.4 Fast formulas for pairing computations with cubic twists 127

3.4.1 Point doubling and line computation 128

3.4.2 Addition and line computation 129

3.5 Fast pairings on special Weierstrass curves y2 = cx3 + 1 131

viii

3.5.1 Point doubling and line computation 132

3.5.2 Point addition and line computation 132

3.5.3 Example curves . 134

3.6 Summary of contributions . 135

4 Loop Unrolling in Miller’s Algorithm 139

4.1 Miller 2n-tuple-and-add . 141

4.2 Quadruple-and-add . 144

4.2.1 Quadruple-and-add on y2 = x3 + b 145

4.2.2 Quadruple-and-add on y2 = x3 + ax 146

4.2.3 A detailed example . 147

4.3 Octuple-and-add . 150

4.3.1 Octuple-and-add on y2 = x3 + b 150

4.3.2 Octuple-and-add on y2 = x3 + ax 151

4.4 Fixed Argument Pairings . 152

4.4.1 Merging Miller functions (properly!) 153

4.4.2 Example: the record-holding BN curve 155

4.4.3 Example: a k = 24 BLS curve 158

4.4.4 Storage requirements and applications 160

4.5 Summary of contributions . 162

5 Attractive subfamilies of BLS curves for high-security pairings 163

5.1 Particularly friendly subfamilies 165

5.1.1 Using the four classes x0 ≡ 7, 16, 31, 64 mod 72 167

5.1.2 The other congruence classes 172

Quadratic extension to Fq2 172

Quadratic extension to Fq4 172

Sextic extension to Fq24 . 173

5.2 Choosing simple lines: twisting vs. untwisting 173

5.3 Timings . 175

5.4 Summary of contributions . 176

6 Particularly friendly members of family trees 179

6.1 Family Trees . 181

6.1.1 Branching out . 181

6.1.2 Extension field towers . 182

ix

6.1.3 Curve equations . 182

6.1.4 Type of twist . 183

6.1.5 Fruits . 183

6.1.6 Our “picks” . 183

6.1.7 Advantages . 184

6.1.8 Proofs . 185

6.1.9 Other parameters . 185

6.1.10 x or x′ . 185

6.2 Brezing-Weng k = 8 curves . 186

6.3 BLS k = 12 curves . 187

6.4 KSS k = 16 curves . 189

6.5 KSS k = 18 curves . 191

6.6 BLS k = 27 curves . 192

6.7 KSS k = 32 curves . 194

6.8 KSS k = 36 curves . 196

6.9 BLS k = 48 curves . 198

6.10 Recommendations . 199

6.11 Summary of contributions . 200

7 Hyperelliptic arithmetic via linear algebra 203

7.1 Motivation . 204

7.2 The Mumford representation . 207

7.3 Computations in the Mumford function field 208

7.4 Generating explicit formulas in genus 2 214

7.4.1 General divisor addition in genus 2 215

7.4.2 General divisor doubling in genus 2 219

7.4.3 Comparisons of formulas in genus 2 220

7.5 The general description . 221

7.5.1 Composition for g ≥ 2 . 222

7.5.2 Handling special cases . 224

7.5.3 Reduction in low genera 226

7.6 Further implications and potential 226

7.6.1 Simultaneous operations on elliptic curves 227

7.6.2 Simultaneous operations in higher genus Jacobians 229

7.6.3 Explicit formulas in genus 3 and 4 229

7.6.4 Characteristic two, special cases, and more coordinates . . 230

x

7.7 Summary of contributions . 230

8 Conclusions and Future Work 231

A Implementation-friendly BLS curves with k = 24 235

B Implementation-friendly curves for attractive families 241

C Proofs of family trees 249

C.1 Towers . 249

C.2 Curve equations . 251

C.3 Proofs for each family . 251

D Some more generators 267

D.1 More compact generators for k = 8 267

D.2 More compact generators for k = 12 267

D.3 More compact generators for k = 18 268

D.4 More compact generators for k = 27 268

D.5 More compact generators for k = 32 268

D.6 More compact generators for k = 36 268

D.7 More compact generators for k = 48 268

Bibliography 269

xi

xii

List of Figures

2.1 Singular curve y2 = x3 − 3x+ 2 over R. 10

2.2 Singular curve y2 = x3 over R. 10

2.3 Smooth curve y2 = x3 + x+ 1 over R. 10

2.4 Smooth curve y2 = x3 − x over R. 10

2.5 Elliptic curve addition. 11

2.6 Elliptic curve doubling. 11

2.7 Addition in R. 12

2.8 Doubling in R. 12

2.9 The points (excluding O) on E(F11). 13

2.10 Identifying points in A2 with lines in P2 14

2.11 More and more points (with x < 6) in the infinite group E(Q) . . 19

2.12 (P ⊕Q)⊕ R. 21

2.13 P ⊕ (Q⊕R). 21

2.14 (ℓ) = (P) + (Q) + (−(P +Q))− 3(O). 36

2.15 (ℓ) = 2(P) + (−[2]P) − 3(O). 36

2.16 Two functions ℓ and ℓ′ on E. 38

2.17 Reducing D̃ to (R)− (O) in Pic0(E). 41

2.18 Reducing D =
∑4

i=1((Pi)− (O)) to D′ =
∑2

i=1((P
′
i)− (O)) ∼ D. . 43

2.19 The first stage of reducing D =
∑6

i=1((Pi)− (O)). 44

2.20 The second (and final) stage of divisor reduction. 44

2.21 supp(ǫ((ℓ))) and supp(ǫ((ℓ′))). 47

2.22 The 3-torsion: E[3]. 53

2.23 The 5-torsion: E[5]. 53

2.24 The 7-torsion: E[7]. 54

2.25 The behaviour of the trace and anti-trace maps on E[r]. 56

2.26 The distortion map φ : (x, y) 7→ (ξ3, y) on E[5]. 57

2.27 The distortion map φ : (x, y) 7→ (−x, iy) on E[5]. 58

xiii

2.28 Type 1 pairings. 61

2.29 Type 2 pairings. 61

2.30 Type 3 pairings. 61

2.31 Type 4 pairings. 61

2.32 E (left) and the quadratic twist E ′ (right). 63

2.33 E (left) and the (correct) sextic twist E ′ (right) 63

2.34
(
ℓ[m]P,P

v[m+1]P

)

= (ℓ[m]P,P)− (v[m+1]P) = (P) + ([m]P)− ([m+ 1]P)− (O). . 67

2.35 The r2 cosets in the quotient group E(Fqk)/rE(Fqk). 70

2.36 The r-torsion, where each P ∈ E[r] is in a distinct coset of E/rE. 70

2.37 The first four sloped lines in the product (2.19). 75

2.38 The first four vertical lines in the product (2.19). 75

2.39 The value of ρ · k that balances the DLP and ECDLP. 82

6.1 The k = 8 Brezing-Weng tree. 187

6.2 The k = 12 BLS tree. 188

6.3 Another branch of the k = 12 BLS family tree. 188

6.4 The k = 16 KSS family tree. 190

6.5 The k = 18 KSS family tree. 191

6.6 The k = 27 BLS family tree. 193

6.7 The k = 32 KSS family tree. 195

6.8 The k = 36 KSS family tree. 196

6.9 The k = 48 BLS family tree. 199

7.1 The composition stage in a genus 3 addition. 209

7.2 The reduction stage in a genus 3 addition. 209

7.3 The group law on a genus 2 curve. 215

7.4 A genus 2 doubling. 215

7.5 Computing a double-and-add by prescribing a parabola. 228

7.6 Tripling the point P by prescribing a parabola. 228

7.7 Quadrupling the point P by prescribing a cubic. 228

xiv

List of Tables

2.1 The two types of popular supersingular curves over prime fields. . 84

2.2 Pairing-friendly elliptic curves admitting high-degree twists. . . . 89

2.3 The final exponentiation for BLS curves with k = 24. 112

3.1 Converting operation counts between the Tate and ate pairings. . 121

3.2 Comparing our formulas with the previous best. 136

4.1 Example of double-and-add vs. quadruple-and-add. 148

4.2 Comparing estimated costs between doubling and quadrupling. . . 149

4.3 Operation counts for a fixed argument pairing (BN curve). 157

4.4 Operation counts for a fixed argument pairing (BLS curve). 159

4.5 Computational savings vs. storage costs. 160

4.6 Fixed arguments in various pairing-based cryptosystems. 161

5.1 Four attractive subfamilies of BLS curves. 166

5.2 Miller lines – twisting vs untwisting. 175

5.3 Cycle counts and timings: pfc-bls384-q478-k24. 176

5.4 Cycle counts and timings: pfc-bls448-q559-k24a. 177

5.5 Cycle counts and timings: pfc-bls513-q639-k24a. 177

6.1 Efficient towering options in the k = 8 Brezing-Weng tree. 186

6.2 Our favourite picks from the k = 8 Brezing-Weng tree. 186

6.3 Efficient towering options in the k = 12 BLS tree. 187

6.4 Our favourite picks from the k = 12 BLS tree. 189

6.5 Efficient towering options in the k = 16 KSS tree. 189

6.6 Our favourite picks from the k = 16 KSS tree. 190

6.7 Efficient towering options in the k = 18 KSS tree. 192

6.8 Our favourite picks from the k = 18 KSS tree. 192

6.9 Efficient towering options in the k = 27 BLS tree. 193

xv

6.10 Our favourite picks from the k = 27 BLS tree. 194

6.11 Efficient towering options in the k = 32 KSS tree. 194

6.12 Our favourite picks from the k = 32 KSS tree. 195

6.13 Efficient towering options in the k = 36 KSS tree. 197

6.14 Our favourite picks from the k = 36 KSS tree. 197

6.15 Efficient towering options in the k = 48 BLS tree. 198

6.16 Our favourite picks from the k = 48 BLS tree. 198

6.17 Where to find example curves. 200

7.1 Explicit formulas for divisor operations in genus 2. 218

7.2 Comparing our formulas with the previous best. 221

A.1 BLS curves with low-weight parameter x0 ≡ 7 (mod 72). 237

A.2 BLS curves with low-weight parameter x0 ≡ 16 (mod 72). 238

A.3 BLS curves with low-weight parameter x0 ≡ 31 (mod 72). 239

A.4 BLS curves with low-weight parameter x0 ≡ 64 (mod 72). 240

B.1 Low weight curves offering 112-bit security. 242

B.2 Low weight curves offering 192-bit security. 243

B.3 Low weight curves offering 224-bit security. 244

B.4 Low weight curves offering 256-bit security. 245

B.5 Low weight curves offering 288-bit security. 246

B.6 Low weight curves offering 320-bit security. 247

B.7 Low weight curves offering 352-bit security. 248

B.8 Low weight curves offering 384-bit security. 248

xvi

List of Algorithms

2.1 Miller’s algorithm. 77

2.2 The BKLS-GHS algorithm for the Tate pairing 95

2.3 The BKLS-GHS algorithm for the ate pairing 103

4.1 Miller 2n-tuple-and-add Algorithm. 144

4.2 Miller’s algorithm for a fixed argument ate pairing 153

7.1 General composition (addition) of two distinct divisors. 223

7.2 General composition (doubling) of a unique divisor with itself. . . 225

C.1 The Rubin-Silverberg algorithm for finding y2 = x3 + ax 252

C.2 The Rubin-Silverberg algorithm for finding y2 = x3 + b 252

xvii

xviii

Symbols and abbreviations

(f) divisor of the function f

[n]P scalar multiplication (exponentiation) of P by n ∈ Z

#E number of points on E

An(K) affine n-space over the field K

ℓR,Q indeterminate Miller line function in the addition of R and Q

ℓR,R indeterminate Miller line function in the doubling of R

ǫ(D) effective part of the divisor D

ηT eta (T) pairing

Fq finite field with q elements

Fqk full extension field

G1 base field subgroup: E[r] ∩ ker(π − [1]) (in Type 3 pairing)

G2 trace-zero subgroup: E[r] ∩ ker(π − [q]) (in Type 3 pairing)

GT order r subgroup of F∗qk (commonly the r-th roots of unity µr)

Jac(Cg) Jacobian of genus g hyperelliptic curve

Ĵac(Cg) dense set of full degree divisor classes on Jacobian of genus g

hyperelliptic curve

KMum
ADD Mumford function field for addition

KMum
DBL Mumford function field for doubling

xix

O point at infinity on an elliptic curve E

K algebraic closure of the field K

Pn(K) projective n-space over the field K

φ occurs as the distortion map on supersingular curves and as

the GLV endomorphism

Φi i-th cyclotomic polynomial

π q-power Frobenius endomorphism: (x, y) 7→ (xq, yq)

Ψ the (un)twisting isomorphism

ψ occurs as both the isomorphism from G2 to G1 and as the GLS

isomorphism

ψℓ(x) ℓ-th division polynomial on E (for odd ℓ)

ρ ratio between base field size and subgroup size for a pairing-

friendly curve

aT ate pairing

C an arbitrary curve

Cg (imaginary quadratic) hyperelliptic curve of genus g

D occurs as both a divisor on E and the CM discriminant of E

d degree of twist

DP divisor (P)− (O)

DQ divisor (Q)− (O)

E an elliptic curve

e a general pairing

E ′ twisted curve (defined over Fqk/d)

E(K) set of K-rational points on E

xx

e(P,Q) pairing of P and Q (the paired value)

E/K elliptic curve defined over K

E[r] the (entire) r-torsion

fm,P function with divisor (fm,P) = m(P)− ([m]P)− (m− 1)(O)

g genus of a curve

K arbitrary field

k embedding degree of E (with respect to q and r)

nP multiplicity of point P in associated divisor

NL/K(α) norm of α ∈ L over K

P generator of G1

P ′ twist of the point P

Q generator of G2

Q′ twist of the point Q

r order of the large prime subgroup in E(Fq)

T ate pairing loop parameter (T = t− 1)

t trace of Frobenius

Tr(P,Q) order r reduced Tate pairing

tr(P,Q) order r Tate pairing

wr(P,Q) order r Weil pairing

aTr anti-trace map

BKLS−GHS Barreto-Kim-Lynn-Scott/Galbraith-Harrison-Soldera algorithm

BLS Barreto-Lynn-Scott families

BN Barreto-Naehrig family with k = 12

xxi

CM complex multiplication

Deg(D) degree of the divisor D

Div0(E) group of degree zero divisors on E

Div
Fq

(E) group of divisors on E/Fq

DLP discrete logarithm problem

ECC elliptic curve cryptography

ECDLP elliptic curve discrete logarithm problem

End(E) endomorphism ring of E

Gal(L/K) Galois group of L over K

GLS Galbraith-Lin-Scott method

GLV Gallant-Lambert-Vanstone method

HECC hyperelliptic curve cryptography

KSS Kachisa-Schaefer-Scott families

MNT Miyaji-Nakabayashi-Takano (construction/criteria)

NIST National Institute of Standards and Technology

NSS not supersingular curves

ordP (f) the multiplicity of f at P on E

PBC pairing-based cryptography

Pic0(E) Picard group of E

Prin(E) group of principal divisors on E

QR(q) set of quadratic residues modulo q

supp(D) support of the divisor D

Tr trace map

xxii

xxiv

Previously Published Material

The following papers have been published or presented, and contain material

based on the content of this thesis.

Craig Costello, Huseyin Hisil, Colin Boyd, Juan Manuel Gonzlez Nieto, and Ken-

neth Koon-Ho Wong. Faster pairings on special Weierstrass curves. In Hovav

Shacham and Brent Waters, editors, Pairing, volume 5671 of Lecture Notes in

Computer Science, pages 89-101. Springer, 2009.

Craig Costello, Tanja Lange, and Michael Naehrig. Faster pairing computations

on curves with high-degree twists. In Phong Q. Nguyen and David Pointcheval,

editors, Public Key Cryptography, volume 6056 of Lecture Notes in Computer

Science, pages 224-242. Springer, 2010.

Craig Costello, Colin Boyd, Juan Manuel Gonzlez Nieto, and Kenneth Koon-

Ho Wong. Avoiding full extension field arithmetic in pairing computations. In

Daniel J. Bernstein and Tanja Lange, editors, AFRICACRYPT, volume 6055 of

Lecture Notes in Computer Science, pages 203-224. Springer, 2010.

Craig Costello, Colin Boyd, Juan Manuel Gonzlez Nieto, and Kenneth Koon-Ho

Wong. Delaying mismatched field multiplications in pairing computations. In M.

Anwar Hasan and Tor Helleseth, editors, WAIFI, volume 6087 of Lecture Notes

in Computer Science, pages 196-214. Springer, 2010.

Craig Costello and Douglas Stebila. Fixed argument pairings. In Michel Abdalla

and Paulo S. L. M. Barreto, editors, LATINCRYPT, volume 6212 of Lecture

Notes in Computer Science, pages 92-108. Springer, 2010.

Craig Costello, Kristin Lauter and Michael Naehrig. Attractive subfamilies of

xxv

BLS curves for implementing high-security pairings. In Daniel J. Bernstein and

Sanjit Chatterjee, editors, INDOCRYPT, volume 7107 of Lecture Notes in Com-

puter Science, pages 320-342. Springer, 2011.

Craig Costello and Kristin Lauter. Group law computations on Jacobians of

hyperelliptic curves. In Ali Miri and Serge Vaudenay, editors, Selected Areas in

Cryptography, volume 7118 of Lecture Notes in Computer Science, pages 92-117.

Springer, 2011.

Craig Costello. Particularly friendly members of family trees. Cryptology ePrint

Archive, Report 2012/072, 2012. http://eprint.iacr.org/. In submission.

xxvi

http://eprint.iacr.org/

Acknowledgements

The last four years have been the best time of my life. I have been extremely

spoilt on many accounts, for which I have many people to thank.

I am greatly indebted to my supervisors Colin Boyd and Juan Manuel González

Nieto. They helped steer the ship early on, but trusted me to take the reigns

down the track. Their support, advice and friendship has been a huge help. I

also give thanks to Kenneth Koon-Ho Wong, who was my associate supervisor

in the early days and who taught me Magma.

I owe a great deal to my mentor, collaborator and friend Huseyin Hisil. He

essentially gifted me the results in our first paper which kick-started my research

and, in doing so, he showed me the ropes.

I have been so lucky to meet many of my academic idols and even more

fortunate to work with some of them. For a small fish in such a large pond, these

discussions, collaborations and friendships have meant a great deal to me.

I sincerely thank Tanja Lange for her encouragement and collaboration, and

thank both her and Dan Bernstein for visiting us here at QUT.

I sincerely thank Alice Silverberg and the Number Theory group at the Uni-

versity of California - Irvine for having me at UCI throughout my Fulbright

year.

I am extremely grateful to Kristin Lauter for her quality mentorship and

support, for having me as an intern at Microsoft Research, for her enthusiasm in

discussions, and for being so generous with her broad and deep insight.

I am very grateful to Michael Naehrig for his mentorship, collaboration and

for being able to prove things when I am stuck.

I sincerely thank Mike Scott for his all-seeing eyes in the field of pairings and

for his generous feedback upon reading this thesis. I further thank him, Naomi

Benger and Luis J. Dominguez Perez for their hospitality in my brief stay at

DCU in Dublin.

xxvii

I sincerely thank Paulo Barreto for his motivating encouragement, discussions

and friendship... and for the caipirinhas in São Paulo. I also thank Paulo for his

comments on this thesis.

I thank Karst Koymans for carefully reading this thesis and providing many

valuable comments.

I thank my friend and colleague Douglas Stebila, withoot whom there would

be no Canadian accents in the office to poke fun at.

I thank all of my fellow co-authors for their collaboration and contributions

to the work in this thesis: Colin, Juanma, Kenneth, Huseyin, Douglas, Tanja,

Michael and Kristin.

I am extremely grateful for the financial support and funding invested in

me and in this work. I sincerely thank the Australian Research Council for an

APA scholarship, QUT for top-up scholarships and travel money, the Queensland

Government for the Smart State bursary, and the Australian-American Fulbright

Commission for the generous grant. I am also very grateful to the many confer-

ences and workshops that have afforded me stipends. In particular, I mention the

São Paulo Advanced School of Cryptography in 2011 and ECC2010 in Redmond,

both of which were highlight conferences during my candidature.

On a personal note, I am deeply thankful to my tight-knit family for their

incredible love and constant support. To my big sister Brit who always looks out

for me and has my back; to my brother Ben who calls me every day when I’m

abroad; to my brother John who forgets that I am abroad when he calls; and

to my brother Clay who constantly reminds me that none of this work will ever

excuse my inability to change a car tyre.

I sincerely thank Ruth and Phil for their generosity, love and support; Maurice

and Trish for their love and generous hospitality; and Hannah and Mitch for being

such fun roommates.

I am deeply grateful to my best friend and girlfriend Nicole, who has been by

my side and shared every step of this journey. From delivering pizzas to my office

at midnight when I was cramming for my first submission, to conference-hopping

around Europe and living with me in the US, all the way up to drawing Figures

2.22 - Figures 2.33 that saved me many painstaking hours in LATEX.

Lastly, this thesis is dedicated to my mum, who is my hero and to whom no

words are profound enough. Without her unfathomable love and belief in me,

none of this would have been possible.

xxviii

Chapter 1

Introduction

When explaining the magic of public-key cryptography to the layman, one is

usually met with true astonishment. Indeed, Diffie and Hellman achieved the

seemingly impossible in 1976 [DH76] by showing that two parties can establish

a shared secret over an insecure channel without any prior knowledge of one

another. Layman or otherwise, one cannot gain any intuition towards their

groundbreaking result without being aware of the existence of one-way functions.

A one-way function is one that is easy to compute in one direction, but which is

believed infeasible to compute in the other. Diffie and Hellman used the simple

example of exponentiation in finite fields to introduce the notion of public-key

cryptography. Specifically, they showed that a party A can bury their secret

value a by raising some publicly known generator g to the power of a in Fq, i.e.

computing ga = ga ∈ Fq. The value ga (called A’s public key) can then be sent

over an insecure channel to another party B, whose secret value is b, to which

B can exponentiate ga and compute gab = gba. Conversely, b can compute their

public key gb = gb and send it over an insecure channel to A, who can compute

the shared secret gab = gab . In this case the individual secrets of both parties are

assumed to be safe under the discrete logarithm problem (DLP) in Fq, which is

defined as follows: given g ∈ Fq and h = gx ∈ Fq, find x. If q is large enough, so

that solving the DLP is infeasible (with all the computing power on the planet),

then exponentiation is the one-way function that keeps a and b out of reach for

eavesdroppers and attackers. Additionally, we assume that computing gab = gab

is infeasible for adversaries that know g, ga and gb; this is the Diffie-Hellman

1

2 Chapter 1. Introduction

problem in Fq.

Discrete logarithm based protocols can be achieved in any groups where the

corresponding DLP is hard to solve. Almost a decade after its invention, the

abstraction of public-key cryptography beyond traditional groups like Fq was

independently proposed in the pioneering works of Miller [Mil85] and Koblitz

[Kob87], who both suggested using elliptic curve groups. This gave birth to the

now thriving field of elliptic curve cryptography (ECC), which has gained huge

popularity because the discrete logarithm problem on elliptic curves is believed

to be much harder than that in finite fields. Consequently, ECC facilitates the

use of much smaller key sizes, which not only reduces storage but gives drastic

improvements in efficiency. Not long after elliptic curves were suggested, Koblitz

took this abstraction even further by proposing the more general setting which

employs the Jacobian group of a hyperelliptic curve [Kob89].

It was not until the turn of the century however, that the cryptographic

community witnessed the most remarkable feature offered by elliptic curves and

their relatives from the domain of algebraic and arithmetic geometry. Namely,

these objects facilitate a primitive that is much more powerful than the standard

discrete logarithm primitives – a cryptographic pairing. The seminal works of

Joux [Jou04], Sakai, Ohgishi and Kasahara [SOK00] and Boneh and Franklin

[BF03] triggered an avalanche of novel and exciting protocols which exploit the

powerful bilinearity property of pairings. Hundreds of papers followed, cover-

ing vast amounts of new cryptographic territory that is practically unattainable

without pairings. The most notable achievement being the realisation of prac-

tical identity-based encryption which, starting with the original solution due to

Boneh and Franklin, has since experienced a great deal of generalisations and

extensions. Well known commercial companies, such as Hewlett-Packard, have

taken a lot of interest in the new cryptographic technology while new companies,

such as Voltage Security Inc., have been founded on the idea of pairings. For a

survey of protocols in pairing-based cryptography (PBC), and of the problems on

which these protocols are based, we refer the reader to Paterson’s chapter [Pat05].

These landmark achievements have placed a great emphasis on the efficient

computation of cryptographic pairings. Indeed, upon their introduction just

over a decade ago, the computation of pairings was too slow for any of the

above protocols to be of real practical use. This created a flurry of research from

mathematicians and computer scientists around the globe that aimed to improve

3

the computation speed of pairings. As a result, what was an extremely expensive

operation that took several minutes is now a high-speed computation that takes

less than a millisecond.

In this thesis we present a range of improvements to the state-of-the-art in

pairing implementation. Both through extending prior techniques, and introduc-

ing several novel ideas of our own, our work has contributed to record-breaking

implementations.

Our contributions

In Chapter 2 we present an extensive survey of the arena of cryptographic pairing

computation. We specifically target readers with limited background that are

new to the field, for which we hope our exposition provides a comprehensive but

friendly first read.

The derivation and optimisation of explicit formulas is one of the major re-

search gaps addressed in this thesis. Chapter 3 is based on our joint work with

Huseyin Hisil, Colin Boyd, Juan Manuel Gonzalez Nieto and Kenneth Koon-

Ho Wong [CHB+09], and on our joint work with Tanja Lange and Michael

Naehrig [CLN10]. We derive record-breaking projective formulas for compu-

tations within the pairing algorithm that are tailor-made for all cases of prac-

tical interest. Whilst the work in [CHB+09] was not originally applied to the

ate pairing, a theorem we give in [CLN10] has allowed us to revisit the results

from [CHB+09] herein, and apply the earlier work to state-of-the-art ate pairing

implementations.

The first few sections of Chapter 4 explore the idea of loop unrolling in general

pairing computations over large prime fields. This is based on the joint works

with Colin Boyd, Juan Manuel Gonzalez Nieto and Kenneth Koon-Ho Wong

[CBNW10a,CBNW10b]. Although these works achieve speed ups in some cases

(the Tate pairing), they do not improve the start-of-the-art (the ate pairing)

computations for standalone one-off pairing computations. However, in Section

4.4 we apply the loop unrolling technique to the common scenario of a pairing

that contains a fixed argument, showing that large speed ups in state-of-the-art

implementations can be achieved by employing our technique. This is based on

joint work with Douglas Stebila [CS10], but at the time of writing this thesis we

noticed a significant improvement to our original work in that makes our method

4 Chapter 1. Introduction

even more beneficial.

Both Chapter 5 and Chapter 6 are aimed at identifying attractive subfamilies

of pairing-friendly curves. This is based on our joint work with Kristin Lauter

and Michael Naehrig [CLN11], and on our recent follow up work in [Cos12]. Here

we give implementation-friendly subfamilies for nine of the most popular families

of pairing-friendly curves. Our results in both of these chapters lead to highly

efficient pairing instantiations at a range of security levels.

In Chapter 7, we develop an alternative to Cantor’s algorithm for group law

computations on Jacobians of arbitrary hyperelliptic curves. This is based on our

joint work with Kristin Lauter [CL11]. Although the results can be applied to

pairings, our work in Chapter 7 has a greater impact outside the context of PBC.

This is partly due to the fact that hyperelliptic curve pairings are not currently

competitive with elliptic curve pairings. Nevertheless, our explicit algorithm

can immediately be used to implement hyperelliptic arithmetic on curves of any

genus. As one implication, we applied our method to give more efficient formulas

for group operations on general genus 2 hyperelliptic curves. Since our algorithm

inherently computes the functions required in pairing computation, this work

speeds up hyperelliptic pairings as well.

This thesis concludes in Chapter 8 with some brief comments on possible

directions for future work.

Chapter 2

Pairings

Aficionados of cryptographic pairing computation are often asked by interested

newcomers to point towards literature that is a good starting point. My answer

usually differs depending on the mathematical background volunteered from the

“pairing beginner”, but almost always involves accordingly picking a subset of

the following excellent references.

• Galbraith’s chapter [Gal05] is a stand-out survey of the field (up until

2005). It provides several theorems and proofs fundamental to pairing-

based cryptography and gives some useful toy examples that illustrate key

concepts.

• Lynn’s thesis [Lyn07] is also a great survey of the entire arena of pairing

computation (up until 2007), and gives all the details surrounding the pio-

neering papers he co-authored [BKLS02,BLS02,BLS03,BLS04], which are

themselves good starting points.

• The first chapter of Naehrig’s thesis [Nae09, Ch. 1] conveniently presents

the necessary algebro-geometric results required to be able to read most of

the literature concerning pairing computation.

• Scott’s webpage [Sco04] gives a short and very friendly introduction to

the basics of the groups involved in pairing computations by means of an

illustrative toy example.

5

6 Chapter 2. Pairings

• In his new chapter entitled Algorithmic Aspects of Elliptic Curves, Silver-

man’s second edition [Sil09, Ch. XI.7] includes a concise introduction to

pairing-based cryptography that also points to foundational results found

elsewhere in his book.

In addition, digging up talks from some of the big players in the field is usually

(but not always!) a good way to avoid getting bogged down by minor technical

details that slow one’s progress in grasping the main ideas. In particular, we refer

to the nice talks by Scott [Sco07a,Sco07b] and Vercauteren [Ver06b,Ver06a].

In any case, correctly prescribing the best reading route for a beginner nat-

urally requires individual diagnosis that depends on their prior knowledge and

technical preparation. A student who is interested in learning pairings, but who

has never seen or played with an elliptic curve, may quickly become overwhelmed

if directed to dive straight into the chapters of Silverman’s book or Naehrig’s the-

sis. This is not due to lack of clarity, or to lack of illuminating examples (both

chapters are ample in both), but perhaps more because of the vast amount of

technical jargon that is necessary for one to write a complete and self-contained

description of cryptographic pairings. On the other hand, an informal, example-

driven approach to learning the broad field of pairing computation may ease the

beginner’s digestion in the initial stages. For instance, a novice would be likely

to find it more beneficial to first see the simple toy example of the quadratic

twisting isomorphism in action on Scott’s webpage [Sco04], before heading to

Silverman’s book [Sil09, Ch. X.5.4] to see all possible twisting isomorphisms

formally defined, and then later returning to his earlier chapters (specifically Ch.

II.2) to read about maps between curves in full generality.

In this light we discuss the major aim of this preliminary chapter. We intend

to let illustrative examples drive the discussion and present the key concepts

of pairing computation with as little machinery as possible. For those that

are fresh to pairing-based cryptography, it is our hope that this chapter might

be particularly useful as a first read and prelude to more complete or advanced

expositions (e.g. the related chapters in [Gal12]). Of course, the ultimate purpose

of this chapter is to ensure we collect the prerequisites that form the basis for the

novel contributions that follow in the main chapters, but in some cases we may

postpone presenting results and pick them up “on-the-fly” later on, especially

if this helps to achieve a more beginner-friendly discussion here. On the other

hand, we also hope our introduction does not leave any sophisticated readers

7

dissatisfied by a lack of formality or generality, so in cases where our discussion

does sacrifice completeness, we will at least endeavour to point to where a more

thorough exposition can be found.

One advantage of writing a survey chapter on pairing computation in 2012

is that, after more than a decade of intense and fast-paced research by mathe-

maticians and cryptographers around the globe, the field is now racing towards

full maturity. Therefore, an understanding of this chapter will equip the reader

with most of what they need to know in order to tackle any of the vast literature

in this remarkable field, at least for a while yet. Anyone who understands our

examples will also comfortably absorb the basic language of algebraic geometry

in the context of curve-based cryptography. Since we are aiming the discussion

at active readers, we have matched every example with a corresponding snip-

pet of (hyperlinked) Magma [BCP97] code1, where we take inspiration from the

helpful Magma pairing tutorial by Dominguez Perez et al. [DKS09]. In the later

sections of this chapter we build towards a full working pairing code that encom-

passes most of the high-level optimisations; this culminates to finish the chapter

in Example 2.6.11.

We organise this chapter as follows. We start in Section 2.1 by giving an

overview of elliptic curve cryptography (ECC). Indeed, elliptic curves are the

main object on which cryptographic pairings take place, so this first section

forms a basis for the entire chapter. In Section 2.2 we introduce the important

concept of divisors, as well as other essential theory from algebraic geometry that

is needed to properly understand cryptographic pairings. In Section 2.3 we detail

the specific elliptic curve groups that are employed in a cryptographic pairing,

before presenting Miller’s algorithm to compute the Weil and Tate pairings in

Section 2.4. In Section 2.5 we introduce the notion of pairing-friendly curves

and give a brief survey of the most successful methods of constructing them. In

Section 2.6 we bring the reader up to speed with the landmark achievements and

improvements that have boosted pairing computation to the point it is today.

1If one does not have access to Magma, the scripts we provide can be run at the online
Magma calculator: http://magma.maths.usyd.edu.au/calc/

http://magma.maths.usyd.edu.au/calc/

8 Chapter 2. Pairings

2.1 Elliptic curves as cryptographic groups

The purpose of this section is to introduce elliptic curves as they are used in

cryptography. Put simply, an elliptic curve is an abstract type of group.

Perhaps a newcomer will find this abstractness apparent immediately when we

insist that to understand elliptic curve groups in cryptography, the reader should

be familiar with the basics of finite fields Fq. This is because, more generally,

elliptic curves are groups which are defined on top of (over) fields. Even though

elliptic curve groups permit only one binary operation (the so called group law),

the operation itself is computed within the underlying field, which by definition

permits two operations (and their inverses). For a general field K, the group

elements of an elliptic curve E are points whose (x, y) coordinates come from K

(the algebraic closure of K), and which satisfy the (affine) curve equation for E,

given as

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.1)

where a1, ..., a6 ∈ K. Equation (2.1) is called the general Weierstrass equation

for elliptic curves. Aside from all the (x, y) ∈ K solutions to the equation above,

there is one extra point which can not be defined using the affine equation, but

which must be included to complete the group definition. This point is called

the point at infinity, which we denote by O, and we will define it properly in a

moment.

If a1, ..., a6 ∈ K, then we say E is defined over K, and write this as E/K

(the same goes for any extension field L of K). Before we go any further, we

make a convenient simplification of the general Weierstrass equation. If the

field characteristic is not 2 or 3, then divisions by 2 and 3 in K permit the

substitutions y 7→ (y − a1x − a3)/2 to give E : y2 = 4x3 + b2x
2 + 2b4x + b6,

and then (x, y) 7→
(
x−3b2

36
, y

108

)
, which (upon appropriate rescaling) yields the

following simplified equation.

E : y2 = x3 + ax+ b. (2.2)

Equation (2.2) is called the short Weierstrass equation for elliptic curves, and

will be used all the way through this thesis. Namely, we will always be working

over large prime fields, where the short Weierstrass equation covers all possible

2.1. Elliptic curves as cryptographic groups 9

isomorphism classes of elliptic curves, so the curves we use will always be an

instance of (2.2).

Example 2.1.1 (Magma script). E/Q : y2 = x3−2 is an elliptic curve. Along with

the point at infinity O (which we are still yet to define), the set of points over Q is

written as E(Q), and is defined as E(Q) = {(x, y) ∈ A2(Q) : y2 = x3−2}∪{O}.
The point P = (xP , yP) = (3, 5) lies in E(Q), as do Q = (xQ, yQ) =

(
129
100
, −383

1000

)

and R = (xR, yR) =
(

164323
29241

, −66234835
5000211

)
, so we can write P,Q,R ∈ E(Q). We

usually write E to represent the group of points over the full algebraic closure,

so for example, the point S = (xS, yS) =
(
0,
√
−2
)
∈ E = E(Q), but S 6∈ E(Q).

Soon we will be defining the binary group operation ⊕ on E using rational

formulas in the underlying field, so an active reader can return to this example

with these formulas to verify that R = P ⊕ Q, where xR, yR are computed

from xP , yP , xQ, yQ using additions and multiplications (also subtractions and

inversions) in Q. Furthermore, it can also be verified that Q = P ⊕ P , so that

R = P ⊕ P ⊕ P ; we usually write these as Q = [2]P and R = [3]P , where

P ⊕ P · · · ⊕ P
︸ ︷︷ ︸

n

= [n]P in general. To finish this example, we remark that if

(x′, y′) ∈ E, then (x′,−y′) ∈ E (but is not distinct if y′ = 0), which is true for

any elliptic curve in short Weierstrass form.

Example 2.1.2 (Magma script). E/F11 : y2 = x3 + 4x + 3 is an elliptic curve.

E(F11) has 14 points: (0, 5), (0, 6), (3, 3), (3, 8), (5, 4),(5, 7), (6, 1), (6, 10), (7, 0),

(9, 3), (9, 8), (10, 3), (10, 8), not forgetting the point at infinity O. Notice that all

but two points come in pairs (x′, y′) and (x′,−y′), the exceptions being (x′, y′) =

(7, 0) (since y′ = −y′ = 0) and O. If we form the quadratic extension Fq2 = Fq(i)

with i2 +1 = 0, then considering E over Fq2 will allow many more solutions, and

give many more points: namely, #E(Fq2) = 140. In addition to the points in

E(Fq), E(Fq2) will also contain those points with x-coordinates in Fq that did not

give x3+4x+3 as a quadratic residue in Fq (but necessarily do in Fq2), and many

more with both coordinates in Fq2 \Fq. Examples of both such points are (2, 5i)

and (2i+10, 7i+2) respectively. It is not a coincidence that #E(Fq) | #E(Fq2),

since E(Fq) is a subgroup of E(Fq2).

Not every tuple (a, b) ∈ K × K gives rise to the curve given by f(x, y) =

y2 − (x3 + ax+ b) = 0 being an elliptic curve. If there exists P = (xP , yP) on f

such that both partial derivatives ∂f
∂x

and ∂f
∂y

vanish simultaneously at P , then P

is called a singular point and f is also deemed singular. Conversely, if no such

point exists, f is called non-singular, or smooth, and is then an elliptic curve. It

http://www.craigcostello.com.au/pairings/scripts/2-1-1-EoverQ.txt
http://www.craigcostello.com.au/pairings/scripts/2-1-2-E:F11.txt

10 Chapter 2. Pairings

is easy enough to show that a singularity occurs if and only if 4a3 + 27b2 = 0

(see [Sil09, Ch. III.1, Prop. 1.4]), so as long as 4a3 + 27b2 6= 0 in K, then

E/K : y2 = x3 + ax+ b is an elliptic curve.

In cryptography we only ever instantiate elliptic curves defined over finite

fields, but it is often conceptually helpful to view graphs of elliptic curves over R.

We illustrate the difference between singular and non-singular (smooth) elliptic

curves in Figures 2.1-2.4.

•

Figure 2.1:
Singular curve
y2 = x3−3x+2
over R.

•

Figure 2.2:
Singular curve
y2 = x3

over R.

Figure 2.3:
Smooth curve
y2 = x3 + x + 1
over R.

Figure 2.4:
Smooth curve
y2 = x3 − x
over R.

2.1.1 The group law: the chord-and-tangent rule

We now turn to describing the elliptic curve group law, and it is here that viewing

pictures of elliptic curves over R is especially instructive. We start with a less

formal description until we define the role of the point at infinity O. The group

law exploits the fact that, over any field, a line (a degree one equation in x and

y) intersects a cubic curve (a degree three equation in x and y) in three places

(this is a special case of a more general theorem due to Bezout [Har77, I.7.8]).

Namely, if we run a line ℓ : y = λx + ν between two points P = (xP , yP) and

Q = (xQ, yQ) on E, then substituting this line into E : y2 = x3 + ax + b will

give a cubic polynomial in x, the roots of which are the x-coordinates of the

three points of intersection between ℓ and E. Knowing the two roots (xP and

xQ) allows us to determine a unique third root that corresponds to the third and

only other point in the affine intersection ℓ ∩ E, which we denote by ⊖R (the

reason will become clear in a moment). The point ⊖R is then “flipped” over the

2.1. Elliptic curves as cryptographic groups 11

x-axis to the point R. In general, the elliptic curve composition law ⊕ is defined

by this process, namely R = P ⊕ Q. When computing R = P ⊕ P , the line ℓ

is computed as the tangent to E at P . That is, the derivatives of ℓ and E are

matched at P , so (counting multiplicities) ℓ intersects E “twice” at P . Figures

2.5 and 2.6 illustrate why this process is aptly named the chord-and-tangent rule.

ℓ

•Q

•P

•⊖R

•
R = P ⊕Q

Figure 2.5: Elliptic curve addition.

ℓ

•P

•⊖R

•
R = P ⊕ P

Figure 2.6: Elliptic curve doubling.

Having loosely defined the general group operation, we can now (also loosely)

define the role of the point at infinity O. To try and place it somewhere in the

above diagrams, one can think of O as being a point that simultaneously sits

infinitely high and infinitely low in the y direction. This allows us to informally

conceptualise two properties of elliptic curve groups: firstly, that the point at

infinity O plays the role of the identity of the group; and secondly, that the

unique inverse of a point is its reflected image over the x-axis (e.g. the ⊖R’s in

Figures 2.5 and 2.6 are the respective inverses of the R’s, and vice versa). If we

apply the process in the previous paragraph to compute R⊕ (⊖R), we start by

finding the vertical line that connects them (the dashed lines in Figures 2.5 and

2.6). This line also intersects E (twice) at the point at infinity O, which is then

reflected back onto itself, giving R ⊕ (⊖R) = O. Thus, if we define the identity

of the group to be O, then the inverse of any element R = (xR, yR) is taken as

⊖R = (xR,−yR).

Example 2.1.3 (Magma script). E/R : y2 = x3 − 2x is an elliptic curve. The

points (−1,−1), (0, 0) and (2, 2) are all on E, and are also on the line ℓ : y = x.

http://www.craigcostello.com.au/pairings/scripts/2-1-3-E:R.txt

12 Chapter 2. Pairings

Applying the technique described above to compute some example group law

operations via the line ℓ, we have (−1,−1) ⊕ (0, 0) = (2,−2), (2, 2) ⊕ (0, 0) =

(−1, 1), and (−1,−1)⊕(2, 2) = (0, 0). All but four points come in pairs with their

inverse (i.e. (x′, y′) and (x′,−y′)); the exceptions being (0, 0), (
√

2, 0), (−
√

2, 0)

(notice the vertical tangents when y = 0 in these cases), and O, which are all

their own inverse, e.g. (0, 0) = ⊖(0, 0), so (0, 0)⊕ (0, 0) = O on E. The tangent

line ℓ′ to E at (−1,−1) is ℓ′ : y = −1
2
x − 3

2
, and it intersects E once more at

(9
4
,−21

8
), which gives (−1,−1)⊕ (−1,−1) = [2](−1,−1) = (9

4
, 21

8
).

ℓ : y = x

•(0, 0)

•

(−1, 1)

•(2, 2)

•

(−1,−1)

•(2,−2)

Figure 2.7: Addition in R.

ℓ′ : y = −x
2
− 3

2

•
(−1,−1)

•
(9

4
, 21

8
)

•
(9

4
,−21

8
)

Figure 2.8: Doubling in R.

Example 2.1.4 (Magma script). In this example we consider the same curve

equation as the last example, but this time over a small finite field, namely

E/F11 : y2 = x3 − 2x. Rational points are injected naturally across to the finite

field case (as long as there is no conflict with the characteristic), so we can imme-

diately find the points (0, 0), (2, 2) and (−1,−1) = (10, 10) (and their inverses)

in Figure 2.9. In this case, consider performing the group law operation between

the (blue) points (5, 7) and (8, 10). The line ℓ that joins them is y = x+2, which

intersects E once more at (10, 1). Negating the y-coordinate finds the other point

on the dashed line, and gives (5, 7)⊕ (8, 10) = (10, 10).

Example 2.1.4 is also intended to justify why, although (in cryptography) we

only ever use elliptic curves over finite fields, we often opt to illustrate the group

law by drawing the continuous pictures of curves over R.

http://www.craigcostello.com.au/pairings/scripts/2-1-4-E:F11+.txt

2.1. Elliptic curves as cryptographic groups 13

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10
•

•

•
•

•

•

•

•

•

•

•

Figure 2.9: The points (excluding O) on E(F11).

The point at infinity in projective space. We now focus our attention on

giving a more formal definition for the point at infinity. So far we have been

describing elliptic curves in affine space as a set of affine points together with

the point at infinity: E = {(x, y) ∈ A2(K) : y2 = x3 + ax+ b}∪{O}. In general,

a more precise way to unify (or include) points at infinity with the affine points

is to work in projective space: essentially, instead of working with points in n-

space, we work with lines that pass through the origin in (n+ 1)-space. For our

purposes, this means our affine points in 2-space become lines in 3-space, namely

that (x, y) ∈ A2(K) corresponds to the line defined by all points of the form

(λx, λy, λ) ∈ P2(K), where λ ∈ K∗. That is, P2 is A3 \ {(0, 0, 0)} modulo the

following congruence condition: (x1, y1, z1) ∼ (x2, y2, z2) if there exists λ ∈ K∗
such that (x1, y1, z1) = (λx2, λy2, λz2). Figure 2.10 illustrates the relationship

between points in A2 with their congruence classes (lines) in P2; the lines in

3-space should also extend “downwards” into the region where Z < 0 but we

omitted this to give more simple pictures. We reiterate that these lines do not

include the point (0, 0, 0).

We usually use capital letters and colons to denote a (representative of a) con-

gruence class in projective coordinates, so that in general (X : Y : Z) represents

the set of all points on the “line” in P2 that correspond to (x, y) ∈ A2. There are

many copies of A2 in P2, but we traditionally map the affine point (x, y) ∈ A2

to projective space via the trivial inclusion (x, y) 7→ (x : y : 1), and for any

(X : Y : Z) 6= O ∈ P2, we map back to A2 via (X : Y : Z) 7→ (X/Z, Y/Z). The

point at infinity O is represented by (0 : 1 : 0) in projective space (see the last

14 Chapter 2. Pairings

x

y

b

b

b

b

Three points in A2(K).

X

Y

Z

b

b

b

b

b

Z = 1

Three lines in P2(K).

X

Y

Z

b

b b
b

bZ = 1

Three lines in P2(K).

Y

Z

b b

O = (0 : 1 : 0)

b b bbZ = 1

Three lines in P2(K).

Figure 2.10: Identifying points in A2 with lines in P2

diagram in Figure 2.10), for which we immediately note that the map back to

A2 is ill-defined.

Example 2.1.5 (Magma script). E/R : y2 = x3 + 3x is an elliptic curve. P =

(3, 6) ∈ A2(R) is a point on E. In projective space, P becomes P = (3 : 6 :

1) ∈ P2(R), which represents all points in (3λ, 6λ, λ) for λ ∈ R \ {0}. For

example, the points (12, 24, 4), (−3
√
−1,−6

√
−1,−1

√
−1), (3

√
2, 6
√

2,
√

2) in

A3(R) are all equivalent (modulo the congruence condition) in P2(R), where

they are represented by P . As usual, the point at infinity on E is O = (0 : 1 : 0).

The way we define the collection of points in projective space is to homogenise

E : y2 = x3 + ax + b by making the substitution x = X/Z and y = Y/Z, and

multiplying by Z3 to clear the denominators, which gives

EP : Y 2Z = X3 + aXZ2 + bZ3. (2.3)

The set of points (X, Y, Z) with coordinates in K that satisfies (2.3) is called

the projective closure of E. Notice that (0, λ, 0) is in the projective closure for

all λ ∈ K∗, and that all such points cannot be mapped into A2, justifying the

http://www.craigcostello.com.au/pairings/scripts/2-1-5-E:R-Proj.txt

2.1. Elliptic curves as cryptographic groups 15

representative of point at infinity being O = (0 : 1 : 0).

Example 2.1.6 (Magma script). Consider E/F13 : y2 = x3 + 5. There are 15

affine points (x, y) ∈ A2(F13) on E, which (with the point at infinity O) gives

#E(F13) = 16. On the other hand, if we homogenise (or projectify) E to give

EP/F13 : Y 2Z = X3 + 5Z3, then there are 16 classes (X : Y : Z) ∈ P2(F13):

(0 : 1 : 0), (2 : 0 : 1), (4 : 2 : 1), (4 : 11 : 1), (5 : 0 : 1), (6 : 0 : 1), (7 : 6 : 1),

(7 : 7 : 1), (8 : 6 : 1), (8 : 7 : 1), (10 : 2 : 1), (10 : 11 : 1), (11 : 6 : 1),

(11 : 7 : 1), (12 : 2 : 1), (12 : 11 : 1). Each of these classes represents several

points (X, Y, Z) ∈ A3(F13) whose coordinates satisfy Y 2Z = X3 +5Z3 (there are

actually 195 such points, but this is not important). In fact, each class represents

infinitely many points on EP(F13). Any reader that is familiar with Magma, or

has been working through our examples with the accompanying Magma scripts,

will recognise the representation of points as representatives in P2.

The projective coordinates (X, Y, Z) used to replace the affine coordinates

(x, y) above are called homogenous projective coordinates, because the projective

version of the curve equation in (2.3) is homogeneous. These substitutions (x =

X/Z, y = Y/Z) are the most simple (and standard) way to obtain projective

coordinates, but we are not restricted to this choice of substitution. In Chapter

3 of this thesis, we will be exploring several different projective options, but the

recipe for projectifying remains the same. Namely, we will always be using (the

most natural) projections obtained through substitutions of the form x = X/Zi

and y = Y/Zj.

Example 2.1.7 (Magma script). Consider E/F41 : y2 = x3 + 4x − 1. Using

homogeneous coordinates gives rise to the projective equation Y 2Z = X3 +

4XZ2 − Z3, with the point at infinity being O = (0 : 1 : 0). Alternatively,

a projection we make use of in this thesis is x = X/Z and y = Y/Z2, which

in this instance give the projective equation Y 2 = X3Z + 4XZ3 − Z4, from

which the point at infinity is seen (from putting Z = 0) to be O = (1 : 0 : 0).

Another commonly used coordinate system is Jacobian coordinates, which use

the substitutions x = X/Z2 and y = Y/Z3 to give the projective equation Y 2 =

X3 + 4XZ4 − Z6. In this case, we substitute Z = 0 to see that the point at

infinity is defined by the line O = (λ2 : λ3 : 0) ∈ P2(F41).

Deriving (affine) explicit formulas for group law computations. We

are now in a position to give explicit formulas for computing the elliptic curve

http://www.craigcostello.com.au/pairings/scripts/2-1-6-E:F13-Proj.txt
http://www.craigcostello.com.au/pairings/scripts/2-1-7-E:F41-Proj.txt

16 Chapter 2. Pairings

group law. The chord-and-tangent process that is summarised in Figures 2.5

and 2.6 allows a simple derivation of these formulas. We derive the formulas

in affine space, but will soon transfer them into projective space as well. The

derivation of the formulas for point additions R = P ⊕Q and for point doublings

R = P ⊕ P follow the same recipe, the main difference being in the calculation

of the gradient λ of the line ℓ : y = λx+ ν that is used. We will first derive the

formulas for the addition R = P ⊕ Q in the general case, and will then make

appropriate changes for the general doubling formulas. By “general case”, we

mean group law operations between points where neither point is O, and the

points that are being added are not each inverses of one another; we will handle

these special cases immediately after the general cases. Referring back to Figure

2.5, the line ℓ : y = λx + ν that intersects P = (xP , yP) and Q = (xQ, yQ) has

gradient λ = (yQ − yP)/(xQ − xP). From here, ν can simply be calculated as

either ν = yP − λxP or ν = yQ − λxQ, but in the literature we will often see an

unbiased average of the two as ν = (yQxP − yPxQ)/(xP − xQ). From here we

substitute ℓ : y = λx+ ν into E : y2 = x3 + ax+ b to find the third affine point

of intersection, ⊖R, in ℓ∩E. Finding the coordinates of ⊖R trivially reveals the

coordinates of R = (xR, yR), since ⊖R = (xR,−yR); the roots of the cubic that

result will be xP , xQ and xR. Namely,

(x− xP)(x− xQ)(x− xR) = (x3 + ax+ b)− (λx+ ν)2

= x3 − λ2x2 + (a− 2λν)x+ b− ν2.

We only need to look at the coefficient of x2 to determine xR, since the coefficient

on the left hand side is −(xP +xQ+xR). From here, recovering the y-coordinate

is simple, since −yR lies on ℓ, so

xR = λ2 − xP − xQ; yR = −(λxR + ν).

This finishes the description of addition in the general case. When adding P to

itself (i.e. doubling P – refer back to Figure 2.6), the line ℓ : y = λx + ν is the

tangent to E at P . Thus, its gradient λ is the derivative function dy/dx of E,

evaluated at P . To obtain dy/dx, we differentiate the curve equation implicitly,

2.1. Elliptic curves as cryptographic groups 17

as

d

dx
(y2) =

d

dx
(x3 + ax+ b)

d

dy
(y2)

dy

dx
= 3x2 + a

dy

dx
=

3x2 + a

2y
.

Thus, λ = dy
dx

(P) = (3x2
P + a)/(2yP), and ν = yP − λxP . Again, we substitute ℓ

into E, but this time two of the roots of the resulting cubic are xP , so we obtain

xR and yR as

xR = λ2 − 2xP ; yR = −(λxR + ν).

This finishes the derivation of doubling formulas in the general case. We now

complete the group law description by looking at the special cases. The point

at infinity O is the identity, or neutral element, so any operation involving it

is trivial. Otherwise, any operation between elements P and Q with different

x-coordinates employs the general addition. This leaves the remaining cases of

xP = xQ: (i) if yP = −yQ, then P and Q are inverses of each other and P⊕Q = O
(note that this includes yP = yQ = 0), and (ii) if yP = yQ 6= 0, then P = Q and

we use the point doubling formulas.

Much of the literature concerning the elliptic curve group law tends to present

the complete description in the previous paragraph using an “if-then-else” style

algorithm, where the “if” statements distinguish which of the above scenarios

we are in. In optimised cryptographic implementations however, this is not the

way that the group law operation is coded. This is because the groups we use

are so large that the chances of running into a special case (that is not general

doubling or general addition) randomly is negligible. Moreover, the parameters

are usually chosen so that we are guaranteed not to run into these cases. In this

light then, it will soon become clear that the major operations we are concerned

with are point additions R = P⊕Q and point doublings R = P⊕P , the formulas

for which are summarised in (2.4) and (2.5) respectively.

(Affine addition) λ =
yQ − yP
xQ − xP

; ν = yP − λxP ;

(xP , yP)⊕ (xQ, yQ) = (xR, yR) =
(
λ2 − xP − xQ,−(λxR + ν)

)
. (2.4)

18 Chapter 2. Pairings

(Affine doubling) λ =
3x2

P + a

2yP
; ν = yP − λxP ;

[2](xP , yP) = (xP , yP)⊕ (xP , yP) = (xR, yR) =
(
λ2 − 2xP ,−(λxR + ν)

)
. (2.5)

Example 2.1.8 (Magma script). We revisit the curve E/Q : y2 = x3 − 2 from

Example 2.1.1 to verify the group law calculations that were stated. We start

with the point doubling of P = (xP , yP) = (3, 5), to compute Q = [2]P =

P ⊕ P using (2.5). Here, λ =
3x2

P +a

2yP
= 3·32+0

2·5 = 27
10

, from which ν follows as

ν = yP − λxP = 5 − 27
10
· 3 = −31

10
. Thus, xQ = λ2 − 2xP = (27

10
)2 − 2 · 3 = 129

100
,

and yQ = −(λxQ+ ν) = −(27
10
· 129

100
− 31

10
) = − 383

1000
, giving (xQ, yQ) = [2](xP , yP) =

(129
100
,− 383

1000
). For the addition R = P ⊕ Q, we use the formulas in (2.4), so

λ =
yQ−yP

xQ−xP
= (− 383

1000
− 5)/(129

100
− 3) = 5383

1710
, and ν = yP − λxP = 5 − 5383

1710
· 3 =

−2533
570

. Thus, xR = λ2 − xP − xQ = (5383
1710

)2 − 3 − 129
100

= 164323
29241

, and yR =

λxR + ν = 5383
1710
· 164323

29241
− 2533

570
= −66234835

5000211
, so (xR, yR) = (164323

29241
,−66234835

5000211
). Since

Q = [2]P = P ⊕ P , then R = P ⊕ Q = [3]P . We finish this example with a

remark that further justifies the use of finite fields as the underlying fields in

cryptography. It is not too painful to show that P = (3, 5) and ⊖P = (3,−5)

are the only integral points on E [Sil09, Ch. IX, Prop. 7.1(b)], or that E(Q)

is actually infinite cyclic [Sil09, Ch. IX, Remark 7.1.1], meaning that among

infinitely many rational points, only two have integer coordinates. Besides the

infinite nature of E(Q) (the lack of any finite subgroups is not useful in the

context of discrete logarithm based cryptographic groups), observing the growing

size of the numerators and denominators in [n]P , even for very small values of n,

shows why using E(Q) would be impractical. Using Magma, we can see that the

denominator of the y-coordinate of [10]P is 290 bits, whilst the denominator in

[100]P is 29201 bits, which agrees with the group law formulas in (2.4) and (2.5)

that suggest that denominators of successive scalar multiples of P would grow

quadratically; even Magma takes its time computing [1000]P , whose denominator

is 2920540 bits, and Magma could not handle the computation of [10000]P . In

Figure 2.11 we plot multiples of P = (3, 5) that fall within the domain x < 6.

From now on we will only be working with elliptic curves over finite fields.

We start with a simple example of basic group law computations on E(Fq) to

summarise the discussion up until this point.

Example 2.1.9 (Magma script). E/F23 : y2 = x3 +5x+7 is an elliptic curve, and

http://www.craigcostello.com.au/pairings/scripts/2-1-8-EoverQpart2.txt
http://www.craigcostello.com.au/pairings/scripts/2-1-9-E:F23.txt

2.1. Elliptic curves as cryptographic groups 19

b

b

b

b

b

b

b

Of the first 10 multiples of P = (3, 5) in
E(Q), 7 had x < 6.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Of the first 100 multiples of P = (3, 5) in
E(Q), 64 had x < 6.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Of the first 1000 multiples of P = (3, 5)
in E(Q), 635 had x < 6.

E : y2 = x3 − 2 over R.

Figure 2.11: More and more points (with x < 6) in the infinite group E(Q)

both P = (xP , yP) = (2, 5) and Q = (xQ, yQ) = (12, 1) are on E. Using the affine

point addition formulas in (2.4), we find R = P ⊕ Q by first computing λ =
yQ−yP

xQ−xP
= 1−5

12−2
= −4 · 10−1 = −28 = 18, from which ν follows as ν = yP − λxP =

5−18·2 = −31 = 15, so ℓ : y = 18x+15 is the line running through P and Q. We

then compute (xR, yR) = (λ2− xP − xQ,−(λxR + ν)), so xR = 182− 2− 12 = 11

and yR = −(18 ·11+15) = 17, meaning R = (11, 17). Applying (2.5) to compute

S = [2]P gives λ′ =
3x2

P +a

2yP
= 3·22+5

2·5 = 17 ·10−1 = 17 ·7 = 4, and ν ′ follows as ν ′ =

yP −λ′xP = 5−4 ·2 = 20, so ℓ′ : y = 4x+20 is the tangent line that intersects E

with multiplicity two at P . We then compute (xS, yS) = (λ′2−2xP ,−(λ′xS+ν ′)),

so xS = 42− 2 · 2 = 12 and yS = −(4 · 12 + 20) = −68 = 1, meaning S = (12, 1).

We now give an example of the multiplication-by-m map on E, defined as

[m] : E → E, P 7→ [m]P,

20 Chapter 2. Pairings

and illustrate the straightforward way to compute it in practice. This operation

is analogous to exponentiation g 7→ gm in Z∗q , and is the central operation in

ECC, as it is the one-way operation that buries discrete logarithm problems

in E(Fq). To efficiently compute the exponentiation gm in Z∗q , we square-and-

multiply, whilst to compute the scalar multiplication [m]P in E(Fq), we (because

of the additive notation) double-and-add.

Example 2.1.10 (Magma script). Let E/F1021 : y2 = x3 − 3x − 3 so that r =

#E(Fq) = 1039 is prime. Let P = (379, 1011) ∈ E and m = 655, and suppose

we are to compute [m]P = [655](379, 1011). To double-and-add, we write the (10-

bit) binary representation of m as m = (m9, ..., m0)2 = (1, 0, 1, 0, 0, 0, 1, 1, 1, 1).

Initialising T ← P , and starting from the second most significant bit m8, we

successively compute T ← [2]T for each bit down to m0, and whenever mi = 1 we

compute T ← T+P . So, in our case it takes 9 doublings T ← [2]T and 5 additions

T ← T + P to compute [m]P , which ends up being [655](379, 1011) = (388, 60).

In general then, this straightforward double-and-add algorithm will take log2m

doublings and roughly half as many additions to compute [m]P (if m is randomly

chosen).

The group axioms. All but one of the group axioms are now concrete. Namely,

for closure, if we start with two points in E(K), then the chord-and-tangent

process gives rise to a cubic polynomial in K for which two roots (the two x-

coordinates of the points we started with) are in K, meaning the third root must

also be in K; the explicit formulas affirm this. The identity and inverse axioms

are fine, since P⊕O = P , and the element ⊖P such that P⊕(⊖P) = O is clearly

unique and well defined for all P . We also note that the group is abelian, since

the process of computing P ⊕ Q is symmetric. The only non-obvious axiom is

associativity, i.e. showing (P ⊕Q)⊕R = P ⊕ (Q⊕R). An elementary approach

using the explicit formulas above can be used to show associativity by treating all

the separate cases, but this approach is rather messy [Fri05]. Silverman gives a

much more instructive proof [Sil09, Ch. III.3.4e] using tools that we will develop

in the following section, but for now we offer some temporary intuition via the

illustration in Figures 2.12 and 2.13.

Speeding up elliptic curve computations. Group law computations on

elliptic curves are clearly more complicated than computations in traditional

http://www.craigcostello.com.au/pairings/scripts/2-1-10-MulByM.txt

2.1. Elliptic curves as cryptographic groups 21

•

•
P ⊕Q

••
P

•Q
•
R

•
(P ⊕Q)⊕R

Figure 2.12: (P ⊕Q)⊕ R.

•

•
Q ⊕R

••
P

•Q
•
R

•
P ⊕ (Q ⊕ R)

Figure 2.13: P ⊕ (Q⊕ R).

groups that facilitate discrete logarithm based protocols like F∗q; the explicit for-

mulas in (2.4) and (2.5) use many field operations. However, in the context of

cryptography, the more abstract nature of elliptic curve groups actually works

in their favour. This is essentially because attackers aiming to solve the discrete

logarithm problem on elliptic curves also face this abstractness. The subexpo-

nential algorithms that apply to finite field discrete logarithms2 do not translate

to the elliptic curve setting, where the best available attacks remain generic,

exponential algorithms like Pollard rho [Pol78]. This means that elliptic curve

groups of a relatively small size achieves the same conjectured security as mul-

tiplicative groups in much larger finite fields, i.e. E(Fq1) and F∗q2 achieve similar

security when q2 ≫ q1. For example, an elliptic curve defined over a 160-bit field

currently offers security comparable to a finite field of 1248 bits [Sma10, Table

7.2]. Thus, although more field operations are required to perform a group law

computation, these operations take place in a field whose operational complex-

ity is much less, and this difference is more than enough to tip the balance in

the favour of elliptic curves. In addition, the smaller group elements in E(Fq1)

implies much smaller key sizes, greatly reducing storage and bandwidth require-

ments. These are some of the major reasons that elliptic curves have received so

much attention in the realm of public-key cryptography; the field of elliptic curve

cryptography (ECC) has been thriving since Koblitz [Kob87] and Miller [Mil85]

2See Diem’s notes on index calculus for a nice introduction [Die12].

http://ellipticnews.wordpress.com/2012/05/07/246/

22 Chapter 2. Pairings

independently suggested their potential as alternatives to traditional groups.

One avenue of research that has given ECC a great boost is that of optimising

the group law computations. The explicit formulas in affine coordinates ((2.4)

and (2.5)) would not be used to compute the group law in practice, and in fact

the Weierstrass model E : y2 = x3 + ax+ b is often not the optimal curve model

either. A huge amount of effort has been put towards investigating other models

and coordinate systems in order to minimise the field operations required in

group law computations. One of the initial leaps forward in this line of research

was the observation that performing computations in projective space avoids field

inversions, which are extremely costly in practice. We illustrate these techniques

in the following examples.

Example 2.1.11 (Magma script). Consider a general Weierstrass curve E(Fq) :

y2 = x3 + ax+ b where q is a large prime, and let M, S and I represent the cost

of computing multiplications, squarings and inversions in Fq respectively. To

compute a general affine point doubling (xR, yR) = [2](xP , yP) using (2.5) costs

2M+2S+I, and to compute a general affine point addition (xR, yR) = (xP , yP)⊕
(xQ, yQ) using (2.4) costs 2M + S + I. On the other hand, we can transform

the formulas into homogeneous projective space according to the substitutions

x = X/Z and y = Y/Z, and we can consider computing (XR : YR : ZR) =

[2](XP : YP : ZP) and (XR : YR : ZR) = (XP : YP : ZP) ⊕ (XQ : YQ : ZQ) on

E : Y 2Z = X3 + aXZ2 + bZ3. For the addition case, substituting xi = Xi/Zi

and yi = Yi/Zi for i ∈ {P,Q,R} into the affine formulas

xR =

(
yQ − yP
xQ − xP

)2

− xP − xQ; yR =

(
yQ − yP
xQ − xP

)

(xP − xR)− yP

taken from (2.4), gives

XR

ZR
=

YQ

ZQ
− YP

ZP

XQ

ZQ
− XP

ZP

2

− XP

ZP
− XQ

ZQ
;

YR
ZR

=

YQ

ZQ
− YP

ZP

XQ

ZQ
− XP

ZP

(
XP

ZP
− XR

ZR

)

− YP
ZP

.

After a little manipulation, we can then set ZR to be the smallest value that
contains both denominators above, and update the numerators accordingly to

http://www.craigcostello.com.au/pairings/scripts/2-1-11-ProjAdd.txt

2.1. Elliptic curves as cryptographic groups 23

give

XR = (XPZQ −XQZP)
(
ZPZQ(YPZQ − YQZP)2 − (XPZQ −XQZP)2(XPZQ +XQZP)

)
;

YR = ZPZQ(XQYP −XPYQ)(XPZQ −XQZP)2

− (YPZQ − YQZP)
(
(YPZQ − YQZP)2ZPZQ − (XPZQ +XQZP)(XPZQ −XQZP)2

)
;

ZR = ZPZQ(XPZQ −XQZP)3.

The explicit formulas database (EFD) [BL07a] reports that the above formulas

can be computed in a total of 12M + 2S. The real power of adopting projective

coordinates for computations becomes apparent when we remark that most opti-

mised implementations of Fq arithmetic have I≫ 20M, and the multiplication to

inversion ratio is commonly reported to be 80 : 1 or higher. Thus, the 12M+2S

used for additions in projective space will be much faster than the 2M + S + I

for affine additions. For completeness, we remark that deriving the projective

formulas for computing (XR : YR : ZR) = [2](XP : YP : ZP) is analogous (but

substantially more compact since we only have the projective coordinates of P

to deal with), and the EFD reports that this can be done in 5M+6S, which will

again be much faster than the 2M + 2S + I in affine space.

The Weierstrass model for elliptic curves covers all isomorphism classes,

meaning that every elliptic curve can be written in Weierstrass form. Other

models of elliptic curves are usually available if some condition holds, and (if

this is the case) it can be advantageous to adopt such a model, as the following

example shows.

Example 2.1.12 (Magma script). If x3 + ax+ b has a root in Fq, then Billet and

Joye [BJ03, Eq. 8-10] show that instead of working with E : y2 = x3 + ax + b,

we can work with the (birationally equivalent) Jacobi-quartic curve J : v2 =

au4 + du2 + 1, for appropriately defined a, d (that depend on the root). Here we

write J using (u, v) coordinates so back-and-forth mappings are defined without

confusion. Thus, consider E/F97 : y2 = x3 + 5x+ 5, for which x3 + 5x+ 5 has 34

as a root, so we will work on the isomorphic curve J/F97 : v2 = 73u4 + 46u2 + 1.

Instead of homogeneous projective coordinates, [BJ03] projectified under the

substitution u = U/W and v = V/W 2, which gives the (non-homogeneous)

projective closure as J : V 2 = 73U4 + 46U2W 2 +W 4. Any point (x, y) 6= O on

E can be taken straight to the projective closure of J via

(x, y) 7→
(
2(x− 34) : (2x+ 34)(x− 34)2 − y2 : y

)
,

http://www.craigcostello.com.au/pairings/scripts/2-1-12-JacobiQ.txt

24 Chapter 2. Pairings

with the reverse mapping given by

(U : V : W) 7→
(

2
V +W 2

U2
− 17,W

4(V +W 2)− 5U2

U3

)

.

For example (x, y) = (77, 21) maps to (U : V : W) = (86 : 8 : 21), and vice versa.

We now look at the formulas for the point addition (U3 : V3 : W3) = (U1 : V1 :

W1) ⊕ (U2 : V2 : W2) on J : V 2 = aU4 + dU2W 2 + W 4, taken from [BJ03, Eq.

11], as

U3 = U1W1V2 + U2W2V1,

V3 =
(
(W1W2)

2 + a(U1U2)
2
)
(V1V2 + dU1U2W1W2) + 2aU1U2W1W2(U

2
1W

2
2 + U2

2W
2
1),

W3 = (W1W2)
2 − a(U1U2)

2,

where we immediately highlight the relative simplicity of the above formulas

in comparison to the homogeneous projective formulas derived in the previous

example. Unsurprisingly then, the fastest formulas for Jacobi-quartic additions

and doublings outdo those for general Weierstrass curves in homogeneous projec-

tive space. Namely, the current fastest formulas for doublings on Jacobi-quartics

cost 2M + 5S and additions cost 6M + 4S [HWCD09], whilst in the previous

example we had 5M + 6S for doublings and 12M + 2S for additions.

The Jacobi-quartic curves discussed above are just one example of dozens of

models that have been successful in achieving fast group law computations, and

therefore fast cryptographic implementations. Other well known models include

Edwards curves [Edw07,BL07b], Hessian curves [JQ01,Sma01] and Montgomery

curves [Mon87]. We refer to the EFD [BL07a] for a catalogue of all the fastest

formulas for the popular curve models, and to Hisil’s thesis [His10] for a general

method of (automatically) deriving fast group law algorithms on arbitrary curve

models. For any reader wishing to delve even further into group law arithmetic

on elliptic curves, we also recommend the recent, advanced works by Castryck

and Vercauteren [CV11], and by Kohel [Koh11].

2.1.2 Torsion, endomorphisms and point counting

We now turn our focus to the behaviour of elliptic curve groups, as they are

used in cryptography. We start by importantly discussing the possible structures

exhibited by the finite group E(Fq). It turns out that E(Fq) is either itself cyclic,

2.1. Elliptic curves as cryptographic groups 25

or isomorphic to a product of two cyclic groups Zn1×Zn2 with n1 | n2 [ACD+05,

Prop. 5.78]. In cryptography, we would like the group E(Fq) to be as cyclic

as possible, so we usually prefer the former case, or at the very least for n1 to

be very small. In most cases of practical interest, we can generate curves that

are cyclic with relative ease, so throughout this thesis it is to safe assume that

E(Fq) is cyclic (but to see the real depth of this question in general, we refer

to [MS07]). The following example illustrates that E(Fq) = 〈P 〉 obeys all the

usual rules that apply to cyclic groups, and introduces the important notion of

r-torsion.

Example 2.1.13 (Magma script). Consider E/F101 : y2 = x3 + x+ 1. The group

order is #E(Fq) = 105 = 3 ·5 ·7, and P = (47, 12) ∈ E is a generator. Lagrange’s

theorem says that points (and subgroups) over the base field will have order

in {1, 3, 5, 7, 15, 21, 35, 105}. Indeed, to get a point of order r | 105, we simply

multiply P by the appropriate cofactor, which is h = #E/r. For example, a point

of order 3 is [35](47, 12) = (28, 8), a point of order 21 is [5](47, 12) = (55, 65),

and a point of order 1 is [105](47, 12) = O (which is the only such point). By

definition, a point is “killed” (sent to O) when multiplied by its order. Any point

over the full closure E(Fq) that is killed by r is said to be in the r-torsion. So,

the point (55, 65) above is in the 21-torsion, as is the point (28, 8). There are

exactly 21 points in E(Fq) in the 21-torsion, but there are many more in E(Fq).

The whereabouts and structure of r-torsion points in E(Fq) (alluded to at

the end of Example 2.1.13) plays a crucial role in pairing-based cryptography;

we will be looking at this in close detail in Section 2.3.

In ECC we would like the group order #E(Fq) to be as close to prime as pos-

sible. This is because the (asymptotic) complexity of the ECDLP that attackers

face is dependent on the size of the largest prime subgroup of E(Fq). Even if

the particular instance of the discrete logarithm problem uses a generator of the

whole group, the attacker can use the known group order to solve smaller in-

stances in subgroups whose orders are pairwise prime, and then reconstruct the

answer using the Chinese Remainder Theorem (CRT). We make this clear in

the following two examples: the first is a toy example, whilst the second shows

the difference between two curves of the same cryptographic size; one that is

currently considered secure and one that is completely breakable using modern

attacks.

Example 2.1.14 (Magma script). Consider E/F1021 : y2 = x3 + 905x+ 100, with

http://www.craigcostello.com.au/pairings/scripts/2-1-13-Torsion.txt
http://www.craigcostello.com.au/pairings/scripts/2-1-14-ECDLP.txt

26 Chapter 2. Pairings

group order #E(Fq) = 966 = 2 · 3 · 7 · 23, and generator P = (1006, 416).

Suppose we are presented with an instance of the ECDLP: namely, we are given

Q = (612, 827), and we seek to find k such that [k]P = Q. For the sake of the

example, suppose our best “attack” is trivial: trying every multiple [i]P of P

until we hit the correct one (i = k). Rather than seeking i in the full group (2 ≤
i ≤ 965), we can map the instance into each prime order subgroup by multiplying

by the appropriate cofactor, and then solve for kj ≡ k mod j, j ∈ {2, 3, 7, 23}.
For j = 2, we have Pj = P2 = [966/2]P = [483](1006, 416) = (174, 0), and Qj =

Q2 = [483](612, 827) = (174, 0), so Q2 = [k2]P2 gives k2 = 1. For j = 3, we have

P3 = [322]P = (147, 933) and Q3 = [322]P = O, so Q3 = [k3]P3 gives k3 = 3.

For j = 7, we have P7 = [138]P = (906, 201) and Q7 = [138]Q = (906, 201), so

Q7 = [k7]P7 gives k7 = 1. For j = 23, we have P23 = [42]P = (890, 665) and

Q23 = [42]Q = (68, 281). For Q23 = [k23]P23, we exhaust k23 ∈ {1, .., 22} to see

that k23 = 20. Now, we can use the Chinese Remainder Theorem to solve

k ≡ k2 = 1 mod 2; k ≡ k3 = 0 mod 3; k ≡ k7 = 1 mod 7; k ≡ k23 = 20 mod 23,

which gives k ≡ 687 mod #E, solving the ECDLP instance. Notice that the

hardest part was exhausting the set {1, .., 22} to find k23 = 20, so the largest

prime order subgroup becomes the bottleneck of the algorithm, giving intuition

as to why the largest prime order subgroup defines the attack complexity when

groups of a cryptographic size are used.

Example 2.1.15 (Magma script). For our real world example, we take the curve P-

256 from the NIST recommendations [NIS99], which currently achieves a similar

security level (resistance against best known attacks) to the 128-bit Advanced

Encryption Standard (AES) for symmetric encryption. The curve is defined as

E/Fq : y2 = x3 − 3x+ b, with prime order r = #E, and generator G = (xG, yG),

where

q = 115792089210356248762697446949407573530086143415290314195533631308867097853951,

r = 115792089210356248762697446949407573529996955224135760342422259061068512044369,

b = 41058363725152142129326129780047268409114441015993725554835256314039467401291,

xG = 48439561293906451759052585252797914202762949526041747995844080717082404635286,

yG = 36134250956749795798585127919587881956611106672985015071877198253568414405109,

xH = 53987601597021778433910548064987973235945515666715026302948657055639179420355,

yH = 53690949263410447908824456005055253553237881490194075871737490561466076234637.

http://www.craigcostello.com.au/pairings/scripts/2-1-15-NIST.txt

2.1. Elliptic curves as cryptographic groups 27

We give another point H = (xH , yH) to pose H = [k]G as an intractable in-

stance of the ECDLP; this 256-bit prime field (and group order) is far beyond the

reach of current attacks. For example, there is currently a campaign underway

to solve a discrete logarithm problem over a 130-bit field using a cluster of servers

that have already been running for two years (see http://ecc-challenge.info/),

so (assuming the best known attacks stay exponential) it seems the above ECDLP

should be safe for a while yet. We remark that the prime characteristic q is given

by q = 2256−2224 +2192 +296−1; such primes are preferred in ECC as they allow

for faster finite field multiplication and reduction routines, greatly enhancing the

speed of Fq arithmetic. We now give a curve over the same field Fq, for which

the ECDLP is well within reach of the best known attacks. Namely, consider the

alternative curve with b = 0, namely Ẽ/Fq : y2 = x3 − 3x, whose group order

n = #Ẽ is given as

n = 115792089210356248762697446949407573530086143415290314195533631308867097853952,

= 296 · 7 · 274177 · 67280421310721 · 11318308927973941931404914103.

This time, the largest prime divisor of the group order is only 94 bits long,

and the complexity of solving the ECDLP in Ẽ(Fq) is governed by the difficulty

of solving the ECDLP instance in this largest prime subgroup, which could be

done in a small amount of time on a desktop computer.

The above example provides clear motivation as to the importance of counting

points on elliptic curves. The largest prime factor of the group order determines

the difficulty that attackers face when trying to solve the ECDLP, so we would

like to be able to count points on curves quickly enough to find those whose

order is prime or almost prime (i.e. has a small cofactor), or have methods of

prescribing such a group order before searching for the curve. Fortunately, on

elliptic curves we have efficient algorithms to do both.

We start our brief discussion on elliptic curve point counting by referring

back to the two group orders in Example 2.1.15, and observing that both group

orders share the first half of their digits with those of the field characteristic q.

This suggests that the number of points on an elliptic curve is close to q, which

is indeed the case in general; the Hasse bound [Sil09, Ch. 5, Th. 1.1] says the

http://ecc-challenge.info/

28 Chapter 2. Pairings

most that #E(Fq) can differ from q + 1 is 2
√
q, i.e. |#E(Fq)− (q + 1)| ≤ 2

√
q.

This offset between #E(Fq) and (q + 1) is called the trace of Frobenius, and is

denoted by t, so

#E(Fq) = q + 1− t, |t| ≤ 2
√
q (2.6)

We will discuss where t comes from and provide some more intuition behind

the above formula in a moment, but what the Hasse bound tells us is that

the group order lies somewhere in the interval [q + 1 − 2
√
q, q + 1 + 2

√
q]. In

fact, Deuring [Deu41] showed that when q is prime3, then every value N ∈
[q + 1− 2

√
q, q + 1 + 2

√
q] can be found as a group order #E(Fq) for some E.

Example 2.1.16 (Magma script). Let q = 23, so that the Hasse interval becomes

[q+ 1− 2
√
q, q+ 1 + 2

√
q] = [15, 33], meaning that there are exactly 19 different

group orders taken by elliptic curves over F23. For example, E/F23 : y2 =

x3 + 18x+ 3 has #E = 15, whilst Ẽ/F23 : y2 = x3 + 13x+ 7 has #Ẽ = 33. We

give 19 (a, b) pairs such that the corresponding curves E : y2 = x3 + ax+ b have

group orders in ascending order spanning the whole interval, as follows: (18, 3),

(7, 22), (19, 14), (17, 17), (12, 5), (7, 12), (8, 10), (17, 18), (20, 20), (2, 3), (20, 3),

(6, 8), (16, 8), (16, 22), (9, 16), (19, 6), (20, 8), (22, 9), (13, 7).

A rough (but elementary and instinctive) argument as to why #E ≈ q is that

approximately half of the values x ∈ [0, .., q − 1] will give a quadratic residue

x3 + ax+ b ∈ QR(q), which gives rise to two points (x,±
√
x3 + ax+ b) ∈ E(Fq),

the only exception(s) being when x3 + ax+ b = 0 which obtains one point. The

sophisticated explanation requires a deeper knowledge than our introduction

offers, but for the purposes of this thesis we get almost all that we need from

Equation (2.6); the derivation of which makes use of the following definition. If

E is defined over Fq, then the Frobenius endomorphism π is defined as

π : E → E, (x, y) 7→ (xq, yq). (2.7)

We note that the Frobenius endomorphism maps any point in E(Fq) to a point in

E(Fq), but the set of points fixed by π is exactly the group E(Fq). Thus, π only

acts non-trivially on points in E(Fq) \ E(Fq), and more generally, πi : (x, y) 7→
(xq

i
, yq

i
) only acts non-trivially on points in E(Fq) \ E(Fqi).

3When q is a prime power, there are a very small number of explicitly described exceptions.

http://www.craigcostello.com.au/pairings/scripts/2-1-16-Deuring.txt

2.1. Elliptic curves as cryptographic groups 29

Example 2.1.17 (Magma script). Let q = 67, and consider E/Fq : y2 = x3+4x+3,

and let Fq2 = Fq(u) where u2 + 1 = 0, and further let Fq3 = Fq(v) where

v3 + 2 = 0. For P1 = (15, 50) ∈ E(Fq), we have πq(P1) = (15q, 50q) = (15, 50).

For P2 = (2u + 16, 30u + 39), we have πq(P2) = ((2u+ 16)q, (30u+ 39)q) =

(65u+ 16, 39 + 37u); it is easy to see in this example that computing πq(Q) for

any Q ∈ E(Fq2) involves a simple “complex conjugation” on each coordinate,

which also agrees with π2
q (Q) = Q. Let P3 = (15v2 + 4v + 8, 44v2 + 30v + 21),

πq(P3) = (33v2+14v+8, 3v2+38v+21), π2
q (P3) = (19v2+49v+8, 20v2+66v+21),

and π3
q (P3) = P3.

We can now return to sketch the derivation of Equation (2.6) by skimming

over results that are presented in full in Silverman’s book [Sil09, Ch. V, Th. 1.1].

We now know that P ∈ E(Fq) if and only if π(P) = P (i.e. ([1] − π)P = O),

and thus #E(Fq) = #ker([1] − π). It is not too hard to show that the map

[1] − π is separable, which means that #E(Fq) = #ker([1] − π) = deg([1] − π).

We can then make use of (a special case of) a version of the Cauchy-Schwarz

inequality [Sil09][Ch. V, Lemma 1.2], to give |deg([1]−π)−deg([1])−deg(π)| ≤
2
√

deg([1])deg(π), from which Equation (2.6) follows from deg(π) = q.

The theory of elliptic curves makes constant use of the endomorphism ring

of E, denoted End(E), which (as the name suggests) is the ring of all maps

from E to itself; addition in the ring is natural, i.e. (ψ1 + ψ2)(P) = ψ1(P) +

ψ2(P), and multiplication in End(E) is composition (ψ1ψ2)(P) = ψ1(ψ2(P)).

The multiplication-by-m map [m] is trivially in End(E) for all m ∈ Z, and when

E is defined over a finite field, then clearly π is too, so we are usually interested

in any extra endomorphisms that shed more light on the behaviour of E.

Example 2.1.18 (Magma script). Consider E/Fq : y2 = x3+b. The map ξ, defined

by ξ : (x, y) 7→ (ξ3x, y) with ξ3
3 = 1 and ξ3 6= 1, is a non-trivial endomorphism on

E, so ξ ∈ End(E). If ξ3 ∈ Fq, then ξ will be defined over Fq, otherwise ξ3 ∈ Fq2

in which case ξ is not defined over Fq, but over Fq2. We will observe both cases.

Firstly, cubic roots of unity will be defined in Fq if and only if q ≡ 1 mod 3, so

let us take q ≡ 19, b = 5, which gives E/F19 : y2 = x3 + 5. Let ξ3 = 7 so that

ξ3
3 = 1 (we could have also taken ξ2

3 = 11), so that ξ : (x, y) 7→ (7x, y) is an

endomorphism on E. Applying this to, say P = (−1, 2), gives ξ(P) = (−7, 2) ∈
E. Taking the same curve over F23, i.e. E/F23 : y2 = x3+5, for which P = (−1, 2)

is a again a point, we no longer have a non-trivial ξ3 ∈ F23, so we must form a

quadratic extension Fq2(u), u
2 +1 = 0. Now, we can take ξ3 = 8u+11 (the other

http://www.craigcostello.com.au/pairings/scripts/2-1-17-Frobenius.txt
http://www.craigcostello.com.au/pairings/scripts/2-1-18-Endo1.txt

30 Chapter 2. Pairings

option is ξ2
3 = 15u+11), so that ξ(P) = (−(8u+11), 2) = (15u+12, 2) ∈ E(Fq2).

Notice that P started in E(Fq), but landed in E(Fq2) under ξ. The endomorphism

ξ has an inverse ξ−1 (which is defined the same way but with ξ2
3 instead), so ξ is

actually an automorphism of E, written as ξ ∈ Aut(E).

The definition of ξ : (x, y) 7→ (ξ3x, y) in the above example gives an endomor-

phism on E : y2 = x3 + b regardless of the field that E is defined over. If there

exists a non-trivial map (like ξ) for an elliptic curve E, we say E has complex

multiplication. To be more precise, all elliptic curve endomorphism rings triv-

ially contain Z, since every m ∈ Z corresponds to the multiplication-by-m map

[m] ∈ End(E). However, if non-trivial endomorphisms exist that make End(E)

strictly larger than Z, then we say E has complex multiplication (CM). Thus,

by this definition, every elliptic curve defined over Fq has CM, because the exis-

tence of the Frobenius endomorphism π ∈ End(E) makes End(E) larger than Z.

However, if we discuss whether E has CM without yet stipulating the underlying

finite field, then the question becomes non-trivial in general, because the answer

depends on the existence of non-trivial maps. We use Silverman’s example to

illustrate [Sil09, Ch. 3, Eg. 4.4].

Example 2.1.19 (Magma script). Consider E/K : y2 = x3 + ax. The map ζ :

(x, y) 7→ (−x, iy), where i2 = −1 in K is an endomorphism, so E has CM.

Clearly, ζ will be defined over K if and only if i ∈ K. Observe that ζ ◦ ζ(x, y) =

ζ(−x, iy) = (x,−y) = −(x, y), so ζ ◦ ζ = [−1] (i.e. ζ2 is equivalent to negation).

Thus, there is a ring homomorphism Z[i]→ End(E) defined by m+ ni 7→ [m] +

[n] ◦ ζ . If Char(K) 6= 0, then this map is an isomorphism, thus End(E) ∼= Z[i],

and Aut(E) ∼= Z[i]∗.

The trace of Frobenius t in Equation (2.6) is named so because of the role it

plays in the characteristic polynomial satisfied by π, which is given as

π2 − [t] ◦ π + [q] = 0 in End(E), (2.8)

meaning that for all (x, y) ∈ E(Fq), we have

(xq
2

, yq
2

)− [t](xq, yq) + [q](x, y) = O. (2.9)

Example 2.1.20 (Magma script). We use our results from Example 2.1.17 to il-

lustrate, so as before E/F67 : y2 = x3 + 4x + 3, Fq2 = Fq(u) where u2 + 1 = 0,

and Fq3 = Fq(v) where v3 + 2 = 0. The trace of Frobenius is t = −11, so

http://www.craigcostello.com.au/pairings/scripts/2-1-19-AutoRing.txt
http://www.craigcostello.com.au/pairings/scripts/2-1-20-CharFrob.txt

2.1. Elliptic curves as cryptographic groups 31

#E(Fq) = q + 1 − t = 79. For P1 = (15, 50) ∈ E(Fq), we trivially had

π2(P1) = π(P1) = P1, so P1− [t]P1 +[q]P1 = ([1]− [t]+[q])P1 = [#E(Fq)]P1 = O.

For P2 = (2u+16, 30u+39), we had π2(P2) = P2 and π(P2) = (65u+16, 37u+39),

so we are computing P2−[−11]π(P2)+[67]P2 = [68](2u+16, 30u+39)+[11](65u+

16, 37u+ 39), which is indeed O. P3 ∈ E(Fq3) is the only case where both π and

π2 act non-trivially, so we compute (19v2+49v+8, 20v2+66v+21)−[−11](33v2+

14v + 8, 3v2 + 38v + 21) + [67](15v2 + 4v + 8, 44v2 + 30v + 21), which is O.

We now give a brief sketch of Schoof’s algorithm for counting points on elliptic

curves [Sch85]. Understanding the algorithm is not a prerequisite for following

this thesis, but it certainly warrants mention in any overview chapter on ellip-

tic curves in cryptography, since it is essentially the algorithm that made ECC

practical. Before Schoof’s polynomial-time algorithm, all algorithms for point

counting on elliptic curves were exponential and therefore cryptographically im-

practical. Besides, to sketch his idea, we need to introduce the notion of division

polynomials, which are a useful tool in general. Put simply, division polynomials

are polynomials whose roots reveal torsion points: namely, for odd4 ℓ, the ℓ-th

division polynomial ψℓ(x) on E solves to give the x-coordinates of the points of

order ℓ. They are defined recursively and depend on the curve constants a and

b, but rather than giving the recursions here, we point the reader to [Sil09, Ch.

III, Exer. 3.7], and opt instead for an example that illustrates their usefulness.

Example 2.1.21 (Magma script). Recall the curve E/F101 : y2 = x3 + x+ 1 from

Example 2.1.13 with group order #E(Fq) = 105 = 3 · 5 · 7. The x-coordinates

of the points of order 2 are found as the roots of ψ2(x) = 4x3 + 4x+ 4, which is

irreducible in Fq[x], so there are no 2-torsion points in E(Fq). For r = 3, ψ3(x) =

3x4 +6x2 +12x+100 ∈ Fq[x] factors into ψ3(x) = (x+73)(x+84)(x2+45x+36),

so we get two solutions over Fq, namely x = 17 and x = 28. This does not

mean that the points implied by both solutions are in Fq: namely, x = 28 gives

x3 + x+ 1 ∈ QR(q), so two points in the 3-torsion follow as (28, 8) and (28, 93).

Conversely, x = 17 gives x3 +x+1 6∈ QR(q), so the two points implied by x = 17

will be defined over Fq2. For ψ5(x) = 5x12 + ... + 16, the factorisation in Fq[x]

is ψ5(x) = (x+ 15)(x+ 55)(x5 + ... + 1)(x5 + ...+ 100), which gives x = 46 and

x = 86 as solutions. This time, both x values give rise to two points, giving four

non-trivial 5-torsion points in total: (46, 25), (46, 76), (86, 34), (86, 67). ψ7(x)

4When ℓ is even, the division polynomial is of the form ψℓ(x, y) = y · ψ̃ℓ(x) since y = 0 gives
points of order two, which are in the ℓ-torsion.

http://www.craigcostello.com.au/pairings/scripts/2-1-21-DivisionPoly.txt

32 Chapter 2. Pairings

is degree 24, and gives three linear factors in Fq[x], all of which result in two

7-torsion points, giving 6 non-trivial torsion points in total: (72, 5), (72, 96),

(57, 57), (57, 44), (3, 43), (3, 58). Other division polynomials have roots in Fq,

but these roots will not give rise to points defined over Fq. For example, ψ11(x)

has 5 roots over Fq (13, 18, 19, 22, 63), but none of them give points in E(Fq),

meaning we will have to extend to E(Fq2) to collect any 11-torsion points. The

only division polynomials whose roots produce points defined over Fq are the

ψd(x) with d | 105. This generalises to imply that the only division polynomials

whose roots produce points defined over Fqn are ψd(x), where d | #E(Fqn).

We are now in a position to shed light on Schoof’s algorithm. Equation

(2.6) means that computing E(Fq) immediately reduces to computing the (much

smaller) trace of Frobenius, t. At the highest level, Schoof’s idea is to compute

tℓ ≡ t mod ℓ for enough co-prime ℓ’s to be able to uniquely determine t within

the interval −2
√
q ≤ t ≤ 2

√
q via the Chinese Remainder Theorem. Namely,

when
∏

ℓ tℓ ≥ 4
√
q, then we have enough relations to determine the correct t.

To compute tℓ for various primes ℓ, Schoof looked to consider Equation (2.9)

“modulo ℓ”, restricting the points (x, y) to come from the ℓ-torsion, and trying

to solve

(xq
2

, yq
2

)− [tℓ](x
q, yq) + [qℓ](x, y) = O, (2.10)

for tℓ, where qℓ ≡ q mod ℓ. The problem for general ℓ is, that since we do not

know the group order, we cannot explicitly use ℓ-torsion points in (2.10), nor

do we know if they are even defined over Fq, or where they are defined, so we

have to work with (2.10) implicitly. Namely, we restrict (2.10) to the ℓ-torsion by

working modulo ψℓ(x): we do not work with Equation (2.10) on E(Fq), but rather

in the polynomial ring Rℓ = Fq[x, y]/〈ψℓ(x), y2 − (x3 + ax + b)〉, where the size

of the polynomials f(x, y) we deal with in Rℓ are bounded by the degrees of the

division polynomials ψℓ(x). Even for very large prime fields Fq of cryptographic

size, the number of different primes used is small enough to keep this algorithm

very practical. For example, finding the group order of the curve defined over a

256-bit prime q in Example 2.1.15 would require solving (2.10) for the 27 primes

up to ℓ = 107, at which point the product of all the primes used exceeds 4
√
q. It is

not too difficult to deduce that the asymptotic complexity of Schoof’s algorithm

is O ((log q)8) (see [Sil09, Ch. XI.3] for details, and further improvements).

Example 2.1.22 (Magma script). Consider E/F13 : y2 = x3 + 2x + 1; we seek

http://www.craigcostello.com.au/pairings/scripts/2-1-22-SchoofSmall.txt

2.1. Elliptic curves as cryptographic groups 33

#E(F13). Schoof’s algorithm actually begins with ℓ = 3 [Sil09, Ch. XI.3];

so since 14 < 4
√

13 < 15, we only need to solve (2.10) with ℓ = 3 and ℓ =

5. For ℓ = 3, ψ3(x) = 3x4 + 12x2 + 12x + 9, so we work in the ring R3 =

Fq[x, y]/〈3x4 + 12x2 + 12x + 9, y2 − (x3 + 2x + 1)〉 with qℓ = 1, to find that

t3 = 0. For ℓ = 5, ψ5(x) = 5x12 + ... + 6x + 7, so we work in the ring R5 =

Fq[x, y]/〈5x12 + ...+6x+7, y2− (x3 +2x+1)〉 with qℓ = 3 to find that t5 = 1. For

both cases we had to compute [qℓ](x, y) in Rℓ using the affine formulas (2.4) and

(2.5), compute (xq, yq) and (xq
2
, yq

2
) in Rℓ, and then test incremental values of

tℓ until [tℓ](x
q, yq) (also computed with the affine formulas) satisfies (2.10). The

CRT with t ≡ 0 mod 3 and t ≡ 1 mod 5 gives t ≡ 6 mod 15, which combined

with −7 ≤ t ≤ 7 means t = 6, giving #E = q + 1− t = 8.

We finish this section by briefly discussing one more improvement to ECC

that will essentially bring the reader up to speed with major milestones that

contribute to the current state-of-the-art implementations. The technique was

introduced by Gallant, Lambert and Vanstone (GLV) [GLV01], and recently

generalised by Galbraith, Lin and Scott (GLS) [GLS11]. It exploits the existence

of an efficiently computable endomorphism ψ that allows us to instantly move

P to a large multiple ψ(P) = [λ]P of itself, so that (in the simplest case) the

scalar multiplication [m]P can be split into [m]P = [m0]P + [m1]ψ(P), where if

|m| ≈ r (the large subgroup order), then |m0|, |m1| ≈
√
r. The values m0 and

m1 are found by solving a closest vector problem in a lattice [GLV01, §4]. We

apply an example from the GLV paper (which was itself taken from Cohen’s book

[Coh96, §7.2.3]) that is actually exploiting a special case of the endomorphism

we described in Example 2.1.19.

Example 2.1.23 (Magma script). Let q ≡ 1 mod 4 be prime, E/Fq : y2 = x3 +ax,

and let i2 = −1. The map defined by ψ : (x, y) 7→ (−x, iy) and ψ : O 7→ O
is an endomorphism defined over Fq (ψ = ζ from 2.1.19). Let P ∈ E(Fq)

have prime order r, then ψ(Q) = [λ]Q for all Q ∈ 〈P 〉, and λ is the integer

satisfying λ2 = −1 mod r. We give a specific example: q = 1048589, E/Fq :

y2 = x3 + 2x with #E = 2r, where r = 524053; we further have i = 38993,

and λ = 304425. P = (609782, 274272) ∈ E has |〈P 〉| = r, so we can take any

element in 〈P 〉, say Q = (447259, 319154), and compute ψ(Q) = (−447259, i ·
319154) = (601330, 117670) = [304425](447259, 319154) = [λ]Q. Computing a

random multiple of Q, say [m]Q with m = 103803, can be done by decomposing

m into (in this case) (m0, m1) = (509, 262), and instead computing [m]Q =

http://www.craigcostello.com.au/pairings/scripts/2-1-23-GLV:GLS.txt

34 Chapter 2. Pairings

[m0]Q+[m1]ψ(Q). Here m is 17 bits, whilst m0 andm1 are both 9 bits. Doing the

scalar multiples [m0]Q and [m1]ψ(Q) separately would therefore give no savings,

but where the GLV/GLS methods gain a substantial speed-up is in merging the

doublings required in both of the multiplications by the “mini-scalars”, which

halves the number of doublings required overall; again, see [GLV01,GLS11] for

futher details.

2.1.3 Section summary

We defined the elliptic curve group law ⊕ via the chord-and-tangent method,

and discussed that elliptic curve groups are an attractive setting for discrete-log

based cryptosystems because of the relative security obtained for the sizes of the

fields they are defined over. We also exemplified many improvements in the con-

text of cryptographic implementations, where the fundamental operation (that

creates ECDLP instances) is computing large scalar multiples [m]P of P ∈ E.

Namely, we showed that group law computations in finite fields can be much

faster in projective coordinates, i.e. computing (X1 : Y1 : Z1) ⊕ (X2 : Y2 : Z2)

rather than (x1, y1) ⊕ (x2, y2), and that other (non-Weierstrass) curve models

also offer advantages. We gave an explicit equation for the number of points

in E(Fq), and briefly discussed Schoof’s polynomial-time algorithm that facil-

itates point counting on curves of cryptographic size. We also introduced the

notion of the endomorphism ring End(E) of E, and finished by showing that

non-trivial elements of End(E) can be used to further accelerate ECC. A reader

that is comfortable with the exposition in this section is equipped with many

of the tools required to tackle the vast literature in this field, and is some-

what up-to-date with the state-of-the-art ECC implementations. For example,

in the context of chasing ECC speed records, some authors have applied alter-

native projective coordinate systems to the Edwards model to give very fast

scalar multiplications [HWCD08], whilst others have investigated higher dimen-

sion GLV/GLS techniques (Example 2.1.23 above was 2-dimensional) to gain big

speed-ups [HLX12]; visit http://bench.cr.yp.to/supercop.html for compre-

hensive and up-to-date benchmarkings of a wide number of implementations that

are pushing ECC primitives to the limit.

Relaxed notation. Our last order of business before proceeding into the next

http://bench.cr.yp.to/supercop.html

2.2. Divisors 35

section is to relax some notation in order to agree with the rest of the literature.

Rather than writing “⊕” for the elliptic curve group law, from hereon we simply

use “+”. Similarly, for the inverse of the point P , we use −P instead of ⊖P .

2.2 Divisors

In this section we introduce some basic language and definitions from algebraic

geometry that are fundamental to the understanding of cryptographic pairing

computations. We continue with our example-driven approach and illustrate

each concept and definition as it arises. We will essentially just be expanding on

the more concise section found in Galbraith’s chapter [Gal05, §IX.2]. However, we

only focus on what we need in this thesis (to describe elliptic curve pairings), so

we refer any reader seeking a more general and thorough treatment to Galbraith’s

new book [Gal12, Ch.7-9]. Since our exposition targets the newcomer, we begin

by assuring such a reader that their persistence through the definitions and

examples will be amply rewarded. On becoming comfortable with the language

of divisors, one can immediately start to appreciate how pieces of the “pairings

puzzle” fit together very naturally, and might even enjoy feeling intuition behind

important theorems that would otherwise appear foreign.

The following statements apply to all curves C over any perfect field K and

its closure K (see [Sil09, p. 17, p. 1] for the respective definitions). However,

for now we place the discussion in our context and specialise to the case where

C is an elliptic curve E over a finite field K = Fq. Later in this section we

will expand to more general examples and statements in time to present the

important theorems in their full generality. A divisor D on E is a convenient

way to denote a multi-set of points on E, written as the formal sum

D =
∑

P∈E(Fq)

nP (P),

where all but finitely many nP ∈ Z are zero. The standard parentheses (·)
around the P ’s and the absence of square parentheses [·] around the nP ’s is

what differentiates the formal sum in a divisor from an actual sum of points (i.e.

using the group law) on E. The set of all divisors on E is denoted by Div
Fq

(E)

and forms a group, where addition of divisors is natural, and the identity is the

divisor with all nP = 0, the zero divisor 0 ∈ Div
Fq

(E). The degree of a divisor

36 Chapter 2. Pairings

D is Deg(D) =
∑

P∈E(Fq) nP , and the support of D, denoted supp(D), is the set

supp(D) = {P ∈ E(Fq) : nP 6= 0}.

Example 2.2.1 (Magma script). Let P,Q,R, S ∈ E(Fq). Let D1 = 2(P)− 3(Q),

and D2 = 3(Q) + (R) − (S), so that Deg(D1) = 2 − 3 = −1, and Deg(D2) =

3+1−1 = 3. The sum D1+D2 = 2(P)+(R)−(S), and naturally Deg(D1+D2) =

Deg(D1) + Deg(D2) = 2. The supports are supp(D1) = {P,Q}, supp(D2) =

{Q,R, S}, and supp(D1 +D2) = {P,R, S}.

Associating divisors with a function f on E is a convenient way to write down

the intersection points (and their multiplicities) of f and E. Let ordP (f) count

the multiplicity of f at P , which is positive if f has a zero at P , and negative if

f has a pole at P . We write the divisor of a function f as (f), and it is defined

as the divisor

(f) =
∑

P∈E(Fq)

ordP (f)(P).

Example 2.2.2 (Magma script). We have already seen examples of functions on

E in the previous section, namely the lines ℓ : y = λx + ν used in the chord-

and-tangent rule, and it is natural that we are really only interested in the

points of intersection of ℓ and E, which is exactly what the divisor (ℓ) tells

us. The chord ℓ in Figure 2.14 intersects E in P , Q and −(P + Q), all with

ℓ

•Q
•P

•−(P +Q)

Figure 2.14: (ℓ) = (P) + (Q) + (−(P +
Q))− 3(O).

ℓ

•P
•−[2]P

Figure 2.15: (ℓ) = 2(P)+(−[2]P)−3(O).

multiplicity 1, and (as we will discuss further in a moment) ℓ also intersects E

with multiplicity −3 at O, i.e. ℓ has a pole of order 3 at O. Thus, ℓ has divisor

(ℓ) = (P)+ (Q) + (−(P +Q))− 3(O). The tangent ℓ in Figure 2.15 intersects E

http://www.craigcostello.com.au/pairings/scripts/2-2-1-DivisorSuppSum.txt
http://www.craigcostello.com.au/pairings/scripts/2-2-2-DivChordTangent.txt

2.2. Divisors 37

with multiplicity 2 at P , with multiplicity 1 at −[2]P , and again with multiplicity

−3 at O, so in this case (ℓ) = 2(P) + (−[2]P)− 3(O). Notice that in both cases

we have Deg ((ℓ)) = 0.

The balance that occurred between the zeros and poles in Example 2.2.2 that

led to Deg((ℓ)) = 0 is not a coincidence. In fact, a fundamental result that lies at

the heart of the discussion is that this always happens: namely, for any function

f on E, we always have Deg((f)) = 0. An instructive proof of this result is in

Galbraith’s book [Gal12, Th. 7.7.1], but roughly speaking this property follows

from observing that the degree of the affine equation that solves for the zeros

of f on E matches the degree of the projective equation that determines the

multiplicity of the pole of f at O, i.e. the projective version of f is g/h where g

and h both have the same degree as f . We revisit Example 2.2.2 and illustrate

in this special case.

Example 2.2.3 (Magma script). We already know that three zeros (counting mul-

tiplicities) will always arise from substituting ℓ : y = λx + ν into E/Fq : y2 =

x3 + ax + b, but we have only considered ℓ on the affine curve E ∩ A2, where ℓ

has no poles. To consider ℓ on E at O = (0 : 1 : 0) (in P2(Fq)), we need to take

x = X/Z and y = Y/Z which gives (λX+νZ
Z

)2 = (X
Z

)3 + a(X
Z

) + b, for which we

clearly have a pole of order 3 when Z = 0.

The algebra between functions naturally translates across to the algebra be-

tween their divisors, so (fg) = (f) + (g) and (f/g) = (f) − (g), (f) = 0 if and

only if f is constant, and thus if (f) = (g), then (f/g) = 0 so f is a constant

multiple of g, which means that the divisor (f) determines f up to non-zero

scalar multiples.

Example 2.2.4 (Magma script). Let ℓ : y = λ1x+ν1 be the chord (through P and

Q) with divisor (ℓ) = (P) + (Q) + (−(P +Q))− 3(O), and let ℓ′ : y = λ2x+ ν2

be the tangent at R with divisor (ℓ′) = 2(R) + (−[2]R) − 3(O). The divisor of

the function ℓprod = ℓℓ′ is (ℓprod) = (ℓ) + (ℓ′) = (P) + (Q) + 2(R) + (−(P +

Q)) + (−[2]R) − 6(O). The divisor of ℓquot = ℓ/ℓ′ is (ℓquot) = (ℓ) − (ℓ′) =

(P) + (Q) + (−(P +Q))− 2(R)− (−[2]R). Notice that ℓquot does not intersect

E at O; projectifying ℓ/ℓ′ = y−λ1x+ν1
y−λ2x+ν2

gives Y−λ1X+ν1Z
Y−λ2X+ν2Z

, which does not give rise

to any zeros or poles at Z = 0. Suppose we wanted to depict the function ℓℓ′

on E, and we multiplied out (y− λ1x− ν1)(y− λ2x− ν2), substituted the y2 for

x3 + ax + b and wrote y = x3+ax+b+(λ1x+ν1)(λ2x+ν2)
(λ1+λ2)x+ν1+ν2

. It does not make sense to

try and depict this function since all the pictures we have used for illustrative

http://www.craigcostello.com.au/pairings/scripts/2-2-3-ProjDivs.txt
http://www.craigcostello.com.au/pairings/scripts/2-2-4-DivQuotient.txt

38 Chapter 2. Pairings

ℓ

•Q
•P

•−(P +Q)

ℓ′
•R

•
−[2]R

Figure 2.16: Two functions ℓ and ℓ′ on E.

purposes also show how the functions (on E) behave at points that are not on

E, where the substitution y2 = x3 + ax+ b is not permitted.

2.2.1 The divisor class group

We can now start introducing important subgroups of the group of divisors

Div
Fq

(E) on E. We temporarily drop the subscript, and write Div(E) as the

group of all divisors on E. The set of degree zero divisors {D ∈ Div(E) :

Deg(D) = 0} forms a proper subgroup, which we write as Div0(E) ⊂ Div(E).

If a divisor D on E is equal to the divisor of a function, i.e. D = (f), then

D is called a principal divisor, and the set of principal divisors naturally form

a group, written as Prin(E). We already know (from Example 2.2.3 and the

preceding discussion) that principal divisors have degree zero, but there are also

degree zero divisors that are not the divisors of a function, so the degree zero

subgroup is strictly larger than the principal divisors, i.e. Prin(E) ⊂ Div0(E).

There is, however, an extra condition on elements of Div0(E) that does allow us

to write an “if-and-only-if”: D =
∑

P nP (P) ∈ Div0(E) is principal if and only

if
∑

P [nP]P = O on E [Gal05, Th. IX.2]. We illustrate this statement, and the

relationship between the three groups

Prin(E) ⊂ Div0(E) ⊂ Div(E) (2.11)

in Example 2.2.5.

Example 2.2.5 (Magma script). Consider E/F103 : y2 = x3 + 20x + 20, with

points P = (26, 20), Q = (63, 78), R = (59, 95), S = (24, 25), T = (77, 84),

http://www.craigcostello.com.au/pairings/scripts/2-2-5-Principal.txt

2.2. Divisors 39

U = (30, 99) all on E. The divisor (S) + (T) − (P) ∈ Div(E) is clearly not in

the subgroup Div0(E), since it has degree 1; there are also infinitely many other

trivial examples. The divisor (P) + (Q) − (R) − (S) is in Div0(E), but is not

principal since P + Q − R − S = (18, 49) 6= O on E. Thus, a function f with

(f) = (P) + (Q) − (R) − (S) does not exist. On the other hand, the divisor

(P)+(Q)− (R)− (T) is principal, since it is degree 0 and P +Q−R−T = O on

E. Thus, there is some function f on E such that (f) = (P) + (Q)− (R)− (T);

it is f = 6y+71x2+91x+91
x2+70x+11

. The sum R+T on E is actually U , thus P +Q−U = O
on E, but this time there is no function with divisor (P) + (Q) − (U) because

the degree of this divisor is not zero; however, we can keep the sum on E as O
but manipulate the degree by instead taking the divisor (P) + (Q)− (U)− (O),

which must be in Prin(C), guaranteeing the existence of a function g with (g) =

(P)+(Q)−(U)−(O), namely g = y+4x+82
x+73

. Observe the difference between f and

g in projective space, where f = 6Y Z+71X2+91XZ+91Z2

X2+70XZ+11Z2 and g = Y+4X+82Z
X+73Z

. For f ,

the point at infinity O = (0 : 1 : 0) zeros both the numerator and denominator,

giving a zero and a pole which cancels out its contribution to (f), whilst for g,

the point at infinity only zeros the denominator, which is why O ∈ supp((g)),

whereas O 6∈ supp((f)).

Returning to the subscript notation for a moment, the three subgroups (and

other related groups) in Equation (2.11) are often accompanied by the field they

apply to, e.g. for a general field K, they are written as PrinK(E), Div0
K(E),

and DivK(E). Here DivK(E) ⊂ Div(E) is formally defined as the set of divisors

invariant under the action of Gal(K/K), where σ ∈ Gal(K/K) acts on D =
∑

P nP (P) to give Dσ =
∑

P nP (σ(P)), so that D ∈ DivK(E) if D = Dσ.

This is very natural in the contexts we consider, so we will continue on without

subscripts.

Before we define the divisor class group of E, we look at the important notion

of divisor equivalence in Div(E). We call the divisors D1 and D2 equivalent,

written as D1 ∼ D2, if D1 = D2 + (f) for some function f .

Example 2.2.6 (Magma script). Consider P = (57, 24), Q = (25, 37), R =

(17, 32) and S = (42, 35) on E/F61 : y2 = x3 + 8x + 1. The divisors D1 =

(P) + (Q) + (R) and D2 = 4(O) − (S) are equivalent as follows. The function

f : y = 33x2 + 10x+ 24, which intersects E at P , Q, R and S with multiplicity

1, and therefore has a pole of order 4 at infinity, has divisor (f) = (P) + (Q) +

(R) + (S)− 4(O), meaning D1 = D2 + (f), so D1 ∼ D2. Alternatively, if we did

http://www.craigcostello.com.au/pairings/scripts/2-2-6-ClassGroup.txt

40 Chapter 2. Pairings

not want to find f , we could have used D1−D2 = (P)+ (Q)+ (R)+ (S)−4(O),

which has degree zero, and computed that P + Q + R + S − [4]O = O on E,

which means D1 −D2 ∈ Prin(E), so that D1 −D2 = (f) for some function f .

The divisor class group, or Picard group, of E is defined as the quotient group

Pic0(E) = Div0(E)/Prin(E), (2.12)

i.e. the divisor class group is the group of all degree zero divisors modulo the

principal divisors on E. At first read, this notion of equivalence (modulo divisors

of functions) may seem a little abstract, but once we see it in action (particularly

in more general scenarios than elliptic curves), it becomes very natural. We will

first use this notion to describe the elliptic curve group law in terms of divisors,

following along the lines of Galbraith [Gal05, §IX.2].

Example 2.2.7 (Magma script). Referring back to Figure 2.5 (or Figure 2.6 in the

case that Q = P), the line ℓ joining P and Q has divisor (ℓ) = (P)+(Q)+(−R)−
3(O), whilst the vertical line v = x − xR has divisor (v) = (−R) + (R) − 2(O).

The quotient ℓ
v

has divisor (ℓ
v
) = (P) + (Q) − (R) − (O). Thus, the equation

R = P + Q on E is the same as the divisor equality (R) − (O) = (P) − (O) +

(Q) − (O) − (ℓ
v
), and the map of points to divisor classes P 7→ (P) − (O) is a

group homomorphism. To concretely connect this back to Equation (2.12), both

(R)− (O) and (P) + (Q)− 2(O) are clearly in Div0(E), but they represent the

same class in Pic0(E), because the divisor (l
v
) = (P) + (Q)− (R)− (O) (which

is their difference) is principal, and therefore zero in Pic0(E).

2.2.2 A consequence of the Riemann-Roch Theorem

The notion of equivalence allows us to reduce divisors of any size D ∈ Pic0(E)

into much smaller divisors. We will make this statement precise after an example,

but we must first define what we mean by “size”. A divisor D =
∑

P nP (P) is

called effective if nP ≥ 0 for all P ∈ E. The only divisor in Div0(E) that is

effective is the zero divisor. Thus, we define the effective part of a divisor D as

ǫ(D) =
∑

P nP (P), where nP ≥ 0. For example, the divisorD = (P)+(Q)−2(O)

is not effective, but the effective part is ǫ(D) = (P) + (Q). By the size of D, we

mean the degree of the effective part, so in our example, although Deg(D) = 0,

it is size 2, since Deg(ǫ(D)) = 2.

http://www.craigcostello.com.au/pairings/scripts/2-2-7-DivLines.txt

2.2. Divisors 41

Example 2.2.8 (Magma script). Consider the divisor D = (P1)+...+(P11)−11(O)

(with Deg(ǫ(D)) = 11) as an element of Pic0(E) on E/Fq : y2 = x3 + ax + b,

where the Pi are not necessarily distinct. To find a divisor that is equivalent

to D, we can construct function ℓ10 : y = a10x
10 + ... + a1x + a0 to interpolate

the distinct points in supp(D) with appropriate multiplicities. Substituting ℓ10

into E gives a degree 20 polynomial in x, the roots of which reveals the 20 affine

points of intersection (counting multiplicities) between ℓ10 and E. We already

know 11 of these points (the Pi’s), so let P ′1, ...P
′
9 be the other 9. An important

point to note is that these points are not necessarily defined over Fq. Since

(ℓ10) =
∑11

i=1(Pi) +
∑9

i=1(P
′
i) − 20(O) ∈ Prin(E), D′ = −(

∑9
i=1(P

′
i) − 9(O))

is a divisor equivalent to D in Pic0(E), i.e. D′ ∼ D. We can repeat this

process, interpolating the points in supp(D′) with a degree 8 polynomial ℓ8 :

y = a′8x
8 + ... + a′1x + a′0, which will intersect E (in the affine sense) 16 times,

giving 7 new intersection points, thereby finding a divisor D′′ =
∑7

i=1(P
′′
i)−7(O)

equivalent to D′, meaning D′′ ∼ D. It is easy to infer that the number of new

roots (maximum number of divisors in the consecutive supports) decreases each

time by two, so that in two more steps we will arrive at D̃ = (P̃1)+(P̃2)+(P̃3)−
3(O). We can interpolate the three points in supp(D̃) with a quadratic function

ℓ̃ : y = ã2x
2 + ã1x+ ã0 that clearly intersects E at one more affine point, say Q.

That is, (ℓ̃) = (P̃1) + (P̃2) + (P̃3) + (Q) − 4(O), and since (ℓ̃) ∈ Prin(E), then

ℓ̃

•P̃1

•
P̃2

•P̃3

•Q

•
R

ṽ

Figure 2.17: Reducing D̃ to (R)− (O) in Pic0(E).

(D̃) ∼ (O)− (Q). Lastly, the vertical line ṽ has divisor (ṽ) = (Q) + (R)− 2(O),

meaning (O)− (Q) ∼ (R)− (O), which gives (D̃) ∼ (R)− (O). To summarise,

we started with a divisor D = (P1) + ...(P11) − 11(O) which had size 11, and

http://www.craigcostello.com.au/pairings/scripts/2-2-8-Reduction.txt

42 Chapter 2. Pairings

reduced to the equivalent divisor (R)− (O) ∼ D in Pic0(E) which has size 1.

The above example illustrates a key consequence of one of the most central

theorems in our study: the Riemann-Roch theorem. To present the theorem in its

generality requires a few more definitions than we need for our exposition, so for

the full story we refer the reader to any of [Ful08, §8], [Sil09, §II.5], [Gal12, §8.7].

The important corollary we use is the following: for any curve C, there is a unique

minimal integer g, called the genus of C, such that any divisor D ∈ Pic0(C) is

equivalent to a divisor D′ with Deg(ǫ(D′)) ≤ g. Elliptic curves E are curves of

genus g = 1, meaning that every D ∈ Pic0(E) can be written as (P1) − (Q1);

this is why we were able to reduce the divisor in Example 2.2.8 to (R)− (O).

We will only be dealing with hyperelliptic curves in this thesis, since they

have proved most successful in cryptography. We will not be discussing them

until Chapter 7, but for now it aids one’s understanding to see where elliptic

curves fit in a slightly broader context. Assuming an odd characteristic field, a

general (“imaginary quadratic”) hyperelliptic curve of genus g is a generalisation

of an elliptic curve, which can be written as

Cg : y2 = x2g+1 + f2gx
2g + ... + f1x+ f0. (2.13)

Each divisor D ∈ Pic0(Cg) has a unique reduced representative of the form

(P1) + (P2) + ...+ (Pn)− n(O),

where n ≤ g, Pi 6= −Pj for all i 6= j, and no Pi satisfying Pi = −Pi appears more

than once [BBC+09, §2.3]. The following examples illustrate this in the case of

genus 2 and genus 3 respectively.

Example 2.2.9 (Magma script). A general (odd characteristic field) hyperelliptic

curve of genus g = 2 is given (via Equation (2.13)) as C2 : y2 = x5+f4x
4+...+f0;

we give a typical depiction in Figure 2.18. Suppose we have a divisor D =

(P1) + (P2) + (P3) + (P4) − 4(O) ∈ Pic0(C2), the affine support of which is

depicted in red.

The Riemann-Roch theorem guarantees a (unique) equivalent divisor of the

form (P ′1) + (P ′2) − 2(O). We find it by constructing the cubic function ℓ :

y = a3x
3 + ... + a0 that has 4 zeros corresponding to the effective part of D,

and therefore 4 poles at O. Substitution of ℓ into E reveals two more points of

intersection, P̄1 and P̄2, meaning (ℓ) = (P1)+(P2)+(P3)+(P4)+(P̄1)+(P̄2)−6(O).

http://www.craigcostello.com.au/pairings/scripts/2-2-9-Genus2.txt

2.2. Divisors 43

•P1 •P2

•P3

ℓ

•P4 •

•P ′1

P̄1

•

•P
′
2

P̄2

Figure 2.18: Reducing D =
∑4

i=1((Pi)− (O)) to D′ =
∑2

i=1((P
′
i)− (O)) ∼ D.

Since (ℓ) ∈ Prin(C2), then D = D− (ℓ) in Pic0(C2) meaning D ∼ 2(O)− (P̄1)−
(P̄2). As usual, we reverse the ordering (so the effective part is affine) by making

use of the vertical lines v1 and v2 with divisors (v1) = (P̄1) + (P ′1) − 2(O) and

(v2) = (P̄2) + (P ′2)− 2(O), to write 2(O)− (P̄1)− (P̄2) = 2(O)− (P̄1)− (P̄2) +

(v1) + (v2) = (P ′1) + (P ′2) − 2(O) = D′, meaning D ∼ D′. We have reduced a

divisor D with Deg(ǫ(D)) = 4 to a divisor D′ with Deg(ǫ(D′)) = 2 ≤ g. Note

that the points in the support of D′ are not necessarily defined over Fq. Also

note that trying to reduce D′ any further, say by running a line ℓ′ : y = λx + ν

through P ′1 and P ′2, will not work in general, since this line will intersect E in 3

more places, creating an unreduced divisor D′′ with Deg(ǫ(D′′)) = 3 > g.

Example 2.2.10 (Magma script). Consider a general genus 3 hyperelliptic curve

C3 : y2 = x7 + f6x
6 + ... + f0; a typical depiction is given in Figure 2.19, with a

vertically magnified Figure version in 2.20. Consider the divisor D =
∑6

i=1((Pi)−
(O)) ∈ Pic0(C3), the affine support of which is the red points in Figure 2.19.

We reduce D by determining the other points of intersection between the

quintic interpolator ℓ : y = a5x
5 + + a0 and C3, of which there are 4: P̄1, ..., P̄4

depicted in green on C3. (ℓ) = 0 in the divisor class group so
∑6

i=1((Pi)− (O))+
∑4

i=1((P̄i) − (O)) = 0, but the degree of the effective part of
∑4

i=1((P̄i) − (O))

is still larger than g, so obtaining the unique reduced divisor requires further

reduction. Namely, the cubic function ℓ̄ : y = ā3x
3 + ... + ā0 (depicted in

green) interpolates the four green points and (when substituted into C3) clearly

intersects C3 in another 3 affine points, depicted in blue. Thus,
∑4

i=1((P̄i) −
(O))+

∑3
i=1((P

′
i)−(O)) = 0, which means thatD ∼ D′ =

∑3
i=1((P

′
i)−(O)) in the

http://www.craigcostello.com.au/pairings/scripts/2-2-10-Genus3.txt

44 Chapter 2. Pairings

•P1

•P2•P3

•P4

•
P5

•P6

ℓ

•P̄1

•̄
P2

•P̄3

•P̄4

Figure 2.19: The first stage of reducing
D =

∑6
i=1((Pi)− (O)).

ℓ̄

•P̄1

•̄
P2

•P̄3

•P̄4

•P ′1
•P ′2

•P ′3

Figure 2.20: The second (and final)
stage of divisor reduction.

divisor class group, and D′ is the unique representative of D since Deg(ǫ(D′)) =

3 ≤ g.

We will not be discussing higher genus (g ≥ 2) curves until Chapter 7, where

among other things, we discuss the hyperelliptic analogy of the elliptic curve

chord-and-tangent rule. The reason the bulk of this thesis works only on elliptic

curves is because in the arena of pairing-based cryptography, the raw speed of

elliptic curves is currently unrivalled by their higher genus counterparts, and all

of the state-of-the-art implementations take place in the genus 1 setting.

The elliptic curve group law enjoys a (relatively speaking) very simple, almost

entirely elementary description, the only exception being the introduction of

projective space for the formal definition of O. Namely, we were able to describe

the chord-and-tangent rule without the language of divisors or the definition of

the divisor class group, which is not the case for other curves or general abelian

varieties. This is because of the one-to-one correspondence between the divisor

class group Pic0(E) and the points on E we briefly mentioned in Example 2.2.7,

i.e. the group homomorphism P 7→ (P) − (O) (see [Sil09, III.3.4] [Gal12, Th.

7.9.8, Th. 7.9.9]). Thus, in the elliptic curve setting, we can simply talk about

the group elements being points, rather than divisors. In higher genera this does

not happen; group elements are no longer points, but rather divisor classes in

Pic0(E) with multiple elements in their support (again, more on this in Chapter

2.2. Divisors 45

7).

Nevertheless, as we will see in the coming sections, the language of divisors

is absolutely essential in the description of elliptic curve pairings, where the

objective is to compute very large (degree) functions on E with prescribed divi-

sors, and then evaluate these functions at other divisors5. Evaluating a function

f ∈ Fq(E) at a divisor D =
∑

P∈E nP (P) has a natural definition, provided the

divisors (f) and D have disjoint supports:

f(D) =
∏

P∈E
f(P)nP . (2.14)

The stipulation of disjoint supports is clearly necessary for f(D) to be non-trivial,

since P ∈ supp((f)) implies P is a zero or pole of f on E, meaning f(P)nP would

be either zero or infinity respectively.

Example 2.2.11 (Magma script). Consider E/F163 : y2 = x3 − x − 2, with P =

(43, 154), Q = (46, 38), R = (12, 35) and S = (5, 66) all on E. Let ℓP,Q, ℓP,P

and ℓQ,Q be the lines joining P and Q, tangent to P , and tangent to Q on E

respectively, computed as ℓP,Q : y+93x+85, ℓP,P : y+127x+90, ℓQ,Q : y+13x+16.

Let D1 = 2(R) + (S), D2 = 3(R) − 3(S) and D3 = (R) + (S) − 2(O). We can

compute ℓP,Q(D1) = (yR + 93xR + 85)2(yS + 93xS + 85) = 122, or ℓP,P (D2) =

(yR + 127xR + 90)3/(yS + 127xS + 90)3 = 53, but we can not evaluate any of

these functions at D3, since O ∈ supp(D3), and O is also in the supports of

(ℓP,Q), (ℓP,P), (ℓQ,Q). Let ℓ′P,P = 17ℓP,P so that ℓ′P,P = 17y + 40x+ 63, and that

ℓ′P,P (D2) = (17yR + 40xR + 63)3/(17yS + 40xS + 63)3 = 53 = ℓP,P (D2). This is

true in general, i.e. that if g = cf for some constant c ∈ Fq, then f(D) = g(D)

if D has degree zero; the constant c will cancel out because Deg(D) = 0 implies

the numerator and denominator of f(D) (identically g(D)) have the same total

degree.

2.2.3 Weil reciprocity

We conclude our section on divisors (as Galbraith does [Gal05, §IX.2, Th. IX.3],

where he also gives a proof) with a central theorem that lies at the heart of many

of the proofs of cryptographic pairing properties.

5We will also see that we do not actually compute these very large functions explicitly before
evaluating them.

http://www.craigcostello.com.au/pairings/scripts/2-2-11-FunctionDivisor.txt

46 Chapter 2. Pairings

Theorem 2.1 (Weil reciprocity). Let f and g be non-zero functions on a curve

such that (f) and (g) have disjoint supports. Then f((g)) = g((f)).

Most of the functions on E that we have seen so far containO in their support.

In the first example (2.2.12) we will choose one of the functions such that this

is not the case, meaning that Theorem 2.1 can be applied instantly, whilst in

the second example we will show how to alleviate this problem when it arises by

modifying either of the functions.

Example 2.2.12 (Magma script). Let E/F503 : y2 = x3+1. Consider the functions
f : 20y+9x+179

199y+187x+359
= 0 and g : y + 251x2 + 129x+ 201 = 0 on E. The divisor of f

is (f) = 2(433, 98) + (232, 113)− (432, 27)− 2(127, 258), and the divisor of g is
(g) = (413, 369) + (339, 199) + (147, 443) + (124, 42)− 4(O). The supports are
clearly disjoint, so we first compute f((g)) as

(
20·369+9·413+179

199·369+187·413+359

)

·
(

20·199+9·339+179
199·199+187·339+359

)

·
(

20·443+9·147+179
199·443+187·147+359

)

·
(

20·42+9·124+179
199·42+187·124+359

)

(
20·1+9·0+179·0

199·1+187·0+359·0

)4 = 321.

Notice that f was cast into projective space as f : 20Y+9X+179Z
199Y +187X+359Z

for the evalu-
ation at O = (0 : 1 : 0) on the denominator. Now, for g((f)) we have

(
98 + 251 · 4332 + 129 · 433 + 201

)2 ·
(
113 + 251 · 2322 + 129 · 232 + 201

)

(258 + 251 · 1272 + 129 · 127 + 201)2 · (27 + 251 · 4322 + 129 · 432 + 201)
= 321.

Example 2.2.13 (Magma script). Let P,Q,R, S, T, U ∈ E, such that T = −(R+

S). Further let ℓ′ : y = (λ′x+ ν ′) be the tangent to E at P and ℓ : y = (λx+ ν)

be the line between R, S and T depicted in Figure 2.21, so that (ℓ′) = 2(P) +

(−[2]P)− 3(O) and (ℓ) = (R) + (S) + (T)− 3(O). Suppose we wish to compute

ℓ(ℓ′).

At this point it does not make sense to compute ℓ(ℓ′) (or ℓ′(ℓ)) since supp((ℓ))∩
supp((ℓ′)) = {O}. We can fix this by finding a divisor equivalent to, say (ℓ),

whose support is disjoint to supp((ℓ′)). This is easily done by picking a random

point U /∈ supp(ℓ′) and defining D = (R+U)+(S+U)+(T +U)−3(U). To see

that D ∼ ℓ, observe that (R+U)− (U) = (R)− (O) by writing down the divisor

of the quotient of the sloped and vertical lines in the addition of R and U on E.

Computing ℓ(ℓ′) is therefore the same as computing D(ℓ′), but this computation

would then require finding a new function on E with divisor D, so we can invoke

http://www.craigcostello.com.au/pairings/scripts/2-2-12-WeilRecip1.txt
http://www.craigcostello.com.au/pairings/scripts/2-2-13-WeilRecip2.txt

2.2. Divisors 47

•P
•−[2]P ℓ′

•
R

•
S

ℓ

•T

Figure 2.21: supp(ǫ((ℓ))) and supp(ǫ((ℓ′))).

Theorem 2.1 and instead compute ℓ′(D) as

ℓ′(D) =
(yR′ − (λ′xR′ + ν ′)) (yS′ − (λ′xS′ + ν ′)) (yT ′ − (λ′xT ′ + ν ′))

(yU − (λ′xU + ν ′))3 ,

where R′ = (xR′ , yR′) = R+U , S ′ = (xS′ , yS′) = S+U and T ′ = (xT ′ , yT ′) = T+U

are all such that R′, S ′, T ′ 6∈ Supp(ℓ′), so that ℓ′(D) is the same as ℓ(ℓ′) by Weil

reciprocity.

2.2.4 Section summary

We introduced the important concept of divisors on curves. We illustrated their

particular usefulness when used to describe functions on curves, since such a

function is well defined (up to constant) by its points of intersection with a

curve, and these are precisely what the divisor of the function encapsulates. We

defined the divisor class group of a (hyperelliptic) curve and discussed that for

the case of elliptic curves, there is a bijection between this group and the set of

points on the curve, so that we can simply talk about group elements as points

on E rather than divisors. We further illustrated several useful properties and

theorems that will be used throughout this thesis, but which also play a big role in

the realm of algebraic geometry, most notably the Riemann-Roch theorem and

Weil reciprocity. For the most part we specified the context to elliptic curves

over finite fields, but all of the results and properties discussed above apply to

arbitrary curves over arbitrary fields.

48 Chapter 2. Pairings

2.3 Elliptic curves as pairing groups

The purpose of this section is to define the elliptic groups that are used in

cryptographic pairings. We start with the most abstract definition [Sil10]: a

pairing is a bilinear map on an abelian group M taking values in some other

abelian group R

〈· , ·〉 : M ×M → R.

Suppose that the binary group operations in M and R are respectively denoted

by + and ∗. The bilinearity property of the above map (that classifies it a

pairing) means that, for x, y, z ∈M , we have

〈x+ y, z〉 = 〈x, z〉 ∗ 〈y, z〉,
〈x, y + z〉 = 〈x, y〉 ∗ 〈x, z〉.

That is, the map 〈·, ·〉 is linear in both inputs.

It is this bilinearity property that makes pairings such a powerful primitive

in cryptography. For our purposes we often find it advantageous to slightly relax

the condition that the two arguments in the map come from the same group, and

allow them to come from cyclic groups of the same order (which are therefore

isomorphic). Thus, throughout this thesis and in the abundance of literature

related to cryptography, the notation commonly used for the bilinear map is

e : G1 ×G2 → GT .

Our primary objective in this section is to define the two groups G1 and G2. The

definition of GT will come with the definition of the pairings in the next section.

Currently, the only known instantiations of pairings suitable for cryptography

are the Weil and Tate pairings on divisor class groups of algebraic curves, and in

the simplest and most efficient cases, on elliptic curves. Let Fqk be some finite

extension of Fq with k ≥ 1. The groups G1 and G2 are defined in E(Fqk), and

the target group GT is defined in the multiplicative group F∗
qk , so we usually write

G1 and G2 additively, whilst we write GT multiplicatively. Thus, for P, P ′ ∈ G1

2.3. Elliptic curves as pairing groups 49

and Q,Q′ ∈ G2, the bilinearity of e means that

e(P + P ′, Q) = e(P,Q) · e(P ′, Q),

e(P,Q+Q′) = e(P,Q) · e(P,Q′),

from which it follows that, for scalars a, b ∈ Z, we have

e([a]P, [b]Q) = e(P, [b]Q)a = e([a]P,Q)b = e(P,Q)ab = e([b]P, [a]Q). (2.15)

Even though we are yet to define G1, G2 or GT , and we are still a while away

from beginning the discussion of how the pairing e(P,Q) is computed, it helps

to immediately see the bilinearity property of pairings in context.

Example 2.3.1 (Magma script). Let q = 7691 and let E/Fq : y2 = x3+1. Suppose

Fq2 is constructed Fq2 = Fq(u) where u2 + 1 = 0. Let P = (2693, 4312) ∈ E(Fq)

and Q = (633u + 6145, 7372u + 109) ∈ E(Fq2). #E(Fq) = 22 · 3 · 641 and

#E(Fq2) = 24 · 32 · 6412 = #E(Fq)
2. P and Q were especially chosen (we will

see why later) to be in different subgroups of the same prime order r = |〈P 〉| =
|〈Q〉| = 641. The Weil pairing e(·, ·) of P and Q is e(P,Q) = 6744u + 5677 ∈
F∗q2 . In fact, r | #Fq2 , and e(P,Q) actually lies in a subgroup of Fq2, namely

the r-th roots of unity µr ∈ Fq2 , meaning that e(P,Q)r = 1. We are now in

a position to illustrate some examples of bilinearity. Thus, take any a ∈ Zr

and b ∈ Zr, say a = 403 and b = 135, and see that [a]P = (4903, 2231) and

[b]Q = (5806u+1403, 6091u+2370). We can compute e([a]P,Q) = 3821u+7025

and verify that e([a]P,Q) = 3821u + 7025 = (6744u + 5677)403 = e(P,Q)a; or

e(P, [b]Q) = 248u + 5 to see that e(P, [b]Q) = 248u + 5 = (6744u + 5677)135 =

e(P,Q)b; or e([a]P, [b]Q) = 2719u+ 2731 = (6744u+ 5677)561 = e(P,Q)a·b mod r.

Note that since e(P,Q) 6= 1 ∈ µr, e([a]P, [b]Q) will only be trivial if r | ab, which

implies r | a or r | b, meaning either (or both) of [a]P or [b]Q must be O. Thus,

e(P,Q) 6= 1 guarantees non-trivial pairings for non-trivial arguments; this is a

cryptographically necessary property that is called non-degeneracy.

Following Example 2.3.1 above, if a pairing e is bilinear, non-degenerate and

efficiently computable, e is called an admissible pairing.

Remark 2.3.1 (ECC vs. PBC). This informal remark is intended as a point of

clarification for PBC newcomers. Our confusion in the early days of digesting the

vast amount of literature was in part alleviated by one paragraph in Lynn’s thesis

that helped put the relationship between ECC and PBC in a wider context. The

http://www.craigcostello.com.au/pairings/scripts/2-3-1-WeilPairing.txt

50 Chapter 2. Pairings

only known admissible pairings that are suitable for cryptography are the Weil

and Tate pairings on algebraic curves. The fact that these pairings can be defined

on elliptic curves, which were already a highly attractive cryptographic setting

before pairings arrived on the scene, is, as Lynn puts it, a “happy coincidence”.

Cryptographers would have welcomed secure, admissible pairings in any suitable

form, but the fact that they were handed down from the realm of algebraic

geometry and are computed on elliptic curves makes them “even more attractive”

[Lyn07, §2.9].

In cryptography we need more properties than the three which constitute

an admissible pairing. The magic of the bilinearity property in (2.15) that gives

pairing-based primitives increased functionality over traditional primitives is use-

less unless discrete logarithm related problems within all three groups remain

intractable. Example 2.3.1 gives an admissible pairing, but because the toy sizes

of G1, G2 and GT clearly offer no resistance in regards to their respective dis-

crete logarithm problems, such a pairing instance would clearly never be used.

However, if the size r of all three groups was inflated to be much larger (say

512 bits), then the corresponding pairing could meet current security require-

ments and resist all known attacks. We present an alternative bilinear pairing

that meets the admissible requirements, but (regardless of how large the group

sizes are) is still not suitable for PBC. This example too, is taken from Lynn’s

thesis [Lyn07, §1.9].

Example 2.3.2 (Magma script). Let r > 1 be an integer. Suppose e : G1×G2 →
GT has G1 = GT = Z∗r and G2 = Z+

r−1, and is defined by e : (g, a) = ga. Notice

that for g, g′ ∈ G1, we have e(g · g′, a) = e(g, a) · e(g′, a), and for a, a′ ∈ G2

we have e(g, a + a′) = e(g, a) · e(g, a′). Although e is then clearly bilinear,

the discrete logarithm problem in G2 is easy, so the power of the bilinear map

becomes somewhat redundant. It is interesting to see, however, that we can still

state some of the classical problems in terms of the above pairing. For example,

if we set r to be a large prime, then the standard discrete logarithm problem

becomes: given g ∈ G1, h ∈ GT , find a ∈ G2 such that e(g, a) = h.

2.3.1 The r-torsion

We now turn our focus towards concretely defining the groups G1 and G2. Having

not yet seen how pairings are computed, we will need to make some statements

regarding what we need out of G1 and G2 that will really only tie together when

http://www.craigcostello.com.au/pairings/scripts/2-3-2-BilinearMap.txt

2.3. Elliptic curves as pairing groups 51

the definitions of the Weil and Tate pairings come in the following section. The

main such statement is that computing the pairing e(P,Q), in either the Weil

or Tate sense, requires that P and Q come from disjoint cyclic subgroups of the

same prime6 order r. At this point we can only hint towards why by referring

back to the stipulation of disjoint supports that was made in the statement of

Weil reciprocity (Theorem 2.1), and claiming that if P and Q are in the same

cyclic subgroup, then the pairing computation essentially fails because supports

of the associated divisors are forced to undesirably coincide.

We have already seen an example (2.3.1) of how we can find more than

one cyclic subgroup of order r, when E(Fq) itself only contains one subgroup.

Namely, we extended Fq to Fq2 and saw that E(Fq2)\E(Fq) had at least one other

subgroup of order r, where we were able to define Q and subsequently compute

e(P,Q). This is precisely the way we obtain two distinct order-r subgroups in

general: we find the smallest extension Fqk of Fq such that E(Fqk) captures more

points of order r. The integer k ≥ 1 that achieves this is called the embedding

degree, and it plays a crucial role in pairing computation. Also at the heart of

our discussion then, is the entire group of points of order r on E(Fq), called the

r-torsion, which is denoted by E[r] and defined as E[r] = {P ∈ E : [r]P = O}.
The following result (see [ACD+05, Th. 13.13] or [Sil09, Ch. III, Cor. 6.4(b)])

is quite remarkable; it tells us not only the cardinality of E[r], but its structure

too. If K is any field with characteristic zero or prime to r, we have

E[r] ∼= Zr × Zr. (2.16)

This means that in general, #E[r] = r2. Furthermore, since the point at infinity

O overlaps into all order r subgroups, Equation (2.16) implies that (for prime r)

the r-torsion consists of r+1 cyclic subgroups of order r. The following equivalent

conditions for the embedding degree k also tell us precisely where E[r] lies in its

entirety. We note that the embedding degree is actually a function k(q, r) of q

and r, but we just write k since the context is usually clear.

- k is the smallest positive integer such that r | (qk − 1);

- k is the smallest positive integer such that Fqk contains all of the r-th roots

of unity in Fq (i.e. µr ⊂ Fqk);

6There has been some work that exploits additional functionality if r is composite, e.g. an
RSA modulus n = pq, but we do not consider this much less common and much less efficient
setting – see [BGN05,Fre10,BRS11,Lew12] for more details.

52 Chapter 2. Pairings

- k is the smallest positive integer such that E[r] ⊂ E(Fqk).

If r‖#E(Fq) (i.e. r | #E(Fq) but r2 ∤ #E(Fq)), then the r-torsion subgroup in

E(Fq) is unique. In this case, k > 1 and (2.16) implies that Fqk is the smallest

field extension of Fq which produces any more r-torsion points belonging to

E(Fqk)\E(Fq). In other words, once the extension field is big enough to find one

more point of order r (that is not defined over the base field), then we actually

find all of the points in E[r] ∼= Zr×Zr. Scott [Sco04] describes this phenomenon

more poetically:

“... something rather magical happens when a curve with the same

equation is considered over the field Fqk for a certain value of k. The

group structure undergoes a strange blossoming, and takes on a new,

more exotic character.”

We also find Scott’s depiction of the torsion subgroup E[r] especially instructive

[Sco04, Sco07a], so we use it in the following examples and throughout the rest

of this section.

Example 2.3.3 (Magma script). Let q = 11, and consider E/Fq : y2 = x3 + 4.

E(Fq) has 12 points, so take r = 3 and note (from Equation (2.16)) that there

are 9 points in the 3-torsion. Only 3 of them are found in E(Fq), namely (0, 2),

(0, 9) and O, which agrees with the fact that the embedding degree k 6= 1,

since (q1 − 1) 6≡ 0 mod r. However, (q2 − 1) ≡ 0 mod r which means that the

embedding degree is k = 2, so we form Fq2 = Fq(u), with u2 + 1. Thus, we are

guaranteed to find the whole 3-torsion in E(Fq2), and it is structured as 4 cyclic

subgroups of order 3; O overlaps into all of them – see Figure 2.22. We point out

that although O is in the 3-torsion, it does not have order 3, but rather order 1

– points of order d | r are automatically included in the r-torsion. Take any two

points P,Q ∈ E[3] \ {O} that are not in the same subgroup, neither of which

are O. The translation of Equation (2.16) is that any other point in E[3] can be

obtained as [i]P + [j]Q, i, j ∈ {0, 1, 2}. Fixing P 6= O and letting j run through

0, 1, 2 lands P + [j]Q in the other three subgroups of E[3] (that are not 〈Q〉 –

this corresponds to P = O).

Example 2.3.4 (Magma script). In the rare case that r2 | #E, it is possible that

the entire r-torsion can be found over E(Fq), i.e. that the embedding degree

is k = 1. Consider E/F31 : y2 = x3 + 13, which has 25 points, so take r = 5.

Since r | q − 1, k = 1 and therefore E[r] ⊆ E(Fq); Figure 2.23 show the 6 cyclic

http://www.craigcostello.com.au/pairings/scripts/2-3-3-ThreeTorsionFlower.txt
http://www.craigcostello.com.au/pairings/scripts/2-3-4-FiveTorsionFlower.txt

2.3. Elliptic curves as pairing groups 53

Top left petal: (0, 2) and (0

2) and (0, 9)) and (8, 10i)

) and (2i + 7, 10i)Bottom right petal: (9i + 7, i) and (9

) and (9i + 7, 10i)Bottom left petal: (2i + 7, i) and (2

Top right petal: (8, i) and (8

Figure 2.22: The 3-torsion: E[3].

(1, 18) (12

18) (12, 6) (12

6) (12, 25) (1

25) (1, 13) (21, 6) (25

6) (25, 18) (21

18) (21, 25) (25

25) (25, 13)

20) (13, 28)

3) (23, 20) (13

11) (13, 3) (23

(23, 11) (13

28) (17, 11)

20) (15, 28) (17

3) (17, 20) (15

(15, 3) (17(5, 13) (5

13) (5, 18) (29

18) (29, 6) (29

6) (29, 25)

(3, 28) (22

28) (22, 11) (3

11) (3, 3) (22

3) (22, 20)

Figure 2.23: The 5-torsion: E[5].

subgroups of order 5 constituting E[5] ∼= Z5 × Z5. Of course, r2 | #E(Fq) does

not necessarily imply that E[r] ⊆ E(Fq), as points of order r2 are possible.

Before the next example, we introduce an important map that plays an in-

tricate role within the r-torsion subgroups. Since we are working over finite

extension fields of Fq, it is natural that we find a useful contribution from Galois

54 Chapter 2. Pairings

theory. Namely, the trace map of the point P = (x, y) ∈ E(Fqk) is defined as

Tr(P) =
∑

σ∈Gal(F
qk/Fq)

σ(P) =

k−1∑

i=0

πi(P) =

k−1∑

i=0

(xq
i

, yq
i

),

where π is the q-power Frobenius endomorphism defined in Equation (2.7). Ga-

lois theory tells us that Tr : E(Fqk) → E(Fq), so when r‖#E(Fq) (which will

always be the case from now on), then this map, which is actually a group ho-

momorphism, sends all torsion points into one subgroup of the r-torsion. We

illustrate in Example 2.3.5 before painting the general picture.

Example 2.3.5 (Magma script). We take q = 11 again, but this time with E/Fq :

y2 = x3+7x+2. E(Fq) has 7 points, so take r = 7. We already have E(Fq)[r], but

to collect E[r] in its entirety we need to extend Fq to Fqk . This time, the smallest

integer k such that (qk − 1) mod 7 ≡ 0 is k = 3, so we form Fq3 = Fq(u) with

u3+u+4 = 0, and we are guaranteed thatE[7] ⊂ E(Fq3). The entire 7-torsion has

(10, 7)

(8, 3)
(8, 8)

(10, 4)
(7, 3)

(7, 8)

(u1052, u924), (
), (u1264, u740), (
), (u481, u384), (
), (u1052, u259), (

), (u481, u1049)

(u1315, u485), (

), (u1165, u680), (

), (u845, u165), (

), (u1165, u15), (

), (u845, u830), (

), (u1315, u1150)

(u1301, u234), (

), (u932, u854), (

), (u604, u825), (), (u604, u160), (

), (u932, u189), (

), (u1301, u899)

(u423, u840), (

), (u801, u1114), (

), (u801, u449), (
), (u423, u175), (

), (u619, u562), (

), (u619, u1227)

(u159, u862), (

), (u663, u1260), (

), (u663, u595), (

), (u831, u284), (
), (u159, u197), (
), (u831, u949)

(u1161, u464), (
), (u419, u172), (

), (u643, u1225), (

), (u419, u837), (

), (u643, u560)

(u1011, u579), (

), (u1324, u1095), (

), (u942, u749), (

), (u942, u84), (), (u1324
, uu

430), (

), (u1011, u1244)

), (u1264 u75), (, u

), (u1161uu1129), (, u

Figure 2.24: The 7-torsion: E[7].

cardinality 49 and splits into 8 cyclic subgroups, as shown in Figure 2.23. To fit

the points in, we use the power representation of elements in Fq3 = Fq(u). In this

case, for P ∈ E(Fq3), the trace map on E is Tr(P) = (x, y)+ (xq, yq)+ (xq
2
, yq

2
).

For the unique torsion subgroup E(Fq)[r], the Frobenius endomorphism is trivial

(π(P) = P) so the trace map clearly acts as multiplication by k, i.e. Tr(P) =

[k]P . However, Tr will send every other element in the torsion into E(Fq)[r].

http://www.craigcostello.com.au/pairings/scripts/2-3-5-SevenTorsionFlower.txt

2.3. Elliptic curves as pairing groups 55

For example, for Q = (u481, u1049) (in the subgroup pointing upwards), we have

Tr(Q) = (8, 8); for R = (u423, u840) (the lower right subgroup), we have Tr(R) =

(10, 7); for S = (u1011, u1244), we have Tr(S) = (8, 3). There is one other peculiar

subgroup in E[7] however, for which the trace map sends each element to O. This

occurs in general, and we are about to see that this has important consequences

in PBC, but in our case this subgroup is the upper right group containing T =

(u1315, u1150), i.e. Tr(T) = O, so Tr : 〈T 〉 → {O}. One final point to note is that

the embedding degree k = 3 also implies that the (six) non-trivial 7-th roots of

unity are all found in Fq3 (but not before), i.e. µ7 \ {1} ∈ Fq3 \ Fq2.

We now give a general depiction of the r-torsion E[r]. To do so, we need to

discuss a few assumptions that apply most commonly to the scenarios we will

be encountering. Firstly, we assume that r‖#E(Fq) is prime and the embedding

degree k (with respect to r) is k > 1. Thus, there is a unique subgroup of order

r in E[r] which is defined over Fq, called the base-field subgroup; it is denoted

by G1. Since the Frobenius endomorphism π acts trivially on G1, but nowhere

else in E[r], then it can be defined as G1 = E[r] ∩ Ker(π − [1]). That is, G1 is

the [1]-eigenspace of π restricted to E[r]. There is another subgroup of E[r] that

can be expressed using an eigenspace of π. Referring back to Equation (2.8),

we can easily deduce that the other eigenvalue of π is q, and we define another

subgroup G2 of E[r] as G2 = E[r]∩Ker(π− [q]). It turns out that this subgroup

is precisely the peculiar subgroup we alluded to in Example 2.3.5. We call G2 the

trace zero subgroup, since all P ∈ G2 have Tr(P) = O; this result is attributed

to Dan Boneh [Gal05, Lemma IX.16]. We illustrate in Figure 2.25.

We can also map any P ∈ E[r] to the trace zero subgroup G2 via the anti-trace

map aTr : P 7→ P ′ = [k]P − Tr(P); showing that Tr(P ′) = O is a worthwhile

exercise for the reader.

To define our pairing, we need to specify the two groups G1 and G2: these

G’s are not to be confused with the G’s that stand for two specific r-torsion

subgroups, as G1 and G2 can be defined as any of the r + 1 groups in E[r].

As we will see however, there are many reasons we would like to specifically set

G1 = G1 and G2 = G2, but as we will also see there are reasons that we may

not want this to be the case. The existence of maps to and from the different

torsion subgroups affects certain functionalities that cryptographers desire in a

pairing-based protocol. These functionalities and the choices that are available

to us will be discussed in a moment, but we must first look at one last map that

56 Chapter 2. Pairings

=
TrG

1 =
E
[r] ∩

K
er(π

q −
[1])

(the
base

field
subgroup)

[r] ∩
K
er(π

(the
trace-zero

subgroup)

=
Tr1 =

E
[r] ∩

K
er(π

q −
[1])

(the
base

field
subgroup)

=
E
[r] ∩

K
er(π

q −
[q

(the
trace-zero

subgroup)

P
2 ψ

=
T
r

(t
h
e

b
as

e
fi
el
d

su
b
gr

ou
p
)

P2

ψ

= Tr

E

(th
e base

field
subgro

up)

ψ

=
T
r

G

P1

K
er
(

(t
he

ba
se

fie
ld

su
bg

ro
up

)

=
E
[r
] ∩

K
er
(π

q
−

[q
])

(t
he

tr
ac
e-
ze
ro

su
bg

ro
up

)

E
[r
] ∩

K
er
(π

q

(t
he

ba
se

fie
ld

su
bg

ro
up

)

G 2
=

E
[r
] ∩

K
er
(π

q
−

[q
])

(t
he

tr
ac
e-
ze
ro

su
bg

ro
up

)

P2

(t
he

ba
se

fie
ld

su
bg

ro
up

)

(t
he

tr
ac

e-
ze

ro
su

bg
ro

up
)

T
r
: G

2
→

{O
}

T
yp

e
2

am
m

en
d
s...

P

1
=

aT
r
(on

th
e

oth
er

arrow
)

Type 2 ammends...

P

1 =
aTr (on the other arrow)

Figure 2.25: The behaviour of the trace and anti-trace maps on E[r].

is available for a special class of curves.

Over prime fields, we call an elliptic curve E supersingular7 if #E(Fq) = q+1.

There are several other equivalent conditions [Sil09, Ch. V, Th. 3.1(a)], but the

most meaningful property for our purposes is that a supersingular curve comes

equipped with a distortion map φ; this is a non-(Fq-)rational map that takes

a point in E(Fq) to a point in E(Fqk) [Gal05, §IX.7.2]. A curve which is not

supersingular is called an ordinary curve, and it does not have such a map [Ver01,

Th. 11]. We give two examples of elliptic curves that are supersingular, and show

the behaviour of the distortion map φ within the torsion.

Example 2.3.6 (Magma script). Let q = 59, for which E/Fq : y2 = x3 + 1 is

supersingular, meaning #E(Fq) = q + 1 = 60, so take r = 5. The embedding

7This terminology should not be confused with the singular vs. non-singular definitions
illustrated in, and discussed above, Figures 2.1-2.4.

http://www.craigcostello.com.au/pairings/scripts/2-3-6-Supersingular1.txt

2.3. Elliptic curves as pairing groups 57

degree is k = 2, so we construct the extension as Fq2 = Fq(i), i
2 + 1 = 0.

ξ3 = 24i+ 29 is a cube root of unity, for which the associated distortion map is

φ : (x, y) 7→ (ξ3x, y). The fact that φ3 is equivalent to the identity map on E is

illustrated in Figure 2.26.

(18, 46) (18

46) (18, 13) (28

13) (28, 8) (28

8) (28, 51)

(36, 37i) (1

) (1, 36i) (36

) (36, 22i) (1

) (1, 23i)

(21i + 41, 37i) (35

) (35i + 29, 36i) (21

) (21i + 41, 22i) (35

) (35i + 29, 23i)

(38i + 41, 37i) (24

) (24i + 29, 36i) (38

) (38i + 41, 22i) (24

) (24i + 29, 23i)

(40i + 50, 46) (40

46) (40i + 50, 13) (36

13) (36i + 45, 8) (36

8) (36i + 45, 51)

(19i + 50, 46) (19

46) (19i + 50, 13) (23

13) (23i + 45, 8) (23

8) (23i + 45, 51)

φ φ

φ φ

φ φ

G1 G2

Figure 2.26: The distortion map φ : (x, y) 7→ (ξ3, y) on E[5].

Example 2.3.7 (Magma script). We take the same fields as the last example

(q = 59, Fq2 = Fq(i), i
2 + 1 = 0), but instead use the supersingular curve

E/Fq : y2 = x3 + x, which therefore also has #E(Fq) = 60. This time, the

distortion map is φ : (x, y) 7→ (−x, iy), from which it is easy to see that φ4 is

equivalent to the identity map on E. In Figure 2.27, we see that (in this case)

the distortion map does not always move elements out of their subgroup, but

rather restricting φ to, say the torsion subgroup generated by (28i+51, 25i+49),

gives an endomorphism on 〈(28i+ 51, 25i+ 49)〉. This hints towards one of the

major optimisations in pairing computations. Namely, in Section 2.1 we saw the

power of endomorphisms applied to ECC (specifically in Example 2.1.23), and in

Section 2.6 we are going to see that endomorphisms on torsion subgroups (like

the one above) can be used to great effect in PBC.

We summarise the available maps within the r-torsion. From any subgroup

http://www.craigcostello.com.au/pairings/scripts/2-3-7-Supersingular2.txt

58 Chapter 2. Pairings

G1 G2

(25, 30) (25

30) (25, 29) (35

29) (35, 28) (35

28) (35, 31)

(34, 30i) (34

) (34, 29i) (24

) (24, 28i) (24

) (24, 31i)

(31i, 22i + 37) (55

+ 37) (55i, 18i + 41) (31

+ 41) (31i, 37i + 22) (55

+ 22) (55i, 41i + 18)

(28i, 22i + 22)

+ 22), (4i, 41i + 41) (28

+ 41) (28i, 37i + 37) (4

+ 37) (4i, 18i + 18)

(28i + 51, 34i + 10) (31

+ 10) (31i + 8, 10i + 25) (31

+ 25) (31i + 8, 49i + 34) (28

+ 34) (28i + 51, 25i + 49)

(31i + 51, 34i + 49) (28

+ 49) (28i + 8, 49i + 25) (31

+ 25) (31i + 51, 25i + 10) (28

+ 10) (28i + 8, 10i + 34)

φ

φ

φ

φ

φ

φ

φ

φ

φ

φ

φ

φ

Figure 2.27: The distortion map φ : (x, y) 7→ (−x, iy) on E[5].

in E[r] that is not G1 or G2, we can always map into either G1 or G2 via the trace

and anti-trace maps respectively. If E is ordinary, we do not have computable

maps out of G1 or G2, otherwise if E is supersingular then the distortion map φ

is a homomorphic map out of these two subgroups.

2.3.2 Pairing types

As we mentioned before the previous two examples, the interplay between the

maps that are available in any given scenario gives rise to different functionalities

within a pairing-based protocol. Galbraith et al. [GPS08] were the first to identify

that all of the potentially desirable properties in a protocol cannot be achieved

simultaneously, and therefore classified pairings into certain types. There are now

four pairing types in the literature; Galbraith et al. originally presented three,

but a fourth type was added soon after by Shacham [Sha05]. The pairing types

2.3. Elliptic curves as pairing groups 59

essentially arise from observing the (practical) implications of placing G1 and

G2 in different subgroups of E[r]; in fact, it will soon become obvious that it is

always best to set G1 = G1, so the four types really are tied to the definition of

G2. The main factors affecting the classification are the ability to hash and/or

randomly sample elements of G2, the existence of an isomorphism ψ : G2 → G1

which is often required to make security proofs work (see [GPS08]), and (as

always) issues concerning storage and efficiency.

We follow the notation and descriptions of Chen et al. [CCS07], and describe

each pairing type in turn. The illustrations of each type are in Figures 2.28-2.31,

where the base-field group G1 = E[r] ∩Ker(π − [1]) with generator P1 is always

in the top left, whilst the trace-zero subgroup G2 = E[r] ∩ Ker(π − [q]) with

generator P2 is always in the top right. Let P1 be the generator of G1 and P2

be the generator of G2. It should be born in mind that the pairing e(P,Q) will

only compute non-trivially if P and Q are in different subgroups.

- Type 1 pairings. This is the scenario where E is supersingular, meaning we

can map out of G1 with φ. Thus, we set G1 = G2 = G1 (with P1 = P2 = P1).

When it comes time to compute a pairing e between say P and Q, we can

use φ to map Q to φ(Q) and define e(P,Q) = ê(P, φ(Q)), where ê is the

Weil or Tate pairing. There are no hashing problems (getting into E(Fq)[r]

requires a simple cofactor multiplication once we have hashed into E(Fq))

and we trivially have an isomorphism ψ from G2 to G1. The drawback

of Type 1 pairings comes when considering bandwidth and efficiency: as

we will see in Section 2.5, the condition that E be supersingular is highly

restrictive when it comes to optimising the speed of computing the pairing.

See Figure 2.28.

The remaining three cases are defined over ordinary elliptic curves, so (as we will

again see in Section 2.5) there are no restrictions imposed on the choice of elliptic

curve that lead to a loss of efficiency. For all these situations we have G1 = G1

and P1 = P1 (where hashing is relatively easy), so we only need to discuss the

choices for G2 and P2.

- Type 2 pairings. In this situation we take G2 to be any of the r−1 subgroups

in E[r] that is not G1 or G2. We have the map ψ : G2 → G1 as the trace

map Tr. We can also use the anti-trace map to move elements from G2

into G2 for efficiency purposes. The drawback is that there is no known

60 Chapter 2. Pairings

way of hashing into G2 specifically, or to generate random elements of G2.

The best we can do here is to specify a generator P2 ∈ G2 and generate

elements via scalar multiplications of P2, but this is often undesirable in

protocols since we cannot generate random elements without knowing the

discrete logarithm with respect to P2. See Figure 2.29.

- Type 3 pairings. In this scenario we take G2 = G2, the trace zero subgroup.

We can now hash into G2, at the very least by following a cofactor multi-

plication in E(Fqk) by the anti-trace map aTr : E[r]→ G2 (we will soon see

that there is a much more efficient way than this). The ironic drawback

here is that the only subgroup (besides G1) that we can hash into is also the

only subgroup we can not find a map out of. An isomorphism ψ : G2 → G1

trivially exists, we just do not have an efficient way to compute it. Thus,

security proofs that rely on the existence of such a ψ are no longer appli-

cable, unless the underlying problem(s) remains hard when the adversary

is allowed oracle access to ψ [SV07]. See Figure 2.30.

- Type 4 pairings. In this situation we take G2 to be the whole r-torsion

E[r], which is a group of order r2. Hashing into G2 is possible, but not very

efficient, however we cannot hash into the particular subgroup generated

by any specific P2 (i.e. G2 is not cyclic). Note that hashing into E[r] will

only give an element in G1 or G2 (which is undesirable in this case) with

negligibly low probability for large r. See Figure 2.31.

Prior to these different situations being brought to the attention of the PBC

community [GPS08], authors publishing pairing-based protocols were often in-

correctly assuming combinations of the associated properties that could not be

achieved in practice. The message to designers of pairing-based protocols was

that individual attention is required to prescribe the pairing type which best

suits any particular pairing instantiation. Whilst some authors have since fol-

lowed this advice closely, a good example being [CCS07, Tables 1-6], it still

seems most common that designers of pairing protocols take the easy way out

and assume a Type 1 pairing. This approach is somewhat justified, as it allows

cryptographers to avoid getting bogged down in the complex details of pairings

whilst still enjoying all their functional properties, but overall it is less than sat-

isfactory. The reason is that, at current levels of security, a Type 1 pairing is

orders of magnitude more costly than say, a Type 3 pairing. Nowadays all of

2.3. Elliptic curves as pairing groups 61

G1 G2

G2G1

φ

= Tr

P1 = P2 = P1

P = P

φ(P1)

Figure 2.28: Type 1 pairings.

G1 G2

P
2 ψ

=
T
r

(t
h
e

b
as

e
fi
el

d
su

b
gr

ou
p
)

1

G2

G1

P1 = P1

T
ype

2
am

m
ends...

P

1
=

aT
r
(on

the
other

arrow
)

= P2

Figure 2.29: Type 2 pairings.

G1 G2

1

G2G1

P1 = P1 P2 = P2

Figure 2.30: Type 3 pairings.

G1 G2

1

G2

1

G2

G2 G2

G2

1

G2

G1

P1 = P1

Figure 2.31: Type 4 pairings.

the state-of-the-art implementations of pairings take place on ordinary curves

that assume the Type 3 scenario, where the only potential8 sacrifice is the map

ψ : G2 → G1. Moreover, Chatterjee and Menezes [CM09] paid closer attention

to the role of ψ in protocol (proof) designs and essentially argue that there is

no known protocol/proof of security that cannot be translated into the Type 3

setting, claiming that Type 2 pairings (which are less efficient but have ψ) are

merely inefficient implementations of Type 3 pairings. We note that their claim

is only based on empirical evidence; they posed a counter-example as an open

problem. Nevertheless, the final message of Menezes’ related ECC2009 talk is

8The are some protocols whose security actually relies on the inability to compute ψ effi-
ciently.

62 Chapter 2. Pairings

that “protocol designers who are interested in the performance of their protocols

should describe and analyse their protocols using Type 3 pairings” [Men09].

For the remainder of this thesis then, and unless otherwise stated, the reader

should assume we are in the Type 3 scenario where G1 = G1 = E[r]∩Ker(π− [1])

and G2 = G2 = E[r] ∩Ker(π − [q]).

2.3.3 Twisted curves

Before moving our focus to the algorithm for computing pairings, we have one

final point to discuss; namely, the most efficient way to hash to, and represent

elements in G2. This discussion brings up the crucial notion of twists of elliptic

curves, which was first applied to pairings by Barreto et al. [BLS03]. We start

with an example.

Example 2.3.8 (Magma script). Recall the curve used in Example 2.3.3: q =

11, E/Fq : y2 = x3 + 4, #E(Fq) = 12 and r = 3. Excluding O, the trace

zero subgroup G2 consists of points defined in E(Fq2), namely (8, i) and (8, 10i).

Define the curve E ′/Fq : y2 = x3 − 4 and observe that the map Ψ−1 defined by

Ψ−1 : (x, y) 7→ (−x, iy) takes points from E to E ′, i.e. Ψ−1 : E → E ′. Restricting

Ψ−1 to G2 actually gives a map that takes elements defined over Fq2 to elements

defined over Fq: Ψ−1((8, i)) = (3, 10) and Ψ−1((8, 10i)) = (3, 1). The convention

is to write Ψ for the reverse map Ψ : E ′ → E which in this case is defined by

Ψ : (x′, y′) 7→ (−x′, y′/i) = (−x′,−y′i). We call E ′ a twist of E. Every twist

has a degree d, which tells us the extension field of Fq where E and E ′ become

isomorphic. For our purposes, d is also the degree of its field of definition of E ′

as a subfield of Fqk , i.e. a degree d twist E ′ of E will be defined over Fqk/d. In

this example, k = 2 and E ′ is defined over Fq, so we are using a d = 2 twist,

called a quadratic twist. Ordinarily, computations in the group G2 = G2 would

require (point doubling/addition) operations in the extension field Fq2, but we

can use Ψ−1 to instead perform these operations in E ′(Fq), before mapping the

result back with Ψ. Moreover, if we restrict the maps to E[r], then Ψ−1 takes

elements of the trace zero subgroup G2 of E and moves them to the base field

subgroup G′1 of E ′. Note that computing Ψ and Ψ−1 is essentially cost free.

We give a larger example that better illustrates the power of employing

twisted curves.

Example 2.3.9 (Magma script). Let q = 103 and consider E/Fq : y2 = x3 + 72,

which has #E(Fq) = 84, so let r = 7. The embedding degree (with respect to r) is

http://www.craigcostello.com.au/pairings/scripts/2-3-8-QuadraticTwist.txt
http://www.craigcostello.com.au/pairings/scripts/2-3-9-Twist:unTwist.txt

2.3. Elliptic curves as pairing groups 63

(8, i) (8

) (8, 10i)

(9i + 7, i) (9

) (9i + 7, 10i)

) (2i + 7, i)

(2i + 7, 10i) (2

(0, 2) (0

2) (0, 9)
Ψ

Ψ

−1

1) (3, 10)

(3, 1) (3 (0, 2i) (0

10) (9i + 4, 1)

(9i + 4, 10) (9 (2i + 4) (2

+ 4) (2i + 4, 10)

) (0, 9i)

Figure 2.32: E (left) and the quadratic twist E ′ (right).

k = 6, so form Fq6 = Fq(u) with u6 +2 = 0. The trace zero subgroup G2 = E[r]∩
Ker(π−[q]) is defined over Fq6 , and is generated by (35u4, 42u3) (see Figure 2.33).

We define the degree d = 6 sextic twist E ′ of E as E ′ : y2 = x3 +72u6, where the

(33, 19) (76

19) (76, 84) (9784) (97, 19) (97

19) (97, 84) (7684) (76, 19) (33

19) (33, 84)

(2
2u

5
+

49
u

4
+

91
u

3
+

59
u

2
+

20
u

+
67

,
37

,
37

u
5

+
38

u
4

+
32

u
3
+

16
u

2
+

46
u

+
28

)

(101u2, 8u3) (94

) (94u2, 95u3) (11

) (11u2, 8u3) (11

) (11u2, 95u3) (94

) (94u2, 8u3) (101

) (101u2, 95u3)

(99u5 + 66u4 + 49u3 + 8u2 + 90u + 44,
+ 44, 66u5 + 65u4 + 71u3 + 87u2 + 57u + 75)

First
group

top
left

then
clockw

ise

u)

(94u 2
, 95u

u
+

66u 4

+
49u 3

+
8u 2

+
90u

+
44

(18u 5

+
91u 4

+
37u 3

+
36u 2

+
7u

+
95, 37u

5

+
91u 4

+
49u 3

+
59u 2

+
96u

+
54u 3

+
8u 2

+
13

3

O
ther

sym
bols, the

left
hand

flower
is

u

)

(11u 2
, 95u 3

)

(94

+
65u 4

+
71u 3

+
87u 2

+
57u

+
75)

+
95, 37u 5

+
65u 4

+
32u 3

+
87u 2

+
46u

+
75)

5

+
68u 4

+
32u 3

+
15u 2

+
u
+

28)

+
32u 3

+
87u 2

+
46

3

(22
u

5
+

91
u

4
+

49
u

3
+

59
u

2
+

96
u

+
44

,

+
44

,54
u

5
+

68
u

4
+

32
u

3
+

15
u

2
+

u
+

28)

+
49

u

+
91

u
4 +

37
u
3 +

36
u

(2
2u
5 +

91
u
4 +

49
u
3 +

59
u
2 +

96
u

(4
u
5 +

66
u
4 +

54
u
3 +

8u
2 +

13
u
+

44
, 3
7u

5 +
49

u
4 +

12
u
3 +

59
u
2 +

83
u

O
th

er
sy
m
bo

ls,
th

e
le
ft

ha
nd

flo
we

r
is

th
e
rig

ht
ha

nd
flo

we
r
is

T
he

sy
m
bo

l o
n
th

e
ar
ro
w
s
(b

ac
k
an

d
fo
rt
h)

is

+
71

u
3

+
65

u
4 +

32
u
3 +

87
u
2

54
u
5 +

68
u
4 +

32
u
3 +

15
u
2 +

u
+

28
)

+
44

, 3
7u
5 +

65
u
4 +

32
u
3 +

87
u
2 +

46
u
+

75
)

u
5 +

65
u
4 +

32
u
3 +

87
u
2 +

46
u

(81u5 + 49u4 + 12u3 + 59u2 + 83u + 67,
, 37u5 + 65u4 + 32u3 + 87u2 + 46u + 75)

(9
3u

5
+

18
u

4
+

22
u

3
+

49
u

2
+

91
u

+
59

,

,
95

u
5

+
80

u
4

+
89

u
3
+

37
u

2
+

38
u

+
32

)

(35u4, 42u3) (65

) (65u4, 61u3) (3

) (3u4, 42u3) (3

) (3u4, 61u3) (65

) (65u4, 42u3) (35

) (35u4, 61u3)

(58u5 + 81u4 + 99u3 + 66u2 + 49u + 8,
, 8u5 + 23u4 + 14u3 + 66u2 + 65u + 71)

First
group

top
left

then
clockw

ise

+
22u)

(65u 4
, 61u

(58u 5

+
81u 4

+
99u 3

+
66u 2

+
49u

+
8

(48u 5

+
4u 4

+
18u 3

+
91u 2

+
37u

+
36, 8u

5

+
81u 4

+
22u 3

+
91u 2

+
49u

+
59

4

+
4u 3

+
66u 2

+
54

3

+
89u

)

(3u 4
, 61u 3

)

(65

+
23u 4

+
14u 3

+
66u 2

+
65u

+
71)

+
36, 8u 5

+
80u 4

+
14u 3

+
37u 2

+
65u

+
32)

5

+
51u 4

+
89u 3

+
54u 2

+
68u

+
32)

+
14u 3

+
37u 2

+
65+

37

(55
u

5
+

81
u

4
+

22
u

3
+

91
u

2
+

49
u

+
59

,

,44
u

5
+

51
u

4
+

89
u

3
+

54
u

2
+

68
u

+
32)

u

+
18

u
3 +

91
u

u
+

81
u
4 +

22
u
3 +

91
u
2 +

49
u

(4
5u
5 +

81
u
4 +

4u
3 +

66
u
2 +

54
u
+

8,
8u

5 +
18

u
4 +

81
u
3 +

49
u
2 +

12
u+

14
u
3 +

37
u

44
u
5 +

51
u
4 +

89
u
3 +

54
u
2 +

68
u

+
8,
8u
5 +

80
u
4 +

14
u
3 +

37
u
2 +

65
u
+

32
)

5 +
80

u
4 +

14
u
3 +

37
u
2 +

65
u
+

32
)

(10u5 + 18u4 + 81u3 + 49u2 + 12u + 59, 8
+ 59, 8u5 + 80u4 + 14u3 + 37u2 + 65u + 32)

(101, 8) (94

8) (94, 95) (1195) (11, 8) (11

8) (11, 95) (9495) (94, 8) (101

8) (101, 95)
Ψ

Ψ

−1

Figure 2.33: E (left) and the (correct) sextic twist E ′ (right)

back-and-forth isomorphisms are defined as Ψ : E ′ → E, (x′, y′) 7→ (x′/u2, y′/u3)

and Ψ : E → E ′, (x, y) 7→ (u2x, u3y). Observe that Ψ−1 maps elements in

G2 ∈ E(Fqk)[r] = E(Fq6)[r] to elements in E ′(Fqk/d)[r] = E ′(Fq)[r]. Thus, when

performing group operations in G2 = G2, we gain the advantage of working over

64 Chapter 2. Pairings

Fq instead of Fq6 , a dramatic improvement in computational complexity.

In both Example 2.3.8 and Example 2.3.9 above, we had k = d, so the twist

allowed us to work in the base field Fq, rather than Fqk . In the general case

though, the twist will pull computations back into the subfield Fqk/d of Fqk .

For example, if the embedding degree was k = 12, a quadratic twist (d = 2)

would allow computations in G2 to be performed in Fq6 rather than Fq12 , whilst

a sextic twist (d = 6) would allow us to instead work in Fq2 . Thus, we would

clearly prefer the degree d of the twist to be as high as possible. As it turns

out, d = 6 is the highest degree available on elliptic curves, where the only

possibilities are d ∈ {2, 3, 4, 6} [Sil09, Prop. X.5.4]. For d > 2, we also require

special subclasses of curves that depend on d, so following [Sil09, Prop. X.5.4]

(see also [HSV06, Prop. 6, Prop. 8]) we describe all four cases individually. In

the general case according to our context, a twist of E : y2 = x3 + ax + b is

given by E ′ : y2 = x3 + aω4x+ bω6, with Ψ : E ′ → E : (x′, y′) 7→ (x′/ω2, y′/ω3),

ω ∈ Fqk . We can only achieve specific degrees d through combinations of zero

and non-zero values for a and b.

- d = 2 quadratic twists. Quadratic twists are available on any elliptic curve,

so if E/Fq : y2 = x3 + ax+ b, then a quadratic twist is given by E ′/Fqk/2 :

y2 = x3 + aω4x + bω6, with ω ∈ Fqk but ω2 ∈ Fqk/2 . Since ω3 ∈ Fqk ,

the isomorphism Ψ : E ′ → E defined by Ψ : (x′, y′) 7→ (x′/ω2, y′/ω3) will

take elements in E ′(Fqk/2) to elements in E(Fqk), whilst Ψ−1 will do the

opposite.

- d = 3 cubic twists. Degree d = 3 twists can only occur when a = 0, so if

E/Fq : y2 = x3 + b, then E ′/Fqk/3 : y2 = x3 + bω6, with ω3, ω6 ∈ Fqk/3, but

ω2 ∈ Fqk \ Fqk/3 . Thus, the isomorphism Ψ : E ′ → E (defined as usual)

will take elements in E ′(Fqk/3) to elements in E(Fqk), whilst Ψ−1 does the

opposite.

- d = 4 quartic twists. Degree d = 4 twists are available when b = 0, so if

E/Fq : y2 = x3 + ax, then E ′/Fqk/4 : y2 = x3 + aω4x, with ω4 ∈ Fqk/4,

ω2 ∈ Fqk/2 and ω3 ∈ Fqk \Fqk/2. Thus, Ψ will move elements in E ′(Fqk/4) up

to elements in E(Fqk), whilst Ψ−1 will move elements from E(Fqk) down to

E ′(Fqk/4).

- d = 6 sextic twists. Sextic twists are only available when a = 0, so if

E/Fq : y2 = x3+b, then E ′/Fqk/6 : y2 = x3+bω6, with ω6 ∈ Fqk/6, ω3 ∈ Fqk/3

2.3. Elliptic curves as pairing groups 65

and ω2 ∈ Fqk/2. Thus, Ψ pushes elements in E ′(Fqk/6) up to E(Fqk), whilst

Ψ−1 pulls elements from E(Fqk) all the way down to E ′(Fqk/6).

We make the remark that, for our purposes, a specific twist can only be ap-

plied if the curve is of the corresponding form above and the embedding degree

k has d as a factor. Thus, attractive embedding degrees are those which have

any of d = {2, 3, 4, 6} as factors, but preferably d = 4 or d = 6 for increased

performance. This will be discussed in detail in Section 2.5. Very fortunately,

we will also see in that section that almost all of the popular techniques for con-

structing curves suitable for pairing computation give rise to curves of the form

y2 = x3 + b or y2 = x3 + ax, which facilitate the high-degree twists above.

2.3.4 Section summary

We started by discussing that cryptographic pairings are bilinear maps from two

elliptic curve groups to a third (finite field) group e : G1 × G2 → GT . We then

claimed that, in general, to define a useful pairing on G1 and G2, we must be

able to define more than one subgroup in the r-torsion of E, where the most

cryptographically useful case is that r is a large prime. We then defined the

embedding degree k of E (with respect to r), and showed that we must extend

the field Fq to Fqk in order to find more than one such subgroup. In fact, we

showed that E(Fqk) actually contains the entire r-torsion, which has cardinality

r2 and consists of r+1 cyclic subgroups of order r. These r+1 subgroups (and the

existence of maps between them) facilitate several choices for the definitions of G1

and G2, which gives rise to four pairing types. We argued that the most popular

pairing type is a Type 3 pairing, which sets G1 and G2 as the two eigenspaces of

the Frobenius endomorphism, namely G1 = G1 = E[r] ∩Ker(π − [1]) is the base

field subgroup, and G2 = G2 = E[r] ∩Ker(π − [q]) is the trace zero subgroup.

The definitions of the Weil and Tate pairings in the next section inherently

justify the claim we made in this section that, in general, the arguments P and

Q in the pairing e(P,Q) must come from distinct torsion subgroups.

66 Chapter 2. Pairings

2.4 Miller’s algorithm for the Weil and Tate

pairings

This section defines the Weil and Tate pairings and presents Miller’s algorithm

for computing them. As usual, we state the definitions in our context (on elliptic

curves over finite fields), but the more general definitions are analogous (see

[Sil09,Gal05]).

Notation. In this section we will use the notation wr(P,Q) for the (order r)

Weil pairing of P and Q and tr(P,Q) for their (order r) Tate pairing, as this

will help when discussing differences and relationships between them. After this

chapter though, it will always be clear which pairing we mean and what the value

of r is (the largest prime factor of #E(Fq)), so we will return to the notation

most commonly seen in the literature and simply write e(P,Q).

Both pairings make use of a special case of the following fact we recall from

Section 2.2: a divisor D =
∑

P nP (P) is principal (i.e. the divisor of a function)

if and only if
∑

P nP = 0 and
∑

P [nP]P = O on E. For any m ∈ Z and P ∈ E,

it follows that there exists a function fm,P with divisor

(fm,P) = m(P)− ([m]P)− (m− 1)(O), (2.17)

where we note that for m = 0, one can take f0,P = 1 with (f0,P) the zero divisor.

Thus, if P ∈ E[r], then fr,P has divisor

(fr,P) = r(P)− r(O). (2.18)

Observe that (fm+1,P) − (fm,P) = (P) + ([m]P) − ([m + 1]P) − (O), which is

exactly the divisor of the function ℓ[m]P,P/v[m+1]P , where ℓ[m]P,P and v[m+1]P are

the sloped and vertical lines used in the chord-and-tangent addition of the point

[m]P and P (see Figure 2.34). This means we can build fm+1,P from fm,P via

fm+1,P = fm,P · ℓ[m]P,P

v[m+1]P
.

Example 2.4.1 (Magma script). Let q = 23, and consider E/Fq : y2 = x3 +

17x + 6 which has #E(Fq) = 30, and which has P = (10, 7) as a point of

order 5. Thus, we are guaranteed the existence of a function f5,P on E with

divisor (f5,P) = 5(P)− 5(O). Starting with m = 2, we will build f5,P by using

fm+1,P = fm,P · ℓ[m]P,P

v[m+1]P
(note that (f1,P) is the zero divisor). The function f2,P

http://www.craigcostello.com.au/pairings/scripts/2-4-1-f5P.txt

2.4. Miller’s algorithm for the Weil and Tate pairings 67

ℓ[m]P,P

•[m]P

•
P

•−[m+ 1]P

•[m+ 1]P

v[m+1]P

Figure 2.34:
(
ℓ[m]P,P

v[m+1]P

)

= (ℓ[m]P,P)− (v[m+1]P) = (P) + ([m]P)− ([m+ 1]P) − (O).

with divisor (f2,P) = 2(P) − ([2]P) − (O) is the tangent line lP,P at P divided

by the vertical line v[2]P through [2]P , which is f2,P = y+2x+19
x+16

. We compute the

function f3,P as f3,P = f2,P · lP,[2]P

v[3]P
, where lP,[2]P is the chord through P and [2]P

and v[3]P is the vertical line at [3]P . Thus, f3,P = y+2x+19
x+16

· y+x+6
x+16

= 3y+x2+9x+19
x+16

.

Similarly, multiplication by the chord lP,[3]P through P and [3]P and division by

the vertical line v[4]P through [4]P will advance us from f3,P to f4,P , as f4,P =

f3,P · lP,[3]P

v[4]P
= 3y+x2+9x+19

x+16
· y+2x+19

x+13
= (x+22)y+5x2+3x+5

x+13
; this function has divisor

(f4,P) = 4(P) − (4P) − 3(O). The last update we require is the function with

divisor (P)+ (4P)− (5P)− (O), which would ordinarily be the quotient of lines

in the addition of P and 4P , but since P has order 5, we know that P = −4P ,

so this function actually has divisor (P) + (−P)− 2(O). Thus, our last update

to the function is simply the vertical line at P , i.e. (x−10), which gives the final

function as f5,P = (x − 10) · (x+22)y+5x2+3x+5
x+13

= (x + 22)y + 5x2 + 3x + 5; this

function has a zero of order 5 on E at P , and a pole of order 5 on E at O.

2.4.1 The Weil pairing

For a point P ∈ E[r], the function fr,P with divisor r(P)− r(O) is at the heart

of both the Weil and Tate pairing definitions.

Definition 2.2 (The Weil pairing (over finite fields)). Let P,Q ∈ E(Fqk)[r] and

let DP and DQ be degree zero divisors with disjoint supports such that DP ∼ (P)−
(O) and DQ ∼ (Q) − (O). There exist functions f and g such that (f) = rDP

and (g) = rDQ. The Weil pairing wr is a map

wr : E(Fqk)[r]× E(Fqk)[r]→ µr,

68 Chapter 2. Pairings

defined as

wr(P,Q) =
f(DQ)

g(DP)
.

Among other properties, the Weil pairing is bilinear and non-degenerate. We

refer the reader to [Sil09, Ch. III, Prop. 8.1-8.2] for the proofs and full list of

properties.

An important point to note is that we can not simply define the Weil pairing

as wr(P,Q) = fr,P (DQ)/fr,Q(DP), because (fr,P) = r(P) − r(O) and (fr,Q) =

r(Q)−r(O); this corresponds to the divisorsDP = (P)−(O) andDQ = (Q)−(O),

which does not adhere to the requirement thatDP andDQ have disjoint supports.

Example 2.4.2 (Magma script). Let q = 23, and consider E/Fq : y2 = x3 − x,
which (is supersingular and therefore) has #E(Fq) = q + 1 = 24. The point

P = (2, 11) is a point of order r = 3 and the embedding degree with respect to r is

k = 2. Take Fq2 = Fq(i) with i2+1 = 0, from which we obtain a pointQ of order 3

(that is not in 〈P 〉) as Q = (21, 12i), which is actually in the trace zero subgroup,

i.e. π(Q) = [q]Q. Suppose we wish to compute the Weil pairing wr(P,Q) of P and

Q. For illustrative purposes, we will start by computing fr,P and fr,Q and then

updating according to the above paragraph. Following the same technique as the

last example, we get fr,P and fr,Q as fr,P = y+11x+13 and fr,Q = y+11ix+10i,

which have divisors (fr,P) = 3(P)− 3(O) and (gr,P) = 3(Q)− 3(O) respectively.

We need to find divisors DP and DQ that have distinct supports but which are

respectively equivalent to (P) − (O) and (Q) − (O). Note that only one of

these divisors needs to be updated (so that its support does not contain O), but

we will update both in the name of symmetry. Thus, take two more (random)

points in E(Fq2) as R = (17i, 2i + 21) and S = (10i + 18, 13i + 13), and set

DP = (P + R) − (R) and DQ = (Q + S) − (S). We find f as a function

with divisor DP and g as a function with divisor DQ as f = fr,P/(ℓP,R/vP+R)3

and g = gr,Q/(ℓQ,S/vQ+S)
3 respectively, where ℓP,R/vP+R is the quotient of the

chord between P and R and the vertical line through P + R (and similarly for

ℓQ,S/vQ+S). We can now compute the Weil pairing according to Definition 2.2

http://www.craigcostello.com.au/pairings/scripts/2-4-2-WeilPairing1.txt

2.4. Miller’s algorithm for the Weil and Tate pairings 69

as

wr(P,Q) = f(DQ)/g(DP)

=
f(Q+ S) · g(R)

f(S) · g(P +R)
.

= 15i+ 11.

Observe that (15i + 11)3 = 1 so wr(P,Q) ∈ µr. Repeating the whole pro-

cess with [2]P instead gives wr([2]P,Q) = 8i + 11 = wr(P,Q)2, or with [2]Q

gives wr(P, [2]Q) = 8i + 11 = wr(P,Q)2, or with both [2]P and [2]Q gives

wr([2]P, [2]Q) = 15i+11 = wr(P,Q)4 = wr(P,Q), which is about as much of the

bilinearity of wr that we can illustrate in this toy example.

2.4.2 The Tate pairing

The formal definition of the Tate pairing requires that only one argument comes

from the r-torsion. For our purposes, the other argument can be any point of

E(Fqk), but we will soon see that in general it is still advantageous to choose both

points from (distinct subgroups in) the r-torsion. In order to define the Tate

pairing correctly though, we need to properly define the groups involved. We

assume the standard setting that is of most interest to us: k > 1, r‖#E(Fq) and,

since there are r2 points in the subgroup E(Fqk)[r], we usually have r2‖#E(Fqk).

Thus, let h = #E(Fqk)/r2 be the cofactor that sends points in E(Fqk) to points

in E(Fqk)[r]. Let rE(Fqk) be the coset of points in E(Fqk) defined by

rE(Fqk) = {[r]P : P ∈ E(Fqk)}.

The number of elements in rE(Fqk) is h and it contains O; from here we will

simply denote this coset as rE. Following [Sco04], we can obtain another distinct

coset of E(Fqk) by adding a random element R (not in E[r]) to each element

of rE. In this way we can obtain precisely r2 distinct, order h cosets. The

quotient group E/rE is the group whose elements are these cosets. We note

that elements belonging to each coset do not have the same order, nor do they

form a (sub)group. In the quotient group E/rE, points belonging to the same

coset (group element) can be used to represent the coset. Any two points in the

same coset differ from one another by an element in rE, so one can think of

70 Chapter 2. Pairings

E/rE as the set of equivalence classes of points in E(Fqk) under the equivalence

relation P1 ≡ P2 if and only if P1 − P2 ∈ rE [Gal05, IX.3].

Example 2.4.3 (Magma script). Let q = 5, and consider E/Fq : y2 = x3−3, which

has #E(Fq) = 6. Thus, taking r = 3 gives k = 2, so take Fq2 = Fq(i), where

i2 + 2 = 0. Further, note that #E(Fq2) = 36 = hr2, so h = 4, and thus taking

rE = {[3]P : P ∈ E(Fq2)} gives rE = {O, (3i + 4, 0), (2i + 4, 0), (2, 0)}, with

#rE = h. Each of the other 8 cosets in E/rE are shown in Figure 2.35, where

we importantly note that each coset has a unique representative element that lies

in the r-torsion (see Figure 2.36). Consider the coset containing P1 = (2i, 4i+3)

(2i, 4i + 3) (4

+ 3) (4, 1)

(3, 2)

(3i, i + 3)

(i + 2, i) (1

) (1, i)

(0, 3i)

(4i + 2, i)

(2i + 1, 2)

(i + 1, i + 3) (4

+ 3) (4i + 4, 4i + 3) (

+ 3) (i + 3, 1)

(i + 1, 4i + 2) (4

(i + 3, 4)

(2i + 1, 3)

+ 2) (4i + 4, i + 2)

(1, 4i) (4

) (4i + 2, 4i) (

) (0, 2i)

) (i + 2, 4i)

(3i, 4i + 2) (2

+ 2) (2i, i + 2)

(3, 3)

(4, 4)

(3i + 1, 3)

3) (4i + 3, 4) (4

4) (4i + 1, i + 2) (

+ 2) (i + 4, 4i + 2)

(4i + 1, 4i + 3) (4

+ 3) (4i + 3, 1)

(3i + 1, 2)

(i + 4, i + 3)

(3i + 4, 0) (2

0) (2i + 4, 0)

(O)

(2, 0)

Figure 2.35: The r2 cosets in the quo-
tient group E(Fqk)/rE(Fqk).

(2i + 1, 3) (2

3) (2i + 1, 2)

(3, 3) (3

3) (3, 2)

(3i + 1, 2) (3

2) (3i + 1, 3)

(0, 3i) (0

) (0, 2i)

Figure 2.36: The r-torsion, where each
P ∈ E[r] is in a distinct coset of E/rE.

P2 = (4, 1), P3 = (3, 2) and P4 = (3i, i + 3)}. All of the non-trivial pairwise

differences are (defined by) P1−P2 = P3−P4 = (3i+4, 0), P1−P3 = P2−P4 =

(2i+ 4, 0) and P1 − P4 = P2 − P3 = (2, 0), which are all in rE.

For our purposes, E[r] and the quotient group E/rE both have r2 elements9,

but although it was the case in Example 2.4.3, it is not necessarily the case that

the elements of E[r] each represent a unique coset of E/rE (see [Gal05, IX.3] for

a counterexample). However, if r2‖#E(Fqk), then E[r] ∩ rE = O, which means

that adding a unique torsion element to all of the elements in rE will generate

a unique coset in E/rE. That is, r2‖#E(Fqk) implies that E[r] does represent

9In fact, they always have the same number of elements, but there are cases when the
cardinality is not r2 – see [Gal05, IX.3, IX.7.3]

http://www.craigcostello.com.au/pairings/scripts/2-4-3-QuotientGroupCosets.txt

2.4. Miller’s algorithm for the Weil and Tate pairings 71

E/rE (see [Gal05, Th. IX.22] for the proof in the supersingular scenario), and

this will always be the case for us. This is particularly convenient when it comes

to defining the Tate pairing, since the “second” group in the (order r) Tate

pairing is E/rE. As we will see after the definition, E[r] representing E/rE

allows us to take both groups from the r-torsion, which matches the somewhat

simpler Weil pairing group definitions.

We note that although we refer to the following pairing as the Tate pairing

throughout, it is often aptly called the Tate-Lichtenbaum pairing [Sil09, XI.9].

This is because Lichtenbaum [Lic69] specialised Tate’s more general pairing to

the case of Jacobians of curves (over local fields) which facilitates explicit com-

putation [Gal05, IX.3].

Definition 2.3 (The Tate pairing (over finite fields)). Let P ∈ E(Fqk)[r], from

which it follows that there is a function f whose divisor is (f) = r(P)−r(O). Let

Q ∈ E(Fqk) be any representative in any equivalence class in E(Fqk)/rE(Fqk),

and let DQ be a degree zero divisor defined over Fqk that is equivalent to (Q)−(O),

but whose support is disjoint to that of (f). The Tate pairing tr is a map

tr : E(Fqk)[r]× E(Fqk)/rE(Fqk)→ F∗qk/(F
∗
qk)

r,

defined as

tr(P,Q) = f(DQ).

Again, we remark that among other properties, the Tate pairing is bilinear

and non-degenerate. We refer the reader to [Sil09, XI.9] and [Gal05, IX.4] for

the proofs and full list of properties.

The quotient group F∗
qk/(F

∗
qk)

r is defined as we would expect. Namely, (F∗
qk)

r

is a subgroup of F∗qk defined as (F∗qk)
r = {ur : u ∈ F∗qk}, so F∗qk/(F

∗
qk)

r is the set

of equivalence classes of F∗qk under the equivalence relation a1 ≡ a2 if and only if

a1/a2 ∈ (F∗
qk)

r.

Example 2.4.4 (Magma script). We continue with the parameters from Example

2.4.3. Let P = (3, 2) ∈ E[r] (see Figure 2.35) and let Q = (i+1, 4i+2) ∈ E(Fqk).

The function f : y+2x+2 = 0 on E has divisor 3(P)−3(O), so to compute the

Tate pairing we need to find an appropriate DQ ∼ (Q) − (O) but with P,O 6∈
supp(DQ). Take R (randomly) as R = (2i, i+ 2), and let DQ = (Q+ R)− (R),

http://www.craigcostello.com.au/pairings/scripts/2-4-4-TatePairing.txt

72 Chapter 2. Pairings

where Q+R = (3i+ 1, 2). The Tate pairing is computed as

tr(P,Q) = f(DQ) =
f(Q+R)

f(R)
=

2 + 2 · (3i+ 1) + 2

(i+ 2) + 2 · 2i+ 2
= 4i+ 4.

To illustrate bilinearity, computing tr(P, [2]Q) with D[2]Q = ([2]Q + R) − (R)

where [2]Q+R = (i+ 2, i) gives

tr(P, [2]Q) = f(D[2]Q) =
f([2]Q+R)

f(R)
=

i+ 2 · (i+ 2) + 2

(i+ 2) + 2 · 2i+ 2
= 2i+ 4,

or computing tr([2]P,Q), where f̃ = y + 3x+ 3 has divisor f̃ = r([2]P)− r(O),

gives

tr([2]P,Q) = f̃(DQ) =
f̃(Q+R)

f̃(R)
=

2 + 3 · (3i+ 1) + 3

(i+ 2) + 3 · 2i+ 3
= 3i+ 2.

Note that tr(P,Q) = 4i + 4, tr(P, [2]Q) = 2i + 4 = tr(P,Q)2, but tr([2]P,Q) =

3i + 2, i.e. tr(P, [2]Q), tr([2]P,Q) 6∈ (F∗qk)
r, but tr(P, [2]Q)/tr([2]P,Q) ∈ (F∗qk)

r,

so tr(P, [2]Q) ≡ tr([2]P,Q) ≡ tr(P,Q)2 in F∗
qk/(F

∗
qk)

r.

The above example illustrates an important point: in the context of cryptog-

raphy, the standard Tate pairing has an undesirable property that its output lies

in an equivalence class, rather than being a unique value. A necessary attribute

for the Tate pairing to be useful in cryptography is that different parties must

compute the exact same value under the bilinearity property, rather than values

which are the same under the above notion of equivalence. Thus, to be suitable

in practice, we must update the definition of the Tate pairing to make sure the

mapping produces unique values.

Definition 2.4 (The reduced Tate pairing). Let P , Q, f and DQ be as in Defi-

nition 2.3. Over finite fields, the reduced Tate pairing Tr is a map

Tr : E(Fqk)[r]×E(Fqk)/rE(Fqk)→ µr,

defined as

Tr(P,Q) = tr(P,Q)#F
qk/r

= fr,P (DQ)(qk−1)/r.

2.4. Miller’s algorithm for the Weil and Tate pairings 73

Exponentiating elements in F∗qk/(F
∗
qk)

r to the power of (qk − 1)/r kills r-th

powers and sends the paired value to an exact r-th root of unity in µr.

From now on we will also take the second argument of the (reduced) Tate

pairing from the r-torsion. In fact, we will further assume a Type 3 pairing.

Therefore, in the pairing of P and Q, we will assume P ∈ G1 = E[r]∩Ker(π−[1])

and Q ∈ G2 = E[r] ∩ Ker(π − [q]). One should note that these choices are not

restrictions, as far as what values the pairing can take: fixing P and letting Q

run through 〈Q〉 (which has order r) will give each value in µr, and vice versa.

Thus, for any P̃ , Q̃ pair chosen from anywhere in the torsion, there exists a scalar

0 ≤ a ≤ r − 1 such that Tr([a]P,Q) = Tr(P, [a]Q) = Tr(P̃ , Q̃).

Example 2.4.5 (Magma script). Let q = 19, E/Fq : y2 = x3 + 14x + 3, giving

#E(Fq) = 20, so take r = 5. The embedding degree is k = 2, so let Fq2 = Fq(i)

with i2 + 1 = 0. The points P = (17, 9) and Q = (16, 16i) are in the r-torsion

subgroups G1 = E[r] ∩ Ker(π − [1]) and G2 = E[r] ∩ Ker(π − [q]) respectively.

The Tate pairing of P and Q is tr(P,Q) = 7i+3, whilst the reduced Tate pairing

is Tr(P,Q) = 15i + 2. Let exp : F∗
qk/(F

∗
qk)

r → µr be the map defined by the

exponentiation exp : a 7→ a(qk−1)/r, i.e. exp : tr(P,Q) 7→ Tr(P,Q). Observe

the difference between the Tate pairing tr and reduced Tate pairing Tr for the

following computations.

tr(P,Q)4 tr([4]P,Q) tr(P, [4]Q) tr([2]P, [2]Q)

= 3i+ 7
_

exp

��

= 7i+ 16
_

exp

��

= 12i + 3
_

exp

��

= 2i+ 14
_

exp

��
Tr(P,Q)4 Tr([4]P,Q) Tr(P, [4]Q) Tr([2]P, [2]Q)

= 4i+ 2 = 4i+ 2 = 4i+ 2 = 4i+ 2

We note that none of the tr lie in (Fqk)5, but the quotient of any two of them

does lie there, so all the tr pairings on the top level are equivalent in F∗qk/(F
∗
qk)

r.

On the other hand, Tr ensures that each of the above pairings (that should be

equivalent) take exactly the same value in µr ⊂ Fqk .

From now on, when we say Tate pairing, we mean the reduced Tate pairing

Tr in Definition 2.4.

2.4.3 Miller’s algorithm

We briefly recap the pairing definitions from the previous two subsections. For

the r-torsion points P and Q, the Weil and Tate pairings are respectively com-

http://www.craigcostello.com.au/pairings/scripts/2-4-5-ReducedTate.txt

74 Chapter 2. Pairings

puted as
fr,P (DQ)

fr,Q(DP)
and fr,P (DQ)(qk−1)/r, where the divisors DP and DQ are chosen

such that their supports are disjoint from the supports of (fr,Q) and (fr,P) re-

spectively. For any points P and Q belonging to distinct subgroups in E[r],

we have already seen how to compute fr,P (DQ) in the previous subsections, but

this was only for very small values of r. In practice r will be huge (i.e. at

the very least 2160), and since fr,P is a function of degree approximately r, it

is not hard to see that computing this function as we did in the previous ex-

amples is impossible. In this subsection we describe Miller’s algorithm [Mil04],

which makes this computation very feasible. More precisely, the naive method of

computing fr,P (DQ) that we have been using has exponential complexity O(r),

whilst the algorithm we are about to describe for this computation has polyno-

mial complexity O(log r). To put it simply, Miller’s algorithm makes pairings

practical; without this algorithm, secure cryptographic pairings would only be

of theoretical value10.

We start by referring back to the discussion at the beginning of this section.

Following Equation (2.17), we saw that the divisor (fm,P) = m(P)−([m]P)−(m−
1)(O) could be updated to the divisor (fm+1) = (m+1)(P)− ([m+1]P)−m(O)

by adding the divisor (ℓ[m]P,P/v[m+1]P) = (P) + ([m]P) − ([m + 1]P) − (O);

this corresponds to the multiplication of functions fm+1 = fm · ℓ[m]P,P/v[m+1]P .

Starting with f2,P = 2(P)−([2]P)−(O) then, we can repeat this process roughly

r − 1 times to obtain the desired function fr,P = r(P)− ([r]P)− (r − 1)(O) =

r(P) − r(O). We note that for the last step (i.e. when m = r − 1) we have

fr−1,P = (r − 1)(P)− ([r − 1]P) − (r − 2)(O), so the required divisor is (P) +

([r − 1]P) − 2(O) which corresponds to (a multiplication by!) the vertical line

v[r−1]P = v−P = vP ; note that this is the same vertical line that appears on the

denominator of ℓ[r−2]P,P/v[r−1]P . Thus, the pairing evaluation function fr,P is the

product

fr,P = ℓ[r−2]P,P ·
r−3∏

i=1

ℓ[i]P,P
v[i+1]P

. (2.19)

The first four sloped lines ℓ[i]P,P and corresponding vertical lines v[i+1]P from the

numerator and denominator of the product in (2.19) are shown in Figure 2.37

and Figure 2.38 respectively. We have seen that the product in (2.19) is (in the

10This is no longer entirely true. In 2007 Stange derived an alternative method to Miller’s
algorithm for efficiently computing the Tate pairing [Sta07], but it is currently less efficient

2.4. Miller’s algorithm for the Weil and Tate pairings 75

•
P

•

ℓ[2]P,P
[2]P

•

ℓ[3]P,P

[3]P

• ℓ[4]P,P
[4]P

ℓP,P

•[5]P

Figure 2.37: The first four sloped lines
in the product (2.19).

•
P

•[2]P

v[2]P

•
[3]P

v[3]P

•[4]P

v[4]P

•[5]P

v[5]P

Figure 2.38: The first four vertical
lines in the product (2.19).

most naive way) built up incrementally by absorbing each of the
ℓ[m]P,P

v[m+1]P
terms

into fm,P to increment to fm+1,P , eventually arriving at fr,P . Alternatively, it

can help to see the divisor sum written out in full, to see the contributions of

each of the functions
ℓ[i]P,P

v[i+1]P
in the product all at once.

ℓP,P/v[2]P : (P) + (P)− ([2]P)− (O)

ℓ[2]P,P/v[3]P : (P) + ([2]P)− ([3]P)− (O)

ℓ[3]P,P/v[4]P : (P) + ([3]P)− ([4]P)− (O)

...
...

...
...

...

ℓ[r−4]P,P/v[r−3]P : (P) + ([r − 4]P)− ([r − 3]P)− (O)

ℓ[r−3]P,P/v[r−2]P : (P) + ([r − 3]P)− ([r − 2]P)− (O)

ℓ[r−2]P,P (P) + ([r − 2]P) + (−[r − 1]P)− 3(O)

When summing all of the above divisors, most of the inner terms cancel out with

one another to leave (r− 1)(P) + (−[r− 1]P)− r(O), and since [r− 1]P = −P ,

we get the divisor of the product being r(P)− r(O).

Roughly speaking, fr,P = g(x, y)/h(x, y), where g and h are degree r func-

tions on E. The above method computes fr,P by successively increasing the

than Miller’s algorithm.

76 Chapter 2. Pairings

degrees of g and h by one each time fm,P is incremented. This is why, when r

is (exponentially) large, this naive method has exponential complexity. Miller’s

algorithm naturally overcomes this through the following observation. The func-

tion fm,P has m zeros at P and (m−1) poles at O. Rather than adding one zero

and one pole via multiplying fm,P by linear functions, we can double the number

of zeros at P and the number of poles at O if we instead square fm,P . Observe

that since (fm,P) = m(P)− ([m]P)− (m− 1)(O), then

(f 2
m,P) = 2m(P)− 2([m]P)− 2(m− 1)(O),

which is almost the same as f2m,P , whose divisor is

(f2m,P) = 2m(P)− ([2m]P)− (2m− 1)(O);

the difference between the two divisors being (f2m,P) − (f 2
m,P) = 2([m]P) −

([2m]P)− (O), which corresponds to a function with two zeros at [m]P , a pole

at [2m]P and another pole at O. We have seen such a function many times

already; this is simply the quotient of the tangent line at [m]P and the vertical

line at [2m]P – the lines used to double the point [m]P . Thus, we can advance

from fm,P to f2m,P via

f2m,P = f 2
m,P ·

ℓ[m]P,[m]P

v[2m]P

.

We depict the jump from fm,P to f2m,P (as opposed to the naive method of

progressing one-by-one) below.

fm,P

·
ℓ[m]P,P
v[m+1]P

//

f2
m,P ·

ℓ[m]P,[m]P
v[2m]P

33fm+1,P

·
ℓ[m+1]P,P
v[m+2]P

//
·
ℓ[2m−2]P,P
v[2m−1]P

// f2m−1,P

·
ℓ[2m−1]P,P

v[2m]P
// f2m,P

Since, for any m, we can now advance to either fm+1,P or f2m,P quickly, Miller

observed that this gives rise to a double-and-add style algorithm to reach f2,r

in O(log(r)) steps. However, the degree of fm,P grows linearly in the size of m,

so (en route to m = r) the function fm,P becomes too large to store explicitly.

Thus, the last piece of the puzzle in Miller’s derivation of the pairing algorithm

was to, at every stage, evaluate fm,P at the given divisor, i.e. fm,P (DQ). This

means that at any intermediate stage of the algorithm we will not be storing

2.4. Miller’s algorithm for the Weil and Tate pairings 77

an element of the function field fm,P ∈ Fqk(E), but rather its evaluation at DQ

which is the value fm,P (DQ) ∈ Fqk . At each stage then, the updates that build

the function are evaluated at DQ before being absorbed into intermediate pairing

value that is carried through the routine. This is summarised in Algorithm 2.1

below, where the binary representation of r governs the double-and-add route

taken to compute fr,P (DQ), in an identical fashion to the standard double-and-

add routine for scalar multiplications on E (see Example 2.1.10).

Algorithm 2.1 Miller’s algorithm.

Input: P ∈ E(Fqk)[r], DQ ∼ (Q)− (O) with support disjoint from (fr,P),
and r = (rn−1 . . . r1r0)2 with rn−1 = 1.

Output: fr,P (DQ)← f .

1: R← P , f ← 1.
2: for i = n− 2 down to 0 do

3: Compute the line functions ℓR,R and v[2]R for doubling R.
4: R← [2]R.

5: f ← f2 · ℓR,R

v[2]R
(DQ).

6: if ri = 1 then

7: Compute the line functions ℓR,P and vR+P for adding R and P .
8: R← R+ P .
9: f ← f · ℓR,P

vR+P
(DQ).

10: end if

11: end for

12: return f .

Miller’s algorithm is essentially the straightforward double-and-add algorithm

for elliptic curve point multiplication (see Example 2.1.10) combined with evalu-

ations of the functions (the chord and tangent lines) used in the addition process.

Example 2.4.6 (Magma script). We will compute both the Weil and Tate pairings

using Miller’s algorithm. Let q = 47, E/Fq : y2 = x3 + 21x + 15, which has

#E(Fq) = 51, so we take r = 17. The embedding degree k with respect to r is

k = 4, thus take Fq4 = Fq(u) where u4−4u2 +5 = 0. The point P = (45, 23) has

order 17 in E(Fq) which (because k > 1) means P ∈ G1 = E[r]∩Ker(π−[1]). The

group order over the full extension field is #E(Fq4) = 33·54 ·172, so take h = 33 ·54

as the cofactor. Taking a random point from E(Fq4) and multiplying by h will

(almost always) give a point Q ∈ E[r], but it is likely to land outside of G1∪G2,

so to move into G2 = E[r]∩Ker(π−[q]), we can use the anti-trace map (see Figure

2.25) and take Q← [k]Q− Tr(Q). For example, Q = (31u2 + 29, 35u3 + 11u) is

one of 17 points in G2. The Tate pairing is Tr(P,Q) = fr,P (DQ)(qk−1)/r, whilst

http://www.craigcostello.com.au/pairings/scripts/2-4-6-TateWeilMiller.txt

78 Chapter 2. Pairings

the Weil pairing is wr(P,Q) =
fr,P (DQ)

fr,Q(DP)
. We will illustrate Miller’s algorithm

to compute fr,P (DQ), since it appears in both. The binary representation of

r is r = (1, 0, 0, 0, 1)2. We will take DQ as DQ = ([2]Q) − (Q), which clearly

has support disjoint to (fr,P) and is equivalent to (Q) − (O). The table below

shows the stages of Miller’s algorithm for computing fr,P (DQ): it shows the

intermediate values of R, and of the function ℓ/v which corresponds to
ℓR,R

v[2]R
or

ℓR,P

vR+P
depending on whether we are in the doubling stage (steps 3-5 of Algorithm

2.1) or the addition stage (steps 6-10 of Algorithm 2.1); the table also shows

the progression of the paired value f . To complete the Tate pairing, we compute

i/ steps of point update update at [2]Q = ℓ(DQ) = ℓ/v([2]Q) paired

ri Alg. 2.1 R ℓ/v update at Q v(DQ) ℓ/v(Q) value f
1 (45, 23) 1

3/0 3-5 (12, 16) y+33x+43
x+35

20u3+21u2+9u+4
6u3+19u2+36u+33

= 41u3 + 32u2 + 2u+ 21 41u3 + 32u2 + 2u+ 21

2/0 3-5 (27, 14) y+2x+7
x+20

40u3+18u2+38u+9
39u3+8u2+20u+18

= 4u3 + 5u2 + 28u+ 17 22u3 + 27u2 + 30u+ 33

1/0 3-5 (18, 31) y+42x+27
x+29

29u3+15u2+8u+14
18u3+32u2+41u+30

= 6u3 + 13u2 + 33u + 28 36u3 + 2u2 + 21u+ 37

0/1 3-5 (45, 24) y+9x+42
x+2

10u3+3u2+14u+19
21u3+26u2+25u+20

= 46u3 + 45u2 + u+ 20 10u3 + 21u2 + 40u+ 25

6-10 O x+ 2 7u2+27
31u2+31

= 6u2 + 43 17u3 + 6u2 + 10u+ 22

12 fr,P (DQ)← 17u3 + 6u2 + 10u+ 22

tr(P,Q) = fr,P (DQ)(qk−1)/r = (17u3+6u2+10u+22)287040 = 33u3+43u2+45u+39.

For the Weil pairing, we require another run of Miller’s algorithm, this time

reversing the roles of P and Q to compute fr,Q(DP) = 2u2 +6u+40, which gives

the Weil pairing as wr(P,Q) =
fr,P (DQ)

fr,Q(DP)
= 17u3+6u2+10u+22

2u2+6u+40
= 22u3 + 12u2 + 32u+

13. Notice that, in line with Equation 2.19 (and the preceding discussion), the

vertical line x + 2 = 0 that corresponds to the final addition in this example

appears in the denominator of the previous ℓ/v function used for the doubling,

and could therefore be cancelled out. We will see that this occurs in general, and

is perhaps the least significant of many improvements to Miller’s initial algorithm

that have accelerated pairings over the last decade. Indeed, in Section 2.6 we will

be looking at all the major optimisations to Miller’s algorithm, before we proceed

into the first chapters of this thesis where we will present our own contributions

towards speeding up Algorithm 2.1.

2.4.4 Section summary

We started with the more simple description of the Weil pairing, before moving

to the definition of the Tate pairing. This is because both the elliptic curve

2.5. Pairing-friendly curves 79

groups in the raw definition of the Weil pairing are torsion subgroups, which

were discussed at length in the previous section. On the other hand, one of the

groups in the general Tate pairing definition required us to introduce the quotient

group E(Fqk)/rE(Fqk). However, we soon showed that (for cases of cryptographic

interest) it is no problem to represent this quotient group by a torsion subgroup,

thereby unifying the group definitions needed for the Weil and Tate pairing and

solidifying the choices of G1 = E[r]∩Ker(π− [1]) and G2 = E[r]∩Ker(π − [q]),

which will be standard for the remainder of this thesis. We saw that at the heart

of both the Weil and Tate pairings is the computation of the pairing evaluation

function fr,P (D), where P ∈ E and D is an appropriately defined divisor on

E. We finished the section by presenting Miller’s algorithm, which is the first

practical algorithm to compute fr,P (D) for cases of cryptographic interest, and

which remains the fastest algorithm for computing pairings to date.

2.5 Pairing-friendly curves

To realise pairing-based cryptography in practice, we need two things [Sco07a]:

- efficient algorithms for computing pairings; and

- suitable elliptic curves.

The former was briefly outlined in the last section (and will be taken much further

in the next), whilst this section is dedicated to the latter.

2.5.1 A balancing act

Pairings are fundamentally different to traditional number-theoretic primitives,

in that they require multiple groups that are defined in different settings. Namely,

G1 and G2 are elliptic curve groups, whilst GT is a multiplicative subgroup of a

finite field. All three groups must be secure against the respective instances of the

discrete logarithm problem, which means attackers can break the system by solv-

ing either the DLP in GT or the EDCLP in G1 or G2. As we discussed in Section

2.1.1, elliptic curve groups currently obtain much greater security per bit than

finite fields; this is because the best attacks on the ECDLP remain generic at-

tacks like Pollard rho [Pol78] which have exponential complexity, whilst the best

attacks on the DLP have sub-exponential complexity. In other words, to achieve

80 Chapter 2. Pairings

the same security, a finite field group needs to have a much greater cardinality

than an elliptic curve group. It is standard to state the complexity of asymmetric

primitives in terms of the equivalent symmetric key size. For example, the most

recent ECRYPT recommendations (see http://www.keylength.com/en/3/) say

that to achieve security comparable to AES-128 (i.e. 128-bit security), we need

an elliptic curve group of approximately 256 bits11 and a finite field of approxi-

mately 3248 bits. We give an example of a curve in the context of pairings for

which G1, G2 and GT meet these particular requirements.

Example 2.5.1 (Magma script). Let E/Fq : y2 = x3 + 14 be the curve with order

#E(Fq) having large prime factor r, where q and r are given as

q = 4219433269001672285392043949141038139415112441532591511251381287775317

505016692408034796798044263154903329667 (369 bits),

r = 2236970611075786789503882736578627885610300038964062133851391137376569

980702677867 (271 bits).

The embedding degree is k = 9, i.e. q9 − 1 ≡ 0 mod r. Thus, the two elliptic

curve groups G1 ∈ E[r] and G2 ∈ E[r] have an order of 271 bits, which meets the

current requirements for 128-bit security. Although GT is a subgroup of order

r (in F∗qk), the attack complexity is determined by the full size of the field Fq9,

which is 3248 bits, also meeting the requirements for 128-bit security.

We discuss an important point with reference to the above example. Namely,

if we were to use primes q and r of the same bit-sizes as Example 2.5.1, but which

corresponded to a curve with a larger embedding degree k, then this would not

increase the security level offered by the pairing. For example, even though

k = 18 gives a finite field of 6496 bits, which on its own corresponds to a much

harder DLP (≈ 175-bit security), the overall complexity of attacking the protocol

remains the same, because the attack complexity of the ECDLP has not changed.

Such an increase in k unnecessarily hinders the efficiency of the pairing, since

the most costly operations in Miller’s algorithm take place in Fqk . Thus, the

ideal approach is to optimise the balance between r and Fqk so that both can be

as small as possible whilst simultaneously meeting the particular security level

11The “half-the-size” principle between elliptic curve groups and the equivalent asymmetric
key size is standard [Sma10, §6.1], since attacks against elliptic curves with order r subgroup
have running time O(

√
r). Obtaining the equivalent finite field group size is not as trivial –

see [Sma10, §6.2].

http://www.keylength.com/en/3/
http://www.craigcostello.com.au/pairings/scripts/2-5-1-k=9curve.txt

2.5. Pairing-friendly curves 81

required. This was achieved successfully in our example, where Fqk was exactly

the recommended size, and r was only a few bits larger than what is needed to

claim 128-bit security.

Nevertheless, we can still obtain a significant improvement on the parame-

ters used in Example 2.5.1; we can keep all three group sizes the same, whilst

decreasing the size of the base field Fq. The Hasse bound (see Eq. (2.6)) tells

us that the bit-length of #E and the bit-length of q will be the same. Thus,

it is possible that we can find curves defined over smaller fields whose largest

prime order subgroup has the same bit-size as that in Example 2.5.1, and whose

embedding degree is large enough to offset the decrease in q and therefore that

the corresponding full extension field also meets the security requirements. We

give a “prime” example.

Example 2.5.2 (Magma script). Let E/Fq : y2 = x3 + 2 be the curve with prime

order r = #E(Fq), where q and r are given as

q = 28757880164823737284021204980065523467377219983513098565427519263513769

64733335173 (271 bits).

r = 28757880164823737284021204980065523467376683719770479098963148984065605

60716472109 (271 bits).

The embedding degree is k = 12, i.e. q12−1 ≡ 0 mod r, giving Fq12 as a 3248-bit

field, which is exactly the same size as the k = 9 curve in Example 2.5.1. Thus,

G1, G2 and GT have orders of the same bit-lengths as before, but using this curve

instead means that arithmetic in Fq will be substantially faster; a 271-bit field

in this case, compared to 369-bit field in the last.

In light of the difference between Example 2.5.1 and Example 2.5.2, an im-

portant parameter associated with a curve that is suitable for pairings is the

ratio between the field size q and the large prime group order r, which we call

the ρ-value, computed as

ρ =
log q

log r
.

Referring back to the two curves above, we have ρ = log q
log r

= 369
271

= 1.36 in Example

2.5.1, whilst ρ = log q
log r

= 271
271

= 1 in Example 2.5.2. The ρ-value essentially

indicates how much (ECDLP) security a curve offers for its field size, and since we

generally prefer the largest prime divisor r of #E to be as large as possible, ρ = 1

http://www.craigcostello.com.au/pairings/scripts/2-5-2-BNcurve.txt

82 Chapter 2. Pairings

is as good as we can get. Indeed, the curve in Example 2.5.2 with ρ = 1 belongs to

the famous Barreto-Naehrig (BN) family of curves [BN05], which all have k = 12

and for which the ratio between the sizes of r and Fqk make them perfectly suited

to the 128-bit security level. This ratio between these group sizes is ρ · k (i.e.
log qk

log r
= k · log q

log r
), so for commonly used security levels, Figure 2.39 gives the value

of ρ · k that balances the current attack complexities of the DLP and ECDLP.

Different information security and/or intelligence organisations from around the

0

10

20

30

Security level (bits)

ρ
·k

(E
C

D
L
P

an
d

D
L
P

b
al

an
ce

d
)

b
b

b

b

b

b

b

b

b

b

|
64
|

72
|

80
|

96
|

112

|
128

|
160

|
192

|
224

|
256

Figure 2.39: The value of ρ · k that balances the complexity of the DLP and
ECDLP for commonly used security levels.

globe, such as NIST (the USA) and FNISA (France), give slightly different key

size recommendations and complexity evaluations of the algorithms involved; all

of this information is conveniently collected at http://www.keylength.com/.

We have chosen to generate Figure 2.39 according to the numbers in the (most)

recent ECRYPT II report [Sma10], which is also summarised there.

Having seen two examples above, we are now in a position to define a pairing-

friendly curve. Following [FST10], we say that a curve is pairing-friendly if the

following two conditions hold:

• there is a prime r ≥ √q dividing #E(Fq) (i.e. ρ ≤ 2), and

• the embedding degree k with respect to r is less than log2(r)/8.

Thus, in their widely cited taxonomy paper, Freeman et al. [FST10] consider

pairing-friendly curves up to k = 50, which is large enough to cover recommended

http://www.keylength.com/

2.5. Pairing-friendly curves 83

levels of security for some decades yet.

Balasubramanian and Koblitz [BK98] show that, for q of any suitable cryp-

tographic size, the chances of a randomly chosen curve over Fq being pairing-

friendly is extremely small. Specifically, they essentially show that the embedding

degree (with respect to r) of a such a curve is proportional to (and therefore is

of the same order as) r, i.e. k ≈ r. Very roughly speaking, such an argument

is somewhat intuitive since (for a random curve) #E can fall anywhere in the

range [q + 1 − 2
√
q, q + 1 + 2

√
q], so r can be thought of as independent of q,

meaning that the order of q in Z∗r is random (but see [BK98] for the correct

statements). Therefore, imposing that k is small enough to work with elements

in Fqk is an extremely restrictive criterion, so one can not hope to succeed if

randomly searching for pairing-friendly curves amongst arbitrary elliptic curves.

Thus, in general, pairing-friendly curves require very special constructions.

In Section 2.5.2 we briefly discuss supersingular elliptic curves, which always

possess embedding degrees k ≤ 6 [MOV93, §4], and (so long as r ≥ √q) are

therefore always pairing-friendly. Referring back to Figure 2.39 though, we can

see that having k > 6 is highly desirable for efficient pairings at the widely

accepted security levels, and thus in Section 2.5.3 we focus on the ordinary (non-

supersingular) case and outline the constructions that achieve pairing-friendly

curves with k > 6.

2.5.2 Supersingular curves

Recall from Section 2.3.1 that an elliptic curve E is characterised as supersingular

if and only if a distortion map exists on E. There are essentially five types of

supersingular curves that are of interest in PBC [Gal05, Table IX.1], but here

we will only mention two. This is because we are only concerned with prime

fields in this thesis, and the other three are either defined over Fp2, F2m or

F3m . As Galbraith mentions, a problem in characteristic 2 and 3 is that there is

only a small number of curves and fields to choose from, so there is an element

of luck in the search for a curve whose order contains a large prime factor.

Another problem in small characteristic is that there exist enhanced algorithms

for discrete logarithms (see [Gal05, Ch. IX.13]).

All supersingular curves over large prime fields have #E(Fq) = q + 1, from

which it follows that k = 2, i.e. regardless of the prime factor r 6= 2, r | q + 1

implies r ∤ q−1 but r | q2−1. We have already seen examples of the two popular

84 Chapter 2. Pairings

supersingular choices in Section 2.3.1, whose general forms are given in Table

2.1.

q E distortion map φ e.g.
2 mod 3 y2 = x3 + b (x, y) 7→ (ζ3x, y), ζ

3
3 = 1 Eg. 2.3.6 (Fig. 2.26)

3 mod 4 y2 = x3 + ax (x, y) 7→ (−x, iy), i2 = −1 Eg. 2.3.7 (Fig. 2.27)

Table 2.1: The two types of popular supersingular curves over prime fields.

We give another example of both cases below, but we choose the parameter

sizes to serve another purpose: to show how important it is to employ ordinary

curves with higher embedding degrees.

Example 2.5.3 (Magma script). We will choose q ≡ 11 mod 12 so we can define

both examples in Table 2.1 over the same field, but also so that the security of

these curves in the context of PBC matches the security of the curve with k = 12

in Example 2.5.2. For the ECDLP security to be 128 bits, r still only needs to

be 256 bits in size. However, since k = 2, for Fqk to be around 3248 bits, q needs

to be around 1624 bits:

q =42570869316975708819601785360783511359512710385942992493053126328324440

32518729498029828600385319309658678904446582221534072043835844920246377

62799391807569669124814253270947366226515064812665901907204494611177526

59601525798400981459605716038867229835582130904679884144611172149560183

59133818358801709343198904208955213204399306664050037253095626692438477

66834546592867695533445054256132471093279787853214492986394176521193456

205570309658462204234557728373615304193316916440130004424612327.

Consider E1/Fq : y2 = x3 + 314159 and E2/Fq : y2 = x3 + 265358x. Both curves

have order #E1(Fq) = #E2(Fq) = q+1 = hr, where h is a 1369-bit cofactor and

r is the 256-bit prime given as

r =578960446186580977117854925043439539266349923328202820197287920039565

64820063.

The distortion maps are defined over Fq2 = Fq(i), where i2 + 1 = 0 – see Table

2.1 or Examples 2.3.6 and 2.3.7. The huge size of q stresses the importance

of adhering to the optimal ratio of ρ · k suggested by Figure 2.39. A rough

http://www.craigcostello.com.au/pairings/scripts/2-5-3-BigSupersingularCurve.txt

2.5. Pairing-friendly curves 85

but conservative approximation of the complexity of field multiplications in the

1624-bit field, compared to the 271-bit field in Example 2.5.2 gives a ratio of at

least 25 : 1. Referring back to the discussion of pairing types in Section 2.3.2,

this gives some idea of the computational price one pays when insisting on the

computability of ψ (as well as the other desired properties offered by a Type 1

pairing), rather than adopting a Type 3 pairing and trusting in the heuristics of

Chatterjee and Menezes in the absence of such a ψ [CM09,Men09].

We round out this subsection by remarking that although supersingular el-

liptic curves are limited to k ≤ 6, Rubin and Silverberg give a practical way

to obtain larger values of k using Weil descent [RS02]. Alternatively, one can

employ a higher genus supersingular curve to obtain a higher embedding de-

gree [Gal01, RS02]. As Galbraith remarks however, there are severe efficiency

limitations in both scenarios, and we achieve faster pairings in practice by using

ordinary pairing-friendly elliptic curves [Gal05, Ch. IX.15].

2.5.3 Constructing ordinary pairing-friendly curves

There are three main methods of constructing ordinary pairing-friendly elliptic

curves. The two most general methods, the Cocks-Pinch [CP01] and Dupont-

Enge-Morain [DEM05] algorithms, produce curves with ρ = 2, which is more

often than not undesirable when compared to the ρ-values obtained by the third

method. Moreover, the third method encompasses all constructions that produce

families of pairing-friendly elliptic curves, which have been the most successful

methods of producing curves that are suitable for current and foreseeable levels

of security.

All of the constructions in the literature essentially follow the same idea: fix

k and then compute integers t, r, q such that there is an elliptic curve E/Fq with

trace of Frobenius t, a subgroup of prime order r, and an embedding degree k.

The complex multiplication method (CM method) of Atkin and Morain [AM93]

can then be used to find the equation of E, provided the CM discriminant D of

E is not too large: D is the square-free part of 4q − t2, i.e.

Df 2 = 4q − t2, (2.20)

for some integer f . Equation (2.20) is often called the CM equation of E, and

by “D not too large” we mean D is less than, say 1012 [Sut12].

86 Chapter 2. Pairings

In 2001, Miyaji, Nakabayashi and Takano [MNT01] gave the first construc-

tions of ordinary pairing-friendly elliptic curves. Their method has since been

greatly extended and generalised, but all of the constructions of families essen-

tially followed from their idea, which is aptly named the MNT strategy or MNT

criteria [FST10,Gal05]. For some special cases, Miyaji et al. used the fact that

if k is the (desired) embedding degree, then r | qk− 1 implies r | Φk(q), since the

k-th cyclotomic polynomial Φk(x) is the factor of xk − 1 that does not appear

as a factor of any polynomial (xi − 1) with i < k [Gal05, IX.15.2]. For these

cases they were also the first to parameterise families of pairing-friendly curves,

by writing t, r and q as polynomials t(x), r(x) and q(x) in terms of a parameter

x. Miyaji et al. focussed on embedding degrees k = 3, 4, 6 and assumed that

the group order was to be prime, i.e. r(x) = q(x) + 1− t(x) (from (2.6)). They

proved that the only possibilities for t(x) and q(x) (and hence r(x)) are

k = 3 : t(x) = −1± 6x and q(x) = 12x2 − 1;

k = 4 : t(x) = −x, x + 1 and q(x) = x2 + x+ 1;

k = 6 : t(x) = 1± 2x and q(x) = 4x2 + 1.

Example 2.5.4 (Magma script). We kick-start a search for a k = 4 (toy) MNT

curve with x = 10, incrementing by 1 until q(x) = x2 + x + 1 and r(x) =

q(x)+1−t(x) (with either of t(x) = −x or t(x) = x+1) are simultaneously prime.

At x = 14, both q = q(x) = 211 and r = r(x) = 197 (with t(x) = x+1) are prime,

so we are guaranteed an elliptic curve E/Fq with r points and embedding degree

k = 4 (notice q4 − 1 ≡ 0 mod r). The CM equation yields Df 2 = 4q − t2 = 619,

which itself is prime, so f = 1 and thus we seek a curve over Fq with CM

discriminant D = 619. The CM method produces one such curve as E/Fq : y2 =

x3 + 112x+ 19. Notice that φ4(q(x)) = q(x)2 + 1 = (x2 + 1) · (x2 + 2x+ 2), both

factors being the possibilities for r(x).

Notice that the toy example above has ρ = log q
log r

= log 211
log 197

= 1.01. For x of

cryptographically large size though, we will get ρ = 1 since q(x) = x2 + x + 1

and r(x) = x2 + 2x + 2 or r(x) = x2 + 1 have the same degree. In general

parameterised families then, we use the degrees of q(x) and r(x) to state ρ as

ρ =
deg(q(x))

deg(r(x))
.

http://www.craigcostello.com.au/pairings/scripts/2-5-4-MNTCurve.txt

2.5. Pairing-friendly curves 87

A number of works followed the MNT paper and gave useful generalisations of

their results. In particular, we mention the work by Barreto et al. [BLS02], Scott

and Barreto [SB06], and Galbraith et al. [GMV07], all three of which obtain more

parameterised families by relaxing the condition that the group order is prime

and allowing for small cofactors so that #E = hr. Another observation made by

Barreto et al. that somewhat simplifies the process is the following: r | Φk(q) and

q + 1− t ≡ 0 mod r combine to give that Φk(t − 1) ≡ 0 mod r [BLS02, Lemma

1]. Substituting hr = q + 1− t into the CM equation in (2.20) gives

Df 2 = 4hr − (t− 2)2. (2.21)

In Section 3.1 of [BLS02], Barreto et al. obtain many nice parameterised families

for various k by considering a special case of the above equation with t(x) = x+1,

D = 3 and (since r | Φk(x)) finding f(x) and m(x) to fit

3f(x)2 = 4m(x)Φk(x)− (x− 1)2. (2.22)

We note that curves with CM discriminant D = 3 are always of the form y2 =

x3 + b. A convenient solution to Equation (2.22) for k = 2i · 3 is m = (x− 1)2/3

and f(x) = (x− 1)(2x4 − 1)/3, for which we can take r = Φk(x). Taking i = 3,

we give a cryptographically useful example of a BLS (Barreto-Lynn-Scott) curve

with k = 24.

Example 2.5.5 (Magma script). Following the above description, the BLS family

with k = 24 is parameterised as q(x) = (x−1)2(x8−x4+1)/3+x, r(x) = Φ24(x) =

x8−x4+1, t(x) = x+1. The family has ρ = deg(q(x))
deg(r(x))

= 10/8 = 1.25 and therefore

ρ · k = 30. Referring back to Figure 2.39, we see that such a curve gives a nice

balance between the sizes of r and qk (the ECDLP and DLP) for pairings at the

256-bit security level. Indeed, at present this family remains the front-runner

for this particular security level [Sco11,CLN11]. To find a curve suitable for this

level, we need r to be about 512 bits, and since deg(r(x)) = 8, we will start the

search for q, r both prime with a 64-bit value; note that x ≡ 1 mod 3 makes

q(x) an integer, so the first such value is x = 263 + 2. After testing a number of

incremental x← x+ 3 values, x = 9223372036854782449 gives q(x) and r(x) as

629 and 505 bit primes respectively. Since D = 3 and E/Fq : y2 = x3 + b, i.e.

there is only one curve constant, we do not need to use the CM method. Instead,

it is usually quicker to try successive values of b until we find the correct curve.

http://www.craigcostello.com.au/pairings/scripts/2-5-5-BLSCurve.txt

88 Chapter 2. Pairings

In this case, b = 1 gives E/Fq : y2 = x3 + 1 as our pairing-friendly k = 24 BLS

curve.

Barreto et al. [BLS02, §3.2] actually give a more general algorithm which,

instead of insisting that t = x + 1, takes t = xi + 1. Brezing and Weng [BW05]

found even more useful families by searching with more general polynomials

for t(x). Several constructions followed by looking for parameterisations that

satisfy the following conditions which define a family [FST10, Def. 2.7] (also

see [Fre06, Def. 2.5]):

(i) r(x) is nonconstant, irreducible, and integer-valued with a positive leading

coefficient.

(ii) r(x) | q(x) + 1− t(x).

(iii) r(x) | Φk(t(x)− 1).

(iv) The parameterised CM equation Df 2 = 4q(x) − t(x)2 has infinitely many

integer solutions (x, f).

Referring to condition (iv) above, we say that a family parameterised by

(t(x), r(x), q(x)) is a complete family if there exists f(x) ∈ Q[x] such that

Df(x)2 = 4q(x)−t(x)2. Otherwise, we say the family is sparse. We have already

seen a curve belonging to the popular Barreto-Naehrig (BN) family in Example

2.5.2. In the following example we look at the BN parameterisations in terms of

the above conditions.

Example 2.5.6 (Magma script). Barreto and Naehrig [BN05] discovered that, for

k = 12, setting the trace of Frobenius t to be t(x) = 6x2 +1 gives Φ12(t(x)−1) =

Φ12(6x
2) = (36x4 + 36x3 + 18x2 + 6x + 1)(36x4 − 36x3 + 18x2 − 6x + 1). This

facilitates the choice of r(x) as the first factor r(x) = 36x4 +36x3 +18x2 +6x+1,

from which taking q(x) as q(x) = 36x4+36x3+24x2+6x+1 means not only that

r(x) | q(x)+1−t(x) (condition (ii) above), but in fact that r(x) = q(x)+1−t(x).
Thus, when x is found that makes r(x) and q(x) simultaneously prime, we have

a pairing-friendly curve with k = 12 that has prime order. Not only is the ρ-

value ρ = 1 ideal, but there are many more reasons why BN curves have received

a great deal of attention [DSD07, PJNB11, AKL+11]. Notice that D = 3 and

f(x) = 6x2 + 4x+ 1 satisfies the CM equation (condition (iv) above), so the BN

family is a complete family and BN curves are always of the form y2 = x3 + b.

http://www.craigcostello.com.au/pairings/scripts/2-5-6-BNCurve.txt

2.5. Pairing-friendly curves 89

The last point of Example 2.5.6 is a crucial one. Referring back to Section

2.3.3, we know that D = 3 curves of the form y2 = x3 + b admit cubic and

sextic twists. Thus, in the case of BN curves where k = 12, we can make use of

a sextic twist to represent points in G2 ∈ E(Fq12) as points in a much smaller

subfield on the twist, i.e. in Ψ−1(G2) = G′2 ∈ E ′(Fq2). In general then, when k

has the appropriate factor d ∈ {3, 4, 6}, we would like to make use of the highest

degree twist possible, so we would prefer our pairing-friendly curves to be of the

following two forms:

degree d curve j-invariant CM discriminant field
3, 6 | k y2 = x3 + b j(E) = 0 D = 3 q ≡ 1 mod 3
4 | k y2 = x3 + ax j(E) = 1728 D = 1 q ≡ 1 mod 4

Table 2.2: Pairing-friendly elliptic curves admitting high-degree twists.

See [Sil09][p. 45] for the definition of the j-invariant of an elliptic curve (and

the associated calculations); we simply remark that two elliptic curves E/Fq

and Ẽ/Fq are isomorphic over Fq if and only they have the same j-invariant.

Due to the preferences in Table 2.2, we will really only be dealing with curves

of j-invariants (respectively CM discriminants) j ∈ {0, 1728} (respectively D ∈
{3, 1}) in this thesis. In this respect, we are also very fortunate that most of

the best constructions of pairing-friendly families have either D = 1 or D = 3,

depending on the embedding degree they target. In general, a severe loss of

efficiency is suffered in pairing computations when choosing a curve that does

not offer a high-degree twist, so at any particular security level we tend to focus

on the curves whose embedding degrees are suitable, both according to Figure

2.39 and which contain d ∈ {3, 4, 6} as a factor [FST10, §8.2]. Besides, as we will

see in the next section, there are further efficiency reasons that happily coincide

with having d | k for d ∈ {3, 4, 6}. The equivalence conditions on q in Table 2.2

are to ensure E is ordinary, complementing the supersingular cases in Table 2.1.

Our last example in this section belongs to another complete family from the

more recent work of Kachisa, Schaefer and Scott [KSS08], who present record-

breaking (in terms of the lowest ρ-value) curves for embedding degrees k ∈
{16, 18, 36, 40}.
Example 2.5.7 (Magma script). We choose a KSS curve with k = 16, which is

parameterised by t(x) = (2x5 + 41x+ 35)/35, q(x) = (x10 + 2x9 + 5x8 + 48x6 +

152x5 +240x4 +625x2 +2398x+3125)/980 and r(x) = (x8 +48x4 +625)/61250.

http://www.craigcostello.com.au/pairings/scripts/2-5-7-KSSk16Curve.txt

90 Chapter 2. Pairings

This family has ρ = 5/4, so referring back to Figure 2.39 we see that ρ ·k = 20 is

a nice fit for pairings at the 192-bit security level. Thus, r should be around 384

bits, so starting our search with x around 250 should do the trick (we add the

extra two bits to account for the 16-bit denominator of r(x)). The polynomials

for q(x) and t(x) can only take on integers if x ≡ ±25 mod 70, so we start

with x ≡ 250 + 21 ≡ 25 mod 70 and iterate accordingly. We soon arrive at

x = 1125899907533845, which gives a 491-bit q as

q =334019451835958707560790451450434857813058164786765421764289981004286

764353474104824122517843668231700301015528070583684259636822134128050

5964970897,

and a 385-bit prime factor r of #E(Fq) as

r =421591818901130428025080067123788159687300679385019593444855809536163

40927802229320181495643594147646077933909121633.

Again, we do not need the CM method to find the curve: we simply start with

a = 1 in y2 = x3 + ax and increment until we find a = 3 which gives the correct

curve as E/Fq : y2 = x3 + 3x. E has embedding degree 16 with respect to r, so

the full extension field Fqk is 7842 bits.

We finish this section with two important remarks, the first of which is con-

sequential all the way through this thesis.

Remark 2.5.1 (Curves for ECC vs. curves for PBC). At the highest level, find-

ing curves that are suitable for ECC really imposes only one condition on our

search, whilst finding curves that are suitable for PBC imposes two: in ECC we

only look for curves with large prime order subgroups, whilst in PBC we have

the added stipulation in that we also require a low embedding degree. Whilst

one can search for suitable curves for ECC by checking “random” curves until

we come across one with almost prime order, in PBC we require very special

constructions (like all those discussed in this section) that also adhere to the

extra criterion – as we have already discussed, we can not expect to find any

pairing-friendly curves by choosing curves at random [BK98]. A major conse-

quence is that in ECC we can specify the underlying field Fq however we like

before randomly looking for a suitable curve over that field. In this case fields

can therefore be chosen to take advantage of many low-level optimisations; for

2.5. Pairing-friendly curves 91

example, Mersenne primes achieve very fast modular multiplications which blows

out the relative cost of inversions. On the other hand, in PBC we are confined

to the values taken by the polynomials q(x) and have limited control over the

prime fields we find. Thus, we are not afforded the luxury of many low-level

optimisations and this drastically affects the ratios between field operations (in-

versions/multiplications/squarings/additions). For example, whilst Fq-inversions

in ECC are commonly reported to cost more than 80 Fq-multiplications, the ratio

in the context of PBC is nowhere near as drastic [LMN10,AKL+11]. This means

we often have to rethink trade-offs between field operations that were originally

popularised in ECC.

Remark 2.5.2 (Avoiding pairing-friendly curves in ECC). In the previous remark

we said that in ECC we only need to satisfy one requirement (the large prime

subgroup), but this is not the full story. In fact, in this context we prefer to

choose curves that are strictly not pairing-friendly. After all, in ECC there is no

need for a low embedding degree, so choosing a curve that (unnecessarily) has one

gives an adversary another potential avenue for attack. Indeed, exploiting curves

with low embedding degrees in the context of ECC was the first use of pairings

in cryptography – the famous Menezes-Okamato-Vanstone (MOV) [MOV93] and

Frey-Rück (FR) [FR94] attacks. Thus, so long as we avoid supersingular curves,

the heuristic argument [BK98] tells us that the curves we choose at random will

have enormous embedding degrees with overwhelmingly high probability, so this

is not a restriction in the sense of Remark 2.5.1.

2.5.4 Section summary

We stressed the importance of finding elliptic curves with large prime order

subgroups and small embedding degrees, i.e. pairing-friendly curves. We showed

that supersingular curves, whilst easy to find, severely limit the efficiency of

pairing computations, particularly at moderate to high levels of security, because

they are confined to k ≤ 6 (and k ≤ 2 over prime fields). Thus, we turned our

focus to the more difficult task of constructing ordinary pairing-friendly elliptic

curves, and summarised many landmark results that have enhanced this arena

over the last decade. In particular, we gave examples of some of the most notable

families of pairing-friendly elliptic curves; such families are the main focus of

Chapter 5 and Chapter 6 of this thesis.

92 Chapter 2. Pairings

2.6 The state-of-the-art

This section summarises the evolution of pairing computation over the last

decade. We illustrate the landmark achievements that accelerated early im-

plementations of pairings from “a few minutes” [Men93]12 into current imple-

mentations that take less than a millisecond [AKL+11].

Initial improvements in pairing computations were spearheaded by evidence

that computing the Tate pairing fr,P (DQ)(qk−1)/r is more efficient than computing

the Weil pairing fr,P (DQ)/fr,Q(DP). At first glance it seems that comparing the

two computations amounts to comparing an exponentiation by (qk − 1)/r to a

(second) run of Miller’s algorithm fr,Q(DP), and indeed, at levels of security up

to 128 bits, this comparison does favour the Tate pairing (cf. [SCA06, Tab. 1-

5], [Sco07c]). However, as we will see in Section 2.6.1, exponentiating by (qk −
1)/r actually facilitates many “Tate-specific” optimisations within the associated

Miller loop. It is these enhancements that gave the field of pairing computation

its first big boost.

2.6.1 Irrelevant factors (a.k.a. denominator elimination)

In this subsection we will work our way to a refined version of Miller’s al-

gorithm for pairings over large prime fields, which is mostly due to improve-

ments suggested by Barreto, Kim, Lynn and Scott [BKLS02], and also partly

due to Galbraith, Harrison and Soldera [GHS02]. Thus, it is often referred to

as the BKLS algorithm [Sco05a,WS07], or sometimes as the BKLS-GHS algo-

rithm [Sco05b,BGOS07]. Our exposition will make use of twisted curves, which

we discussed in Section 2.3.3 and the employment of which is originally due to

Barreto, Lynn and Scott [BLS03]. The early works that included Barreto, Lynn

and Scott are also culminated in [BLS04].

We start with an observation that allows us to conveniently replace the divisor

DQ with the point Q in the Tate pairing definition. Namely, so long as k > 1

and P and Q are linearly independent, then fr,P (DQ)(qk−1)/r = fr,P (Q)(qk−1)/r

[BKLS02, Th. 1]. This saves the hassle of defining a divisor equivalent to DQ =

(Q) − (O) with support disjoint to (fr,P), but more importantly allows us to

simply evaluate the intermediate Miller function at the point Q (rather than two

12As Scott says however, this comparison is unfair – in 1993 there was no incentive to try
and optimise the computation past what was needed to apply the MOV attack [MOV93].

2.6. The state-of-the-art 93

points) in each iteration of Algorithm 2.1.

Example 2.6.1 (Magma script). We reuse the parameters from Example 2.4.6

so a comparison between intermediate values is possible. Thus, let q = 47,

E/Fq : y2 = x3 + 21x + 15, #E(Fq) = 51, r = 17, k = 4, Fq4 = Fq(u) with

u4 − 4u2 + 5 = 0, P = (45, 23) ∈ G1 and Q = (31u2 + 29, 35u3 + 11u) ∈ G2.

Thus, the Tate pairing is e(P,Q) = fr,P (Q)(qk−1)/r = (32u3 + 17u2 + 43u +

i/ steps of point update update at Q paired
ri Alg. 2.1 R ℓ/v ℓ(Q)/v(Q) value f

1 (45, 23) 1

3/0 3-5 (12, 16) y+33x+43
x+35

35u3+36u2+11u+13
31u2+17

= 6u3 + 19u2 + 36u+ 33 6u3 + 19u2 + 36u+ 33

2/0 3-5 (27, 14) y+2x+7
x+20

35u3+15u2+11u+18
31u2+2

= 39u3 + 8u2 + 20u+ 18 11u3 + 17u2 + 24u + 4

1/0 3-5 (18, 31) y+42x+27
x+29

35u3+33u2+11u+23
31u2+11

= 18u3 + 32u2 + 41u + 30 22u3 + 34u2 + 5u+ 10

0/1 3-5 (45, 24) y+9x+42
x+2

35u3+44u2+11u+21
31u2+31

= 21u3 + 26u2 + 25u + 20 8u3 + 22u2 + 5u+ 27

6-10 O x+ 2 = 31u2 + 31 32u3 + 17u2 + 43u+ 12
12 fr,P (Q)← 32u3 + 17u2 + 43u+ 12

12)287040 = 33u3 + 43u2 + 45u+ 39, which is the same value we got when instead

computing fr,P (DQ) = fr,P ([2]Q)/fr,P (Q) in Example 2.4.6. When comparing

the fifth columns of both tables, one should keep in mind that the numerator and

denominator of the fractions in Example 2.4.6 were themselves both computed

as fractions. Indeed, updates in this example are just the denominator of the

updates in Example 2.4.6, which gives an indication of how advantageous it is

to evaluate the pairing functions at one point (e.g. Q), rather than at a divisor

consisting of multiple points (e.g. ([2]Q)− (Q)). Notice that the values fr,P (DQ)

and fr,P (Q) output after the Miller loops in both examples are not the same, but

the final exponentiation maps them to the same element in µ17. This is because

fr,P (DQ) and fr,P (Q) lie in the same coset of (F∗qk)
r in F∗qk , i.e. they are the same

element in the quotient group F∗
qk/(F

∗
qk)

r.

We are now in a position to describe the important denominator elimination

optimisation. Barreto et al. were the first to notice that q − 1 | (qk − 1)/r

[BKLS02, Lemma 1], since if r | q−1 then the embedding degree would be k = 1.

This allows us to write the final exponent as (qk − 1)/r = (q− 1) · c, which gives

fr,P (Q)(qk−1)/r = (fr,P (Q)q−1)c, meaning that any elements of Fq contributing to

fr,P (Q) will be mapped to one under the final exponentiation. Thus, one can

freely multiply or divide fr,P (Q) by an element of Fq without affecting the pairing

value [BKLS02, Corr. 1]. When working over supersingular curves with k = 2,

the x-coordinate of Q is defined over Fq (see any of Examples 2.3.6, 2.3.7 ,2.3.8,

http://www.craigcostello.com.au/pairings/scripts/2-6-1-TateNotDivisor.txt

94 Chapter 2. Pairings

2.4.3). Therefore, the vertical lines appearing on the denominators of Miller’s

algorithm for the Tate pairing are entirely defined over Fq: the line is a function

x − xR that depends on P ∈ E(Fq)[r], which is evaluated at xQ ∈ Fq. Thus, in

this case the contribution of (each of) the denominators to fr,P (Q) ends up being

mapped to 1 under the final exponentiation, so these denominators (the v’s in

the ℓ/v’s – see Steps 5 and 9 in Algorithm 2.1) can be removed from the Miller

loop.

For ordinary curves with k > 2 however, the x-coordinate of Q will no longer

be in the base field Fq, but in some proper subfield Fqe of Fqk , where e = k/d and

d is the degree of the twist employed13 – see Section 2.3.3. Here it helps to assume

that k is even, i.e. k = 2ℓ, so that (at the very least) we can take Q = (xQ, yQ)

where xQ ∈ Fqℓ is such that yQ ∈ Fqk \ Fqℓ . Thus, when advancing beyond

k = 2 supersingular curves, Barreto et al. generalised the original statement

to facilitate the same trick. Namely, that qe − 1 | (qk − 1)/r for any proper

factor e | k [BLS03, Lemma 5, Corr. 2], so denominators can be omitted from

computations in general.

Example 2.6.2 (Magma script). Again, we will continue on from Example 2.6.1

for the sake of a convenient comparison. We simply give an updated table that

details the intermediate Miller functions and pairing values subject to denomi-

nator elimination. Therefore, e(P,Q) = fr,P (Q)(qk−1)/r = (9u3 + 10u2 + 32u +

i/ steps of point update update at Q paired
ri Alg. 2.1 R ℓ ℓ(Q) value f

1 (45, 23) 1
3/0 3-5 (12, 16) y + 33x+ 43 35u3 + 36u2 + 11u+ 13 35u3 + 36u2 + 11u+ 13
2/0 3-5 (27, 14) y + 2x+ 7 35u3 + 15u2 + 11u+ 18 44u3 + 34u2 + 3u+ 44
1/0 3-5 (18, 31) y + 42x+ 27 35u3 + 33u2 + 11u+ 23 5u3 + 24u2 + 21u+ 24
0/1 3-5 (45, 24) y + 9x+ 42 35u3 + 44u2 + 11u+ 21 21u3 + 36u2 + 9u+ 25

6-10 O x+ 2 31u2 + 31 9u3 + 10u2 + 32u+ 36
12 fr,P (Q)← 9u3 + 10u2 + 32u+ 36

36)(qk−1)/r = 33u3 + 43u2 + 45u + 39, which agrees with the Tate pairing value

in Examples 2.4.6 and 2.6.1. Notice again that the value output from the Miller

loop is not equal to either of the values output in 2.4.6 or 2.6.1, but rather that

all three are equivalent under the relation a = b if a/b ∈ (F∗
qk)

r.

We now refine Miller’s algorithm for the Tate pairing computation subject to

the BKLS-GHS improvements. Specifically, notice that the denominators that

13When d = 3 cubic twists are able to be employed for odd k, it is the y-coordinate of Q
that is in the subfield; we will treat this in Chapter 2.3.

http://www.craigcostello.com.au/pairings/scripts/2-6-2-TateDenomElim.txt

2.6. The state-of-the-art 95

were on lines 5 and 9 have now gone (under the assumption that k is even),

and that the second input is now the point Q, rather than a divisor equivalent

to DQ. Further notice that we have necessarily include the final exponentiation

in Algorithm 2.2 since this is what facilitates the modifications. We have also

assumed a Type 3 pairing so the coordinates of P and Q lie in fields that allow

for denominator elimination. Recall from the discussion at the end of Example

2.4.6, or from Example 2.6.2, that the vertical line joining (r − 1)P = −P
and P in the last iteration can also be omitted. Thus, an optimised Tate pairing

computation will execute the main loop from i = n−2 to i = 1 before performing

a “doubling-only” iteration to finish; we left the main loop to i = 0 for simplicity.

Algorithm 2.2 The BKLS-GHS version of Miller’s algorithm for the Tate pair-
ing.

Input: P ∈ G1, Q ∈ G2 (Type 3 pairing) and r = (rn−1 . . . r1r0)2 with rn−1 = 1.

Output: fr,P (Q)(q
k−1)/r ← f .

1: R← P , f ← 1.
2: for i = n− 2 down to 0 do

3: Compute the sloped line function ℓR,R for doubling R.
4: R← [2]R.
5: f ← f2 · ℓR,R(Q).
6: if ri = 1 then

7: Compute the sloped line function ℓR,P for adding R and P .
8: R← R+ P .
9: f ← f · ℓR,P (Q).

10: end if

11: end for

12: return f ← f (qk−1)/r.

2.6.2 Projective coordinates

Although the optimisations described in the previous section removed the denom-

inators in Step 5 and Step 9 of Algorithm 2.2, Fq-inversions are still apparent in

the routine since the affine explicit formulas for the elliptic curve group opera-

tions (see Eq. (2.4) and (2.5)) require them. The penalty for performing field

inversions in PBC is not as bad as it is in ECC (more on this later), but in

any case inversions are still much more costly than field multiplications. In this

subsection, we employ the same techniques to avoid field inversions as we did in

the context of ECC in Example 2.1.11. Namely, we show how Algorithm 2.2 can

become inversion-free if we adopt projective coordinates. In the early days the

96 Chapter 2. Pairings

situation for projective coordinates in the context of pairings was perhaps a little

unclear [Gal05, IX.14], but nowadays all of the record-breaking implementations

(at least up to the 128-bit security level) have exploited the savings offered by

working in projective space.

The potential of projective coordinates was mentioned in passing in the early

landmark papers [BKLS02, §3.2], [GHS02], but the first detailed investigation was

by Izu and Tagaki [IT02]. As Galbraith mentions [Gal05, IX.14], the analysis

in [IT02] is misleading, however projective coordinates did not wait too long

before more accurate expositions that also endorsed their usefulness surfaced

[CSB04, Sco05a]. Chapter 3 of this thesis is dedicated to pushing the limits in

this direction, so we will save much of the discussion until then, but for now it

is useful to see an inversion-free example of Miller’s algorithm.

Example 2.6.3 (Magma script). In the context of standard ECC operations, we

gave the (homogeneous) projective point addition formulas in Example 2.1.11.

Thus, here we will give the homogeneous doubling formulas for computing (X[2]R :

Y[2]R : Z[2]R) = [2](XR : YR : ZR) on E/Fq : Y 2Z = X3 + aXZ2 + bZ3 in Step

4 of Algorithm 2.2, together with the formulas for computing the line function

ℓR,R(Q) in Step 3. The affine doubling formulas in Equation (2.5) are moved

into homogeneous projective space via the substitution x = X/Z and y = Y/Z,

which gives:

λ =
3X2

R + Z2
R

2YRZR
; ν = −3X3

R +XRZ
2
R − 2Y 2

RZR
2YRZ2

R

;

X[2]R

Z[2]R
=
−8XRY

2
RZR + 6X2

RZ
2
R + 9X4

R + Z4
R

4Y 2
RZ

2
R

;

Y[2]R

Z[2]R
= −8Y 4

RZ
2
R + Z6

R − 12XRZ
3
RY

2
R − 36X3

RZRY
2
R + 27Z2

RX
4
R + 9Z4

RX
2
R + 27X6

R

8Y 3
RZ

3
R

,

where ℓ : y − (λx + ν) is still an affine line tangent to E at the point R. It is

again the ability to multiply by factors in proper subfields of Fqk that allows us

to arrive at an inversion-free routine. Namely, we clear the denominators of λ

and ν through multiplication by 2YRZ
2
R, so the line ℓ becomes

ℓ : (2YRZ
2
R) · y − ((3X2

RZR + Z3
R) · x− (3X3

R +XRZ
2
R − 2Y 2

RZR)),

which will be evaluted at y = yQ and x = xQ. Note that since Q remains fixed

throughout the routine, there is no need to cast it into projective space. Finally,

setting Z[2]R = 8Y 3
RZ

3
R and updating the numerator of X[2]R above allows us to

http://www.craigcostello.com.au/pairings/scripts/2-6-3-ProjectiveLine.txt

2.6. The state-of-the-art 97

compute (X[2]R : Y[2]R : Z[2]R) from (XR : YR : ZR) without any Fq-inversions.

Thus, we have an inversion-free way to proceed through the Miller doubling

stage (Steps 3-5 of Algorithm 2.2), and performing the analogous procedure for

the Miller addition stage (Steps 7-9) will give an inversion-free Miller loop. We

make no attempt to optimise or delve further into the above computations in

this example; this is the purpose of Chapter 3.

2.6.3 Towered extension fields

This subsection discusses efficient methods of constructing the full extension field

Fqk over Fq, where the ultimate goal is to minimise the cost of the arithmetic

in Fqk . Indeed, the majority of operations within the pairing algorithm take

place in the full extension field, which is far more expensive to work in than its

proper subfields, so the complexity of Miller’s algorithm heavily depends on the

complexity of the associated Fqk-arithmetic.

So far we have been using one irreducible degree k polynomial to construct

Fqk over Fq. This has been satisfactory, since our small examples have mostly

had embedding degrees k = 2 or k = 3, where we have no other option but to

use polynomials of degree two and three to respectively construct Fqk . However,

for large values of k, which will be composite in all cases of interest to us, there

is an a natural alternative which turns out to be much faster. This idea was first

put forward by Koblitz and Menezes [KM05], who proposed using embedding

degrees of the form k = 2i3j and building up to Fqk using a series of quadratic

and cubic extensions that successively tower up the intermediate fields. For such

k, they show that if q ≡ 1 mod 12 and if α is neither a square or cube in Fq, then

the polynomial xk − α is irreducible in Fq[x] [KM05, Th. 1]. This means that

the tower can be constructed by a sequence of Kummer extensions: this involves

successively adjoining the square root or cube root α, then the square root or

cube root of that, and so on.

Example 2.6.4 (Magma script). Let q = 97, and consider constructing Fq12 using

α = 5 which is a non-square and non-cube in Fq, so that Fq12 can be constructed

directly as Fq12 = Fq[X]/(X12 − α). Choosing instead a tower of quadratic and

cubic extensions, we could construct Fq12 as

Fq
β2−α

// Fq2
γ3−β

// Fq6
δ2−γ

// Fq12 .

http://www.craigcostello.com.au/pairings/scripts/2-6-4-Tower12Degree.txt

98 Chapter 2. Pairings

We show a random element in Fq12 :

(
(79β + 63)γ2 + (29β + 63)γ + (38β + 27)

)
δ + (63β + 22)γ2 + (93β + 10)γ + 75β + 10.

Observe what happens if, instead of performing multiplications in Fq12 over Fq,

we start by performing multiplications over Fq6. Writing a, b ∈ Fq12 over Fq6 gives

a = a0+a1δ and b = b0+b1δ, with a0, a1, b0, b1 ∈ Fq6. Thus, a·b = (a0b0−a1b1γ)+

(a0b1+a1b0)δ, where each of the components inside the parentheses are in Fq6 . To

perform each of the multiplications in Fq6 , we then work over Fq2, so for example

we would need to compute a multiplication between a0 = a0,0 + a0,1γ + a0,2γ
2

and b0 = b0,0 + b0,1γ+ b0,2γ
2, where each component a0,i and b0,i is in Fq2. In this

way the operations filter down the tower until we are performing multiplications

in Fq.

The computational advantage of adopting a tower of extensions may not be

immediately evident. Namely, suppose we were to analyse the complexity of the

Fq12 multiplication in Example 2.6.4. If we were to employ the naive “schoolbook”

method of multiplying two extension field elements, which operates component-

wise, then an Fq12 multiplication computed directly over Fq would cost 144 Fq

multiplications. If we instead descend down the tower employing schoolbook

multiplication, then an Fq12 multiplication would cost 4 Fq6 multiplications, each

of which would cost 9 Fq2 multiplications, with each of these costing 4 mul-

tiplications in Fq, giving 4 · 9 · 4 = 144 base field multiplications in this case

too. However, one of the reasons that the towered approach betters a direct

extension to Fqk is because there exist much better (than schoolbook) methods

of performing arithmetic in quadratic and cubic extensions. Specifically, the

Karatsuba method [KO63] for quadratic extensions allows us to compute multi-

plications in Fq2u using 3 multiplications in Fqu, or to compute a squaring in Fq2u

using only 2 multiplications in Fqu . The same method applied to cubic exten-

sions allows us to compute multiplications in Fq3u using only 6 multiplications

in Fqu (rather than 9), and squarings in Fq3u using 6 Fqu-squarings (which are

faster than Fqu-multiplications in general). There are also other methods and

variations which are competitive for these small extensions, such as the Toom-

Cook method [Too63,CA66], which computes an Fq3u multiplication using only

5 Fqu multiplications, but this requires a substantially higher number of addi-

tions. A helpful report that compares all of these methods in the contexts of

pairings is given by Devegili et al. [DOSD06]. Referring back to the examples

2.6. The state-of-the-art 99

above, and this time descending down the tower using Karatsuba multiplications

for the quadratic and cubic extensions gives that Fq12 multiplications now cost

3 ·6 ·3 = 54 Fq multiplications; a huge improvement over the schoolbook method.

We note that a different ordering of the quadratic and cubic towers from Fq to

Fq12 could be chosen, and that this would give the same number of Fq multipli-

cations for a multiplication in Fq12 , but that there are certainly reasons (other

than the twisted curve) that we would prefer one tower over another. We will

discuss this in closer detail in Chapter 5.

It could potentially be misleading however, to argue that the low num-

ber of Fq multiplications offered by degree 2 and 3 Karatsuba-like methods is

what makes the towered extensions preferable to a direct extension. Indeed,

the Karatsuba and Toom-Cook algorithms generalise to extensions of any de-

gree [WP06], [Ber01, §6]. In fact, generalised Toom-Cook theoretically guaran-

tees that we will be able to perform the Fq12 multiplication from the above exam-

ple (via a direct extension) using only 23 Fq multiplications, which is less than

half the number of Fq multiplications used in our towered Karatsuba approach.

However, such high-degree generalisations require an enormous number of Fq

additions, and the theoretical number of multiplications they save is nowhere

near enough to offset this deficit. Thus, technically speaking, it is in the sav-

ing of Fq-additions that the towered approach gains its advantage. Indeed, the

additions encountered when performing the highest level multiplications at the

top most sub-extension of the tower filter down linearly to Fq, whilst performing

Fqk-arithmetic via a direct extension blows the number of additions out (at the

very least) quadratically.

Given the simple test to determine irreducibility of the binomial xk−α when

q ≡ 1 mod 12 and k = 2i3j above, Koblitz and Menezes defined a pairing-friendly

field to be a prime field with characteristic q of this form. However, given the

number of conditions already imposed on the search for pairing-friendly curves,

Benger and Scott argue that this extra restriction is unnecessary [BS10]. They

relax this constraint and introduce the notion of towering-friendly fields: a field

Fqm is called towering-friendly if all prime divisors of m also divide q − 1. For

such fields, they invoke Euler’s conjectures to give an irreducibility theorem that

facilitates all intermediate subextensions to be constructed via a binomial – see

Theorem C.1. We make extensive use of this theorem when proving results in

Chapter 5 and Chapter 6.

100 Chapter 2. Pairings

2.6.4 Loop shortening

Loop shortening has played a major role in the evolution of pairing computa-

tion. Indeed, the series of landmark works that are summarised in this section

have an impressive evolution of their own. Duursma and Lee [DL03] were the

first to show that, in special cases, a bilinear pairing can be obtained without

iterating Miller’s algorithm as far as the large prime group order r. Barreto et

al. [BGOS07] generalised this observation to introduce the ηT pairing (the eta

pairing); a pairing which achieves a much shorter loop length (than r) on any

supersingular curve. Hess, Smart and Vercauteren [HSV06] simplified and ex-

tended the ηT pairing to ordinary curves, introducing the ate pairing, whose loop

length is T = t− 1, where t is the trace of the Frobenius endomorphism (see Eq.

(2.6)), which is much smaller than r in general cases of interest. A number of

authors followed this work with observations that in many cases we can do even

better than the ate pairing. This included the introduction of the R-ate pair-

ing [LLP09], as well as other optimised variants of the ate pairing [MKHO07].

Vercauteren [Ver10] culminated all of these works and introduced the notion of

optimal pairings, conjecturing a lower bound on the loop length required to ob-

tain a bilinear pairing on any given curve, and showing how to achieve it in many

cases of interest. His conjecture was proven soon after by Hess, who drew a line

under all the loop-shortening work to date, putting forward a general framework

that encompasses all elliptic curve pairings [Hes08].

Our intention in this section is to bring the reader up to speed with optimal

pairings, by picking a few examples that illustrate key concepts. For the sake

of simplicity, we are forced to skip past some of the key works mentioned in

the last paragraph; in particular, we will not present the ηT pairing that targets

supersingular curves, since it is most suited to curves over fields of characteristic

2 and 3. We will also not be giving examples of the works that came between

the ate and optimal ate pairing papers (e.g. [MKHO07, LLP09]), in hope that

the reader will not have too much trouble following an immediate generalisation.

At a high level, the notion of loop shortening makes use of two observations.

Firstly, recall from Section 2.1 (in particular Example 2.1.23), that appropriate

endomorphisms on E compute some multiple [λ]P from P , which essentially allow

us to “skip ahead” in the fundamental computation of [m]P from P . Just as

they can be used to shorten the double-and-add loop for scalar multiplications in

ECC, efficient endomorphisms can be used to shorten the Miller loop in PBC. The

2.6. The state-of-the-art 101

second observation is that, given any two bilinear pairings on E, their product

or quotient will also give a bilinear pairing. More generally, we can say that if

e1, ..., en are bilinear pairings on E, then
∏

i e
ji
i (ji ∈ Z) will also be a bilinear

pairing [ZZH08a, Corr. 1].

We start with an example of Scott’s idea [Sco05b], which came from the first

paper to look at loop shortening on any type of ordinary curve. He looked at

a special case of ordinary curves called not supersingular curves (NSS). These

should not be confused with the more general term non-supersingular, which

(by definition) means all ordinary curves. NSS curves are a special type of

ordinary curve, but they cover the cases that are most useful in the context of

pairings. In fact, we have already seen NSS curves, as they are precisely the

curves described in Table 2.2. Essentially, the modularity conditions imposed

on the curves y2 = x3 + b and y2 = x3 + ax in Table 2.1 is what makes them

supersingular, because these conditions force the maps φ described in that table

to be defined over the extension field – i.e. these congruences make φ a distortion

map. On the other hand, the alternative modularities on the same curves in Table

2.2 mean that the associated φ’s are defined over Fq. Thus, Scott starts with the

motivating question: under these circumstances, what becomes of these distortion

maps? The rest of his paper responds by showing that they are useful, not as

distortion maps, but rather as efficient endomorphisms on E. The following

example does not give the details of Scott’s algorithm; it merely hints towards it

by showing the potential of the endomorphisms φ on an NSS curve.

Example 2.6.5 (Magma script). Taking x = −1 generates the smallest BN curve

(see Example 2.5.6 for the polynomials) with q = 19, E/Fq : y2 = x3 + 2

and r = 13 as the group order. It is clearly an NSS curve (see Table 2.2 or

[Sco05b, Eq. 4]). The non-trivial cube roots of unity are defined over Fq, and

are ζ3 = 7 and ζ2
3 = 11. They both define a different endomorphism on E (e.g.

ζ3 : (x, y) 7→ (ζ3x, y)) which corresponds to a different scalar multiplication λ,

i.e. (ζ3x, y) = [λ](x, y). The two different λ’s are the solutions of λ2 + λ + 1 =

0 mod r, which comes from λ3 ≡ 1 mod r matching ζ3
3 = [1] in End(E), so

λ1 = 9 and λ2 = 3 correspond to ζ3 and ζ2
3 respectively. Miller’s algorithm would

usually double-and-add to compute [r]P = [λ2 + λ + 1]P = [λ]([λ]P + P) + P .

However, for P = (x, y), the endomorphism allows us to easily calculate the

point [λ]P + P = (−(λ + 1)x,−y). Thus, if we store the values of the points

in the n = ⌊log2 λ⌋ doublings that build up to [λ]P , the values of the points

http://www.craigcostello.com.au/pairings/scripts/2-6-5-ScottsNSS.txt

102 Chapter 2. Pairings

in the second n doublings can be found at the cost of a single multiplication.

This is already more efficient, but Scott notices that since the points are related,

the lines they contribute in the point doubling phase of Miller’s algorithm are

similarly related. Namely, the contribution to the pairing value in the first n

iterations is (yQ − yi)−mi(xQ − xi), where (xi, yi) is the point [2i]P , and mi is

the line slope resulting for the point doubling (we use m in this example because

λ is already taken). It follows (see [Sco05b, §5]) that the contribution to the

pairing value from the final n doublings will be (−yQ− yi)−mi(λxQ− xi). This

means we only need to loop as far as n = ⌊log2 λ⌋ (rather than 2n = ⌊log2 λ
2⌋) to

get all the information we need. See Scott’s paper for the algorithm description

that ties all this together, where he deals with cases where λ = 2a + 2b. Thus,

to finish our example with the algorithm write λ1 = 2a1 + 2b1 and λ2 = 2a2 + 2b2

with a1 = 3, b1 = 0, a2 = 1, b2 = 0.

The φ maps on NSS curves clearly offer an advantage, but there is another

endomorphism we have already seen that turns out to be much more powerful.

Namely, the ate pairing makes use of the Frobenius endomorphism π on E. A

key observation is that the Frobenius endomorphism acts trivially on elements

in the base field, i.e. π(P) = P in G1, so we instead look at using the trace-

zero subgroup G2 where π acts non-trivially. Here π(Q) = [q](Q), but since

[q](Q) = [t− 1](Q), we have π(Q) = [T](Q) (recall that T = t− 1). Hess, Smart

and Vercauteren [HSV06] use this endomorphism to derive the ate pairing aT ,

which is a map

aT : G2 ×G1 → GT ,

defined as

aT (Q,P) = fT,Q(P)(qk−1)/r.

It helps to see a brief sketch of their proof as follows. We show that aT is bilinear

by relating its value fT,Q(P)(qk−1)/r to the Tate pairing (with Q as the first

argument), which we already know is bilinear. Since q ≡ T mod r, T k ≡ 1 mod r

(because k is the embedding degree), so write mr = T k − 1 for some m. Recall

the Tate pairing (with Q as the first argument) as e(Q,P) = fr,Q(P)(qk−1)/r,

which (under simple properties of divisors) means e(Q,P)m = fmr,Q(P)(qk−1)/r =

fT k−1,Q(P)(qk−1)/r. We can then (again using simple properties of divisors) split

2.6. The state-of-the-art 103

this into a product of fT,[T i]Q(P), each of which is raised to an appropriate

exponent. Since Q ∈ G2, each of these [T i]Q’s is the same as πi(Q), and since

π is purely inseparable of degree q, all of the values fT,[T i]Q(P) in the product

become f q
i

T,Q(P), so we can clean up the exponent to get e(Q,P) = aT (Q,P)v.

The exponent v does not divide r in general, so the bilinearity of the ate pairing

follows from that of the Tate pairing (see [HSV06, Th. 1] for the full details).

Since there is a final exponentiation, the optimisations that transformed

Miller’s algorithm into the BKLS version still apply, so we only need to up-

date the input definitions in Algorithm 2.2. Namely, r becomes T , P and Q

(from G1 and G2 respectively) switch roles. For no other reason than for ease of

future reference, we write these updates in an ate-specific version below. Note

that if T = t − 1 < 0, then it is fine to take T = |T | [Ver10, §C]. There is only

one trick that was used in the Tate pairing that does not carry across to the ate

setting. Namely, we can no longer ignore the last bit in the final iteration like

we did in Section 2.6.1, because if an addition occurs in the final iteration it will

now be a sloped line, whilst in the Tate pairing the last addition line joined P

and [r − 1]P = −P and was therefore vertical.

Algorithm 2.3 The BKLS-GHS version of Miller’s algorithm for the ate pairing.

Input: P ∈ G1, Q ∈ G2 (Type 3 pairing) and T = (Tn−1 . . . T1T0)2 with Tn−1 = 1.

Output: fT,Q(P)(q
k−1)/r ← f .

1: R← Q, f ← 1.
2: for i = n− 2 down to 0 do

3: Compute the sloped line function ℓR,R for doubling R.
4: R← [2]R.
5: f ← f2 · ℓR,R(P).
6: if ri = 1 then

7: Compute the sloped line function ℓR,Q for adding R and Q.
8: R← R+Q.
9: f ← f · ℓR,Q(P).

10: end if

11: end for

12: return f ← f (qk−1)/r.

Example 2.6.6 (Magma script). It helps to immediately see the difference be-

tween the ate and Tate pairing, so we will continue on from Example 2.6.2:

q = 47, E/Fq : y2 = x3 + 21x + 15, #E(Fq) = 51, r = 17, k = 4, Fq4 = Fq(u),

u4 − 4u2 + 5 = 0, P = (45, 23) ∈ G1 and Q = (31u2 + 29, 35u3 + 11u) ∈ G2.

The trace of Frobenius is t = −3, so take T = 4. Thus, we will compute the ate

http://www.craigcostello.com.au/pairings/scripts/2-6-6-ateCompare.txt

104 Chapter 2. Pairings

pairing via Algorithm 2.3 with only two doublings. We have combined the inde-

terminate function ℓ and its evaluation ℓ(P) at P into the same column to fit the

table in. Thus, the ate pairing aT is computed as aT (Q,P) = fr,Q(P)(qk−1)/r =

i/ steps of point update (ℓ); paired
Ri Alg. 2.1 R update at P (ℓ(P)) value f

1 (31u2 + 29, 35u3 + 11u) 1
1/0 3-5 (7u2 + 25, 37u3 + 28u) y + (u3 + 32u)x+ 42u3 + 15u;

40u3 + 45u+ 23 40u3 + 45u + 23
0/0 3-5 (16u2 + 12, 6u3 + 24u) y + (28u3 + 22u)x + 17u3 + 26u;

8u3 + 29u+ 23 44u3 + 24u2 + 41u+ 31
12 fr,Q(P)← 44u3 + 24u2 + 41u+ 31

(44u3 + 24u2 + 41u+ 31)287040 = 21u3 + 37u2 + 25u+ 25.

Notice the price we pay for the much shorter loop in the ate pairing, in that

it is now the first argument of the pairing (Q) that is defined over the larger

field, so the elliptic curve operations (doublings/additions) and line function

computations are now taking place in Fqk . For example, compare the second

and third columns of the table in Example 2.6.6 to the table in Example 2.6.2.

It is here that the power of a high-degree twist really aids our cause. Namely,

utilising the twisting isomorphism allows us to move the points in G2, which is

defined over Fqk , to points in G′2, which is defined over the smaller field Fqk/d. In

Example 2.6.6 above where k = 4, the maximum degree twist permitted by E is

d = 2, so we could have performed the point operation and line computations in

Fqk/2 = Fq2. However, if the curve had have been of the form y2 = x3 + ax, we

could have utilised a d = 4 quartic twist (see Section 2.3.3) and performed these

operations all the way down in the base field Fq; i.e. in this case we would pay

no price for a much smaller loop. In general though, provided we make use of

high-degree twists in the ate pairing, then the price we pay in doing more work

(per iteration) in the larger field is nowhere near enough to offset the savings we

gain through having a much shorter loop, meaning that the ate pairing (or one

of its variants) is much faster than the Tate pairing. We now turn to describing

optimal pairings. Vercauteren [Ver10] begins with the observation that the ate

pairing aT corresponding to T ≡ q mod r is a special case of the pairing aλi

that is obtained by taking any power λi ≡ qi mod r; some specific consequences

of this observation were previously considered in [MKHO07, ZZH08b]. Since

λi corresponds to the loop length of the pairing aλi
, we would like it to be as

small as possible. Thus, we would like to find the smallest value of qi mod r

(i ∈ Z), and since qk ≡ 1 mod r, finding the smallest aλi
would only require

2.6. The state-of-the-art 105

testing the possibilities up to k − 1 (i = k clearly gives the trivial degenerate

pairing). However, Vercauteren actually does much better than this by observing

that since qi mod r induces a bilinear pairing aλi
, then any linear combination

of
∑l

i=0 ciq
i ≡ 0 mod r gives rise to a bilinear pairing

(Q,P) 7→
(

l∏

i=0

f q
i

ci,Q
(P) ·

l−1∏

i=0

ℓi

)(qk−1)/r

, (2.23)

where the ℓi are simple “one-off” line functions (chords) that are needed to make

the bilinearity hold – see [Ver10, Eq. 7] for details. Also, the exponentiations of

each of the (at most ℓ + 1) line functions to the power of qi should not concern

us, as these are just repeated applications of the Frobenius endomorphism in GT ,

which is essentially cost-free (more on this in Section 2.6.6). The main point to

note is that the loop lengths of the Miller functions fci,Q are the ci. Thus, we

would like to find a multiple mr of r with a base-q expansion mr =
∑l

i=0 ciq
i

that has the smallest ci coefficients possible. Vercauteren proceeds naturally by

posing this search as a lattice problem, i.e. that such small ci are obtained by

solving for short vectors in the following lattice

L =

r 0 0 . . . 0

−q 1 0 . . . 0

−q2 0 1 . . . 0
...

...
. . .

−qϕ(k)−1 0 . . . 0 1

, (2.24)

which is spanned by the rows, and where ϕ(k) is the Euler phi function of k.

He then invokes Minkowski’s theorem [Min10] to show that there exists a short

vector (v1, ..., vϕ(k)−1) in L such that maxi|vi| ≤ r1/ϕ(k). Thus, we have an upper

bound on the largest Miller loop length that will be encountered when computing

the pairing in (2.23). Vercauteren uses this bound to define an optimal pairing

[Ver10, Def. 3]: e(·, ·) is called an optimal pairing if it can be computed in

log2 r/ϕ(k) + ǫ Miller iterations, with ǫ ≤ log2 k. He subsequently conjectures

that any bilinear pairing on an elliptic curve requires at least log2 r/ϕ(k) Miller

iterations. Following [Ver10, Def. 3], Vercauteren also notes that the reason

that the dimension of L is ϕ(k) is because we really only need to consider qi

up to qϕ(k)−1. This is due to that fact that Φk(q) ≡ 0 mod r implies that qj

106 Chapter 2. Pairings

with j > ϕ(k) can be written as linear combinations of the qi (i ≤ ϕ(k) − 1)

with small coefficients, which means only these qi should be considered linearly

independent.

Before giving examples, we mention a caveat. Observe that maxi|ci| ≤ r1/ϕ(k)

does not imply that the lower bound is met, since the number of Miller iterations

required is given by
∑

i log2 ci. However, we will be searching for small vectors

in the lattice L, where q and r come from families and are therefore given as

polynomials q(x) and r(x). Therefore, the ci in the short vectors will themselves

be polynomial expressions ci(x), meaning that the Miller functions fci(x),Q in

(2.23) will typically follow from fx,Q.

We will illustrate with three families that were used as examples in Sec-

tion 2.5. Vercauteren gives more examples. Magma has a built in algorithm

ShortestVectors() that serves our purpose, but the code we use in the follow-

ing three examples was written by Paulo Barreto, and passed on to us by Luis

Dominguez Perez.

Example 2.6.7 (Magma script). Recall the parameterisations for k = 12 BN

curves from Example 2.5.6: t(x) = 6x2 + 1, q(x) = 36x4 + 36x3 + 24x2 + 6x+ 1

and r(x) = 36x4 +36x3 +18x2 +6x+1. These were actually used to generate the

curve in Example 2.5.2, with x = 94539563377761452438 being 67 bits, which

generated a 271-bit q and r. Observe that Miller’s algorithm to compute fr,P (Q)

in the Tate pairing would therefore require around 270 iterations. Alternatively,

t = t(x) is 137 bits, so computing the ate pairing aT (Q,P) = fT,Q(P)(qk−1)/r

would require around 136 iterations. However, Vercauteren’s bound suggests we

can do even better: since ϕ(12) = 4, our loop can be reduced by a factor of 4,

i.e. we should require log2 r/4 ≈ 68 iterations. Following (2.24) then, we seek

short vectors in the lattice

L =

36x4 + 36x3 + 18x2 + 6x+ 1 0 0 0

−6x2 1 0 0

36x3 + 18x2 + 6x+ 1 0 1 0

36x3 + 24x2 + 12x+ 3 0 0 1

,

where the −q(x)i down the first column were immediately reduced modulo r(x).

Some short vectors in L are V1(x) = (6x+2, 1,−1, 1), V2(x) = (6x+1, 6x+3, 1, 0),

V3(x) = (−5x − 1,−3x− 2, x, 0), V4(x) = (2x, x+ 1,−x, x). In reference to the

point we made before this example, we prefer the short vectors with the minimum

number of coefficients of size x, so choosing V1(x) and computing the optimal

http://www.craigcostello.com.au/pairings/scripts/2-6-7-BNShortVector.txt

2.6. The state-of-the-art 107

ate pairing aV1(x) following (2.23) gives

aV1(x) = (f6x+2,Q(P) · f1,Q(P) · f−1,Q(P) · f1,Q(P) ·M)(qk−1)/r ,

= (f6x+2,Q(P) ·M)(qk−1)/r ,

where f1,Q = 1 and f−1,Q = 1/f1,QvQ (which disappears in the final exponenta-

tion) can be discarded, and M is a product of 3 simple line functions that are

computed easily – this example is in [Ver10, IV.A], where M is defined. The

only Miller loop we need to compute is f6x+2,Q(P), which for our x-value, is 69

bits, meaning the optimal pairing indeed requires log2 r/4 ≈ 68 iterations. No-

tice then, the difference between the ease of using V1(x) compared to any of the

other short vectors above, which all suggest more than one Miller loop.

Example 2.6.8 (Magma script). Recall the parameterisations for k = 16 KSS

curves from Example 2.5.7 as t(x) = (2x5 + 41x + 35)/35, q(x) = (x10 +

2x9 + 5x8 + 48x6 + 152x5 + 240x4 + 625x2 + 2398x + 3125)/980 and r(x) =

(x8 + 48x4 + 625)/61250. For any x-value, the Tate pairing requires comput-

ing the function fx8+48x4+625,P (Q), whilst the ate pairing computes the function

f(2x5+41x+35)/35,Q(P). Since ϕ(k) = 8, the ate pairing is not optimal, i.e. log2 r/8

should have an optimal pairing loop length of order O(x), not O(x5). Thus, we

look for short vectors in the lattice

L =

x8 + 48x4 + 625 0 0 0 0 0 0 0

−2x5 − 41x 35 0 0 0 0 0 0

4x6 + 117x2 0 175 0 0 0 0 0

2x7 − 29x3 0 0 875 0 0 0 0

1x4 + 24 0 0 0 7 0 0 0

−1x5 − 38x 0 0 0 0 35 0 0

−3x6 − 44x2 0 0 0 0 0 175 0

11x7 + 278x3 0 0 0 0 0 0 875

.

A nice short vector is V (x) = (x, 1, 0, 0, 0,−2, 0, 0), so indeed an optimal pairing

is

aV (x) = (fx,Q(P) · f−2,Q(P) ·M)(qk−1)/r ,

where M is again a product of simple one-off lines, and we can compute f−2,Q(P)

as 1/f2,Q(P), since the vertical line that makes two equal evaporates in the final

exponentiation. Note that f2,Q(P) is simply the first doubling of Q at P , and

http://www.craigcostello.com.au/pairings/scripts/2-6-8-KSSShortVector.txt

108 Chapter 2. Pairings

that fx,Q(P) is the only Miller loop required.

Example 2.6.9 (Magma script). Recall the parameterisations for a k = 24 BLS

curve from Example 2.5.5 as t(x) = x + 1, q(x) = (x − 1)2(x8 − x4 + 1)/3 + x

and r(x) = Φ24(x) = x8 − x4 + 1. The Tate pairing requires the computation

fx8−x4+1,P (Q) whilst the ate pairing computes fx,Q(P). Since ϕ(k) = 8, the ate

pairing is already optimal, i.e. it has a loop length of log2(r)/8. In cases when

the ate pairing is not optimal, like the previous two examples, it is common

that other variants like the R-ate pairing of [LLP09] also achieve optimality. For

example, Scott uses the R-ate pairing to achieve optimality for k = 12 and k = 18

implementations targeting the 128 and 192-bit security levels [Sco11, Table 1].

2.6.5 Low Hamming weight loops

This very short subsection describes a more obvious optimisation to Miller’s algo-

rithm. This trick was suggested in the very early papers on pairing computation,

but for reasons that will become clear in a moment, we have delayed its intro-

duction in this section until after we described the ate and optimal ate pairings.

Regardless of the pairing-based protocol, the loop length of the pairing is known

publicly; therefore, unlike ECC where we try to avoid special choices of scalars

that might give attackers unnecessary advantage, in PBC there is no problem in

specialising the choice of the loop length. In this light, it is advantageous to use

curves where the loop length has a low Hamming weight, thus minimising the

number of additions incurred in Miller’s algorithm.

For supersingular curves over prime fields, where #E(Fq) = q + 1, finding

a curve whose large prime divisor r has low Hamming weight is relatively easy.

Thus, in the early days, facilitating a low Hamming weight Miller loop was not too

difficult. However, once the introduction of parameterised families were needed

for higher embedding degrees, the polynomial representation for r(x) meant that

controlling the loop length (r) of the Tate pairing was a little more difficult. The

best we could do in this scenario is search for x values of low Hamming weight,

in the hope that the polynomial r(x) wouldn’t completely destroy this. Nowa-

days however, the introduction of the ate and optimal ate pairings makes this

optimisation very relevant. Namely, as we saw in the examples in the previous

subsection, the loop length associated with the optimal Miller function is often

some small function of x, if not x itself. Thus, choosing x to be of low Hamming

http://www.craigcostello.com.au/pairings/scripts/2-6-9-BLSateIsOptimal.txt

2.6. The state-of-the-art 109

weight can be very advantageous for a faster Miller loop, as we show in the fol-

lowing example. In fact, we will see in the next subsection that a faster Miller

loop is only a partial consequence.

Example 2.6.10 (Magma script). Both x = 258419657403767392 and x = 144115

188109674496 are 58-bit values that result in k = 24 BLS curves suitable for

pairings at the 224-bit security level. The former was found by kick-starting

the search at a random value between 257 and 258, and as such, has a Hamming

weight of 28, as we would expect. On the other hand, the second value is actually

257+225+218+211, which has Hamming weight 4. Thus, we would much prefer the

second value since this would result in 24 less additions through the Miller loop.

Another nice alternative that gives similar parameter sizes is x = 256 +240− 220,

which does not have a low Hamming weight, but rather a low NAF-weight (weight

in the signed binary representation), for which Miller’s algorithm can be easily

updated to take advantage of.

2.6.6 The final exponentiation

Until now, our optimisations have all applied to the Miller loop. This was a

natural place to look for tricks and shortcuts in the early days, since at low levels

of security, the Miller loop is by far the bottle-neck of the algorithm. However,

as the security level increases, the relative cost of the final exponentiation also

increases [DS10]. It appears that, all known high-level optimisations considered,

pairings on BN curves at the 128-bit security level is roughly the “crossover

point” where the complexities of the Miller loop and the final exponentiation

are similar [AKL+11, Table 4], [BGDM+10, Table 3], [NNS10, Table 2]. Thus,

at higher levels of security, the final exponentiation is the most time-consuming

stage of the pairing computation.

For curves belonging to families, Scott et al.’s algorithm [SBC+09a] is the

fastest method to date. In this subsection, we illustrate their technique by means

of an example, which we take directly from our joint work with Kristin Lauter and

Michael Naehrig [CLN11]. This work looked at k = 24 BLS curves in detail, since

this family is a frontrunner for high-security pairings, particularly when targeting

256-bit security. There are several other examples looked at in [SBC+09a].

We start with a brief description of the general algorithm, before applying

it to our particular case. Suppose k is even and write d = k/2. We start by

http://www.craigcostello.com.au/pairings/scripts/2-6-10-BLShamming.txt

110 Chapter 2. Pairings

splitting the final exponent into three components

(qk − 1)/r = [(qd − 1)] · [(qd + 1)/Φk(q)]
easy part

· [Φk(q)/r]
hard part

,

where the two components on the left are the “easy part” because (the second

bracket reduces to powers of q and) raising elements in Fqk to the power of q

involves a simple application of the Frobenius operator π, which almost comes for

free. It is the Φk(q)/r term that does not reduce to such a form and which is aptly

named the “hard part” of the final exponentiation. Suppose we have already

exponentiated through the easy part, and our intermediate value is m ∈ Fqk .

The straightforward way to perform the hard part, i.e. mΦk(q)/r, is to write the

exponent in base q as Φk(q)/r =
∑n−1

i=0 λiq
i, and to further exploit repeated

applications of π in

mΦk(q)/r = (mqn−1

)λn−1 . . . (mq)λ1 ·mλ0 ,

so that all the mqi
terms essentially come for free, and the hard part becomes

the individual exponentiations to the power of the λi, which are performed using

generic methods. These methods, however, do not take advantage of the poly-

nomial description of q, which is where Scott et al.’s work advances beyond the

more obvious speed-ups.

Example 2.6.11 (Magma script). Recall the k = 24 BLS parameterisations from

Example 2.6.9: t(x) = x + 1, q(x) = (x − 1)2(x8 − x4 + 1)/3 + x and r(x) =

Φ24(x) = x8−x4+1. To give an idea of the task we are up against, suppose we are

targeting the 256-bit security level, as we did with these curves in Example 2.5.5

with x = 9223372036854782449. The final exponentiation in this case involves

raising a 15082-bit value f ∈ Fq24 , to the 14578-bit exponent (q24−1)/r, a number

far bigger than what we would like to write here (but see the corresponding

script). Performing this exponentiation using a naive square-and-multiply with

no optimisations would therefore involve 14578 squarings and roughly half as

many multiplications in the 15082-bit field, a computation that would blow out

the pairing complexity by several orders of magnitude. To take a much faster

route, we start by splitting the exponent as

(q24 − 1)/r = [(q12 − 1) · (q4 + 1)]
easy part

· [(q8 − q4 + 1)/r]
hard part

.

http://www.craigcostello.com.au/pairings/scripts/2-6-11-FinalExp.txt

2.6. The state-of-the-art 111

We compute f (qk−1)/r =
(

f (q12−1)·(q4+1)
)(q8−q4+1)/r

. The exponentiation inside

the parentheses is almost free, since f q
12

is just 12 repeated applications of the

Frobenius operation π, and similarly for raising to the power of q4, so the easy

part essentially incurs just a couple of multiplications and maybe an inversion.

We are now left with the exponent (q8 − q4 + 1)/r, for which we can not pull

out any more “easy factors”. However, a very helpful observation which aids the

remaining computations is that, after the first exponentiation to the power q12−1,

the value m ∈ Fq24 is now such that its norm is NFq24/Fq12
(m) = 1. This allows

any inversions in Fq24 to be computed for free using a simple conjugation [SB04,

NBS08, SBC+09a], and any squarings in Fq24 to be computed more efficiently

than standard Fqk squarings [GS10,Kar10,AKL+11]. We now make use of the

non-trivial part of the algorithm in [SBC+09a], and write the hard part as

(q(x)8 − q(x)4 + 1)/r(x) =
7∑

i=0

λi(x)q(x)
i.

In an appendix of her thesis, Benger [Ben10] computed the λi for a range of curve

families, including BLS curves with k = 24, giving λi = νi/3, where

ν7(x) = x2 − 2x+ 1,

ν6(x) = x3 − 2x2 + x = x · ν7(x),

ν5(x) = x4 − 2x3 + x2 = x · ν6(x),

ν4(x) = x5 − 2x4 + x3 = x · ν5(x),

ν3(x) = x6 − 2x5 + x4 − x2 + 2x− 1 = x · ν4(x)− ν7(x),

ν2(x) = x7 − 2x6 + x5 − x3 + 2x2 − x = x · ν3(x),

ν1(x) = x8 − 2x7 + x6 − x4 + 2x3 − x2 = x · ν2(x),

ν0(x) = x9 − 2x8 + x7 − x5 + 2x4 − x3 + 3 = x · ν1(x) + 3.

This representation reveals another nice property exhibited by k = 24 BLS

curves: namely, a very convenient way to compute the νi with essentially just

multiplications by x. Letting µi = mνi(x), this structure allows us to write the

hard part of the final exponentiation as

m(q8−q4+1)/r = µ0 · µp1 · µp
2

2 · µp
3

3 · µp
4

4 · µp
5

5 · µp
6

6 · µp
7

7 ,

112 Chapter 2. Pairings

FinalExp Input: fr,Q(P) ∈ Fq24 and loop parameter x

Initialize f ← fr,Q(P),

t0 ← 1/f , m← f , m← m · t0, t0 ← π4
q(m),m← m · t0,

m1 ← mx, m2 ← mx
1 m1 ← m2

1, m1 ← m1, µ7 ← m2 ·m1, µ7 ← µ7 ·m,
µ6 ← µx7 , µ5 ← µx6 , µ4 ← µx5 , µ′7 ← µ7, µ3 ← µx4 , µ3 ← µ3 · µ′7,
µ2 ← µx3 , µ1 ← µx2 , µ0 ← µx1 , m′ ← m2, µ0 ← µ0 ·m′, µ0 ← µ0 ·m,

f ← πq(µ7), f ← f · µ6, f ← πq(f), f ← f · µ5, f ← πq(f), f ← f · µ4,
f ← πq(f), f ← f · µ3, f ← πq(f), f ← f · µ2, f ← πq(f), f ← f · µ1,
f ← πq(f), f ← f · µ0,

Return fr,Q(P)(q
24−1)/r ← f .

Output: fr,Q(P)(q
24−1)/r

Table 2.3: The final exponentiation for BLS curves with k = 24.

where the µi can be computed using the following sequence of operations:

µ7 = (mx)x · (mx)−2 ·m, µ6 = (µ7)
x, µ5 = (µ6)

x, µ4 = (µ5)
x,

µ3 = (µ4)
x · (µ7)

−1, µ2 = (µ3)
x, µ1 = (µ2)

x, µ0 = (µ1)
x ·m2 ·m.

The computation of m(q8−q4+1)/r requires 9 exponentiations by x, 12 multiplica-

tions in Fq24 , 2 special squarings, 2 conjugations to compute the inverses and 7

q-power Frobenius operations. We detail a possible scheduling for the full ex-

ponentiation routine in Table 2.3. Note that we can simply forget about the

difference between the λi and the νi; by leaving out the 3 in the denominators,

we just compute the third power of the pairing.

2.6.7 Other optimisations

There are hundreds of papers that have helped accelerate pairing computation

to the point it is at today. Of course, we could not delve into the details of

all the optimisations and improvements that are available. For example, since

our exposition is largely concerned with computational efficiency, we have not

covered the work on compressed pairings [SB04,NBS08,Nae09] which targets low

bandwidth environments, or the work by Galbraith and Lin [GL09] which looks

at computing pairings using x-coordinates only.

In addition, a number of papers have looked at operations in a pairing-

2.7. Chapter summary 113

based protocol that are not the pairing computation itself, the most impor-

tant of which are point multiplications in the pairing-specific groups G1 and G2.

In Section 2.5.3 (and Table 2.2 in particular) we saw that the pairing-friendly

curves that are most useful in practice are those of the form E : y2 = x3 + b or

E : y2 = x3 + ax. In both of these cases there is a non-trivial endomorphism

φ ∈ End(E) that facilitates faster point multiplications via GLV/GLS scalar

decompositions (refer to Example 2.1.23). For point multiplications in G1 that

take place over the base field, the standard GLV decomposition can make use

of φ to decompose the scalar. For the more expensive point multiplications in

G2 that take place over extension fields, the GLS technique (which additionally

exploits the non-trivial action of the Frobenius endomorphism π) can be used for

higher dimensional decompositions. We particularly make mention of the work

of Scott et al. [SBC+09b] and Fuentes-Castaeda et al. [FCKRH11], who consider

fast hashing to the group G2, the bottleneck of which is the expensive cofactor

scalar multiplication in G2. For pairings to become widespread in the indus-

try, efficient off-the-shelf solutions to all the operations involved in pairing-based

protocols need to be available.

Finally, we mention that some recent work has revived the potential of the

Weil pairing in practice [AKMRH11,AFCK+12]. Indeed, since the complexity of

the final exponentiation in the Tate pairing (and its ate-like variants) overtakes

that of the Miller loop at higher security levels, it is natural to reconsider the Weil

pairing for these scenarios. Although several of the Tate-specific optimisations

do not translate across, loop shortening is available in the Weil pairing. Indeed,

Hess presented a general framework for loop shortening in both the Tate and Weil

pairing methodologies [Hes08]. Aranha et al. used this idea to derive Weil pairing

variants that are particularly suited to the parallel environment [AKMRH11],

and actually showed that their new Weil pairing is substantially faster than the

optimal ate pairing when 8 cores are used in parallel.

2.7 Chapter summary

The fundamental computation in ECC is the scalar multiplication which, in the

most straightforward case, computes [m]P from m ∈ Z and P ∈ E via a double-

and-add routine. Computing the Miller loop in the Tate pairing e(P,Q) can

be thought of as an extension of this computation by stipulating that the line

114 Chapter 2. Pairings

functions used in the scalar multiplication of P are evaluated at Q and accumu-

lated as we proceed to compute [m]P . Thus, those who understand ECC related

computations should find a relatively easy transition to the basics of pairing com-

putation. This is why we started the chapter with a general overview of ECC in

Section 2.1, which included an elementary description of the group law, as well

as many optimisations like that of adopting projective coordinates or the GLV

technique which exploits endomorphisms to accelerate the computation of [m]P .

Carrying many ECC related improvements over to the context of PBC is straight-

forward, whilst translating other optimisations requires a firm knowledge of the

functions involved in the pairing computation. For example, one could not hope

to thoroughly understand how or why the (optimal) ate pairing works without

knowing the basics of divisor theory. In Section 2.2 we presented all the divisor

theory that is necessary in preparation for the description of the Weil, Tate and

ate-like pairings. We gave a very detailed description of the r-torsion group on

E in Section 2.3, and illustrated that the availability of different (efficiently com-

putable) maps between order r subgroups give rise to different pairing types. We

adopted the widely accepted argument that Type 3 pairings are most commonly

the preferred setting, thereby defining G1 and G2 as the base field subgroup and

trace-zero subgroup respectively. We finished that section by detailing an effi-

cient method of working in G2, namely by exploiting the isomorphism between

the trace-zero subgroup G2 on E and the trace-zero subgroup G′2 on the twisted

curve E ′, which is defined over a smaller field. In Section 2.4 we defined the

Weil and Tate pairings and described Miller’s algorithm which makes crypto-

graphic pairing computations practical. Having described an efficient algorithm

to compute pairings, Section 2.5 looked at the complementary arena of gener-

ating pairing-friendly curves. We discussed that pairing-friendly curves are very

special in general, and cannot be found by searching at random, before giving

a general overview of the many clever methods that have been developed in the

last decade to facilitate their construction. We finished in Section 2.6 by bring-

ing the reader up to speed with some of the major milestones in efficient pairing

computation, most notably the BKLS-GHS algorithm for the Tate pairing, and

the impressive work on loop shortened versions of the Tate pairing which was

pinnacled by the optimal ate pairing.

The following chapter presents the first of our novel contributions to the field

of pairing computation, which is the optimisation of explicit projective formulas

2.7. Chapter summary 115

for the elliptic curve point operations and Miller line computations. Whilst turn-

ing affine pairing formulas into projective formulas is essentially straightforward,

finding the fastest route to computing them is not so trivial. This involves search-

ing many different elliptic curve models and a number of options for projective

coordinate systems, each combination of which requires individual treatment in

order to simplify the expressions as much as possible. Chapter 3 presents our

record holding explicit formulas for the all of the major scenarios of elliptic curve

pairings where projective coordinates perform fastest in practice.

116 Chapter 2. Pairings

Chapter 3

Fast Miller Functions

This chapter focusses on optimising the explicit formulas for the elliptic curve

operations and line computations that take place inside the Miller loop. We

present the fastest known explicit formulas for pairings in all practical scenarios

where projective formulas perform best; this includes all security levels up to (at

least) the 192-bit security level [AKL+11,AFCK+12].

The ultimate goal of this work is best described by referring back to our

description of (the BKLS-GHS version of) Miller’s algorithm, particularly in the

context of the ate pairing. For the doublings (resp. additions) that occur in

Algorithm 2.3 then, our aim is to compute Steps 3 and 4 (resp. Steps 7 and 8)

as fast as possible. We do not consider optimising the function updates here, i.e.

f ← f 2 · ℓR,R(P) and f ← f · ℓR,Q(P) in Steps 5 and 9, since this is a separate

issue. However, our analysis will include the evaluation of the functions at P ,

which is included in these steps in Algorithm 2.3. Thus, our aim is to optimise

the following operations.

− Compute ℓR,R for doubling R. doubling step

Compute R← [2]R (DBL)

Evaluate ℓR,R(P) Steps 3 and 4 of Alg. 2.3

− Compute ℓR,Q for adding R and Q. addition step

Compute R← R +Q (ADD)

Evaluate ℓR,Q(P) Steps 7 and 8 of Alg. 2.3

In the ate pairing variants, the functions ℓR,R and ℓR,Q have coefficients in Fqk ,

117

118 Chapter 3. Fast Miller Functions

and they are evaluated at the coordinates of P , which lie in Fq. In the Tate

pairing, P and Q switch roles, so the functions now have coefficients in Fq, and

are evaluated at the coordinates of Q, which are in Fqk . In the ate pairing then,

Q plays a much larger part in the Miller loop computations, and since Q comes

from the larger field, optimising the computations in the above steps has a more

significant impact on the overall runtime of the pairing algorithm.

3.1 Computing the ate pairing entirely on the

twisted curve

Several authors have presented new formulas that achieve faster iterations of the

Miller loop on certain curves [CSB04,DS08,IJ08,ALNR10]. The operation counts

presented in these papers are given in the context of Tate pairing computations

on curves with even embedding degrees, where all elliptic curve operations occur

in the base field Fq, and the functions in the Miller loop are evaluated at a point

which has one coordinate in Fqk/2 and one in the full extension field Fqk . This

allows for a relatively simple exposition. However, the ate pairing reverses the

roles of the points involved and employs twisted curves. This means that some

of the optimisations cannot be applied in the same fashion. The purpose of

this section is to tidy up this discussion and to show how operation counts for

the Tate pairing can be easily modified to give the analogous ate pairing count.

The usual practice when computing the ate pairing aT (Q,P) of the points

P ∈ E(Fq) and Q ∈ E(Fqk) is to map the point Q to the twisted curve using the

isomorphism Ψ−1, so that the point operations (doubling/addition) in the Miller

loop can be performed more efficiently using the point Q′ = Ψ−1(Q) ∈ E ′(Fqk/d),

whose coordinates are defined over the smaller field Fqk/d. When it is time to

compute the Miller line, Q′ is “untwisted” back to the full extension field via

Q = Ψ(Q′) – this is to ensure the pairing value is in Fqk . Operation counts

for the Tate pairing do not carry over directly to the ate pairing. In particular,

for the Tate pairing it is the y-coordinate of the second argument that is in the

full extension field Fqk , whereas one of the coordinates of the first argument in

the ate pairing is in Fqk . This means that all optimisations that were based on

eliminating subfield elements have to be revised.

Furthermore, pairings on special curves such as Edwards curves and the

curves in [CHB+09] impose conditions on cofactors of the group order. Gal-

3.1. Computing the ate pairing entirely on the twisted curve 119

braith [Gal09] pointed out to us that for twists of degree larger than 2, E and

E ′ can not both simultaneously be in Edwards form. His arguments also apply

to the curves given in our original work with sextic twists [CHB+09]. So far this

meant that the formulas used for the point operations (on E ′) and the formulas

derived (on E) for the Miller functions must be treated separately which usually

results in a greater overall operation count.

In the following theorem, we show that a small (≤ 6) power of the ate pairing

can be computed entirely on the twisted curve, rendering the above concerns

obsolete. Our pairing can make use of loop shortening techniques just like the

ate pairing, but only requires one curve (the twisted curve) to have particular

properties. Furthermore, referring back to the individual twist descriptions in

Section 2.3.3 shows that most coordinates of the twisted points P ′ and Q′ are

defined over subfields. Note that the computation of a small power of pairings for

efficiency reasons has been addressed in previous work, see for example [ELM04].

Theorem 3.1. Let E/Fq : y2 = x3+ax+b and let E ′/Fqk/d : y2 = x3+aω4x+bω6,

a degree-d twist of E. Let Ψ be the associated twist isomorphism Ψ : E ′ → E :

(x′, y′) → (x′/ω2, y′/ω3). Let P ∈ G1, Q ∈ G2, and let Q′ = Ψ−1(Q) and

P ′ = Ψ−1(P). Let aT (Q,P) be the ate pairing of Q and P . Then

aT (Q,P)gcd(d,6) = aT (Q′, P ′)gcd(d,6),

where aT (Q′, P ′) = fT,Q′(P
′)(qk−1)/r uses the same loop parameter as aT (Q,P)

on E, but takes the two twisted points Q′ and P ′ as inputs, instead of Q and P .

Proof. Since all factors of the Miller values that lie in a proper subfield of Fqk

vanish under the final exponentiation, it suffices to show that the Miller function

updates at each iteration are equal, up to a constant defined over any proper sub-

field of Fqk . The computation of aT (Q,P) is composed of addition and doubling

steps. Consider the gradients of the lines at either the addition (of R← R+Q)

or the doubling (R← [2]R) stage of the Miller loop respectively. Let R′ and Q′

be the twists of R and Q under Ψ−1 respectively. We have

y′R − y′Q
x′R − x′Q

=
ω3(yR − yQ)

ω2(xR − xQ)
= ω

yR − yQ
xR − xQ

and
3x′2R + aω4

2y′R
=
ω4(3x2

R + a)

2ω3yR
= ω

3x2
R + a

2yR

for addition and doubling. We write the update to the Miller function at the

120 Chapter 3. Fast Miller Functions

doubling step, ℓR′,R′(P
′)/v[2]R′(P

′), as

(ℓR′,R′(P
′))/(v[2]R′(P

′)) = (yR′ − yP ′ − λ′(xR′ − xP ′))/(xR′ − x[2]U ′)

= (ω3yR − ω3yP − ωλ(ω2xR − ω2xP))/(ω2xP − ω2x[2]R)

= ω · ℓR,R(P)/v[2]R(P),

where λ and λ′ are the gradients determined before, on E and E ′ respectively. In

the case of addition, we similarly have ℓR′,Q′(P
′)/vR′+Q′(P

′) = ω·ℓR,Q(P)/vR+Q(P).

For twists of degree d = 2 and d = 4, observe that ω2 = ωgcd(d,6) is in a subfield

of Fqk and thus vanishes in the final exponentiation. Similarly, for d = 3 and

d = 6, ω3 and ω6 are both in subfields of Fqk , so that introducing a factor of 3

and 6 respectively to the exponent of aT (Q′, P ′) will give an identical result to

the computation of the same power of aT (Q,P).

Corollary 3.2. If aT (Q,P) is bilinear and non-degenerate, then so is aT (Q′, P ′).

Remark 3.1.1. Note that for d = 6 both ω2 and ω3 are in proper subfields of Fqk .

Thus their contributions to the denominator and numerator vanish in the final

exponentiation, so there is no need to introduce a factor of 6 to the final exponent.

That is, for sextic twists it is actually always the case that aT (Q,P) = aT (Q′, P ′).

If denominator elimination is used for d = 6, the values differ by ω3 which lies

in a subfield. For k = 12 and BN curves this case was considered by Akane,

Nogami, and Morikawa [ANM09] who showed that up to constants from subfields

aT (Q,P) = aT (Q′, P ′). For the other cases either ω2 or ω3 lie in a proper

subfield Fqe of Fqk . If 4 or 9 divides
∏

d|k Φd(q)/(q
e − 1), respectively, we obtain

ω(qk−1)/r = 1 and thus automatically aT (Q,P) = aT (Q′, P ′). However, in general

these conditions are not satisfied, and the extra power of 2 or 3 is needed to

obtain the same result.

Computing the ate pairing as aT (Q′, P ′) and using twists as in Section 2.3.3

implies (for d < 6) that the only coordinate that lies in the full extension field

Fqk belongs to the second argument; for d = 6 all coordinates are defined over

subfields, but their being coprime ensures that the paired value lies in the full

extension field. In this sense, the field operations encountered in computing the

ate pairing aT (Q′, P ′) on E ′ mimic the field operations encountered in computing

the Tate pairing er(P,Q) on E. Thus, point operation and line computation

formulas that work in the Tate pairing can directly be applied to the ate pairing.

3.1. Computing the ate pairing entirely on the twisted curve 121

Inversions in Fqk are prohibitively expensive and so we will show for all curve

types a way to eliminate denominators. Therefore, at the doubling or addition

stage of a Miller iteration the update function is given by a polynomial f =
∑

i,j ℓi,j · xiP ′y
j
P ′, where the ℓi,j are functions solely of the intermediate point R

(doubling) or of the intermediate point R and the base point Q (addition). We

reiterate what was said in the beginning of this chapter. In the Tate pairing

computation of er(P,Q), the ℓi,j are functions of some multiple of the point P ∈
E(Fq) and therefore all calculations required to compute the ℓi,j are performed

in the base field Fq. Similarly, in the modified definition of the ate pairing

computation of aT (Q′, P ′), the ℓi,j are functions of some multiple of the pointQ′ ∈
E ′(Fqe) and therefore all calculations required to compute the ℓi,j in this case are

performed in the subfield Fqe. Thus, if the computations of the ℓi,j in an iteration

of the Tate pairing require mm1+ss1, where m1 and s1 denote multiplication and

squaring in Fq, then the equivalent computations in an iteration of the ate pairing

will require mme + sse, where me and se denote multiplication and squaring in

Fqe ; a multiplication by the curve constant a costs da.

For even embedding degrees (admitting quadratic, quartic or sextic twists)

the function update always simplifies to ℓ = ℓ1,0x+ ℓ0,1y + ℓ0,0, so that we have

two extra multiplications required here (ℓ1,0 by x and ℓ0,1 by y). In the Tate

pairing as well as in the ate pairing each of these multiplications costs e = k/d

base field multiplications if field extensions are represented in a suitable way. If

k is odd and divisible by three and if the curve admits a cubic twist, the function

update requires more terms. For comparison, let there be hADD non-zero terms

(excluding ℓ0,0) in the addition step and hDBL in the doubling step, each of which

costs e = k/3 base field multiplications. We summarise the situation for different

twists in Table 3.1.

k even DBL ADD/ mADD
Tate: er(P,Q) m1m1 + s1s1 + 2em1 + mk + sk m2m1 + s2s1 + 2em1 + mk

Ate: aT (Q′, P ′) m1me + s1se + 2em1 + mk + sk m2me + s2se + 2em1 + mk

k odd, 3 | k DBL ADD/ mADD
Tate: er(P,Q) m1m1 + s1s1 + hDBLem1 + mk + sk m2m1 + s2s1 + hADDem1 + mk

Ate: aT (Q′, P ′)m1me + s1se + hDBLem1 + mk + sk m2me + s2se + hADDem1 + mk

Table 3.1: Converting operation counts for single addition and doubling steps in
the Tate pairing er(P,Q) and ate pairing aT (Q′, P ′).

In what follows, whenever we omit the subscripts from the operation costs

122 Chapter 3. Fast Miller Functions

and write m and s, we mean m1, s1 for Tate pairing computation and me, se for

ate pairing computation.

Remark 3.1.2. Note that by Theorem 3.1 the computation of aT (Q′, P ′)gcd(d,6) can

be done entirely on the twisted curve. This means that, for example, Edwards

curves can be employed in the ate setting if we choose the original curve such

that the twisted curve can be written in Edwards form. We will see another

example in Section 3.5.

Following our discussion in Section 2.5.3 (in particular, Table 2.2), optimal

methods of curve construction produce curves that admit high-degree twists,

either of the form y2 = x3 + b for d = 3 and d = 6, or y2 = x3 + ax for d = 4.

Thus, in the next three sections, we derive specialised formulas that targets each

of these cases.

Notation. In [CLN10], we treated the ate and Tate pairings simultaneously by

presenting explicit formulas for the pairing e(R, S), where the first argument R

was Q′ in the modified ate pairing and P in the Tate pairing, and the second

argument S was P ′ in the ate pairing andQ in the Tate pairing. In this exposition

however, we will assume we are computing the (modified) ate pairing aT (Q′, P ′)

and present the explicit formulas accordingly. To make this concrete, replace P ,

Q and R in Algorithm 2.3 with P ′, Q′ and R′, since all computations now take

place on the twist. For the remainder of this section we let the intermediate

multiple of Q′ = (x2, y2) be R′ = (x1, y1), and P ′ = (x′P , y
′
P). Here we adopt

numerical subscripts for the first arguments because this facilitates an easier

distinction between the coordinates that contribute to the coefficients of the

pairing functions, and the coordinate (of P ′) where the functions are evaluated.

In each section we develop doubling and addition formulas, as well as “mixed

addition” formulas which account for the fact that the second argument in the

pairing remains fixed (and therefore affine) throughout the Miller loop.

3.2 Pairings on y2 = x3+ax with even embedding

degrees

The only curves which admit quartic twists over Fq are of the form E : y2 =

x3+ax. In this section we assume that the embedding degree k is even and so (by

3.2. Pairings on y2 = x3 + ax with even embedding degrees 123

the discussion in Section 2.3.3) we can use that the x-coordinates of the second

argument are defined over a subfield of Fqk , whilst its y-coordinate is defined

minimally over Fqk . In the ate pairing aT (Q′, P ′), this corresponds to x′P being

defined over a subfield, whilst in the Tate pairing e(P,Q), it corresponds to xQ

lying in a subfield. We will assume the ate pairing in our formula derivation.

Curves of the form E : y2 = x3 + ax have not received much attention, even

for simple elliptic curve arithmetic, e.g. no special formulas were reported in

the EFD [BL07a] before our paper. We present new formulas for addition and

doubling in a new coordinate system, which we call “weight-(1, 2) coordinates”.

The point (X : Y : Z) corresponds to the affine point (x, y), where x = X/Z and

y = Y/Z2. The projective curve equation for these weights is Y 2 = X3Z+aXZ3.

Lopez and Dahab [LD98] studied such coordinates in the context of elliptic curves

over binary fields but these weights have not been used in the context of curves

over odd-characteristic fields.

It is quite remarkable that our doubling formulas are faster than any doubling

formulas reported for elliptic curves in the EFD.

We extend the explicit formulas for curve operations to compute the doubling

and the addition step on these curves. The resulting pairing computations are

also significantly faster than their predecessors.

3.2.1 Doubling formulas

For this curve shape the affine doubling formulas to compute (x3, y3) = [2]R′ =

[2](x1, y1) simplify to x3 = λ2 − 2x1, y3 = λ(x1 − x3) − y1, where λ = (3x2
1 +

a)/(2y1). In weight-(1, 2) coordinates the doubling formulas to compute (X3 :

Y3 : Z3) = [2](X1 : Y1 : Z1) become

X3 = (X2
1 − aZ2

1)2, Y3 = 2Y1(X
2
1 − aZ2

1)((X2
1 + aZ2

1)
2 + 4aZ2

1X
2
1), Z3 = 4Y 2

1 .

The point doubling needs 1m + 6s + 1da using the following sequence of opera-

tions.

A = X2
1 , B = Y 2

1 , C = Z2
1 , D = aC, X3 = (A−D)2, (3.1)

E = 2(A+D)2 −X3, F = ((A−D + Y1)
2 −B −X3), Y3 = E · F, Z3 = 4B.

124 Chapter 3. Fast Miller Functions

These formulas are now the fastest doubling formulas reported in the EFD:

they are faster by 1 s-m tradeoff than the previous champion, “dbl-20090311-

hwcd” due to Hisil, Wong, Carter, and Dawson [BL07a]. Those formulas are

optimized for “Doubling-oriented XXYZZR coordinates for Jacobi quartics” and

need 2m + 5s + 1da, where a is some curve constant.

3.2.2 Line computation for doubling

In the doubling step of the pairing computation we need to compute [2]R′ and

compute the line function at R′ before evaluating it at P ′ = (xP ′, yP ′). The affine

formula for the computation of ℓR′,R′(P
′) is given as

λ(X1/Z1−xP ′)+yP ′−Y1/Z2
1

xP ′−(λ2−2X1/Z1)
=

−2Y1(−(3X2
1Z1+aZ3

1)·xP ′+(2Y1Z1)·yP ′+X
3
1−aZ2

1X1)

−(4Y 2
1 Z1)·xP ′+9X4

1Z1+6aX2
1Z

3
1+a2Z5

1−8X1Y 2
1

. Since any element except for yP ′ is in

a proper subfield of Fqk , we can omit computing the entire denominator and also

the multiplication by −Y1. We leave the factor of 2 to obtain an s-m tradeoff.

The simplified line function is

ℓ′R′,R′(P
′) = −2(3X2

1Z1 + aZ3
1) · xP ′ + (4Y1Z1) · yP ′ + 2(X3

1 − aZ2
1X1).

We write ℓ′R′,R′(P
′) as ℓ′R′,R′(P

′) = ℓ1,0 · xP ′ + ℓ0,1 · yP ′ + ℓ0,0 and compute ℓ1,0,

ℓ0,1 and ℓ0,0 as

ℓ1,0 = −2Z1 ·(3·A+D), ℓ0,1 = 2((Y1+Z1)
2−B−C), ℓ0,0 = (X1+A−D)2−X3−A,

using the values computed in (3.1) at an additional cost of 1m + 2s, so that the

total operation count for point doubling with line computation is 2(k/d)m1 +

2m + 8s + 1da.

3.2.3 Addition and mixed addition

In affine coordinates, the sum (x3, y3) = R′ +Q′ = (x1, y1) + (x2, y2) is given by

x3 = λ2−x1−x2, y3 = λ(x1−x3)−y1, where λ = (y1−y2)/(x1−x2). In weight-

(1, 2) coordinates this becomes (X3 : Y3 : Z3) = (X1 : Y1 : Z1) + (X2 : Y2 : Z2)

X3 = (Y1Z
2
2 − Y2Z

2
1)

2 − (X1Z2 +X2Z1)T,

Y3 = ((Y1Z
2
2 − Y2Z

2
1)(X1Z2T −X3)− Y1Z

2
2TU)UZ1Z2,

Z3 = (UZ1Z2)
2,

3.2. Pairings on y2 = x3 + ax with even embedding degrees 125

where T = (X1Z2−X2Z1)
2Z1Z2 and U = (X1Z2−X2Z1). This addition can be

computed in 10m + 7s using

A = Z2
1 , B = Z2

2 , C = (Z1 + Z2)
2 −A−B, D = X1 · Z2, E = X2 · Z1,

F = Y1 · B, G = Y2 · A, H = (D − E), I = 2(F −G), II = I2, J = C ·H,
K = 4J ·H, X3 = 2II − (D + E) ·K, Z3 = J2,

Y3 = ((J + I)2 − Z3 − II) · (D ·K −X3)− F ·K2, Z3 = 2Z3.

For mixed addition, i.e. Z2 = 1, the number of operations reduces to 8m + 5s

omitting computation of B,C,D and F .

3.2.4 Line computation for addition and mixed addition

For affine pointsR′, Q′, and P ′ the line function is given by ℓR′,Q′(P
′) =

λ(x2−xP ′)+yP ′−y2
xP ′−(λ2−x1−x2)

.

Again, we can omit the denominator because it is entirely defined over a sub-

field of Fqk . In weight-(1, 2) coordinates the modified line function becomes

ℓ′Q′,R′(P
′) = I · X2Z2 − I · xP ′Z2

2 + J · yP ′Z2
2 − J · Y2. The values X2Z2, xP ′Z

2
2 ,

and yP ′Z
2
2 do not change during the computation and can thus be precomputed.

For the Tate pairing the cost of one addition step (computation of addition and

line function) therefore is (2k/d)m1 + 12m + 7s. If d = 2 it is possible to save

1m by computing I · (X2Z2 − xP ′Z2
2).

When computing the ate pairing, the multiplications in I ·X2Z2− I ·xP ′Z2
2 +

J · yP ′Z2
2 − J · Y2 cost 1m each, given the shape of xP ′ and yP ′. The cost of

one addition step (computation of addition and line function) in the ate pairing

therefore is 14m + 7s.

For mixed additions (Z2 = 1) this simplifies to ℓ′m(R′,Q′)(P
′) = I · X2 − I ·

xP ′ + J · yP ′ − J ·Y2, costing (2k/d)m1 +10m+5s for both the ate and the Tate

pairing for a complete mixed addition step. For d = 2 again 1m can be saved in

the Tate pairing.

If Q is reused several times in the Tate pairing it might be worthwhile to

precompute 1/Y2 for longterm usage. At the beginning of a pairing computation

X̃2 = X2/Y2, x̃P ′ = xP ′/Y2 and ỹP ′ = yP ′/Y2 are computed. Since Y2 lies in Fq,

ℓ′m(R′,Q′)(P
′) can be replaced by

ℓ′m(R′,Q′)(P
′)/Y2 = I · X̃2 − I · x̃P ′ + J · ỹP ′ − J

126 Chapter 3. Fast Miller Functions

without changing the pairing value. Note also that x̃P ′ and ỹP ′ are defined over

the same fields as xP ′ and yP ′ are. In this case a mixed addition step costs only

(2k/d)m1 + 9m + 5s.

If instead P ′ is reused several times in the ate pairing, similar savings are

possible. It is useful to precompute 1/y′P ′ and update the function by

f̄m(R′,Q′)(P
′)/ȳP ′ = I · X̄2 − I · x̄P ′ + Jω3 − J · Ȳ2,

where X̄2 = X2/ȳP ′, x̄P ′ = xP ′/ȳP ′, Ȳ2 = Y2/ȳP ′, and yP ′ = ȳP ′ω
3, with ȳP ∈ Fq.

In this case a mixed addition step costs only (2k/d)m1 + 9m + 5s.

Note that these savings are compatible with the saving for d = 2.

Depending on the representation of Fqk over Fqk/2 and Fqk/d it is possible to

save operations in the other cases.

3.3 Pairings on y2 = x3 + b with even embedding

degrees

The only curves which can have sextic twists over Fq are of the form E : y2 =

x3 + b. In this section we assume that the embedding degree k is even and from

Section 2.3.3 we can use that the x-coordinate of P ′ (in aT (Q′, P ′)) is defined

over a subfield of Fqk . Note that if d = 6, yP ′ is also defined over a proper

subfield, namely Fqk/3. In this case the paired value still ends up in Fqk since the

subfields corresponding to xP ′ and yP ′ are coprime. For these curves we obtained

the best results in standard homogeneous projective coordinates where the curve

equation y2 = x3 + b becomes Y 2Z = X3 + bZ3.

3.3.1 Point doubling and line computation

The affine doubling formulas differ from those in Section 3.2 in the definition of

λ. We have λ = 3x2
1/2y1. In projective coordinates and after eliminating powers

of X3
1 via the curve equation, we obtain (X3 : Y3 : Z3) = [2](X1 : Y1 : Z1) as

X3 = 2X1Y1(Y
2
1 − 9bZ2

1), Y3 = Y 4
1 + 18bY 2

1 Z
2
1 − 27b2Z4

1 , Z3 = 8Y 3
1 Z1.

3.4. Fast formulas for pairing computations with cubic twists 127

We homogenize the affine doubling line using x1 = X1/Z1 and y1 = Y1/Z1 and

get

ℓ′R′,R′(P
′) = 3X2

1 · xP ′ − 2Y1Z1 · yP ′ + 3bZ2
1 − Y 2

1 .

We write ℓ′R′,R′(P
′) = ℓ1,0 · xP ′ + ℓ0,1 · yP ′ + L0,0 and compute ℓ1,0, ℓ0,1, ℓ0,0 and

the point (X3 : Y3 : Z3) using the following sequence of operations.

A = X2
1 , B = Y 2

1 , C = Z2
1 , D = 3bC, E = (X1 + Y1)

2 − A− B,
F = (Y1 + Z1)

2 −B − C, G = 3D, X3 = E · (B −G),

Y3 = (B +G)2 − 12D2, Z3 = 4B · F, L1,0 = 3A, L0,1 = −F, L0,0 = D −B.

The total count for the above sequence of operations is 2m+7s+1db in addition

to the multiplications by xP ′ and yP ′. Note that doubling outside the context

of pairings would omit the computation of A and would obtain E = 2X1Y1,

needing a total of 3m+5s+1db. As doubling formulas they are not competitive

with those in the EFD but they are almost the fastest for the doubling step in

pairings, second only to our formulas for the more special curve y2 = x3 + c2 in

Section 3.5.

3.3.2 Addition, mixed addition and line computation

For the addition of points on y2 = x3 + b, we adopt the upcoming formulas

that were first obtained for curves of the form y2 = x3 + c2 in Section 3.5.2.

These addition and line computation formulas are independent of the quadratic

reciprocity of b in Fq.

3.4 Fast formulas for pairing computations with

cubic twists

For an odd embedding degree k, the only possible non-trivial twists are cubic

twists and these only exist for curves of the form y2 = x3 + b, requiring also

that 3|k. Section 2.3.3 showed that in this scenario the point P ′ = (x′P , y
′
P)

has xP ′ defined over the full extension field Fqk and yP ′ defined over a subfield.

The formulas obtained in most publications including the previous sections use

denominator elimination based on xP ′ being in a subfield.

128 Chapter 3. Fast Miller Functions

In this section we present fast formulas for addition and doubling steps for

y2 = x3 +b and optimise them using the fact that yP ′, yR′ and xR′ are in a proper

subfield of Fqk , while xP ′ is not. Our results are significantly faster than other

studies of this case, but nevertheless the cases with even embedding degree offer

more advantages.

For curves of the form y2 = x3 + b, Lin et al. [LZZW08] observed that

1/v[2]R′(P
′) can be written as

1

v[2]R′(P ′)
=

1

xP ′ − x[2]R′
=

x2
P ′ + xP ′x[2]R′ + x2

[2]R′

(yP ′ − y[2]R′)(yP ′ + y[2]R′)
.

Since (yP ′−y[2]R′)(yP ′+y[2]R′) lies in a subfield, the line function can be multiplied

by x2
P ′ + xP ′x[2]R′ + x2

[2]R′ , instead of dividing it by v[2]R′(S). Analogously, the

addition step becomes ℓ′R′,Q′(P
′) = ℓR′,Q′(P

′) · (x2
P ′ + xP ′xQ′+R′ + x2

Q′+R′).

3.4.1 Point doubling and line computation

In projective coordinates xR′ = X1/Z1 and yR′ = Y1/Z1, we replace X3
1 = Y 2

1 Z1−
bZ3

1 and factor ℓ′[2]R′(P
′) to see that ℓ′[2]R′(P

′) equals

α·
(
X1Z1(Y

2
1 − 9bZ2

1) · xP ′ + (4Y 2
1 Z

2
1) · x2

P ′ − (6X2
1Y1Z1) · yP ′ +X2

1 (Y 2
1 + 9bZ2

1)
)
,

where α = (18bY 2
1 Z

2
1 − 27b2Z4

1 + Y 4
1 + 8Y 3

1 Z1 · yP ′)/(32Y 5
1 Z

3
1) ∈ Fqk/3 does not

contain xP ′ and can be discarded.

The values for X1 and Z1 are defined over subfields of Fqk and we obtain more

efficient formulas by computing ℓ′′[2]R′(P
′) = ℓ′[2]R′(P

′)X1/(Z1α) as

ℓ′′[2]R′(P
′) = X2

1 (Y 2
1 −9bZ2

1)·xP ′+4X1Y
2
1 Z1·x2

P ′−6X3
1Y1·yP ′+(Y 2

1 −bZ2
1)(Y 2

1 +9bZ2
1).

For cubic twists, the term x2
P ′ ∈ Fqk appears in the simplified doubling line

function so we write ℓ′′[2]R′(P
′) = ℓ1,0 · xP ′ + ℓ2,0 · x2

P ′ + ℓ0,1 · yP ′ + ℓ0,0 . We

compute (X3 : Y3 : Z3) = [2](X1 : Y1 : Z1) and the necessary ℓi,j coefficients

3.4. Fast formulas for pairing computations with cubic twists 129

using 6m + 7s + 1db in addition to the multiplications by xP ′, x
2
P ′, and yP ′.

A = X2
1 , B = Y 2

1 , C = Z2
1 , D = bC, E = 3D, F = (X1 + Y1)

2 − A− B,
G = (Y1 + Z1)

2 −B − C, H = 3E, X3 = F · (B −H),

Y3 = (B +H)2 − 3(2E)2, Z3 = 4B ·G, ℓ1,0 = A · (B −H), ℓ2,0 = F ·G,
ℓ0,1 = −3A · F, ℓ0,0 = (B −D) · (B +H).

Note that the formulas in [MGI09] require 8m + 9s + 1db in addition to

the multiplications by xP ′ , x
2
P ′, yP ′, y

2
P ′, xP ′yP ′, and x2

P ′yP ′, i.e. they need 6

multiplications costing k/3 base field multiplications each while we only need 3

such multiplications. This means that the overall saving is 2m + 2s + km1.

3.4.2 Addition and line computation

For additions we break with the conventional wisdom that the line function

should be given in terms of the base point. For even embedding degrees where

denominator elimination does not require further adjustment, that approach is

suitable and particularly helps if the base point is given in affine coordinates. For

the curves in this section we show that building the line function on the resulting

point (X3 : Y3 : Z3) gives better operation counts in spite of Z3 not being equal

to 1.

The default line function is given by
(

(y1−y2)
(x1−x2)

· (x1 − xP ′) + yP ′ − y1

)

/(x3 −
xP ′). Using the above denominator elimination technique this gets transformed

to

(
(y2 − y1)

(x2 − x1)
· (x1 − xP ′) + yP ′ − y1

)

·
(
x2

3 + x3xP ′ + x2
P ′

)
/(y2

3 − y2
P ′).

This approach leads to a polynomial of the form ℓ2,0 · x2
P ′ + ℓ1,0 · xP ′ + ℓ1,1 ·

xP ′yP ′ + ℓ2,1 · x2
P ′yP ′ + ℓ0,2 · yP ′ + ℓ0,1 · yP ′ + ℓ0,0 which requires (6k/3)m1 after

the computation of the coefficients ℓi,j.

In the representation

(
(y1 − y2)

(x1 − x2)
· (x3 − xP ′) + yP ′ + y3

)

·
(
x2

3 + x3xP ′ + x2
P ′

)
/(y2

3 − y2
P ′)

using the coordinates x3, y3 instead of x1, y1, it becomes obvious that the factor

(x3−xP ′)(x2
3 +x3xP ′ +x2

P ′) = y2
3− y2

P ′ appears in the left term of the numerator

130 Chapter 3. Fast Miller Functions

and that thus the whole numerator is divisible by the subfield element yP ′ + y3.

(Note the sign change on y3 because the line goes through (x3,−y3) by the

geometric addition law on E.) This means that the line function is of the form

ℓ2,0 ·x2
P ′+ℓ1,0 ·xP ′+ℓ0,1 ·yP ′+ℓ0,0, requiring only (3k/3)m1 after the computation

of the coefficients ℓi,j.

We obtain in projective coordinates that ℓ′R′,Q′(P
′) equals

(Y1Z2 − Y2Z1)Z3(Y3 − yP ′Z3) + (X2
3 +X3Z3xP ′ + Z2

3x
2
P ′)(X1Z2 −X2Z1)

(Y3 − yP ′Z3)(X1Z2 −X2Z1)Z3
.

The denominator can be discarded. To compute the numerator more efficiently

we observe that Z3 = Z1Z2(X1Z2 − X2Z1)
3 so that we can divide by (X1Z2 −

X2Z1); furthermore we scale the function by 2 to allow an s-m tradeoff. This

gives

ℓ′′R′,Q′(P
′) = 2Z2

3x
2
P ′ + 2X3Z3xP ′ − 2Z1Z2(X1Z2 −X2Z1)

2(Y1Z2 − Y2Z1)Z3yP ′

+ 2X2
3 + 2Z1Z2(X1Z2 −X2Z1)

2(Y1Z2 − Y2Z1)Y3.

We compute the addition and line computation using the following sequence

of operations.

A = X1 · Z2, B = Y1 · Z2, C = Z1 · Z2, D = Z1 ·X2 −A, E = B − Z1 · Y2,

F = D2, G = E2, H = −D · F, I = F · A, J = H + C ·G− 2I,

K = C · F ·E; X3 = −D · J, Y3 = E · (I − J)− (H · B), Z3 = C ·H,
L = X2

3 , M = Z2
3 , N = (X3 + Z3)

2 − L−M, ℓ2,0 = 2M, ℓ1,0 = N,

ℓ0,0 = 2(L+K · Y3), ℓ0,1 = −2K · Z3.

The explicit formulas for computing (X3 : Y3 : Z3) are the same as in the

EFD [BL07a]; they use 12m + 2s and use the intermediate variables A, . . . , J ;

the values K, . . . , N are used in the computation of the line function. The total

operation count for the above sequence of operations is 16m + 5s in addition to

the multiplications by x2
P ′, xP ′ , and yP ′. Mixed addition is cheaper saving one m

in each of A,B, and C and needing only 13m + 5s.

In the pairing computation each addition is followed by a doubling. Thus

L = X2
3 and M = Z2

3 should be cached and used in the doubling computation.

This reuse reduces the effective costs of the addition step by 2s and similarly for

3.5. Fast pairings on special Weierstrass curves y2 = cx3 + 1 131

the mixed-addition step. Accordingly we report 16m + 3s and 13m + 3s in the

comparison in Section 3.6.

3.5 Fast pairings on special Weierstrass curves

y2 = cx3 + 1

This section presents fast formulas that apply to curves of the form y2 = x3 + c2,

i.e. the curve constant must be a square in the field of definition of the curve.

In this case we can define a trivial isomorphism σ between such a curve and the

special Weierstrass curve y′2 = cx′3 + 1, defined by σ : (x′, y′) 7→ (cx′, cy′) and

σ−1 : (x, y) 7→ (x/c, y/c). Thus, to apply these special formulas to the ate pairing,

we would like the twisted curve E ′ to be of the form y2 = x3 + c2 (see Section

3.1). Suppose we are employing a sextic twist of the curve E/Fq : y2 = x3 + b,

which (from Section 2.3.3) is of the form E/Fqk/6 : y2 = x3 + bω6, where ω is

chosen so that (in particular) ω3 ∈ Fqk/3, but ω3 6∈ Fqk/6 . That is, ω6 ∈ Fqk/6 is

chosen as a non-square. The only way our formulas can be applied is if bω6 is

a square in Fqk/6, from which it follows that our formulas apply if and only if b

is non-square in Fqk/6 . Since b is defined over the base field Fq, it is clear that

this can only happen if 12 ∤ k, since otherwise b would automatically be a square

over Fqk/6 = Fq2z , for some z ≥ 1. Thus rules out BN curves with k = 12 and

BLS curves with k = 24. However, some attractive families that do have 6 | k,
12 ∤ k and allow the curve constant to be non-square are the k = 18 KSS curves,

and the k = 6 curves from [FST10, Const. 6.6]. In Section 3.5.3 we give an

example from both families after we present the explicit formulas. Observe that

when 12 | k, then c =
√
bω6 6∈ Fqk/6, so the isomorphism σ−1 will take a point

(say Q′) defined over the twisted subfield Fqk/6 into some larger extension field,

which renders the powerful advantage of the sextic twist useless.

Assume then, that we are to compute the ate pairing aT (Q′, P ′), where Q′

and P ′ lie on the twist, which is the special Weierstrass curve E ′ : y2 = cx3 + 1,

c ∈ Fqk/d. We work in homogeneous projective coordinates, so that the curve

becomes Y 2Z = cX3 + Z3.

132 Chapter 3. Fast Miller Functions

3.5.1 Point doubling and line computation

We start by observing that for curves of this special type the affine “schoolbook”

doubling formulas in Eq. (2.5) can be rewritten conveniently. That is, to compute

(x3, y3) = [2](x1, y1) on y2 = cx3 + 1, we can take

x3 = x1(µ− µ2),

y3 = (y1 − 1)µ3 − 1,

where µ = (y1 + 3)/(2y1). Given (X1 : Y1 : Z1) with Z1 6= 0 the projective point

doubling formulas for [2](X1 : Y1 : Z1) = (X3 : Y3 : Z3) follow as

X3 = 2X1Y1(Y
2
1 − 9Z2

1),

Y3 = (Y1 − Z1)(Y1 + 3Z1)
3 − 8Y 3

1 Z1,

Z3 = 8Y 3
1 Z1.

The associated line formula for the doubling is

ℓR′,R′(P
′) = X2

1 (3cxP ′)− Y 2
1 + 3Z2

1 − 2Y1Z1yP ′.

Since P ′ remains unchanged throughout the loop, precompute x̃P ′ = 3cxP ′ and

write ℓR′,R′ = ℓ1,0x̃P ′ + ℓ0,1yP ′ + ℓ0,0. We compute the doubling and line compu-

tation using the following sequence of operations.

A = Y 2
1 , B = Z2

1 , C = (Y1 + Z1)
2 − A− B, ℓ1,0 = X2

1

Z3 = 4A · C, X3 = 2X1 · Y1 · (A− 9B), ℓ0,1 = −2C,

Y3 = (A− 3B + C) · (A+ 9B + 3C)− Z3, ℓ0,0 = −A+ 3B.

The above formulas need a total of 3m + 5s, which remains the fastest explicit

formulas for the doubling step on any curve to date. Note that the X1 ·Y1 in the

computation of X3 can be computed with a squaring.

3.5.2 Point addition and line computation

In the case of addition, we found it most advantageous to simply amend the

schoolbook formulas in Eq. (2.4). That is, to compute (x3, y3) = (x1, y1) +

3.5. Fast pairings on special Weierstrass curves y2 = cx3 + 1 133

(x2, y2), we take

x3 = c−1λ2 − x1 − x2,

y3 = λ(x1 − x3)− y1,

where λ = (y1 − y2)/(x1 − x2) as usual. Given (X1 : Y1 : Z1) and (X2 : Y2 : Z2)

with Z1 6= 0 and Z2 6= 0 and (X1 : Y1 : Z1) 6= (X2 : Y2 : Z2), an addition can be

performed as (X1 : Y1 : Z1) + (X2 : Y2 : Z2) = (X3 : Y3 : Z3) where

X3 = (X1Z2 − Z1X2)(Z1Z2(Y1Z2 − Z1Y2)
2 − c(X1Z2 + Z1X2)(X1Z2 − Z1X2)

2),

Y3 = (Y1Z2 − Z1Y2)(c(2X1Z2 + Z1X2)(X1Z2 − Z1X2)
2 − Z1Z2(Y1Z2 − Z1Y2)

2)

−cY1Z2(X1Z2 − Z1X2)
3,

Z3 = cZ1Z2(X1Z2 − Z1X2)
3.

The associated line formula is

ℓR,Q(P ′) = (Y1Z2 − Z1Y2)(X2 − xP ′Z2)−
(X1Z2 − Z1X2)Y2 + (X1Z2 − Z1X2)Z2yP ′.

Since Q = (X2 : Y2 : Z2) is fixed, precompute c1 = X2 − xP ′Z2. We compute the

doubling and line computation using the following sequence of operations, where

we also use t1, t2, t3 and t4 to provide register allocations.

t1 = Z1X2, X3 = X1Z2, t1 = X3 − t1, t2 = Z1Y2, Y3 = Y1Z2,

t2 = Y3 − t2, ℓR,Q(P ′) = c1t2 − t1Y2 + t1Z2yP ′, Z3 = Z1Z2,

t3 = t21, t3 = ct3, X3 = t3X3, t3 = t1t3, t4 = t22, t4 = t4Z3,

t4 = t3 + t4, t4 = t4 −X3, t4 = t4 −X3, X3 = X3 − t4,
t2 = t2X3, Y3 = t3Y3, Y3 = t2 − Y3, X3 = t1t4, Z3 = Z3t3,

In the case of a full addition and line computation, the above formulas cost

13m + 2s + 1dc. In the case of a mixed addition, i.e. where Z2 = 1, the above

formulas incur 10m + 2s + 1dc. We mention a minor improvement that came

later in our later work [CLN10] as follows. If the addition line in is written

as ℓ′R′,Q′(P
′) = (Y1Z2 − Y2Z1) · X2 − (Y1Z2 − Y2Z1) · xP ′Z2 + (X1Z2 − X2Z1) ·

yP ′Z2 − (X1Z2 − X2Z1) · Y2, the corresponding cost for an addition actually

becomes 12m + 2s. Note that the coefficients appear as subexpressions in the

mixed addition of R′ and Q′, so computing ℓ′R′,Q′(P
′) as above costs an extra

(2k/d)m1 + 2m for the Tate pairing and an extra 4m for the ate pairing.

134 Chapter 3. Fast Miller Functions

If Q′ = (X2 : Y2 : 1), the addition R′ + Q′ becomes a mixed addition and

costs 9m + 2s. Computing the addition and the line as ℓ′m(R′,Q′)(P
′) = (Y1 −

Y2Z1) ·X2− (Y1−Y2Z1) ·xP ′+(X1−X2Z1) · yP ′− (X1−X2Z1) ·Y2 costs an extra

(2k/d)m1 + 2m for both the Tate and the ate pairing. If Q′ or P ′ is fixed in the

mixed addition, similar comments to Section 3.2 apply, reducing the extra costs

to only (2k/d)m1 + m.

3.5.3 Example curves

We give two examples of families that facilitate an ate-like pairing with a sextic

twist and make use of the explicit formulas for curves of the form y2 = x3 + c2,

which are slightly faster than the explicit formulas for the more general curves

y2 = x3 + b.

Example 3.5.1. Construction 6.6 of [FST10] gives a family for k = 6 where the

curve is of the form y2 = x3 + b, meaning that a sextic twist can be employed.

The parameterisations are q(x) = (x − 1)2(x2 − x + 1)/3 + x, t(x) = x + 1 and

r = x2 − x + 1, from which x = 4 gives a nice toy example with q = 43 and

r = 13. The curve E/Fq : y2 = x3 + 2 has r | #E = 52, and we note that

2 is non-square in Fq. We construct Fqk as Fq6 = Fq(u) where u6 − 3 = 0.

The correct sextic twist is given by E ′/Fq : y2 = x3 + 6 (the other option was

E ′/Fq : y2 = x3 + 2/3), and since both 2 and 3 are non-square in Fq, we can

write the twist as E ′/Fq : y2 = x3 + c2, where c =
√

6, so take c = 7. The

curve Ẽ ′/Fq : ỹ2 = cx̃3 + 1 is isomorphic to E ′ over Fq with σ : Ẽ ′ → E ′ defined

as σ : (x̃, ỹ) 7→ (cx̃, cỹ). The point Q′ = (33, 9) ∈ E ′ is moved to Q̃′ ∈ Ẽ ′ via

Q̃′ = σ−1(33, 9) = (33/c, 9/c) = (33/7, 9/7) = (17, 32), both of which have order

r on E ′ and Ẽ ′ respectively.

Example 3.5.2. The KSS family with k = 18 can make use of the faster for-

mulas on y2 = cx3 + 1. Indeed, the first such curve found (the parameteri-

sations can be found in Chapter 6) for x > 0 is when x = 3584, which gives

q = 1298166528463937727281622301 and r = 6178938693718376449, for which

E/Fq : y2 = x3 + 2 is such that r | #E. We note that 2 is not a square in

Fq and that this happens in general for this family. Thus, 2 will also not be

square in Fq3, which we construct as Fq3 = Fq(u), with u3 + 2 = 0. Further,

construct Fq18 as Fq18 = Fq3(v), with v6 − u = 0. The correct twist is given

as E ′/Fq2 : y2 = x3 + 2/u, and since both 2 and u are not square in Fq3, it

follows that we can write the twist as E ′/Fq3 : y2 = x3 + c2, where c =
√

2/u,

3.6. Summary of contributions 135

in this case giving c = ±379288310329903250617569378u ∈ Fq3 . The curve

Ẽ ′/Fq3 : ỹ2 = cx̃3 + 1 is isomorphic to E ′ over Fq3 with σ : Ẽ ′ → E ′ defined as

σ : (x̃, ỹ) 7→ (cx̃, cỹ).

3.6 Summary of contributions

This section compares the speed of our pairing formulas with the literature in

the following categories:

− (i): Curves of the form y2 = x3 +ax have twists of degree d = 2 and 4. We

compare our operation counts from Section 3.2 with the results given by

Ionica and Joux [IJ08] and Arène et al. [ALNR10]; note that those papers

cover general Weierstrass curves but we are not aware of any other study

covering this case.

− (ii): Curves of the form y2 = x3 + c2 have a point of order 3 and can admit

twists of degrees d = 2 and 6. Our formulas in Section 3.5 are applicable

for the case of sextic twists when 6 | k but 12 ∤ k, i.e. k = 6, 18, 30,

etc. These are the fastest formulas for pairings across any curve model,

improving slightly on our formulas for the more general case in (iii).

− (iii): Curves of the form y2 = x3+b do not necessarily have a point of order

3. We study operation counts for twists of degree 2 and 6. These curves

cover in particular BN curves [BN05]. We compare our new formulas from

Section 3.3 with those given for the same curve shape in [ALNR10].

− (iv) Curves of the form y2 = x3 + b also have twists of degree 3. This

case requires very different optimisations and has not been studied much

in the literature. The first paper studying pairing computation on curves

admitting cubic twists [LZZW08] did not pay close attention to the oper-

ation count itself, so we compare our formulas from Section 3.4 with the

results presented by El Mrabet et al. in [MGI09], although that paper did

not present addition formulas.

The above papers for even d give km1 for evaluating the line function. This

can almost always be done in (2k/d)m1, so we adjust their results accordingly.

In the general addition case, Table 3.2 only gives counts for the Tate pairing.

For d = 2 it is possible to save 1m in each ADD and each mADD. For the ate

136 Chapter 3. Fast Miller Functions

pairing in this case the costs are different and the operation counts should be

modified by −(2k/d)m1 + 2m.

For mixed additions we use our improved precomputations, assuming that

one of the input points is fixed.

Curve Best DBL Prev. DBL
Curve order Coord. ADD best ADD
Twist deg. mADD Coord. mADD
y2 = x3 + ax Sec. 3.2 (2k/d)m1 + 2m + 8s + 1da [IJ08], (2k/d)m1 + 1m + 11s + 1da

- W(1,2) (2k/d)m1 + 12m + 7s [ALNR10] (2k/d)m1 + 10m + 6s
d = 2, 4 (2k/d)m1 + 9m + 5s J (2k/d)m1 + 7m + 6s

y2 = x3 + c2 Sec. 3.5 (2k/d)m1 + 3m + 5s [ALNR10] (2k/d)m1 + 3m + 8s
3 | #E P (2k/d)m1 + 14m + 2s + 1dc P (2k/d)m1 + 10m + 6s
d = 2, 6 (2k/d)m1 + 10m + 2s + 1dc (2k/d)m1 + 7m + 6s

y2 = x3 + b Sec. 3.3 (2k/d)m1 + 2m + 7s + 1db [ALNR10] (2k/d)m1 + 3m + 8s
3 ∤ #E P (2k/d)m1 + 14m + 2s J (2k/d)m1 + 10m + 6s
d = 2, 6 (2k/d)m1 + 10m + 2s (2k/d)m1 + 7m + 6s

y2 = x3 + b Sec. 3.4 km1 + 6m + 7s + 1db [MGI09] 2km1 + 8m + 9s + 1db

- P km1 + 16m + 3s P ADD/mADD
d = 3 km1 + 13m + 3s not reported

Table 3.2: Comparisons of our pairing formulas with the previous fastest formu-
las.

We point out that all new doublings are faster than the previous ones. In

(i), (ii) and (iii) this comes at the expense of somewhat slower additions. As

we saw in Section 2.6.5 however, doublings are significantly more frequent than

additions so that this disadvantage is amply mitigated by the faster doublings.

Since many other non-Weierstrass curve models (e.g. Edwards, Hessian, Jacobi-

Quartics, etc) achieved great success in ECC, formulas for pairing computation

on these curves have also been developed [IJ08,DS08,ALNR10,JTV10]. Whilst

such curve models have superseded Weierstrass curves in the context of elliptic

curve operations only, the Weierstrass formulas presented in this chapter remain

the fastest pairing formulas in all cases of practical relevance. The simple chord-

and-tangent description of the group law means that the pairing functions are

inherent in the elliptic curve operations, and extracting them in the Miller loop

incurs minimal overhead.

Finally, we mention that Aranha et al. [AKL+11] used a slightly modified ver-

sion of our formulas in their record-breaking pairing implementation. In deriving

our formulas, we greatly prioritised squeezing as many field multiplications out

of the routine as possible, achieving 2 multiplications and 7 squarings in case (iii)

3.6. Summary of contributions 137

above. They reversed one of the m − s trade-offs that our formulas used, and

in doing so, computed with 3 multiplications and 6 squarings, but with 6 less

field additions. Since their implementation had that m− s ≈ 3a (the difference

between a multiplication and a squaring being roughly 3 additions), this reversal

was a favourable trade-off. We note that most of our formulas offer room for

these sorts of tweaks, and that serious implementors should have a good gauge

on their field operation complexities before looking for such modifications.

138 Chapter 3. Fast Miller Functions

Chapter 4

Loop Unrolling in Miller’s

Algorithm

This chapter shows that significant speedups can be achieved in pairing compu-

tations by unrolling consecutive iterations in the Miller loop. We show that our

method gives faster Tate pairings for large embedding degrees, whilst for one-off

ate pairings it is preferable not to unroll. When we get to Section 4.4 however,

we show that when pairings have a fixed argument that facilitates precomputa-

tions, our method of unrolling becomes especially preferable for ate-like pairings.

Thus, as far as improving the state-of-the-art, up to and including Section 4.3

of this chapter (which focusses on Tate pairings) can be seen as preparation for

the fixed argument scenario in Section 4.4.

For now, assume that we are computing a Tate-like pairing as e(P,Q) =

fm,P (Q)(qk−1)/r. Notice that we write the loop length here as m, which is not

necessarily the subgroup order r, since the twisted ate pairing of [HSV06] (which

we did not discuss in Chapter 2) is a loop shortened variant of the Tate pairing

on G1×G2. In most cases the twisted ate pairing can achieve log2m = log2 r/2,

so it is computed like a Tate pairing with half the loop length. The important

thing to carry with us until Section 4.4 is that the first argument in the pairing

is now P ∈ G1, which is defined over the base field Fq. The second argument Q

is defined over the full extension field. This is the setting we were in throughout

Chapter 2 prior to reversing the roles of P and Q for the ate pairing description,

so refer back to Algorithm 2.2 for the BKLS-GHS version of Miller’s algorithm

139

140 Chapter 4. Loop Unrolling in Miller’s Algorithm

that applies to this particular scenario.

The idea of this work is to exploit the fact that although the function updates

ℓ in Algorithm 2.2 evaluate to give an element in ℓ(Q) ∈ Fqk , they are in Fq[x, y]

before they are evaluated, i.e. the (indeterminate) Miller functions ℓ(x, y) have

coefficients that come from the ground field Fq. Miller’s algorithm absorbs the

evaluation of these functions at Q into the paired value f before performing

further operations in Fqk , such as f ← f 2. However, we propose that it can be

advantageous to operate on ℓ(x, y) before evaluating it at the point Q. In this

way we will be performing a lot more arithmetic in Fq, but at the same time

we avoid computations in Fqk . We argue that if k is big enough, so that the

complexity of operations Fqk is far greater than that of analogous operations in

Fq, then this trade-off can significantly favour our cause to obtain a faster Tate

pairing.

Eisenträger, Lauter and Montgomery [ELM03] managed to avoid some full ex-

tension field arithmetic in pairing computations by combining two linear Miller

functions into a single function of degree 2, which they call a parabola, and

achieving a speedup by replacing two multiplications by the two linear functions

with a single multiplication by the parabola. However, their algorithm has lim-

ited application in modern pairing implementations because it only applies to the

point addition stage of Miller’s algorithm, and (as we saw in Section 2.6.5) mod-

ern implementations will use low Hamming weight loop parameters that minimise

the occurrence of these additions. Blake, Murty and Xu [BKMX06] extended the

work in [ELM03] to form combinations of Miller lines that apply to every iter-

ation of the Miller loop. However, their techniques are again not optimised for

modern implementations because the algorithm proposed in [BKMX06] targeted

removing field divisions, a problem that has since became obsolete thanks to the

denominator elimination technique (see Section 2.6.1).

Our work in this chapter extends the notion of combining Miller lines into

higher degree polynomials. In the next section we present our general approach,

called Miller 2n-tuple-and-add, which is analogous to the 2n-ary windowing meth-

ods for general exponentiation (cf. [ACD+05, §9]), for an arbitrary window of size

n. Our idea mimics that of Granger, Page and Stam [GPS06, §6], who employ

loop unrolling to combine two Miller iterations at a time in the case of character-

istic three pairing implementations. We apply this same technique to the wider

and more common case of pairings over large prime fields, and consider unrolling

4.1. Miller 2n-tuple-and-add 141

n consecutive iterations into one, for which we find that n ≤ 2 is essentially op-

timal for large embedding degrees. For cases where n = 2 is better than n = 1,

this results in a non-trivial speed-up in pairing implementations.

We organise this chapter as follows. We present the general algorithm de-

scription in Section 4.1. In Section 4.2 we focus on obtaining optimised explicit

formulas for the special case of n = 2, which we call the quadruple-and-add ver-

sion of Miller’s algorithm; we demonstrate this algorithm in Section 4.2.3 where

we give a detailed example. In Section 4.3 we give an overview of the case when

n = 3, which we call the octuple-and-add version of Miller’s algorithm, and for

which the full explicit formulas can be found in [CBNW10a, A.3,A.4]. Although

we do not recommend these octupling formulas for one-off Tate or ate pairings,

their practical application becomes relevant in Section 4.4 when we consider the

fixed argument scenario.

4.1 Miller 2n-tuple-and-add

In this section we give a general unrolled version of Miller’s algorithm by com-

bining n consecutive doubling steps into one 2n-tupling step. For any n, we

naturally refer to the following process as the Miller 2n-tuple-and-add algorithm.

Suppose that at some stage of Algorithm 2.2, we have the intermediate multiple

of P being R = [v]P , and the intermediate Miller function being fv,P (ignore

the evaluation at Q for now). Consider the next n consecutive squarings on the

function fv,P , which equates to raising fv,P to the power 2n. The divisor of the

resulting function is

div
(
(fv,P)2n)

= 2n · div(fv,P),

= 2nv(P)− 2n([v]P)− 2n(v − 1)(O). (4.1)

To obtain the desired Miller function f2nv,P from fv,P , we must now find a func-

tion ℓ∗ such that div((fv,P)2n
) + div(ℓ∗) = div(f2nv,P) = 2nv(P) − ([2nv]P) −

(2nv − 1)(O). We construct ℓ∗ as

ℓ∗ =
n∏

i=1

(ℓ[2i−1]R,[2i−1]R)2n−i

, (4.2)

142 Chapter 4. Loop Unrolling in Miller’s Algorithm

the divisor of which is

div(ℓ∗) =
n∑

i=1

2n−i · div(ℓ[2i−1]R,[2i−1]R),

=

n∑

i=1

2n−i · (2([2i−1]R)− ([2i]R)− (O)),

= 2n(R)− ([2n]R)− (2n − 1)(O). (4.3)

Substituting R = [v]P into (4.3) and combining this with (4.1) reveals that

div((fv,P)2n
) + div(ℓ∗) = div(f2nv,P), so that ℓ∗ is indeed the required function.

We note that the construction of ℓ∗ is intuitive. Namely, ℓ∗ is simply the product

of the n different g’s that are formed throughout each of the n equivalent double-

and-add iterations, each of which accumulates a different exponent depending

on how many squarings it encounters in the iterations that follow. In this light,

Miller 2n-tuple-and-add is much the same as Miller double-and-add; the above

derivation (for general n) is analogous to the derivation (for n = 1) we saw

back in Section 2.4.3. The major difference is that in Miller 2n-tuple-and-add

we do not multiply the Miller function by its update g immediately after it is

squared. Rather, we form a product ℓ∗ of n powers of such g’s and we delay the

multiplication of ℓ∗ by f so that it occurs only once in what is the equivalent of

n double-and-add iterations. This is simply Miller’s algorithm with a window of

size n.

For the addition step in the Miller 2n-tuple-and-add algorithm, we now have

to consider adding some multiple [w]P of P (w < 2n) to the intermediate point

and updating the Miller function accordingly. Suppose that the intermediate

point is R = [v]P and the related Miller function prior to the addition has divisor

div(fv,P) = v(P)− ([v]P)− (v − 1)(O) as before. We require a function ℓ+ such

that div(fv,P)+div(ℓ+) = div(f(v+w),P) = (v+w)(P)−([v+w]P)−(v+w−1)(O).

The straightforward way to construct such a function is

ℓ+ =
w−1∏

i=0

ℓR+[i]P,P , (4.4)

4.1. Miller 2n-tuple-and-add 143

the divisor of which is

div(ℓ+) =
w−1∑

i=0

div(ℓR+[i]P,P)

=
w−1∑

i=0

[
(P) + (R + [i]P)− (R + [i+ 1]P)− (O)

]
,

= w(P) + (R)− (R + [w]P)− w(O).

Again, substituting R = [v]P gives div(ℓ+) = w(P)+([v]P)−([v+w]P)−w(O),

so that div(fv,P) + div(ℓ+) = div(f(v+w),P), and we see that ℓ+ is clearly the

desired function. However, if we compute ℓ+ in the above fashion, we have to

compute the product of w different addition lines, and since w can take any value

between 1 and 2n − 1, computing the addition step with the explicit formulas

that result from the product in (4.4) can become quite costly. Instead, consider

an alternative method of computing the addition update function as follows. Let

ℓ+alt be such that div(ℓ+alt) = div(ℓ+) and take

ℓ+alt = fw,P · ℓ[v]P,[w]P , (4.5)

so that div(ℓ+alt) = div(fw,P)+div(ℓ[v]P,[w]P) = w(P)+([v]P)−([v+w]P)−w(O).

The advantage of the computation of ℓ+alt over the computation of ℓ+ is that ℓ+alt
is comprised of only two functions, regardless of the size of w. Moreover, the

function fw,P is the same function throughout the entire Miller 2n-tupling loop

and does not change depending on where the addition/s occurs. Thus, the fw,P ’s

can be precomputed (for all necessary values of w) prior to entering the Miller

2n-tupling loop so that we must only construct one new line function (ℓ[v]P,[w]P) at

each addition stage. Importantly, this addition line is computed by applying the

standard addition formulas to the coordinates of the point [v]P , which changes

in each iteration, and the point [w]P whose coordinates can be cached initially.

From here on, the construction of ℓ+ refers to the construction of ℓ+alt described

in (4.5). We summarise in Algorithm 4.1, where we note that the first value in

the base 2n representation of m will not be ml−1 = 1 in general, so that we begin

with an addition before entering the loop when ml−1 6= 1.

144 Chapter 4. Loop Unrolling in Miller’s Algorithm

Algorithm 4.1 Miller 2n-tuple-and-add Algorithm.

Input: P , Q, m = (ml−1...m1,m0)2n , and the necessary precomputed values of w[P]
where w < 2n.

Output: fm,P (Q).

1: Compute and evaluate function fw,P (Q) with w = ml−1.
2: f ← fw,P (Q).
3: R← [ml−1]P .
4: for i = l − 2 to 0 do

5: Compute function ℓ∗ in the 2n-tupling of R.
6: R← [2n]R.
7: f ← f2n · ℓ∗.
8: if mi 6= 0 then

9: Compute function ℓ+ as the product described in (4.5) with w = mi.
10: R← R+ [mi]P .
11: f ← f · ℓ+.
12: end if

13: end for

14: return f .

4.2 Quadruple-and-add

In this section we focus on applying the algorithm from the previous section in

the specific case that n = 2. We present reduced explicit formulas that arise for

the Miller quadruple-and-add algorithm on curves of the form E : y2 = x3 + b

and E : y2 = x3 + ax, since these are the most efficient curve shapes used in

practice (refer to Section 2.5). We focus solely on the quadrupling stage of the

algorithm (i.e. steps 6 and 7 in Algorithm 4.1), since optimised loop parameters

will result in very few additions (refer back to Section 2.6.5).

We begin by setting n = 2 in (4.2) to obtain the Miller update ℓ∗ correspond-

ing to the quadrupling of R as

ℓ∗ =

2∏

i=1

(ℓ[2i−1]R,[2i−1]R)22−i

=
(
ℓR,R

)2 ·
(
ℓ[2]R,[2]R

)
,

which has divisor 4(R)− ([4]R)− 3(O).

The recipe for obtaining explicit formulas for the function ℓ is straightforward.

The functions ℓR,R = λx + ν and ℓ[2]R,[2]R = λ′x + ν ′ have λ, λ′, ν, ν ′ entirely

dependent on the coordinates of R = (x1, y1), so we can obtain inversion-free

formulas via the substitution corresponding to a particular projection. We then

look for factors that are contained in subfields (i.e. factors that do not contain y,

4.2. Quadruple-and-add 145

since yQ ∈ Fqk), and that can therefore be removed (refer to Section 2.6.1). At

any stage we can choose to apply variants of Gröbner basis reduction (modulo

the elliptic curve equation) to simplify formulas as much as possible. Finally,

once we are satisfied with the simplification of these formulas, we can begin

determining a fast route to computing them.

4.2.1 Quadruple-and-add on y2 = x3 + b

For curves of this form, the fastest explicit formulas for the n = 1 case were

derived using homogeneous projective coordinates in Section 3.3. We found that

these coordinates also give the best results for n ≥ 2, so substituting x1 = X1/Z1

and y1 = Y1/Z1 into the affine version of ℓ∗ gives

ℓ∗ = α · (ℓ1,0 · xQ + ℓ2,0 · x2
Q + ℓ0,1 · yQ + ℓ1,1 · xQyQ + ℓ0,0),

where α = −Z3
1 (X1(X

3
1−8bZ3

1)−4Z1(X
3
1+bZ3

1)·xQ)2/(64Z7
1Y

5
1 (27X6

1−36X3
1Y

2
1 Z1+

8Y 4
1 Z

2
1)) can be eliminated to give ℓ̂∗ = ℓ∗/α, and where the ℓi,j coefficients are

ℓ2,0 = −6X2
1Z1(5Y

4
1 + 54bY 2

1 Z
2
1 − 27b2Z4

1); ℓ0,1 = 8X1Y1Z1(5Y
4
1 + 27b2Z4

1);

ℓ1,1 = 8Y1Z
2
1(Y 4

1 + 18bY 2
1 Z

2
1 − 27b2Z4

1); ℓ0,0 = 2X1(Y
6
1 − 75bY 4

1 Z
2
1 + 27b2Y 2

1 Z
4
1 − 81b3Z6

1);

ℓ1,0 = −4Z1(5Y
6
1 − 75bZ2

1Y
4
1 + 135Y 2

1 b
2Z4

1 − 81b3Z6
1).

We let (XD2 : YD2 : ZD2) = [2](XD1 : YD1 : ZD1) = [4](X1 : Y1 : Z1), and

compute the first doubling with small extra computation as

XD1 = 4X1Y1(Y
2
1 − 9bZ2

1), YD1 = 2Y 4
1 + 36bY 2

1 Z
2
1 − 54b2Z4

1 , ZD1 = 16Y 3
1 Z1.

The calculation of the ℓi,j coefficients and the intermediate point (XD1 : YD1 :

ZD1) = [2](X1, Y1, Z1) requires 11m1 +11s1 +3d – see the sequence of operations

below. To calculate (XD2 : YD2 : ZD2) = [4](X1, Y1, Z1), we double the point

(XD1 : YD1 : ZD1) using the doubling formulas from Section 3.3 which cost

3m1 + 5s1 + 1d. The multiplication of each of the four ℓi,j 6= ℓ0,0 by xiQy
j
Q costs

em1 (see the previous Chapter). Thus, the total cost for the quadrupling stage

(not including the function update) is 14m1 + 16s1 + 4em1 + 4d, plus many Fq

additions that occur in the sequence below.

146 Chapter 4. Loop Unrolling in Miller’s Algorithm

A = Y
2

1
, B = Z

2

1
, C = A

2
, D = B

2
, E = (Y1 + Z1)

2
− A − B, F = E

2
, G = X

2

1
, H = (X1 + Y1)

2
− A −G,

I = (X1 + E)
2
− F −G, J = (A + E)

2
− C − F, K = (Y1 + B)

2
− A−D, L = 27b

2
D, M = 9bF, N = A · C,

R = A · L, S = bB, T = S · L, U = S · C, X
D1 = 2H · (A− 9S), Y

D1 = 2C + M − 2L, Z
D1 = 4J,

ℓ1,0 = −4Z1 · (5N + 5R− 3T − 75U), ℓ2,0 = −3G · Z1 · (10C + 3M − 2L), ℓ0,1 = 2I · (5C + L), ℓ1,1 = 2K · Y
D1 ,

ℓ0,0 = 2X1 · (N + R − 3T − 75U). F
∗

= ℓ1,0 · xP + ℓ2,0 · x
2

P + ℓ0,1 · yP + ℓ1,1 · xP yP + ℓ0,0, A2 = Y
2

D1 , B2 = Z
2

D1 ,

C2 = 3bB2, D2 = 2X
D1 · YD1 , E2 = (Y

D1 + Z
D1)

2
− A2 − B2, F2 = 3C2, X

D2 = D2 · (A2 − F2),

Y
D2 = (A2 + F2)

2
− 12C

2

2
, Z

D2 = 4A2 · E2.

A magma script of the above routine is in [CBNW10a, §B].

4.2.2 Quadruple-and-add on y2 = x3 + ax

For curves of this shape, the fastest formulas for the standard double-and-add

case were derived in weight-(1, 2) coordinates in Section 3.2. Again, our experi-

ments agree with these coordinates for n ≥ 2, so we substitute x1 = X1/Z1 and

y1 = Y1/Z
2
1 into the affine version of ℓ∗ to give

ℓ∗ = α · (ℓ1,0 · xQ + ℓ2,0 · x2
Q + ℓ0,1 · yQ + ℓ1,1 · xQyQ + ℓ0,0),

where α = −Z6
1 (−4X1Z1(X

2
1 +aZ2

1)xQ+(X2
1 −aZ2

1)2)2 can be eliminated to give
ℓ̂∗ = ℓ∗/α, and where the ℓi,j coefficients are

ℓ1,0 = −2X1Z1(5X
8
1 + 4aX6

1Z
2
1 + 38a2X4

1Z
4
1 + 20a3X2

1Z
6
1 − 3a4Z8

1);

ℓ2,0 = −Z2
1(15X8

1 + 68aX6
1Z

2
1 + 10a2X4

1Z
4
1 − 28a3X2

1Z
6
1 − a4Z8

1);

ℓ0,1 = 4Y1X1Z1(5X
6
1 + 13aX4

1Z
2
1 + 15a2X2

1Z
4
1 − a3Z6

1);

ℓ1,1 = 4Y1Z
2
1 (X2

1 − aZ2
1)(X4

1 + 6aX2
1Z

2
1 + a2Z4

1);

ℓ0,0 = X2
1 (X8

1 − 20aX6
1Z

2
1 − 26a2X4

1Z
4
1 − 20a3X2

1Z
6
1 + a4Z8

1).

Again, we compute the first doubling with small extra computation as

XD1 = (X2
1 − aZ2

1)2, YD1 = 2Y1(X
2
1 − aZ2

1)(X4
1 + 6X2

1aZ
2
1 + a2Z4

1), ZD1 = 4Y 2
1 .

The calculation of the ℓi,j coefficients and the intermediate point (XD1 : YD1 :

ZD1) = [2](X1, Y1, Z1) requires 10m + 14s + 2d – see the sequence of operations

below. To calculate (XD2 : YD2 : ZD2) = [4](X1, Y1, Z1), we double the point

(XD1 : YD1 : ZD1) using the doubling formulas in Section 3.3 which cost 1m +

6s+1d. Thus, the total cost for the quadrupling stage (not including the function

update) is 11m1+20s1+4em1+3d, as well as many Fq additions that are required

4.2. Quadruple-and-add 147

for computing the sequence below.

A = X
2

1
, B = Y

2

1
, C = Z

2

1
, D = aC, X

D1 = (A−D)
2
, E = 2(A + D)

2
−X

D1 , F = ((A−D + Y1)
2
− B −X

D1),

Y
D1 = E · F, Z

D1 = 4B, G = A
2
, H = D

2
, I = G

2
, J = H

2
, K = (X1 + Z1)

2
− A− C, L = K

2
,

M = (Y1 + K)
2
− L− B, N = ((G + H)

2
− I − J), R = aL, S = R ·G, T = R ·H, ℓ1,1 = 2C · Y

D1 ,

ℓ0,1 = M · (5A · (G + 3H) + D · (13G −H)), ℓ2,0 = −C · (15I + 17S + 5N − 7T − J),

ℓ1,0 = −K · (5I + S + 19N + 5T − 3J), ℓ0,0 = A · (I − 5S − 13N − 5T + J), B2 = Y
2

D1

F
∗

= ℓ1,0 · xP + ℓ2,0 · x
2

P + ℓ0,1 · yP + ℓ1,1 · xP yP + ℓ0,0, A2 = X
2

D1 , C2 = Z
2

D1 , D2 = aC2, X
D2 = (A2 −D2)

2
,

E2 = 2(A2 + D2)
2
−X

D2 , Z
D2 = 4B2, F2 = ((A2 −D2 + Y

D1)
2
− B2 −X

D2 , Y
D2 = E2 · F2.

4.2.3 A detailed example

Since our original paper did not give a working example, we give one here. We

choose a k = 24 BLS curve for illustrative purposes, since this gives a favourable

ratio when trading Fqk multiplications for multiplications in Fq. Turn back to

Example 2.6.9 or Example 2.6.11 to see the parameterisations for this family, for

which the smallest BLS curve is found with x = −5, giving q = 4680007 and

r = 390001. We can form the extension field using the tower

Fq
u2+1

// Fq2
v2−(u+3)

// Fq4
w3−v

// Fq12
z2−w

// Fq24 .

E/Fq : y2 = x3 + 1 is easily seen to be the curve with r | #E(Fq), and the

correct sextic twist is E ′/Fq4 : y2 = x3 + v. We can generate P ∈ G1 by taking

a random point in E(Fq) and multiplying by the cofactor h = #E/r = 12. To

generate Q ∈ G2, we take a random point in E ′(Fq4), multiply by the cofactor

h′ = 1230042989266471802425 to get Q′ ∈ G′2, and untwist via the isomorphism

Ψ to get Q = Ψ(Q′). With our extension field tower, Ψ is defined as Ψ : E ′ → E,

where Ψ : (x′, y′) 7→ (x′/w, y′/(wz)). Thus, let P and Q = (xQ, yQ) be given as

P = (577155, 707379);

xQ =
(
(1831231u+ 994504)v + (4652492u+ 671306)

)
w2;

yQ =
(
(3495438u+ 1355667)v + (763329u+ 1210930)

)
wz.

We will compute the Tate pairing e(P,Q) = fr,P (Q)(qk−1)/r using both the stan-

dard (double-and-add) and the quadruple-and-add versions of Miller’s algorithm,

i.e. using Algorithm 2.2 and Algorithm 4.1 respectively. To do so, we write both

148 Chapter 4. Loop Unrolling in Miller’s Algorithm

the binary and quarternary representations of the loop length r as

r = (1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1)2 ; and

r = (1, 1, 3, 3, 0, 3, 1, 3, 0, 1)4.

We proceed down the bits of r2 and the “bits” of r4 in the table below, showing

the Miller doubling functions and the Miller quadrupling functions respectively.

We also give the (symbolic) contributions of the addition stage through each

iteration, where the contributions for the quadrupling in the last column come

from (4.5).

r2 doubling function add r4 quadrupling function add
ℓR,R ℓ∗ = ℓ2R,R · ℓ[2]R,[2]R

1 1
0 1787365xQ + 3265249yQ + 1298802 - 2193611xQ + 2615989x2

Q + 1272939yQ

1 499051xQ + 1519758yQ + 252180 ℓR,P 1 +976306xQyQ + 1544654 ℓR,P

1 1964409xQ + 4449539yQ + 3965085 ℓR,P 472857xQ + 4631799x2
Q + 855294yQ f3,P ·

1 1602765xQ + 4481394yQ + 3129213 ℓR,P 3 +863905xQyQ + 4329792 ℓR,[3]P

1 4488506xQ + 3612376yQ + 616267 ℓR,P 1995376xQ + 1654387x2
Q + 52066yQ f3,P ·

1 950057xQ + 415353yQ + 4134551 ℓR,P 3 +1700464xQyQ + 2170487 ℓR,[3]P

0 2929277xQ + 4073952yQ + 2048154 - 1312938xQ + 2295780x2
Q + 2324490yQ

0 395667xQ + 4338943yQ + 863219 - 0 +1110956xQyQ + 623172 -
1 716051xQ + 2547016yQ + 158022 ℓR,P 1222627xQ + 2354396x2

Q + 2809176yQ f3,P ·
1 2800109xQ + 2621579yQ + 3877545 ℓR,P 3 +1926011xQyQ + 4044376 ℓR,[3]P

0 2094414xQ + 2653532yQ + 150580 - 1776372xQ + 4473739x2
Q + 561014yQ

1 4235065xQ + 3824071yQ + 1409140 ℓR,P 1 +1818712xQyQ + 4081367 ℓR,P

1 276753xQ + 570647yQ + 3756147 ℓR,P 598941xQ + 1564006x2
Q + 4147402yQ f3,P ·

1 3651399xQ + 2015011yQ + 4515851 ℓR,P 3 +1932170xQyQ + 105642 ℓR,[3]P

0 4185903xQ + 4555071yQ + 3061710 - 3586623xQ + 285761x2
Q + 1024273yQ

0 4506674xQ + 4492823yQ + 49462 - 0 +4257178xQyQ + 4037012 -
0 4095434xQ + 4138617yQ + 310038 - 4248739xQ + 867348x2

Q + 3404187yQ

1 2393164xQ + 2721643yQ + 2713439 ℓR,P 1 +1011335xQyQ + 338067 ℓR,P

Table 4.1: Miller functions in the double-and-add routine (left) and the
quadruple-and-add routine (right) for a small Tate pairing.

We now give cost estimates for both scenarios. In order to compare the two,

we use the ratios of field operations in the speed-record paper by Aranha et

al. [AKL+11, Table 1]. They found Karatsuba multiplication most successful for

both the degree 2 and 3 extensions in their tower, which for each such layer in

the tower contributes a factor of 3 and 6 to the complexity of multiplications in

Fqk respectively (refer to Section 2.6.3). In our case k = 24 = 23 · 3, meaning

that Fq24 multiplications mk cost roughly 33 · 6 = 162 multiplications in Fq, i.e.

mk = 162m1. We also follow their s −m ratio, and assume squarings in Fq24

are roughly 2/3 as expensive as multiplications in Fq24 , meaning sk = 108m1.

4.2. Quadruple-and-add 149

When linear functions are used to update the pairing value, the evaluation of

these functions at the coordinates of Q gives a sparse element in Fqk . Optimised

routines will take advantage of this sparseness, so we account for this in Table

4.2, where the line functions in the double-and-add routine are always sparse,

whereas only some of the addition updates in the quadruple-and-add routine are

sparse. We assume a sparse multiplication in Fq24 costs around 13/18’s that of

a full multiplication, by adapting the ratios (modular reductions included) of

Aranha et al. [AKL+11, Table 1] with the fact that lines in the Tate pairing are

slightly more sparse than lines in the ate pairing.

double-and-add quadruple-and-add
operation # cost each total # cost each total

Miller functions 18 3m1 + 5s1 54m1 + 90s1 9 14m1 + 16s1 126m1 + 144s1

evaluation at Q 18 8m1 144m1 9 16m1 144m1

squarings in Fq24 18 sk 18sk 18 sk 18sk

sparse updates 18 13/18mk 13mk - - -
full updates - - - 9 mk 9mk

add functions 11 14m1 + 2s1 154m1 + 22s1 7 14m1 + 2s1 98m1 + 14s1

sparse updates 11 13/18mk 8mk 7 13/18mk 5mk

full updates - - - 4 mk 4mk

352m1 + 112s1 368m1 + 158s1

+21mk + 18sk +18mk + 18sk

≈ 5811m1 ≈ 5386m1

Table 4.2: Comparing estimated costs of the double-and-add and quadruple-and-
add routines for the Miller loop in a small Tate pairing.

In this case we see that the quadruple-and-add algorithm saves around 3

multiplications in Fqk at the forfeit of around 60 extra multiplications in Fq.

Since mk : m1 ≈ 162 : 1, the quadruple-and-add algorithm becomes favoured

for this Tate pairing computation. Of course, this analysis does not include

the non-negligible cost of field additions, but this favours both sides at different

stages; there is clearly a higher number of additions in the computation of the

Miller functions for the quadruple-and-add algorithm, but on the other hand the

extra full extension field multiplications in the double-and-add algorithm also

come incur many additions (again, see [AKL+11, Table 1] for the k = 12 ratio).

An optimised scheduling to compute the sequence of operations (with a minimal

number of additions) in Section 4.2.1 would surely see the quadruple-and-add

algorithm as the (albeit slightly) more efficient route to computing fr,P (Q) in

the Tate pairing. Finally, one should always keep in mind that the relative

speed-ups for optimisations in the Miller loop is always significantly diluted by

150 Chapter 4. Loop Unrolling in Miller’s Algorithm

the fixed cost of the final exponentiation.

4.3 Octuple-and-add

For octupling, we begin by setting n = 3 in (4.2) to obtain the Miller update ℓ∗

corresponding the octupling of T as

ℓ∗ =

3∏

i=1

(g[2i−1]T,[2i−1]T)23−i

=
(
gT,T

)4 ·
(
g[2]T,[2]T

)2 ·
(
g[4]T,[4]T

)
,

which has divisor 8(T)− ([8]T)− 7(O). We now concentrate individually on the

same curve models as in the quadrupling.

4.3.1 Octuple-and-add on y2 = x3 + b

For the octupling line product, we use homogeneous projective coordinates to

give ℓ∗ as

ℓ∗ = α · (ℓ4,0 · x4
P + ℓ3,0 · x3

P + ℓ2,0 · x2
P + ℓ1,0 · xP

+ ℓ3,1 · x3
PyP + ℓ2,1 · x2

PyP + ℓ1,1 · xPyP + ℓ0,0),

where α is again contained in a proper subfield of Fpk and can be eliminated to

give ℓ̂∗ = ℓ∗/α. The ℓi,j coefficients are

ℓ4,0 = (−9X2
1Z

2
1) · S4,0; ℓ3,0 = (−12Z2

1Y
2
1) · S3,0; ℓ2,0 = (−54X1Y

2
1 Z1) · S2,0;

ℓ1,0 = (−36X2
1Y

2
1) · S1,0; ℓ0,0 = ((Y 2

1 + 3bZ2
1)Y 2

1) · S0,0; ℓ3,1 = (8Y1Z
3
1) · S3,1;

ℓ2,1 = (216X1Y1Z
2
1) · S2,1; ℓ1,1 = (72X2

1Y1Z1) · S1,1; ℓ0,1 = (8Y 3
1 Z1) · S0,1.

with

Si,j =

11∑

k=0

ci,j,k · (Y 2
1)11−k(bZ2

1)k,

4.3. Octuple-and-add 151

where ci,j,k is the coefficient of (Y 2
1)11−k(bZ2

1)k belonging to ℓi,j (see [CBNW10a,

App. B] for the full formulas and Magma scripts). As an example, we have

ℓ0,0 = (Y 2
1 (Y 2

1 + 3bZ2
1)) ·

(
Y 22

1 − 3375bY 20
1 Z2

1 − 262449b2Y 18
1 Z4

1 − 2583657b3Y 16
1 Z6

1

+ 47678058b4Y 14
1 Z8

1 − 40968342b5Y 12
1 Z10

1 − 272740770b6Y 10
1 Z12

1

+ 738702990b7Y 8
1 Z

14
1 − 669084219b8Y 6

1 Z
16
1 + 206730549b9Y 4

1 Z
18
1

− 23914845b10Y 2
1 Z

20
1 + 14348907b11Z22

1

)
.

4.3.2 Octuple-and-add on y2 = x3 + ax

Following the trend of the fastest formulas for the n = 1 and n = 2 cases for

curves of this shape, we again projectify ℓ∗ using weight-(1, 2) coordinates to give

ℓ∗ = α · (ℓ4,0 · x4
P + ℓ3,0 · x3

P + ℓ2,0 · x2
P + ℓ1,0 · xP

+ ℓ3,1 · x3
P yP + ℓ2,1 · x2

PyP + ℓ1,1 · xPyP + ℓ0,0),

where we ignore the subfield cofactor α to give ℓ̂∗ = ℓ∗/α. The ℓi,j coefficients

are given as

ℓ4,0 = (−4X2
1Z

4
1) · S4,0, ℓ3,0 = (−16X3

1Z
3
1) · S3,0, ℓ2,0 = (−8X4

1Z
2
1) · S2,0

ℓ1,0 = (16X5
1Z1) · S1,0, ℓ0,0 = (4X6

1) · S0,0, ℓ3,1 = (4Y1Z
4
1) · S3,1

ℓ2,1 = (4X1Y1Z
3
1) · S2,1, ℓ1,1 = (4X2

1Y1Z
2
1) · S1,1, ℓ0,1 = (4X3

1Y1Z1) · S0,1,

with

Si,j =
16∑

k=0

ci,j,k · (X2
1)16−k(aZ2

1)k,

where ci,j,k is the coefficient of (X2
1)16−k(aZ2

1)
k belonging to ℓi,j (see [CBNW10a,

App. B] for the full formulas). As an example, we have

ℓ2,0 = −8X14Z12 ·
(
189X32

1 + 882aX30
1 Z2

1 + 6174a2X28
1 Z4

1 − 26274a3X26
1 Z6

1

− 1052730a4X24
1 Z8

1 − 449598a5X22
1 Z10

1 − 1280286a6X20
1 Z12

1 − 1838850a7X18
1 Z14

1

−23063794a8X16
1 Z16

1 − 1543290a9X14
1 Z18

1 + 539634a10X12
1 Z20

1 + 646922a11X10
1 Z22

1

+1386918a12X8
1Z

24
1 + 75846a13X6

1Z
26
1 + 17262a14X4

1Z
28
1 + 922a15X2

1Z
30
1 − 35a16Z32

1

)
.

152 Chapter 4. Loop Unrolling in Miller’s Algorithm

Remark 4.3.1 (Why Tate and not ate?). The method of 2n-tupling described so

far in this chapter can achieve a slight speed-up for Tate-like pairings with large

embedding degrees. However, unfortunately for the case of loop unrolling, at

these higher security levels (where ate-like pairings reign supreme over Tate-like

pairings), our method of merging is not preferable in the ate setting. In Tate-

like pairings, the elliptic curve operations are performed in Fq, whilst in ate-like

pairings they are performed in Fqk/d, d ≤ 6. The fact that d ≤ 6 means that

the ratio between Fqk multiplications and Fqk/d multiplications is no more than

18, which is not large enough to make the merging trade-offs favourable. On the

other hand, in our Tate pairing example with k = 24, we saw that the analogous

ratio was 162, which certainly presented a case for the larger window size.

4.4 Fixed Argument Pairings

This section targets the very common scenario that arises in many pairing-based

protocols where one argument in the pairing is fixed as a long term secret key or

a constant parameter in the system. We present solid speed-ups in both the Tate

and ate settings by extending prior methods of pairing precomputation according

to the techniques described in the previous sections of this chapter.

For ease of exposition, we will assume that we are back in the ate pairing

setting, so that our pairing is e(Q,P) = fT,Q(P)(qk−1)/r. Note that although

we write T for the loop length, if the ate pairing is not optimal (i.e. T >

log2 r/ϕ(k)), then the application of the techniques in this chapter to an optimal

variant is identical. We simply replace T with an appropriately m ≈ log2 r/ϕ(k)

in Algorithm 2.3. The important point to note is that, unlike the previous

sections in this chapter, Algorithm 2.3 for the (optimal) ate pairing computes

point operations and Miller functions depending on the first argument Q, which

is defined over the full extension field Fqk .

If both Q and P are fixed, then the pairing e(Q,P) itself can be precomputed

and stored. If the second argument P = (xP , yP) is the one that is fixed, this does

not facilitate advantageous precomputations since all that Algorithm 2.3 needs

from P is its coordinates xP and yP in the evaluation stages (Steps 5 and 9). If

however, it is the first argument Q that is fixed, then precomputations become

very useful. Scott [Sco05a] was the first to point out that the first argument (in

our case Q) being fixed allows us to precompute all of its multiples R = [v]Q that

4.4. Fixed Argument Pairings 153

occur in the Miller loop. We explore Scott’s observation a little further by posing

the question: what is the best we can do with Q to optimally alleviate the cost of

the pairing once P arrives? We work under the assumption that (within reason)

we are not too concerned with the cost of any precomputations. If Q is a long

term secret key that is fixed for many runs of a protocol over days/months/years,

then it is reasonable to assume that even if precomputations were several orders

of magnitude more costly than a pairing, a user would still take this route if

it facilitated significant speed-ups over many future encryptions or decryptions.

Besides, these precomputations take place “offline”, and in any case the precom-

putations we employ will not be orders of magnitude more expensive than any

single pairing: if a stand-alone pairing takes less than a millisecond [AKL+11],

then the precomputation phase we suggest will take at most a few milliseconds.

4.4.1 Merging Miller functions (properly!)

We start by slightly tweaking Scott’s initial suggestion [Sco05a] to precompute

the multiples of the point Q in Miller’s algorithm, i.e. all of the intermediate

points R = (xR, yR) in Algorithm 2.3. Instead of storing R at each stage, we will

instead store the line functions ℓR,R and ℓR,P that arise. Suppose for now we are

working in affine coordinates, and let the j-th (doubling or addition) Miller line

function that arises be ℓj : y − (λjx + νj) = 0. Taking advantage of Q being

fixed, we can compute all such λj , νj offline and store all of the Miller functions

as L = [(λ1, ν1), ..., (λn, νn)]. Algorithm 2.3 for the pairing computation then

simplifies to Algorithm 4.2 below.

Algorithm 4.2 Miller’s algorithm for a fixed argument ate pairing.

Input: P ∈ G1, L = [(λ1, ν1), ..., (λn, νn)], and T = (Tn−1 . . . T1T0)2 with Tn−1 = 1.

Output: fT,Q(P)(q
k−1)/r ← f .

1: j ← 1, f ← 1.
2: for i = n− 2 down to 0 do

3: (λ, ν)← L[j], j ← j + 1.
4: f ← f2 · (yP − (λxP + ν)).
5: if ri = 1 then

6: (λ, ν)← L[j], j ← j + 1.
7: f ← f · (yP − (λxP + ν)).
8: end if

9: end for

10: return f ← f (qk−1)/r.

154 Chapter 4. Loop Unrolling in Miller’s Algorithm

Note that L contains both the doubling and additions lines in the order

that they arise in the algorithm. Further note that working in affine coordinates

facilitates lines of the form ℓ : y−(λx+ν), whilst working in projective space gives

lines which are of the form ℓ : ℓ0,1y+ ℓ1,0x+ ℓ0,0. The former is slightly preferred

as its evaluation at P = (xP , yP) at runtime only requires one multiplication (λ

by xP), rather than the two that would occur in the latter (ℓ0,1 by yP and ℓ1,0 by

xP). In this case then, we are happy to put up with the more expensive (affine)

operations in the precomputation phase because it facilitates a faster pairing at

runtime.

The key observation in understanding our improvement is the following. In

the previous sections we merged iterations to trade full extension field operations

for many subfield operations. For larger embedding degrees where the ratio

between the complexities of these operations grows large, this trade off becomes

slightly favourable (at least in the context of the Tate pairing). In the case

of a fixed argument pairing though, the subfield operations used to merge the

iterations can all be done in the precomputation phase. What was a trade-off

now becomes much more of a one-sided affair, and now we manage to save costly

multiplications in Fqk for the small price of evaluating (but no longer computing!)

pairing functions with a few more terms.

However, the approach we describe in this section significantly improves the

original approach in [CS10]. Namely, adopting projective coordinates gives much

faster formulas than those that were initially suggested which arise from using

affine coordinates. For example, observe the difference between the merged up-

date functions in both scenarios:

affine update : ℓ4,0x
4
P + ℓ3,0x

3
P + ℓ2,0x

2
P + ℓ1,0xP + ℓ0,0

+ x3
PyP + ℓ2,1x

2
PyP + ℓ1,1xPyP + ℓ0,1yP = 0;

projective update : ℓ2,0x
2
P + ℓ1,0xP + ℓ0,0 + ℓ1,1xPyP + ℓ0,1yP = 0.

Notice the coefficient of x3
PyP being 1, i.e. ℓ3,1 = 1. The affine update was

taken according to the general expression in [CS10, Lemma 1, Eq. 3], whilst

the projective equation comes from our derivations in Section 4.2.1 and Section

4.2.2. The reason the projective version is much simpler is partly because deriv-

ing the formulas for ℓ∗ as a function of one point allows for Gröbner basis-like

simplifications between its coordinates, but more so because this derivation si-

4.4. Fixed Argument Pairings 155

multaneously facilitated big denominator eliminations that reduced the degree

of ℓ∗ – refer back to the α’s in 4.2.1 and 4.2.2. In addition, one more observation

that aids our cause is that we can divide the projective update freely to eliminate

one of the coefficients, e.g. dividing the projective update above by ℓ2,0 gives

ℓ∗ : x2
P + ℓ′1,0xP + ℓ′0,0 + ℓ′1,1xPyP + ℓ′0,1yP = 0,

where ℓ′i,j = ℓi,j/ℓ2,0. Of course, we could have also done this in the original (non-

merged) case, i.e. divided ℓ0,1y+ℓ1,0x+ℓ0,0 through by ℓ0,1 to give y+ℓ′1,0x+ℓ′0,0.

Thus, in the projective case we can also benefit from one of the coefficients being

1. It is only in the original (non-merged) case that the line functions resulting

from the affine and projective derivation techniques turn out the same. As soon

as merging is advantageous, then projective coordinates perform far better in the

fixed argument scenario.

4.4.2 Example: the record-holding BN curve

We give an example of the proposed method on the BN curve that was found

by Nogami et al. [NAS+08], and soon after used to break the software speed-

record by Aranha et al. [AKL+11]. Referring back to the parameterisations for

the BN family from Example 2.5.6 or Example 2.6.7, Nogami et al. found that

x = −(262 + 255 + 1) gives q(x) and r(x) as 254-bit primes, making this a prime

choice for pairings at the 128-bit security level. Recall from Example 2.6.7 that

an optimal ate pairing on BN curves is achieved with the loop parameter for

Miller’s algorithm as 6x + 2. In the case of the chosen curve then, the 65-bit

binary representation of our loop parameter (we can take −(6x + 2) to make it

positive – see Section 2.6.4) becomes

6 · (262 + 255 + 1) + 2 = (1, 1, 0, 0, 0, 0, 0, 1, 1, 0, . . . , 0, . . . , 0
︸ ︷︷ ︸

53 zeros

, 1, 0, 0)2.

We will compare the double-and-add, quadruple-and-add, and octuple-and-add

versions of Algorithm 4.2. The line function updates in the three scenarios be-

156 Chapter 4. Loop Unrolling in Miller’s Algorithm

come:

doubling − §3.3.1 : ℓ∗dbl(P) : yP + ℓ1,0xP + ℓ0,0 = 0; (4.6)

quadrupling − §4.2.1 : ℓ∗qrpl(P) : x2
P + ℓ1,0xP + ℓ1,1xP yP + ℓ0,1yP + ℓ0,0 = 0;

octupling− §4.3.1 : ℓ∗octpl(P) : x4
P + ℓ3,0x

3
P + ℓ2,0x

2
P + ℓ1,0xP + ℓ3,1x

3
P yP

+ ℓ2,1x
2
PyP + ℓ1,1xPyP + ℓ0,1yP + ℓ0,0 = 0,

where we have divided through by the leftmost ℓi,j in each case to make one of the

coefficients 1. We can treat each of the xiP y
j
P terms as lying in Fq (more on this

in a moment), so the cost of evaluating each ℓ∗ at P is found by enumerating

the multiplications between ℓi,j ∈ Fq2 and xiP y
j
P ∈ Fq, which each cost 2m1.

Thus, the cost of the function evaluations in doubling is 2m1, in quadrupling is

3× 2m1 = 6m1, and in octupling is 7× 2m1 = 14m1. The values ℓi,j are all in

Fq2 because we are employing a sextic twist to compute them in Fqk/6 .

We write the base-2, base-4 and base-8 representations of 6x+ 2 as

6x+ 2 = (1, 1, 0, 0, 0, 0, 0, 1, 1, 0, . . . , 0, . . . , 0
︸ ︷︷ ︸

53 zeros

, 1, 0, 0)2 (65 bits);

= (1, 2, 0, 0, 3, 0, . . . , 0, . . . , 0
︸ ︷︷ ︸

26 zeros

, 1, 0)4 (33 digits);

= (3, 0, 1, 4, 0, . . . , 0, . . . , 0
︸ ︷︷ ︸

17 zeros

, 4)8 (22 digits).

We now focus on the cost of additions that will occur in each scenario. Recall

the function update in the addition phase from Equation (4.5), which rewritten

in our (ate pairing) context is

ℓ+ = fw,Q(P) · ℓR,[w]Q(P),

where 0 < w < 2n is the digit occurring in the base-2n representation of the loop

parameter. Note that we can precompute [w]Q for all of the w that appear in

the corresponding representation, and therefore we can also precompute fw,Q. In

cases where it is convenient, we can use the optimised doubling or quadrupling

formulas to simplify these computations. For example, in the octupling we en-

counter non-zero digits 1 (once), 3 (once) and 4 (twice). Thus, we will need to

compute f1,Q · ℓR,Q = ℓR,Q (a standard addition), f3,Q · ℓR,[3]Q and f4,Q · ℓR,[4]Q.

The computation of f4,Q can be done with the quadrupling formulas (and once

4.4. Fixed Argument Pairings 157

evaluated at P , used in both iterations where it occurs), whilst f3,Q = f2,Q ·ℓQ,[2]Q
can be computed with the doubling formulas followed by a line computation.

A very careful analysis of the operations involved in each scenario gives the

counts detailed in Table 4.3.

double-and-add quadruple-and-add octuple-and-add
(no merging) (merging 2 iters.) (merging 3 iters.)

op. # cost # cost # cost
eval. ℓ∗(P) 64 128m1 32 192m1 21 294m1

tuple f ← f2 63 63sk 63 63sk 64 64sk

f ← f · ℓ∗(P) 63 63m̃k 32 32mk 21 21mk

eval. ℓR,Q(P) 4 8m1 3 18m1 4 56m1

f ← f · ℓR,[w]Q(P) 4 4m̃k 3 3m̃k 3 3m̃k

add eval. fw,Q(P) - - 2 6m1 2 10m1

f ← f · fw,Q(P) - - 2 3m̃k 2 2mk + m̂k

total ≈ 5017m1 ≈ 4446m1 ≈ 4053m1

Table 4.3: Operation counts for the Miller loop of a fixed argument pairing on a
BN curve employing our merging technique for precomputation vs. the previous
method of precomputation (no merging).

We have distinguished sparse multiplications m̃k and sparser multiplications

m̂k from full multiplications mk, where sparse multiplications indicate a line

function multiplied by a full element in Fqk , and sparser multiplications mean

a multiplication between two line functions, as in [AKL+11]. We use the ratios

m̃k ≈ 13/18mk and m̂k ≈ 5/9mk, taken conservatively from [AKL+11, Table

1.], from which we also take mk = m12 ≈ 54m1 and sk ≈ 2/3mk ≈ 36m1.

To finish the example, we return to our statement that we can treat each of

the xiP y
j
P terms as base field elements, so that their multiplication by ℓi,j ∈ Fq2

counts as 2m1. This is indeed the case, but the details need to be discussed

diligently. Suppose we are using the same tower chosen in [AKL+11]:

Fq
u2+1

// Fq2
v3−(u+1)

// Fq6
w2−v

// Fq12 .

The curve used is E/Fq : y2 = x3 + 2 and the correct sextic can be chosen

as E/Fq2 : y2 = x3 + 2/(u + 1). In this case, we have w6 = (u + 1) so that

our twisting isomorphism is Ψ−1 : E → E ′, (x, y) 7→ (x/w2, y/w3), and our

untwisting isomorphism is Ψ : E ′ → E, (x′, y′) 7→ (x′w2, y′w3). We rewrite

Ψ−1 multiplicatively as (x, y) 7→ (x(1 − u)v2/2, y(1− u)vw/2). Thus, if we are

applying Theorem 3.1 to compute entirely on the twist, we will actually map P to

158 Chapter 4. Loop Unrolling in Miller’s Algorithm

P ′ = (x′P , y
′
P) via Ψ−1, and evaluate the functions there (rather than untwisting

Q), i.e. we will be multiplying the ℓi,j ∈ Fq2 by x′P , y
′
P . The coordinate x′P =

xP (1−u)v2/2, where xP ∈ Fq, and similarly y′P = yP (1−u)vw/2 where yP ∈ Fq.

Thus, each of x′iPy
′j
P terms from (4.6) can be thought of as xPyP ∈ Fq with some

product of u, v, w attached; this product simply determines the placement of

xPyP in the structure that represents Fqk over Fq. As an example, we will write

x′3Py
′
P that arises in the octupling as x′3P y

′
P = xP yP · ((1 − u)v2/2)3(1 − u)vw/2,

from which we need to sort out the mess that is attached to xP yP . It becomes
(1−u)4v7w

16
, where (1−u)4 simplifies to −4, and v7 simplifies to 2uv, giving x′Py

′
P =

−(xP yP)/2 · uvw, which allows us to easily place x′3Py
′
P (and multiples of it) in

the structure for Fqk over Fq.

4.4.3 Example: a k = 24 BLS curve

We take a look at another example which targets the 256-bit security level. Once

again we use a k = 24 curve from the BLS family, the parameterisations of which

can be seen in Example 2.6.9 or Example 2.6.11. A nice choice of x at this level

is x = −(223 + 242 + 244 + 264) (taken from our recent work [CLN11, Table 7]),

for which q is 639 bits and r is 513 bits. The curve is E/Fq : y2 = x3 − 2, and a

nice choice for the extension field tower is

Fq
u2+1

// Fq2
v2−(u+1)

// Fq4
w3−v

// Fq12
z2−w

// Fq24 .

The twisted curve is E ′/Fq4 : y2 = x3 − 2/v, so in the ate pairing we perform

the elliptic curve and Miller function computations in Fq4 . In this case the ate

pairing is already optimal (see Example 2.6.9), so the Miller function is computed

as fx,Q(P). The update functions are of the same form as the last example, i.e.

as they are in (4.6).

We write the base-2, base-4 and base-8 representations of x (which coinci-

4.4. Fixed Argument Pairings 159

dentally have the same bit lengths as the last example) as

x = (1, 0, . . . , 0
︸ ︷︷ ︸

19 zeros

, 1, 0, 1, 0, . . . , 0
︸ ︷︷ ︸

18 zeros

, 1, 0, . . . , 0
︸ ︷︷ ︸

23 zeros

) (65 bits);

= (1, 0, . . . , 0
︸ ︷︷ ︸

9 zeros

, 1, 1, 0, . . . , 0
︸ ︷︷ ︸

9 zeros

, 2, 0, . . . , 0
︸ ︷︷ ︸

11 zeros

)4 (33 bits);

= (2, 0, . . . , 0
︸ ︷︷ ︸

6 zeros

, 5, 0, . . . , 0
︸ ︷︷ ︸

6 zeros

, 4, 0, . . . , 0
︸ ︷︷ ︸

7 zeros

)8 (22 bits).

Once again, when 2 is encountered in the base-4 representation for quadru-

pling, the addition update is f2,Q(P) · ℓR,[2]Q(P), and so is the product of two

lines (f2,Q and ℓR,[2]Q are precomputed). In the octupling, we precompute f4,Q

using quadrupling and further precompute f5,Q as f5,Q = f4,Q · ℓ[4]Q,Q (but keep

these components separate). The first 2 encountered in the octupling require the

computation of f2,P only. When we come across 4 in the octupling, the update is

computed by evaluating f4,Q(P) and ℓR,[4]Q(P) and then taking the product; simi-

larly, when we come across 5 we evaluate f4,Q(P), ℓ[4]Q,Q and ℓR,[5]Q(P) separately

before taking their product, noting that this incurs two sparse multiplications.

We carry over all the same ratios used in the previous example, since the

nature of the sextic twist is the same. The tower has one extra layer of degree 2,

so there is another factor of 3 introduced in extension field multiplications, i.e.

mk ≈ 162m1, and each multiplication of an ℓi,j by xPyP (or x′Py
′
P) incurs 4m1.

We give careful estimates in Table 4.4.

double-and-add quadruple-and-add octuple-and-add
(no merging) (merging 2 iters.) (merging 3 iters.)

op. # cost # cost # cost

eval. ℓ∗(P) 64 256m1 32 384m1 21 588m1

tuple f ← f2 63 63sk 63 63sk 64 64sk
f ← f · ℓ∗(P) 63 63m̃k 32 32mk 21 21mk

eval. ℓR,Q(P) 3 12m1 3 36m1 3 84m1

f ← f · ℓR,[w]Q(P) 3 3m̃k 3 2m̃k + m̂k 3 3m̃k

add eval. fw,Q(P) - - 1 4m1 1 12m1

f ← f · fw,Q(P) - - 1 mk 2 2mk

total ≈ 14794m1 ≈ 12898m1 ≈ 11673m1

Table 4.4: Operation counts for the Miller loop of a fixed argument pairing on a
BLS curve employing our merging technique for precomputation vs the previous
method of precomputation (no merging).

160 Chapter 4. Loop Unrolling in Miller’s Algorithm

4.4.4 Storage requirements and applications

We summarise the results from the examples in Section 4.4.2 and Section 4.4.3

in Table 4.5. To estimate the cost of the Miller loop that employs no precompu-

tation, we used the numbers from our optimised formulas in Table 3.2. We took

the added cost of each doubling step as 2m+7s ≈ 7m and each addition step as

3m + 8s ≈ 9m. These operations take place in Fq2 for the BN curve and in Fq4

for the BLS curve, where multiplications cost 3m1 and 9m1 respectively. Calcu-

lating the storage requirement in each scenario is straightforward. For example,

in the standard (doubling) case on a BN curve, we have to store 64 doubling lines

and 4 addition lines of the form ℓ : y+ℓ1,0x+ℓ0,0, so we need to store 68 ·2 values

in Fq2 , or 68 · 2 · 2 254-bit elements, which totals 68 · 2 · 2 · 254 ≈ 70, 000 bits. As

another example, for the octupling on a BLS curve, we have to store roughly 22

doubling updates which each require the storage of 8 elements ℓi,j ∈ Fq4 , plus 3

addition updates of roughly the same size, giving 25 · 8 · 4 · 639 ≈ 510, 000 bits.

128-bit optimal pairing 256-bit optimal pairing
k = 12 BN curve k = 24 BLS curve

Fq = 254 bits Fq = 639 bits

precomp Miller loop ≈ storage Miller loop ≈ storage
method cost required (bits) cost required (bits)

none 6469 m1 - 19069 m1 -
standard [Sco05a] 5017 m1 70,000 14794 m1 340,000

quadrupling 4446 m1 75,000 12898 m1 368,000
octupling 4053 m1 100,000 11673 m1 510,000

Table 4.5: Computational savings in the Miller loop vs. storage costs for fixed
argument pairings employing our merging technique.

We remark that these methods are obviously not intended for resource or

storage constrained environments. However, taking advantage of precomputa-

tion in the fixed argument scenario is clearly very advantageous if one can afford

the storage. As we mentioned earlier, the reader should keep in mind that rela-

tive savings within the Miller loop are always diluted when considered as relative

savings across the entire pairing computation, due to the fixed cost of the final

exponentiation that does not benefit from any precomputations. In this light,

our estimated ratios between “no precomputation” and “standard precomputa-

tion” techniques agree with Scott’s recent timings [Sco11, Table 2] on 128-bit

BN curves, if we keep in mind that the Miller loop and final exponentiation are

4.4. Fixed Argument Pairings 161

roughly the same cost at this level. In that paper Scott discusses a wide range of

protocol specific optimisations beyond (but including) the fixed argument opti-

misation, where he mentions that our technique would provide a useful speedup

at twice the storage cost [Sco11, §5]. However, this comment was based on the

prior, but inferior technique in [CS10]. Indeed, the original quadrupling func-

tions were as big as our modified octupling functions, so Scott’s comment about

the storage requirements was certainly valid. In our updated version though, we

can see that the storage requirements are not greatly affected by stepping up to

quadrupling, since we essentially store half the functions of twice the size.

There are many pairing-based cryptosystems that can benefit from precom-

putation when one of the arguments is fixed. In Table 4.6, we have listed some

pairing-based cryptosystems that have fixed arguments and hence which can

benefit from the improvements in this chapter.

fixed # fixed
pairings arguments pairings arguments

Public key encryption Encryption Decryption

Boyen-Mei-Waters [BMW05] 0 1 2nd

ID-based encryption Encryption Decryption

Boneh-Franklin [BF03] 1 2nd 1 1st

Boneh-Boyen [BB11] 0 1 2nd

Waters [Wat05] 0 2 both in 2nd

Attribute-based encr. Encryption Decryption

GPSW [GPSW06, §4] 0 ≤ #attr. all in 1st

LOSTW [LOS+10, §2] 0 ≤ 2 · #attr. all in 2nd

ID-based signatures Signing Verification

Waters [Wat05] 0 2 1 in 2nd

ID-based key exchange Initiator Responder

Smart-1 [Sma02] 2 1 in 1st, 1 in 2nd 2 1 in 1st , 1 in 2nd

Chen-Kudla [CK03] 1 1st 1 2nd

McCullagh-Barreto [MB05] 1 2nd 1 2nd

Table 4.6: Fixed arguments in various pairing-based cryptosystems.

In some cases, such as the Boneh-Franklin identity-based encryption scheme

[BF03] or the Chen-Kudla identity-based key agreement protocol [CK03], one

party computes a pairing where the first argument is fixed while the other party

computes a pairing where the second argument is fixed; here, our technique can

only be applied to speed up one party’s pairing computation.

In others cases, such as the McCullagh-Barreto identity based key agreement

protocol [MB05], the two parties employing the cryptosystem can both benefit

because they each compute pairings where the fixed value appears in the same

162 Chapter 4. Loop Unrolling in Miller’s Algorithm

argument of the pairing. Our speed-up is also applicable to attribute-based

encryption schemes such as those of Goyal et al. [GPSW06, §4] and Lewko et

al. [LOS+10, §2] which perform a large number of pairings (one or two for each

attribute used in decryption), as in these schemes the second arguments in all

these pairing computations are long-term values (fixed across multiple runs of

the protocol, though not all identical within a single run of the protocol). Again,

we refer to Scott’s recent work for more details concerning other special improve-

ments in these scenarios [Sco11].

4.5 Summary of contributions

In Sections 4.1-4.3 of this chapter, we looked at loop unrolling in Miller’s algo-

rithm. We showed that merging two successive iterations can be preferable for

Tate pairing computations, but further discussed in Remark 4.3.1 that merging

is not preferable for one-off ate pairings. In Section 4.4 however, we applied

the loop unrolling technique to the common scenario of fixed argument pairings.

When considering the runtime of the Miller loop, we showed that our (modified)

method facilitates speed-ups of around 20% over the previous method of precom-

putation. If storage space permits, then taking advantage of a fixed argument

can give a speed-up of 35% over a Miller loop that does not use precomputation.

Both of our examples in this chapter focussed on curves with sextic twists

and smooth embedding degrees belonging to families that are the front-runners

for their respective target security levels. We expect that the speed up for other

families would be even larger, since if a sextic twist isn’t used the relative size

of the field where the precomputation savings take place grows, i.e. the subfield

operations have a greater overall effect on the complexity of the Miller loop. Even

in the case of say, a quartic twist, our method is likely to give better relative

savings than those reported here. This is also due to the Miller lines in the

traditional double-and-add version being “not as sparse” in the case of lower

degree twists, meaning that the comparison between multiplication complexities

favours our case even more.

Finally, we remark that if works like that of Aranha et al. [AKMRH11] see a

resurgence of the Weil pairing e(P,Q) = fm,P (Q)/fm,QP in some scenarios, then

this could further aid the case for loop unrolling in state-of-the-art implementa-

tions.

Chapter 5

Attractive subfamilies of BLS

curves for high-security pairings

In this chapter and the next, we address the same problem: finding subfamilies of

parameterised curve families that offer certain advantages with respect to their

associated pairing implementation.

Here we consider the Barreto-Lynn-Scott (BLS) k = 24 family [BLS02] (see

also [FST10, §6.6]) in detail, since these curves are a stand-out candidate for

implementing high-security pairings. In the next chapter we apply similar tech-

niques to all of the other attractive families of curves.

Current public-key security recommendations have influenced a concentrated

effort from the pairing-based community towards optimising the implementation

of pairings on Barreto-Naehrig (BN) curves [BN05]. Indeed, aside from an array

of many other attractive properties (refer back to Section 4.4.2, Example 2.6.7,

or see [Nae09,PJNB11] for more details), BN curves are perfectly suited to the

security level of 128 bits, since they achieve an optimal balance between the

necessary sizes of the three groups involved in the pairing e : G1×G2 → GT (see

Figure 2.39). The BN pairing speed record of 10 million cycles set by Hankerson

et al. in 2008 [HMS08] stood until mid 2010, when three papers appeared in

rapid succession [NNS10,BGDM+10,AKL+11], each one shaving more time off

the previous record and pushing the limit of efficiency at this security level. This

work was pinnacled by Aranha et al. [AKL+11], who applied a combination of

improvements to accelerate the entire pairing computation to less than 2 million

163

164 Chapter 5. Attractive subfamilies of BLS curves for high-security pairings

cycles. As implementors seemingly converge towards a “satisfaction asymptote”

at the 128-bit security level, the focus is now beginning to shift to optimising

pairings at higher security levels.

The BLS family has already been identified as the prime candidate for 256-bit

secure pairings by Scott [Sco11], who now holds the current software speed record

at this level. The aim of our work is to provide some of the finer details that will

begin to pave the way for implementors who may wish to further accelerate the

state-of-the-art timings on BLS curves. Much of our discussion is motivated by

Pereira et al.’s work in the case of BN curves [PJNB11], where they detail a very

simple method of generating highly optimal instantiations of implementation-

friendly BN curves. With the same intent, we point out four highly attractive

subfamilies of BLS curves that facilitate very efficient instantiations of high-

security pairings.

The proposed curves are found by restricting the search parameter x in the

polynomial representation to any one of four specific congruency classes, namely

x0 ≡ 7, 16, 31, 64 mod 72. These choices result in prime fields of characteristic

q ≡ 19 mod 24, which in turn leads to three very efficient towering options for the

full extension field Fq24 . We show that all curves found in any of the proposed

subfamilies can immediately be given by the same short Weierstrass equation

over Fq, and the unique sextic twist E ′ of correct order for use in the ate pairing

setting is automatically determined. Not only is there no computational effort

necessary to write down the curve equations once the prime q is found, both E

and E ′ can be represented very compactly by the polynomial parameter x0 alone.

We give some details on line function computation that make an important

link to Theorem 3.1. As a resource for implementors, we give elaborate lists of

example curves covering a range of high-security levels between 192- and 320-bit

security, including the dedicated BLS security level of 256 bits. We have chosen

the examples with a very sparse parameter x which leads to a low number of

addition steps in the Miller loop and simultaneously very efficient exponentiations

by x, which are needed in the final exponentiation. We have already shown that

the ate pairing for this family is already optimal in Example 2.6.9, and provided

details on an efficient version of the final exponentiation routine in Example

2.6.11. The example curves we provide can all be found in Appendix A.

The remainder of this chapter is organised as follows. We briefly recall the

polynomials for all the necessary parameters below, before describing the pro-

5.1. Particularly friendly subfamilies 165

posed implementation-friendly subfamilies of BLS curves in Section 5.1. Sec-

tion 5.2 details some choices that can facilitate simpler pairing code. Finally, in

Section 5.3 we provide timing results of a C implementation of the optimal ate

pairing on BLS curves.

The BLS parameterisations. We recall the BLS parameterisations from

any of Examples 2.5.5, 2.6.9, or 2.6.11, but add some details that are necessary

for this work:

q(x) = (x− 1)2(x8 − x4 + 1)/3 + x; r(x) = x8 − x4 + 1; t(x) = x+ 1;

n(x) = (x− 1)2(x8 − x4 + 1)/3; f(x) = (x− 1)(2x4 − 1)/3. (5.1)

Finding a specific BLS curve is achieved by running through integer values x0 ≡
1 mod 3 until q(x0) and r(x0) are both prime (note that x0 ≡ 1 mod 3 leads to

all involved parameters being integers). For each set of parameters, there exists

an elliptic curve E over Fq such that #E(Fq) = n(x0). The correct curve E can

be found by trying different values for b (i.e. different twists) and checking for

the right group order. Another alternative is to compute the coefficient by the

algorithm described in [RS10]. Since r(x0) | n(x0), there is a subgroup of E(Fq)

of prime order r(x0). The CM discriminant is D = 3 because 4q(x0)− t(x0)
2 =

3f(x0)
2. The family has a ρ-value of ρ = deg(q)/ deg(r) = 1.25.

5.1 Particularly friendly subfamilies

In this section we show that specialising the congruency classes of the curve-

finding search parameter gives rise to four subfamilies of k = 24 BLS curves that

are highly efficient in terms of all operations required in a pairing computation.

Specifically, we show that rather than searching with x0 ≡ 1 mod 3, searching

with any of x0 ≡ 7, 16, 31, 64 mod 72 guarantees that the curves found offer

(among other things) the following advantages.

− The curve constant b is immediately determined (see Proposition

5.4 below). This saves performing extra computations that test different

values of b and the corresponding group order until the correct twist is

found; or the checks for quadratic and cubic residuosity and root compu-

tations for the algorithm in [RS10].

166 Chapter 5. Attractive subfamilies of BLS curves for high-security pairings

x0 q(x0) n(x0) efficient E E′

mod 72 mod 72 mod 72 tower
(eq. (5.1)) (eq. (5.1)) (Prop. 5.3) (Prop. 5.4) (Prop. 5.5)

7 19 12 ✓ y2 = x3 + 1 y2 = x3 ± 1/v

16 19 3 ✓ y2 = x3 + 4 y2 = x3 ± 4v

31 43 12 ✓ y2 = x3 + 1 y2 = x3 ± v
64 19 27 ✓ y2 = x3 − 2 y2 = x3 ± 2/v

Table 5.1: Four attractive subfamilies of BLS curves.

− Highly efficient field tower options are available (see Proposition 5.3

below). This facilitates very efficient field arithmetic in the full extension

field (and all intermediate subfields).

− The correct twist is immediately determined (see Proposition 5.5

below). Among other savings, having an automated and general repre-

sentation for the correct twist saves group arithmetic on curves over the

quartic extension field Fq4 in the generation phase. Also, the represen-

tations of the twists are always simple and facilitate nice back-and-forth

isomorphisms between E and E ′.

In addition to the above efficiency benefits, generating curves with identical or

consistent parameters also offers the advantage of code reusability across different

instantiations and security levels. This allows an implementor the flexibility of

scaling parameter sizes to better match a neighbouring security level without

changing any of the pairing code.

Furthermore, having fixed coefficients for the curve and its twist leads to a

very compact way of representing the curve data. Note that in this setting, the

knowledge of the generating parameter x0 uniquely determines all information

about both curves. What only remains is to give generators for the groups G1

and G′2, except for the case of x0 ≡ 64 mod 72 for which a compact generator in

G1 is always available as [h](3, 5), where h is the cofactor which maps elements

of E(Fp) into G1.

We split the rest of this section into two subsections. The first subsection

is dedicated to proving the claims in Table 5.1 and showing that taking x0 ≡
7, 16, 31, 64 mod 72 will always give rise to highly efficient BLS instantiations.

5.1. Particularly friendly subfamilies 167

The intention of the second subsection is to detail why x0 ≡ 7, 16, 31, 64 mod 72

reign supreme over the other possible congruence classes.

5.1.1 Using the four classes x0 ≡ 7, 16, 31, 64 mod 72

We start with a lemma that is instrumental in some of the proofs that follow.

For a prime q, let QR(q) denote the set of quadratic residues modulo q.

Lemma 5.1. Let x0 ∈ Z be any of x0 ≡ 7, 16, 31, 64 mod 72, and let q = q(x0)

with q given by (5.1) be a prime. Then 2 is neither a quadratic nor a cubic

residue modulo q.

Proof. A simple calculation shows that for x0 ≡ 7, 16, 64 mod 72, we have q(x0) ≡
19 mod 72. For x0 ≡ 31 mod 64, we have q(x0) ≡ 43 mod 72. In both cases, it is

easy to deduce that 2 6∈ QR(q) by computing the Legendre symbol.

It remains to show that 2 is not a cube modulo q for each of the x0 values.

For all four cases, we use [IR90, Prop. 9.6.2], which states that for q ≡ 1 mod 3,

2 is a cubic residue modulo q if and only if there exist integers C,D such that

q = C2 + 27D2. According to [IR90, Prop. 8.3.2], for q ≡ 1 mod 3 there always

exist integers A and B such that 4q = A2 + 27B2 and A,B are unique up to

sign. Thus, if A and B in this unique representation are both even, 2 is a cube

modulo q, otherwise it is not. In each of the four cases x0 ≡ 7, 16, 31, 64 mod 72,

we examine A and B in terms of the polynomials from (5.1). The CM norm

equation for the BLS family is 4q = t2 + 3f 2, thus we obtain f in terms of the

polynomial representation as f(x) = (x− 1)/3 · (2x4 − 1).

For x0 ≡ 64 mod 72, we have f(x0) ≡ 0 mod 3 which allows us to write

4q(x0) = t(x0)
2 + 27 · (f(x0)/3)2, where A = t(x0) = x0 + 1 ≡ 65 mod 72 and

B = f(x0)/3 = (x0 − 1)/9 · (2x4
0 − 1) ≡ 25 mod 72 are both odd, meaning that

for x0 ≡ 64 mod 72, 2 is not a cubic residue modulo q(x0).

For the other three cases x0 ≡ 7, 16, 31 mod 72, it is easy to show that f(x0) 6≡
0 mod 3, so the CM equation does not directly yield A and B. The two cases

x0 ≡ 7, 16 mod 72 can be handled by considering a transformation of the CM

norm as

4q =

(
3f + t

2

)2

+ 27

(
t− f

6

)2

.

For x0 ≡ 7 mod 72, t(x0), f(x0) ≡ 2 mod 6, so that both A = (3f + t)/2 and

B = (t− f)/6 are integers. Furthemore, f(x0) ≡ 2 mod 4 and t(x0) ≡ 0 mod 4

168 Chapter 5. Attractive subfamilies of BLS curves for high-security pairings

reveal that 3f + t ≡ 2 mod 4 so that A is odd, from which it follows that 2 is

not a cubic residue modulo q(x0) for x0 ≡ 7 mod 72.

For x0 ≡ 16 mod 72, we have t(x0), f(x0) ≡ 1 mod 2 and t(x0), f(x0) ≡
2 mod 3. Furthermore, since t(x0) ≡ 1 mod 4 and f(x0) ≡ 3 mod 4, again we

conclude that 3f + t ≡ 2 mod 4, meaning that A = (t − 3f)/2 is odd and 2 is

not a cube modulo q(x0) for x0 ≡ 16 mod 72.

Finally, for x0 ≡ 31 mod 72, we require a slightly different transformation of

the CM equation as

4q =

(
t− 3f

2

)2

+ 27

(
t+ f

6

)2

.

In this case t(x0) ≡ 2 mod 6 and f(x0) ≡ 4 mod 6 so that A = (t − 3f)/2 and

B = (t+f)/6 are integers. Since t(x0) ≡ 0 mod 4 and f(x0) ≡ 2 mod 4, it follows

that A ≡ 1 mod 4 is odd and 2 is not cube modulo q(x0) for x0 ≡ 31 mod 72.

The ideal way to form a quadratic extension field arises when q ≡ 3 mod 4

which allows us to take Fq2 = Fq(u), u
2 + 1 = 0. Operations in Fq[u]/(u

2 + 1)

are cheaper than operations in Fq[u]/(u
2 − α) for any other non-residue α ∈ Fq,

since multiplication by α 6= ±1 costs additions in Fq (cf. [DOSD06]). Since we

have q ≡ 19 mod 24 in all four cases, we always have q ≡ 3 mod 4 and can take

advantage of this extension.

For the extension from Fq2 to Fq4 = Fq2(v), the ideal irreducible binomial

in terms of simplicity would be v2 + u. Unfortunately the following proposition

shows that if we form Fq2 as above, then this binomial cannot be used to define

Fq4 (and this statement is true for any quartic extension fields, whether in the

context of pairings or not).

Proposition 5.2. If q ≡ 3 mod 4, and Fq2 is constructed as Fq(u), u
2 + 1 = 0,

then the polynomial x2 + su with s ∈ Fq is reducible over Fq2. In particular, Fq4

cannot be constructed over Fq2 using a binomial of the above form.

Proof. Since −1 /∈ QR(q), precisely one of s/2 or −s/2 is a quadratic residue

modulo q. In the first case, take s = 2a2 for some a ∈ Fq and write x2 + su =

x2 + 2a2u = (x+ au − a)(x − au + a). In the second case, taking s = −2a2 for

some a ∈ Fq gives x2 + su = x2− 2a2u = (x+ au+ a)(x− au− a). Thus, x2 + su

with s ∈ Fq is reducible over Fq2 .

5.1. Particularly friendly subfamilies 169

Nevertheless, a binomial that is almost as attractive in terms of efficiency is

v2 + (u+ 1), since multiplications by u+ 1 in Fq2 also come almost for free. The

following proposition shows that the proposed subfamilies of BLS curves always

allow Fq4 to be constructed using this binomial. Furthermore, we also show that

the rest of the tower up to Fq24 can be constructed in three different ways; all

three of which employ optimal binomials, but may be preferred by implementors

depending on various factors, such as the nature of previous pairing code, or

whether compression is desired.

Proposition 5.3. Let x0 ∈ Z be any of x0 ≡ 7, 16, 31, 64 mod 72. If q = q(x0)

given by the polynomial in (5.1) is prime, then the extension field Fq24 can be

constructed using any of the following towering options T1, T2, T3:

Fq8
z3+w

// Fq24 ; T1,

Fq
u2+1

// Fq2
v2+u+1

// Fq4

w2+v
>>

|
|

|
|

|
|

|
|

w3+v
((QQQQQQQQQQQQQQQQ

z6+v
// Fq24 ; T2,

Fq12
z2+w

// Fq24 ; T3.

Proof. For all four congruency classes x0 ≡ 7, 16, 31, 64 mod 72, we have q(x0) ≡
19 mod 24, so that q ≡ 3 mod 4 and we can use Fq2 = Fq(u) = Fq[u]/(u

2 + 1).

For the remaining irreducibility arguments, we make use of Theorem C.1, which

is due to Benger and Scott. We immediately note that 2, 3 | q − 1.

Let us compute NFq2/Fq(−(u+1)) = NFq2/Fq(−1)NFq2/Fq(u+1) = (u+1)q+1 =

(u+1)q(u+1) = (1−u)(u+1) = 2. Since 2 is not a quadratic residue modulo q,

Theorem C.1 ensures that v2 +u+1 is irreducible in Fq2 [v] and we can construct

Fq4 = Fq2 [v]/(v
2 + u+ 1).

Next, we compute NFq4/Fq(−v) = NFq4/Fq(−1)NFq4/Fq(v) = NFq4/Fq(v) =

v1+q+q2+q3 = (v1+q2)1+q = ((−(u+1))1+q2)(1+q)/2 = ((u+1)2)(1+q)/2 = (u+1)q+1 =

2. Lemma 5.1 tells us that 2 is neither a quadratic nor a cubic residue modulo

q, and thus it follows from Theorem C.1 that w2 + v, w3 + v and z6 + v are all

irreducible over Fq4, giving rise to the tower T2, to T1 up to Fq8 and T3 up to

Fq12 .

For the remaining parts of T1 and T3, we similarly compute NFq12/Fq(−w) =

2(1+q4+q8)/3 and NFq8/Fq(−w) = 2(1+q4)/2. Since q ≡ 1 mod 6 for all cases, it

follows that (1 + q4 + q8)/3 is odd and so NFq12/Fq(−w) is not a square in Fq

170 Chapter 5. Attractive subfamilies of BLS curves for high-security pairings

since 2 is not a square by Lemma 5.1. Similarly, (q4 + 1)/2 ≡ 1 mod 3 and so

NFq8/Fq(−w) is not a cube in Fq. Therefore, Theorem C.1 ensures irreducibility

of the remaining polynomials and completes the proof.

We have now shown that once a BLS prime q is found using x0 ≡ 7, 16, 31, 64 mod

72, a highly efficient tower is immediately available. The following two proposi-

tions show that the curve constant and twisted curve are also immediate in all

four cases.

Proposition 5.4. If x0 ≡ 7, 31 mod 72 in (5.1) produces a prime q = q(x0),

then the curve E/Fq : y2 = x3 + 1 is always such that r = r(x0) | n = #E(Fq).

Similarly, for x0 ≡ 16 mod 72, the desired curve is always E/Fq : y2 = x3 + 4.

Finally, for x0 ≡ 64 mod 72, the desired curve is always E/Fq : y2 = x3 − 2.

Proof. It is well known that if g is neither a square nor a cube in Fq, then all

possible group orders an elliptic curve E : y2 = x3 + b can have over Fq occur

as the order of one of the 6 twists with b ∈ {1, g, g2, g3, g4, g5}. Specifically,

choosing b as exactly one of {1, g, g2, g3, g4, g5} will give the correct number of

points (cf. [Sil09, §X.5]), i.e. the curve with r | n = #E(Fq). Lemma 5.1 shows

that we can take g = 2, so that in all four cases the correct b is exactly one of

{1, 2, 4, 8, 16, 32}.
For both x0 ≡ 7 mod 72 and x0 ≡ 31 mod 72, we have n(x0) = (x0−1)2(x8

0−
x4

0 + 1)/3 ≡ 12 mod 72 from (5.1). Thus, both cases have 2, 3 | n, meaning that

the correct curves E/Fq necessarily contain points of order 2 and points of order

3. This implies that b is both a quadratic and cubic residue modulo q, from

which it follows that b = 1 is the only option.

For x0 ≡ 16 mod 72, observe that n(x0) ≡ 3 mod 72 and thus the correct

curve E has a point of order 3, but not a point of order 2. This rules out

b = 1, 8, since the points (−1, 0) and (−2, 0) have order 2 on the respective

curves. The curve E/Fq : y2 = x3 + b has a point of order 3 if and only if b is

a square in Fq, which rules out b = 2, and therefore b = 32 as well. To rule out

b = 16, we first observe that since n = n(x0) ≡ 3 mod 72, 9 ∤ n and E/Fq has

at most three points of order 3. If b = 16, then two such points are (0,−4) and

(0, 4). It is easy to see that −3 ∈ QR(q), so let ν2 = −3 for ν ∈ Fq, and write

P = (−4, 4ν) ∈ E(Fq) : y2 = x3 + 16. An easy calculation (e.g. using point

doubling formulas) shows that [2]P = (−4,−4ν) = −P , so that P has order 3,

and similarly for −P . Thus, there are at least four points of order 3 in Fq if

b = 16 contradicting 9 ∤ n, which leaves b = 4 as the only option.

5.1. Particularly friendly subfamilies 171

For x0 ≡ 64 mod 72, we can make use of Algorithm 3.5 in [RS10], where

in our case U = t/2 and V = f/2. Since 2V = f(x0) ≡ 0 mod 3 and 2U =

t(x0) = 2 mod 3, we immediately have E/Fq : y2 = x3 + 16 as the correct curve.

Lastly, since −2 ∈ QR(q), write µ2 = −2 for µ ∈ Fq, so that µ6 = −8. Since

E/Fq : y2 = x3 + 16 is isomorphic to Ẽ/Fq : y2 = x3 + 16/µ6 over Fq, we can

take b = 16/− 8 = −2 as the curve constant instead.

Proposition 5.5. If x0 ≡ 7 mod 72 produces the BLS curve y2 = x3+1 described

in Proposition 5.4, and Fq4 is constructed as in Proposition 5.3, then the correct

sextic twist with r = r(x0) | #E ′(Fq4) can be obtained as both E ′/Fq4 : y2 =

x3 + 1/v and E ′/Fq4 : y2 = x3 − 1/v. Similarly, x0 ≡ 16 mod 72 gives rise

to the correct twist as both E ′/Fq4 : y2 = x3 + 4v or E ′/Fq4 : y2 = x3 − 4v;

x0 ≡ 31 mod 72 gives rise to the correct twist as both E ′/Fq4 : y2 = x3 + v or

E ′/Fq4 : y2 = x3 − v; and finally, x0 ≡ 64 mod 72 gives rise to the correct twist

as both E ′/Fq4 : y2 = x3 + 2v or E ′/Fq4 : y2 = x3 − 2v.

Proof. We first note that −1 = u6 is a sixth power in Fq2 . Therefore, for b′ ∈ Fq4 ,

the curves given by y2 = x3 + b′ and y2 = x3 − b′ are isomorphic over Fq4.

In each case the correct twist E ′ is unique with the property that r | #E ′(Fq4)
and it has degree 6 (see [HSV06]). Since there are exactly two twists of E of

degree 6 over Fq4 , there are only two possible group orders. We have #E(Fq4) =

q4 + 1 − t4, where t4 can be computed from t and f (notation as before) as

t4 = (t4 − 18t2f 2 + 9f 2)/8 (see [Sil09, §V.2]). If we define f4 by 4q4 = t24 + 3f 2
4 ,

the possible group orders for the sextic twist are given in [HSV06] as

n4,1 = q4 + 1− (3f4 − t4)/2,
n4,2 = q4 + 1− (−3f4 − t4)/2.

We compute both n4,1 and n4,2 as polynomials in terms of the parameterisation

(5.1), and evaluate them at each of the congruency classes which reveals opposing

parities each time. The remainder of the proof is essentially the same for all four

congruency classes, so we demonstrate completely with x0 ≡ 16 mod 72. Taking

x0 ≡ 16 mod 72 gives n4,1 ≡ 28 mod 72 and n4,2 ≡ 49 mod 72. In particular, n4,1

is even and n4,2 is odd in this case. From the polynomial parameterisation, it is

easy to check that r | n4,1. Therefore, the unique sextic twist we are looking for

in this case has an even group order over Fq4 .

Proposition 5.3 shows that v is neither a square nor a cube in Fq4, so the

172 Chapter 5. Attractive subfamilies of BLS curves for high-security pairings

correct twist can be given as y2 = x3 + 4v or as y2 = x3 + 4v5. We have

4v = (NFq4/Fq
(v))2v = v3+2q+2q2+2q3 as in the proof of Proposition 5.3. Since

the exponent on the right hand side of the last equation is divisible by 3, we

conclude that 4v is a cube in Fq4 . Similarly, one can show that 4v5 is not a cube.

Since 4v is a cube, the curve y2 = x3 + 4v has a point of order 2, namely (−c, 0)

with c3 = 4v. Hence its order is even and we have found the correct twist for

x0 ≡ 16 mod 72. The other three cases are proved analogously.

5.1.2 The other congruence classes

We now show why the four congruence classes x0 ≡ 7, 16, 31, 64 mod 72 stand

out over the other congruency classes. After all, restricting x0 ≡ 1 mod 3 to any

or all of the proposed classes essentially discards 20 out of 24 other congruency

classes modulo 72. Of course, there will always be examples where some of the

discarded congruency classes produce curves that also perform highly efficiently.

However, we argue that x0 ≡ 7, 16, 31, 64 mod 72 are the only classes for which we

can always simultaneously guarantee the propositions in the previous subsection.

Quadratic extension to Fq2

We start by eliminating the classes of x0 mod 72 which do not facilitate the

quadratic extension as Fq2 = Fq(u), u
2 + 1 = 0. Of the 24 possible x0 values

modulo 72 in {1, 4, 7, ..., 67, 70}, 12 have x0 ≡ 1, 10 mod 12, which always (unde-

sirably) produce q ≡ 1 mod 12. The remaining 12 are {4, 7, 16, 19, 28, 31, 40, 43,

52, 55, 64, 67} with x0 = 4, 7 mod 12, which always produce q(x0) ≡ 7 mod 12.

Quadratic extension to Fq4

If Fq4 is to be constructed as Fq4 = Fq2(v), v
2 + u + 1 = 0, then (refer back to

the proof of Proposition 5.3) we can only guarantee this if NFq2/Fq(−(u + 1)) =

2 is not a quadratic residue in Fq. Substituting the remaining 12 candidates

for x0 mod 72 into (5.1) reveals only 4 possibilities for q mod 72, those being

q ≡ 7, 19, 43, 55 mod 72. It is easy to check that only two of these have 2 /∈
QR(q), namely q ≡ 19, 43 mod 72. These correspond to 6 of the remaining x0

congruences, shrinking the pool of preferred candidates to {7, 16, 31, 40, 55, 64}.

5.2. Choosing simple lines: twisting vs. untwisting 173

Sextic extension to Fq24

The proposed sextic extensions in Proposition 5.3 that employ simple binomials

to form Fq24 over Fq4 require that 2 is not a cube in Fq. This does not always

happen for x0 = {40, 55}. For the sake of counter examples, x0 = 12856 ≡
40 mod 72 and x0 = 1135 ≡ 55 mod 72 produce BLS curves where 2 is a cube

modulo q, and therefore fields which can not use the tower in Proposition 5.3.

Even if alternative binomials can be found in such cases, the fact that 2 is a

cubic residue also affects the ease of guaranteeing the smallest curve constant b,

as we were able to do for the proposed four congruency classes in Proposition

5.4. For example, the smallest curve constant for the curve found with x0 =

12856 ≡ 40 mod 72 is b = −3, whilst the smallest constant for the curve found

with x0 = 25312 ≡ 40 mod 72 is b = 9.

5.2 Choosing simple lines: twisting vs. untwist-

ing

The aim of this short section is to detail some choices that can facilitate more

simple (and theoretically faster) pairing code.

As we mentioned briefly in the previous section, the choice of which tower

(T1, T2, T3 in Proposition 5.3) to use in an implementation could be influenced

by a number of factors. For example, if low bandwidth requirements favoured

maximum compression techniques [SB04], then T1 would seem most appropriate.

On the other hand, if the major priority is raw speed, then one could employ

the field arithmetic presented in [DOSD06, §6] and favor the (slightly faster)

quadratic over cubic extension offered by T3. Or perhaps most commonly, if the

implementor is adopting BLS curves to scale a prior (say BN) pairing imple-

mentation to a higher security level, then the towered code for the BN sextic

extension from Fq2 to Fq12 could be easily updated to BLS code for the extension

from Fq4 to Fq24 . In any case, there are efficient formulas available for all three

of the towering choices (see both Chapter 3 and [DOSD06]), so we will treat all

three cases in parallel and highlight the differences that arise.

One such difference lies in the sparse doubling and addition lines that are

used to update the pairing function. For each of the proposed congruency classes,

Table 5.2 follows the exposition in [Sco09, §5] and details the correct placing of

174 Chapter 5. Attractive subfamilies of BLS curves for high-security pairings

the line function coefficients for the three tower choices T1, T2, T3 and the two

twist choices in Proposition 5.5, both of which have the same group order but

result in different looking line functions.

The point P is always kept in affine coordinates (xP , yP). For the affine

formulas the line simply is ℓ(P) = yP − λxP − ν (see (2.5) and (2.4)), where

λ ∈ Fq4 is the slope of the line as usual and ν ∈ Fq4 is the constant coefficient.

From Chapter 3, we know that projective formulas for these line functions usu-

ally output three coefficients ℓ0,0, ℓ1,0, ℓ0,1 ∈ Fq4 that define the evaluated update

ℓ(P) = ℓ0,0 + ℓ1,0xψ−1(P) + ℓ0,1yψ−1(P) ∈ Fq24 by being attached to different alge-

braic elements in the representation of Fq24 over Fq4 , depending on the twisting

isomorphism ψ. In all cases ℓ(P) is a sparse element of Fq24 , with the only dif-

ference being the places that the ℓi occupy as a result of the different algebraic

towerings and maybe a sign change.

To explain the different lines in Table 5.2, let us briefly look at the conversion

between representations of an element in the different towering options T1, T2,

and T3. Let us start with an element a in T2 given by the coefficients a0, . . . , a5 ∈
Fq4 , i.e.

a = a0 + a1z + a2z
2 + a3z

3 + a4z
4 + a5z

5.

Converting to T1, we take z3 7→ w and thus the same element is represented as

a = (a0 + a3w) + (a1 + a4w)z + (a2 + a5w)z2.

To go to T3, we use z 7→ −uz (i.e. z2 7→ w) and obtain

a = (a0 + a2w + a4w
2) + (−a1u− a3uw − a5uw

2)z.

An optimised routine must take advantage of the sparse nature of ℓ(P) and

tailor make a specialised multiplication routine to exploit the presence of zero

entries. Roughly speaking, the options in Table 5.2 will give rise to similar speeds,

but it is obvious to see which twist constant an implementor would choose (all

other things being equal) if their choice of tower is already concrete. For example,

if T1 is the chosen tower, then using b′ = −bv gives a slightly easier line function

to code than using b′ = bv.

A more important difference arises when choosing whether to leave P ∈ E and

5.3. Timings 175

cong. twist tower twist isomorphism Miller lines
class b′ choice ψ−1 : E → E′ Affine Projective

T1 (x, y) 7→ (−z2x, uwy) [
1

−ν
1

: yP · u
w

|
z

0
1

: 0
w

|
z2

λ · xP

1

: 0
w

] [
1

ℓ0,0

1

: ℓ0,1 · yP u

w

|
z

0
1

: 0
w

|
z2

−ℓ1,0

1

·xP : 0
w

]

bv T2 (x, y) 7→ (−z2x, uz3y) [
1

−ν :
z

0 :
z2

λ · xP :
z3

yP · u :
z4

0 :
z5

0] [
1

ℓ0,0 :
z

0 :
z2

−ℓ1,0 · xP :
z3

ℓ0,1 · yP u :
z4

0 :
z5

0]

16,31 T3 (x, y) 7→ (−wx,wzy) [
1

−ν
1

: λ · xP

w

: 0

w2

|
z

0
1

: yP

w

: 0

w2

] [
1

ℓ0,0

1

: −ℓ1,0 · xP

w

: 0

w2

|
z

0
1

: ℓ0,1 · yP

w

: 0

w2

]

T1 (x, y) 7→ (z2x,wy) [
1

−ν
1

: yP

w

|
z

0
1

: 0
w

|
z2

−λ · xP

1

: 0
w

] [
1

ℓ0,0

1

: ℓ0,1 · yP

w

|
z

0
1

: 0
w

|
z2

ℓ1,0 · xP

1

: 0
w

]

−bv T2 (x, y) 7→ (z2x, z3y) [
1

−ν :
z

0 :
z2

−λ · xP :
z3

yP :
z4

0 :
z5

0] [
1

ℓ0,0 :
z

0 :
z2

ℓ1,0 · xP :
z3

ℓ0,1 · yP :
z4

0 :
z5

0]

T3 (x, y) 7→ (wx, uwzy) [
1

−ν
1

: −λ · xP

w

: 0

w2

|
z

0
1

: −yP · u
w

: 0

w2

] [
1

ℓ0,0

1

: ℓ1,0 · xP

w

: 0

w2

|
z

0
1

: −ℓ0,1 · yP u

w

: 0

w2

]

twist tower untwist isomorphism Miller lines
b′ choice ψ : E′ → E Affine Projective

T1 (x′, y′) 7→ (−z2x′, uwy′) [
1

yP

1

: −ν · u
w

|
z

−λ · xP · u

1

: 0
w

|
z2

0
1

: 0
w

] [
1

ℓ0,1 · yP

1

: ℓ0,0 · u

w

|
z

ℓ1,0 · xP · u

1

: 0
w

|
z2

0
1

: 0
w

]

b/v T2 (x′, y′) 7→ (−z2x′, uz3y′) [
1

yP :
z

λ · u · xP :
z2

0 :
z3

−ν · u :
z4

0 :
z5

0] [
1

ℓ0,1 · yP :
z

−ℓ1,0 · u · xP :
z2

0 :
z3

ℓ0,0 · u :
z4

0 :
z5

0]

7,64 T3 (x′, y′) 7→ (−wx′, wzy′) [
1

yP

1

: 0
w

: 0

w2

|
z

λ · xP

1

: −ν
w

: 0

w2

] [
1

ℓ0,1 · yP

1

: 0
w

: 0

w2

|
z

−ℓ1,0 · xP

1

: ℓ0,0

w

: 0

w2

]

T1 (x′, y′) 7→ (z2x′, wy′) [
1

yP

1

: −ν
w

|
z

λ · xP

1

: 0
w

|
z2

0
1

: 0
w

] [
1

yP

1

: ℓ0,0

w

|
z

−ℓ1,0 · xP

1

: 0
w

|
z2

0
1

: 0
w

]

−b/v T2 (x′, y′) 7→ (z2x′, z3y′) [
1

yP :
z

−λ · xP :
z2

0 :
z3

−ν :
z4

0 :
z5

0] [
1

yP :
z

ℓ1,0 · xP :
z2

0 :
z3

ℓ0,0 :
z4

0 :
z5

0]

T3 (x′, y′) 7→ (wx′, uwzy′) [
1

yP

1

: 0
w

: 0

w2

|
z

−λ · u · xP

1

: −ν · u
w

: 0

w2

] [
1

yP

1

: 0
w

: 0

w2

|
z

ℓ1,0 · u · xP

1

: ℓ0,0 · u

w

: 0

w2

]

Table 5.2: Details of the Miller line function depending on the choice of tower
(and twist constant).

“untwist” Q′ ∈ E ′ to Q ∈ E for the line function computation, or choosing to put

both points on the twist for the entire routine as in Theorem 3.1. The nature of

the proposed tower actually means that there is a significant difference between

the simplicity of the twisting and untwisting isomorphisms, and one option will

be more desirable to implement than the other. For example, when using T1 and

b′ = −bv, the untwisting isomorphism ψ is ψ : (x′, y′) 7→ (x/z2, y/w) = (wvz(u−
1)/2 · x′, wv(1 − u)/2 · y′), which is more annoying to code (and theoretically

slightly slower) than using ψ−1 : (x, y) 7→ (z2x, wy) to twist the second argument

P instead. On the other hand, if the twist is given as E ′ : y2 = x3 ± b/v, as is

the cases when x0 ≡ 7, 64 mod 72, then it is the untwisting isomorphism that is

clearly preferable.

5.3 Timings

This section provides timings of a plain C implementation of the (optimal) ate

pairing on BLS curves with embedding degree k = 24 and parameter x0 ≡

176 Chapter 5. Attractive subfamilies of BLS curves for high-security pairings

16 mod 72. We give timings for field operations of base field, full extension

field and all intermediate extension fields. Timings for pairings are split up into

timing for the Miller loop, the final exponentiation, and the complete pairing.

The number denoted “Product” refers to the time per pairing in a product of

20 pairings. This is intended to give some indication of the savings that are

obtained when optimising the computation of a pairing product in a protocol

that requires one (see [LMN10, §4.3] or [Sco11] for more details).

Timings are given for curves at security levels 192, 224 and 256 bits in Table

5.3, Table 5.4 and Table 5.5 respectively. Numbers in the names of curves give

the bit size of r and that of q, i.e. the curve pfc-bls256-q319-k24 is a pairing-

friendly BLS curve with a 256-bit group order r defined over a prime field of size

319 bits and embedding degree k = 24.

All measurements were done on an Intel Core 2 Duo CPU (E6850) running

64-bit Windows 7 at 3.00 GHz with 4GB RAM.

add sub M S I

cyc µs cyc µs cyc µs cyc µs cyc µs

Fp 320 0.10 248 0.08 1112 0.34 1026 0.36 20320 6.83
Fp2 540 0.18 487 0.16 4627 1.52 4414 1.44 52334 17.16
Fp4 1068 0.35 942 0.32 21722 7.21 20532 6.76 131246 43.65
Fp12 3510 1.19 2750 0.93 163570 54.83 154325 51.21 744451 247.18
Fp24 6269 2.15 5536 1.85 539026 179.70 506029 168.13 2326049 777.80

Pairings Miller loop Final exp. Single pairing Product

cyc 30,335,982 97,561,935 127,897,917 24,124,734
ms 10.00 32.62 42.62 8.05

Table 5.3: Cycle counts and timings: pfc-bls384-q478-k24.

5.4 Summary of contributions

This was the first work to consider finer aspects of implementation for pairings

at the 256-bit security level. Our method of identifying attractive subfamilies

in this chapter is simple and effective, and sets the foundations for our more

thorough approach in the following chapter.

Section 5.2 treats a subtle but consequential point of optimising the code

for computations related to line functions depending on the nature of the twist.

Scott’s note [Sco09, §3] suggests that there is a probable preference between the

5.4. Summary of contributions 177

add sub M S I

cyc µs cyc µs cyc µs cyc µs cyc µs

Fp 334 0.11 288 0.09 1235 0.41 1232 0.41 24918 8.23
Fp2 606 0.20 541 0.19 5529 1.82 5202 1.72 61942 20.70
Fp4 1219 0.41 1107 0.36 26159 8.64 24532 8.19 158822 52.81
Fp12 3710 1.36 3124 1.11 194825 65.07 183680 61.00 895588 297.69
Fp24 7601 2.53 6678 2.24 641578 215.21 603282 202.31 2801070 936.49

Pairings Miller loop Final exp. Single pairing Product

cyc 42,945,862 157,289,781 200,235,643 35,992,064
ms 14.64 52.65 67.29 11.99

Table 5.4: Cycle counts and timings: pfc-bls448-q559-k24a.

add sub M S I

cyc µs cyc µs cyc µs cyc µs cyc µs

Fp 367 0.12 393 0.10 1475 0.52 1465 0.49 28511 9.70
Fp2 659 0.22 587 0.20 6272 2.09 5973 1.99 71990 23.96
Fp4 1272 0.42 1146 0.38 29253 9.70 27512 9.24 181534 60.34
Fp12 3884 1.36 3443 1.15 218255 72.04 209100 68.05 1010078 337.78
Fp24 7644 2.68 6982 2.32 708585 236.46 665836 221.82 3127211 1041.84

Pairings Miller loop Final exp. Single pairing Product

cyc 53,827,736 168,824,048 222,651,784 41,951,965
ms 17.98 56.29 74.27 13.99

Table 5.5: Cycle counts and timings: pfc-bls513-q639-k24a.

two twist types because of the difference in the simplicities of the isomorphisms.

Specifically, he says that type D sextic twists (y2 = x3 + b/v where x6 − v is

the sextic extension) are likely to be preferable to type M twists (y2 = x3 + bv)

because of the simplicity of the untwisting isomorphism in the former case. In

contrast, we argue that there is no real preference, since the consequence of

Theorem 3.1 is that we can either twist or untwist. Table 5.2 illustrates the

simplicity of the twisting isomorphism in the case of type M twists, and the

simplicity of the untwisting isomorphism in the case of type D twists. This same

association occurs across the families considered in the next chapter (for quartic

twists too), and should therefore be kept in mind when one is implementing a

curve with a type M or type D twist (see Section 6.1.4).

178 Chapter 5. Attractive subfamilies of BLS curves for high-security pairings

Chapter 6

Particularly friendly members of

family trees

As we discussed in Section 2.5, the last decade has witnessed many clever con-

structions of parameterised families of pairing-friendly elliptic curves that now

enable implementors targeting a particular security level to gather suitable curves

in bulk. However, as we saw in the previous chapter, choosing the best curves

from a (usually very large) set of candidates belonging to any particular family

involves juggling a number of efficiency issues, such as the nature of binomials

used to construct extension fields, the Hamming weight of key pairing parameters

and the existence of compact generators in the pairing groups. In light of these

issues, Pereira et al. [PJNB11] considered the best subfamilies of k = 12 BN

curves to especially target the 128-bit security level, whilst our slightly different

approach in Chapter 5 considered the best subfamilies of k = 24 BLS curves to

target 256-bit pairings. In this chapter we closely investigate the other eight at-

tractive families with 8 ≤ k < 50, and systematically sub-divide each family into

its family tree, branching off until concrete subfamilies are highlighted that si-

multaneously provide highly-efficient solutions to all of the above computational

issues.

In the context of cryptography, the most efficient pairings make use of large

prime order subgroups of elliptic curves E/Fq. For optimal performance, pair-

ings at different security levels demand elliptic curves with different embedding

degrees (see Figure 2.39), so in their widely used taxonomy [FST10], Freeman,

179

180 Chapter 6. Particularly friendly members of family trees

Scott and Teske present the best constructions of pairing-friendly curves corre-

sponding to all embedding degrees 1 ≤ k ≤ 50. For current levels of security,

and for those in the foreseeable future, the optimal curve choices come from

parameterised families of ordinary (non-supersingular) curves over prime fields.

This means that the field size and the number of points on the curve are parame-

terised as q(x) and n(x) respectively. If n(x) is reducible then n = n(x0) will not

be prime in general, so we usually also write down r(x), the largest irreducible

factor of n(x). The straightforward way to find curves within a given family is

to seek x0’s of appropriate size such that q(x0) and r(x0) are prime (or r(x0)

is almost prime), at which point we have suitable pairing-friendly curves with

r(x0) | n(x0) = #E(Fq(x0)). If left for a few minutes, a simple code that does ex-

actly this can return many pairing-friendly curves, and in most cases this is just

a tiny fraction of the potential curves that could be used to target a particular

security level. A natural problem that faces serious implementors then, is how

to find and use only the very best curves within a family: this is the motivation

for our work in this chapter.

Aside from the k = 12 BN and k = 24 BLS families that have already

been considered, here we thoroughly treat the other eight stand-out candidates

for pairing implementations with 8 ≤ k < 50. Since it is widely accepted that

embedding degrees of the form k = 2i3j perform most efficiently [KM05] (see also

[FST10, Table 6]), we look at the Kachisa-Schaefer-Scott (KSS) families [KSS08]

with k = 16, k = 18, k = 32 and k = 36, and at the BLS families [BLS02] with

k = 27 and k = 48. Following recent work by Aranha et al. [AFCK+12] that

targets 192-bit pairings, we also include the BLS family with k = 12. In addition,

thanks to a suggestion made to us by Michael Scott, we also consider the Brezing-

Weng family [BW05] with k = 8; a prime candidate for pairings at the (triple-

DES equivalent) 112-bit security level. In all eight scenarios, our systematic

approach allows us to point out several implementation-friendly subfamilies that

simultaneously offer all of the desirable properties mentioned above, and many

more (see [PJNB11, §1]). As a resource for implementors, we provide many

examples of pairing-friendly curves according to our favourite picks from each

tree, which are all readily found within the corresponding families. These are

found in Appendix B.

We organise this chapter as follows. In Section 6.1 we begin by detailing how

to read and use the family trees, as well as the main advantages of our approach.

6.1. Family Trees 181

The next eight sections (§6.2-§6.9) are dedicated to the eight selected families; in

each of these sections we present the corresponding family tree and our favourite

picks from it. In Section 6.10 we give our recommendations.

6.1 Family Trees

For all of the parameterised families considered in this work, the polynomials

for the prime field characteristic q(x) and/or the elliptic curve group order n(x)

have denominators, i.e. q(x), n(x) ∈ Q[x], but q(x), n(x) 6∈ Z[x]. This means that

only a subset of x ∈ Z will be such that q(x) and n(x) can both take on integers,

and in all cases this subset is simply defined by some congruency condition, say

x ≡ a mod u. In the simplest scenario, one then kick-starts a search for pairing-

friendly curves by initialising an appropriately sized x0 ≡ a mod u, and iterating

with x0 ← x0 + u until q(x) is prime and r(x), the largest irreducible factor

of n(x), is either a prime or almost prime. At this stage it is then possible to

compute the curve equation, find simple irreducible polynomials over Fq to tower

up to the full extension field, and determine which twisted curve is the correct

one. In general, from one successful x0 value (i.e. pairing-friendly curve) to the

next, all of these parameters are likely to be different. In the end, there are

many different combinations of the necessary pairing parameters to choose from,

and therefore most of the curves encountered in a basic search will inevitably

be discarded in favour of the very best ones. The ideal alternative is to be able

to prescribe the desired properties in advance, and only search for curves that

are guaranteed to exhibit all of them. This way, searches will avoid a great deal

of unnecessary testing and, over any given time, have a better chance of finding

supreme curves.

6.1.1 Branching out

The natural way to proceed towards this goal is to start by subdividing the major

equivalence class x ≡ a mod u into smaller subclasses x ≡ {a+ iu}0≤i<v mod uv,

and to individually separate each of the resulting subclasses again, repeating the

process with the goal of arriving at subclasses where the curves found within

it share identical parameters. There are three traits of the curve we aim to

synchronise: the extension field tower used to represent Fqk over Fq, the curve

equation, and the type of twist (which only has two options – see below). Thus,

182 Chapter 6. Particularly friendly members of family trees

we leave the twist classification until the end, so that subdivisions or branchings

depend only on the towering choice and on the curve equation; at each stage,

the choice of v that inflates the modulus above will be dictated by one or the

other, or sometimes both. We always take the choice that we believe was most

obvious, but argue that the end result doesn’t matter; overall it will take the

same sized inflation (and probably number of intermediate subdivisions) of the

original modulus to determine the specific subclasses that give identical pairing

parameters.

6.1.2 Extension field towers

For each family, we present between two and six stand-out towering options for

the construction of Fqk . Our towers are presented using two binomials: one used

for the first extension from Fq to either Fq2 or Fq3, and the other for the remainder

of the extension up to Fqk . More often than not, this produces more preferable

towers (faster extension field arithmetic) than if only one binomial from Fq to

Fqk was used to define the tower. For example, for any of the k considered in this

chapter, it is easy to show that xk±1 will never be irreducible1 in Fq[x]. However,

choosing instead a different degree k irreducible binomial xk+s (s 6= ±1), means

that the quadratic extension (if applicable) from Fq to Fq2 can no longer be

constructed optimally as Fq[u]/(u
2 + 1). Alternatively, defining the tower with

two binomials allows for Fq2 = Fq[u]/(u
2 + 1), and Fqk being constructed as, say

Fq2 [v]/(v
k/2−(u+1)), which is clearly preferable (cf. [AKL+11,PJNB11] – or see

Chapter 5). The towers Ti are described in the sections corresponding to each

family, are given in (our) preferential order, and are marked red in the trees.

6.1.3 Curve equations

All families under consideration either have j-invariant 0 or 1728, meaning that

the elliptic curve equation is defined by one constant: b in y2 = x3 + b for j = 0

or a in y2 = x3 +ax for j = 1728. In both cases, we always take the correct curve

whose constant has the smallest absolute value, so any multiplications by it (if at

all) incur the minimal number of Fq additions. In all scenarios herein, this results

in fewer than 10 distinct a or b values that rear their heads most commonly. The

curve constants used to subdivide congruences are the subscripts of the ai or bi

1Refer back to Prop. 5.2 for the 3 ∤ k cases, whilst the 3 | k case is obvious.

6.1. Family Trees 183

values marked blue in the trees.

6.1.4 Type of twist

If the binomial used to extend from the twisted subfield Fpd to the full extension

field Fpk is xk/d − i with i ∈ Fpd, then Scott [Sco09] shows that for the case of

quartic twists on y2 = x3 + ax and sextic twists on y2 = x3 + b, the correct

twist is either type M (multiplication) which is given by y2 = x3 + ax · i and

y2 = x3 + b · i respectively, or type D (division) which is given by y2 = x3 + ax/i

and y2 = x3 + b/i respectively. The only other case is the cubic twist for k = 27

in Section 6.6, where we define the type M twist as y2 = x3 + b · i2 and the type

D twist as y2 = x3 + b/i2; this is to force quadratic reciprocity of the element in

the twisted subfield. The type of twist corresponding to any given congruency is

found immediately above (or in rare cases besides) the subclass; this is marked

dark green in the trees. There is no great difference or preference between the

two, if they are dealt with correctly (refer back to Section 5.4).

6.1.5 Fruits

If a subclass or subclasses of a family share all three traits, we call them fruits and

they are labelled light green in the trees. Any equivalence classes found in the

same fruit bunch share the same three parameters described in the previous three

paragraphs; all three parameters can be easily seen by following the branches

back up to the top of the tree. The most immediate bold number found above

any bunch is the modulus corresponding to the equivalence classes in the bunch.

Any branchings that don’t (yet) produce consistent pairing parameters for its

congruencies are marked grey, and are called unripe. In almost all cases pursuing

further branching of the unripe fruits gives either undesirable pairing parameters,

or congruency classes that are too scarce for our recommendation.

6.1.6 Our “picks”

After presenting a family tree, we pick our favourite subfamilies in it, and give

them a star rating (up to 5). Our choice is mostly influenced by the towering

option, since we believe this has the greatest effect on the pairing efficiency. For

each of our favourite subfamilies, we searched for compact representations of

generators in both the elliptic curve groups G1 and G2. In most families, our

184 Chapter 6. Particularly friendly members of family trees

favourite subfamilies either exhibit one or the other, or both. In many cases

there are several suitable generators, so we have put some of the extra options

in Appendix D. For subfamilies where generators in either group aren’t given, it

does not mean that one or more compact generators doesn’t exist; it just means

that our (somewhat basic) searches weren’t able to find any. Moreover, for any

one particular curve belonging to the subfamily, there’s still a good chance that

compact generators (that don’t apply to the entire subfamily) can be found.

Beside each of our picks, we give approximate frequencies of the corresponding

subfamily across the entire family of curves. Most of these percentages were

calculated from somewhere between 5,000 and 175,000 example curves from each

family, and are essentially always as we would expect, given the corresponding

restriction on the original congruency. In Appendix B, we account for a wide

range of security levels and provide comprehensive lists of low Hamming weight

curves belonging to 5-star subfamilies.

6.1.7 Advantages

The tree approach is exhaustive and complete, i.e. the branching technique

described above doesn’t lose track of any congruencies, which means that every

curve belonging to a family under consideration fits somewhere in the family

tree presented. Another advantage of presenting the entire tree, rather than

just presenting specific subfamilies, is that many implementors will only want to

simultaneously assure some proper subset of the properties we used to form the

family trees. Thus, one can group together separate bunches of the tree that share

this subset of desirable properties, and ignore the other property/s that caused

them to branch away from one another. As an example, suppose one is using

affine coordinates for a pairing implementation on a k = 18 KSS curve of the form

y2 = x3 + b. The curve and pairing arithmetic will therefore be independent of

b (cf. [LMN10]), so if the implementors are not necessitating consistent compact

generators in G1 or G2, then all bunches with identical towers and twist types

(but different curve equations) could be grouped in the same search, and use the

same (Fp-independent) pairing code.

6.1. Family Trees 185

6.1.8 Proofs

Since the proofs are tedious, repetitive, and follow the same script as the proofs

we gave in full in Chapter 5, they have been moved into Appendix C. We provide

proofs of the irreducibility criterions for the extension field towers, which rely

on elementary number theory (quadratic and cubic reciprocity modulo q) that is

essentially due to Gauss and Euler. We also make constant use of the same helpful

theorem due to Benger and Scott [BS10] that we used in the last chapter. Since

all the elliptic curves within have special CM discriminants, we don’t need the

(deeper) more general CM theory for the correct curve equations, but instead

draw heavily on Algorithms 3.4 and 3.5 of [RS10], which are also “essentially

due to Gauss”. For every family, the proofs of the twist type (which is always

one of two options – see [HSV06, Prop. 8]) follow the recipe in the proof of

Proposition 5.5, so we omit them for space considerations. We do not prove any

non-existence or negative results, e.g. that an extension field tower which would

clearly be preferred does not (always) apply to this congruency, but the reader

should rest assured that we tried all such options, and this is indeed the case.

6.1.9 Other parameters

Along with q(x), r(x) and n(x), the description of the polynomial parame-

terisations for each family include the trace of Frobenius t(x), the G1 cofac-

tor h(x) = n(x)/r(x), and f(x), which comes from the CM norm equation

4q = t2−Df 2. The polynomials f(x) and t(x) are commonly used in the proofs.

6.1.10 x or x′

The four KSS families all start with congruences of the form x ≡ ±au mod bu.

For the purpose of simplicity, we replace x by x′ = x/u and work instead with

the simpler expression x′ ≡ a mod b. We therefore remind those making use of

the results within to inflate the x′ congruence back to the congruence in x when

searching for curves, or alternatively update the polynomials for q(x) and n(x)

to p′(x′) and n′(x′), etc.

186 Chapter 6. Particularly friendly members of family trees

6.2 Brezing-Weng k = 8 curves

The polynomial parameterisations for the Brezing-Weng family with k = 8 are:

q(x) = (81x6 + 54x5 + 45x4 + 12x3 + 13x2 + 6x+ 1)/4; f(x) = 3x+ 1;

t(x) = −9x3 − 3x2 − 2x; n(x) = (9x2 − 6x+ 5) · (9x4 + 12x3 + 8x2 + 4x+ 1)/4;

h(x) = 9x2/2− 3x+ 5/2; r(x) = (9x4 + 12x3 + 8x2 + 4x+ 1)/2. (6.1)

We found three towers that were often applicable to the congruences found in the

family tree. They are defined by the binomial from Fq to Fq2 and the binomial

from Fq2 to Fq8 (see Table 6.1). The polynomials for q(x) and n(x) in (6.1) insist

Fq
Fq[u]/(u2+ui)−−−−−−−−−→ Fq2

Fq2 [v]/(v4−vi)−−−−−−−−−→ Fq8

Ti T1 T2 T3

(ui, vi) (2, u) (3, u) (5, u)

Table 6.1: Efficient towering options in the k = 8 Brezing-Weng tree.

that x is odd, so we begin with the congruence x ≡ 1 mod 2 and branch off into

sub-congruences to form the family tree in Figure 6.1 (see Appendix C for the

proofs). We pick several fruit bunches that offer particularly friendly parameters

for the pairing computation, and provide compact generators in the groups G1

and G2 where we found them (see Table 6.2). The frequencies in the final column

were calculated from over 128, 000 different Brezing-Weng curves and are entirely

as expected. Our 5-star picks constitute approximately 50% of the entire family.

rating equiv. class for x tower a twist G1 gen. G′2 gen. more %
type [h](·, ·) [h′](·, ·) §D.1

1 mod 16 T1 1 D -
`

u,
√

1− 2u
´

(i) 12.5

9 mod 16 T1 1 M -
“

u− 1,
√

3
”

(ii) 12.6

⋆ ⋆ ⋆ ⋆ ⋆ 3 mod 16 T1 −2 D
`

1,
√
−1

´

“

u− 1,
√

3
”

(iii) 12.3

11 mod 16 T1 2 M -
`

1,
√

1 + 2u
´

(iv) 12.5
7 mod 24 T2 3 D (1, 2) (1, 1 + 3/u) (v) 8.4

13 mod 48 T2 2 M
“

4, 6
√

2
”

(u− 1,
√

2− 2u) (vi) 4.1

29 mod 48 T2 2 D
“

4, 6
√

2
”

- (vii) 4.2

⋆ ⋆ ⋆ ⋆ {47, ...,239}4 mod 240 T2 6 M -
`

1,
√

1 + 6u
´

3.4

71, 85, 191 mod 240 T2 5 M
“

2, 2
√

3
”

- (viii) 2.4

5 mod 240 T2 5 D
“

2, 2
√

3
” “

5,
p

125 + 25/u
”

(ix) 0.9

Table 6.2: Our favourite picks from the k = 8 Brezing-Weng tree.

6.3. BLS k = 12 curves 187

x ≡ 1 mod 2

1, 3(8)

T1

a1

1

1 + 8i(16)

D
1

M
9

3

3 + 8i(16)

a−2

D
3

a2

M
11

5, 7(8)

{5, 7} + 8i(24)

T2

a3

D
7

5,13,23

{5, 13, 23}
+24j(48)

a2

M
13

D
29

a?

5, 23, 37, 47

{5, ..., 47} +48ℓ(240)

a5

D
5
M
71
85
191

a6

M
47
95
143
239

a?

23 37 53
101 119 133
149 167 181
197 215 229

15,21

{15, 21}+24j(120)

T3

a5 - 111 - D

21
39
69
87
117

{21, ..., 117} +120ℓ(240)

a2

M
141
D
189
237

a3

M
21
D
69
117

a?

39
87
159
207

T?

15
45
63
93

Figure 6.1: The k = 8 Brezing-Weng tree.

6.3 BLS k = 12 curves

The polynomial parameterisations for BLS family with k = 12 are:

q(x) = (x− 1)2(x4 − x2 + 1)/3 + x; n(x) = (x− 1)2(x4 − x2 + 1)/3; t(x) = x+ 1;

h(x) = (x− 1)2/3; f(x) = (x− 1)(2x2 − 1)/3; r(x) = x4 − x2 + 1. (6.2)

We found six towers that were often applicable to the congruences found in the

Fq
Fq[u]/(u2+ui)−−−−−−−−−→ Fq2

Fq2 [v]/(v6−vi)−−−−−−−−−→ Fq12

Ti T1 T2 T3 T4 T5 T6

(ui, vi) (1, u+ 1) (1, u+ 2) (1, u+ 3) (2, u) (2, u+ 2) (5, u)

Table 6.3: Efficient towering options in the k = 12 BLS tree.

family tree. They are defined by the binomial from Fq to Fq2 and the binomial

from Fq2 to Fq12 (see Table 6.3). The polynomials for q(x) and n(x) in (6.2)

insist that x ≡ 1 mod 3, so we begin with this congruence and branch off into

sub-congruences to form the family tree in Figure 6.2 (see Appendix C for the

proofs). To fit the tree in, one of the branches has been snapped off and is on its

188 Chapter 6. Particularly friendly members of family trees

x ≡ 1 mod 3

1 (6)

b1

1 (12)

1 (24)

{1} + 24i
(360)

T6

M
73
145
169
337
D
25
49
217
313

T?

1
97
121
193
241
265
289

13 (24)

{13} + 24i
(72)

T4

M
13
D
61

T?

37

{37} + 72j
(216)

T5

M
181
D
37

T?

109

7 (12)

7 (24)

{7} + 24i
(72)

T1

M
31
D
7

T?

55

{55} + 72j
(360)

T2

M
55
343
D
127

T?

199
271

19 (24)

{19} + 24i
(360)

T2

M
67
163
235
259
D
43
115
139
307

T3

M
283
355
D
187

T?

19
91
211
331

4 (6)

{4} + 6i (72) b−2 T1 D 64

b2

10, 28

{10, 28} + 72j
(360)

T2

M
28
100
D
172

T6

M
10
298
D
82

T?

154
226
244
316

b? 4, 22, 40, 46, 58
(cont. in Fig. 6.3)

16, 34, 52, 70,

{16, 34, 52, 70} +72j(216)

b3

106
214

T4

M
214

T?

106

b4

16, 34, 70, 88, 124, 142, 178, 196

T1

M
16
88

T?

34, 124, 178, 196

{124, 196}
+216ℓ (1080)

T2

M D
124 340
844 628

988
1060

T3

M
412
772

T?

196
656

(216)
34
178

T4

M
70
142

b−3

52
160

T1

M
160

T?

52

Figure 6.2: The k = 12 BLS tree.

{4, 22, 40, 46, 58} + 72j(1080)

T2

b−3

D
364
904

b−5

D
4

184
544
724

b3

M
472
1012

b?

292
832

T3

b5

D
616
976

b−3

D
256

T4

b3

D
118
334
550
766
982

b9

D
46
262
478
694
910

b10

D
1054

b =?

190
406
622
838

T5

b3

D
94
310
526
742
958

b9

M
22
238
454
670

b5

886

T?

40, 58, 76, 112
130, 148,166,202

220, 274, 346, 382
400, 418, 436, 490
508, 562, 580, 598
634, 652, 688, 706
760, 778, 796,814
850, 868, 922, 940

994, 1030, 1048, 1066

Figure 6.3: Another branch of the k = 12 BLS family tree.

own in Figure 6.3. We pick several fruit bunches that offer particularly friendly

parameters for the pairing computation, and provide compact generators in the

groups G1 and G2 where we found them (see Table 6.4). The frequencies in

the final column were calculated from over 170, 000 different BLS curves and are

entirely as expected. Our 5-star picks constitute approximately 17% of the entire

family.

6.4. KSS k = 16 curves 189

rating equiv. class for x tower b twist G1 gen. G′2 gen. more %
type [h](·, ·) [h′](·, ·) §D.2

64 mod 72 T1 −2 D
`

−1,
√
−3

´

“

1,
q

u−1
u+1

”

4.2

31 mod 72 T1 1 M -
`

−1,
√
u

´

4.1
⋆ ⋆ ⋆ ⋆ ⋆ 7 mod 72 T1 1 D - - 4.2

16, 88 mod 216 T1 4 M -
`

−1,
√

4u+ 3
´

2.8
160 mod 216 T1 −3 M

`

−1,
√
−2

´ `

−1,
√
−3u− 4

´

(i) 1.4

{67, ...,259}4 mod 360 T2 1 M
“

1,
√

2
”

`

−1,
√
u+ 1

´

3.3

55, 343 mod 360 T2 1 M -
`

1,
√
u+ 3

´

1.7

{43, ...,307}4 mod 360 T2 1 D
“

1,
√

2
” “

1,
q

u+3
u+2

”

3.3

127 mod 360 T2 1 D -
“

−1,
q

−u+1
u+2

”

0.8

⋆ ⋆ ⋆ ⋆ 28, 100 mod 360 T2 2 M (−1, 1) - 1.7
172 mod 360 T2 2 D (−1, 1) - 0.8

124, 844 mod 1080 T2 4 M -
`

−2, 2
√
u

´

0.6

{340, ...,1060}4 mod 1080 T2 4 D -
“

−1,
q

2−u
2+u

”

1.1

283, 355 mod 360 T3 1 M
“

1,
√

2
”

1.7

⋆ ⋆ ⋆ 187 mod 360 T3 1 D
“

1,
√

2
” “

−1,
q

−u+2
u+3

”

0.8

Table 6.4: Our favourite picks from the k = 12 BLS tree.

6.4 KSS k = 16 curves

The polynomial parameterisations for KSS family with k = 16 are:

q(x) = (x10 + 2x9 + 5x8 + 48x6 + 152x5 + 240x4 + 625x2 + 2398x + 3125)/980;

r(x) = x8 + 48x4 + 625; t(x) = (2x5 + 41x+ 35)/35; h(x) = (x2 + 2x+ 5)/980;

n(x) = (x2 + 2x+ 5)(x8 + 48x4 + 625)/980; f(x) = (x5 + 5x4 + 38x+ 120)/35.

(6.3)

There were three common towers found in the family tree. They are defined by

the binomial from Fq to Fq2 and the binomial from Fq2 to Fq16 (see Table 6.5).

The polynomials for q(x) and n(x) in (6.3) insist that x ≡ ±25 mod 70, so for

Fq
Fq[u]/(u2+ui)−−−−−−−−−→ Fq2

Fq2 [v]/(v8−vi)−−−−−−−−−→ Fq16

Ti T1 T2 T3

(ui, vi) (2, u) (3, u) (5, u)

Table 6.5: Efficient towering options in the k = 16 KSS tree.

simplicity we rescale x′ = x/5 and begin with x′ ≡ ±5 mod 14, branching off into

sub-congruences to form the family tree in Figure 6.4 (see Appendix C for the

proofs). It is easy to see that r(x) always has 2 ·54 ·72 as a factor, so this division

is necessary for (the updated) r(x) to represent primes. We pick several fruit

190 Chapter 6. Particularly friendly members of family trees

x′ ≡ ±5 mod 14

{5, 9} + 14i (112)

a1

T1

M
61
93
D
5
37

a2

T?

9, 89

{9, 89}
+112j (560)

T3

M
121
201
D
9
89

T?

233
313
457
537
345
425

T1

D
47
79

a−2

T1

M
23
103

a?

19, 33, 51, 65, 75, 107

{19, 33, 51, 65, 75, 107} +112j (1680)

a3

T2

M
19 163
187 331
499 523
667 691
859 1003
1027 1171
1339 1363
1507 1531

T3

M
401
1601

D
929
1409

T?

257
593
737
1073

a5

T2

D
1153
1163

T3

M
219
299
579
797
1059
1139
1419
1619

T?

33
513

a?

51 65 75 107 131 145
177 243 275 289 355 369
387 411 443 467 481 555
611 625 635 705 723 747
803 817 835 849 891 915
947 961 971 1041 1083

1115 1185 1195 1227 1251
1265 1283 1297 1307 1377
1395 1451 1475 1489 1521

1563 1587 1643 1675

Figure 6.4: The k = 16 KSS family tree.

bunches that offer particularly friendly parameters for the pairing computation,

and provide compact generators in the groups G1 and G2 where we found them

(see Table 6.6). The frequencies in the final column were calculated from over

13, 000 different KSS curves with k = 16 and are entirely as expected. Our 5-

star picks constitute approximately 50% of the entire family. The generators in

G′2 = E ′(Fq4) use v ∈ Fq4 , where Fq4 = Fq2 [v]/(v
2 − u).

rating equiv. class for x′ tower a twist G1 gen. G′2 gen. %
(x′ = x/5) type [h](·, ·) [h′](·, ·)

61, 93 mod 112 T1 1 M -
“

v − 1,
p

(v − 1)3 + v(v − 1)
”

12.2

5, 37 mod 112 T1 1 D -
“

−v,
√
−v3 − 1

”

12.7

⋆ ⋆ ⋆ ⋆ ⋆ 47, 79 mod 112 T1 2 D -
“

2/v,
q

8
v3 + 4

v2

”

12.1

23, 103 mod 112 T1 −2 M
`

1,
√
−1

´

- 13.1

⋆ ⋆ ⋆ ⋆ {19, ...,1531}16 mod 1680 T2 3 M (1, 2)
“

3/v,
q

27
v3 + 9

v2

”

7.9

⋆ ⋆ ⋆ 1153, 1633 mod 1680 T2 5 D
“

2, 2
√

3
”

- 0.9

Table 6.6: Our favourite picks from the k = 16 KSS tree.

6.5. KSS k = 18 curves 191

6.5 KSS k = 18 curves

The polynomial parameterisations for KSS family with k = 18 are:

q(x) = (x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x + 2401)/21; (6.4)

r(x) = x6 + 37x3 + 343; t(x) = (x4 + 16x+ 7)/7; h(x) = (x2 + 5x+ 7)/21;

n(x) = (x2 + 5x+ 7)(x6 + 37x3 + 343)/21; f(x) = (5x4 + 14x3 + 94x+ 259)/21.

x′ ≡ 1 mod 3

1 (9)

1, 10 (27)

{1, 10}
+27i(108)

T3

b3 - 37 - D

1, 28, 64

{1, 28, 64}
+108j(3780)

b−9

M
109
325
541
649
865
1081
1297
1405
1621
1837
2161
2377
2809
2917
3349
3565

b5

M
433
568
1108
1513
1648
2053
2188
2593
2728
3133
3268
3673

D
388
928
1468
2008
3088
3628

b±7

b−7

M
1189
1945
2701
3457

b7

M
1

244
757
1000
1756
2269
2512
3025

b6

D
64 172
496 604
712 820

1144 1252
1360 1576
1684 1900
2116 2224
2332 2440
2656 2764
2872 2980
3196 3412
3520 3736

b??

28 136
217 280
352 460
676 784
892 973

1036 1216
1324 1432
1540 1729
1792 1864
1972 2080
2296 2404
2485 2548
2620 2836
2944 3052
3160 3241
3304 3376
3484 3592

3700

T?

10
55
82
91

19 (27)

{19} + 27i (270)

T4

b5 - 208 - D

19
181
262

{19, 181, 262}
+270j(1890)

b−7

M
181
559

b7

M
1261
1639
1882

b?

19
262
289
451
532
721
802
829
991
1072
1099
1342
1369
1531
1612
1801
1882

T?

46
73
100
127
154
235

4, 7 (9)

{4, 7} + 9i (36)

T1

b2 - 4 - D
b−2 - 31 - D

7,16

{7, 16}
+36j(108)

b−4

M
7
43

b3

M
79

b6

M
16

b?

52
88

T2

b2 - 13 - D

25

{25} + 36j
(108)

b3

M
25

b−4

M
61
97

T?

22, 34

{22, 34}
+36j (180)

T5

b5 - 22 - D

58, 142, 178

{58, 142, 178}
+180ℓ (1260)

b7

M
502
1258

D
598

b10

M
178
358
538
718
898
D
58
418
778
958
1138

b?

142
238
322
682
862
1042
1078
1222

T?

34
70
94
106
130
166

Figure 6.5: The k = 18 KSS family tree.

There were five common towers found in the family tree. They are defined by

the cubic binomial from Fq to Fq3 and the binomial from Fq3 to Fq18 (see Table

6.7). The polynomials for q(x) and n(x) in (6.4) insist that x ≡ 14 mod 42,

so we rescale x′ = x/14 and begin with x′ ≡ ±1 mod 3, branching off into sub-

congruences to form the family tree in Figure 6.5 (see Appendix C for the proofs).

192 Chapter 6. Particularly friendly members of family trees

Fq
Fq[u]/(u3+ui)−−−−−−−−−→ Fq3

Fq3 [v]/(v6−vi)−−−−−−−−−→ Fq18

Ti T1 T2 T3 T4 T5

(ui, vi) (2, u) (2, 2u) (3, 2u) (5, u) (2, 5u)

Table 6.7: Efficient towering options in the k = 18 KSS tree.

As it stands, r(x) will always contain 73 as a factor, so this division is necessary

for (the updated) r(x) to represent primes.

Our favourite picks and the associated generators are in Table 6.8. The fre-

quencies in the final column were calculated from over 25, 000 different KSS

curves with k = 18 and are as expected. Our 5-star picks constitute approxi-

mately 27% of the entire family.

rating equiv. class for x′ = x/14 tower b twist G1 gen. G′2 gen. more %
type [h](·, ·) [h′](·, ·) §D.3

4 mod 36 T1 2 D (−1, 1)

„

1,
q

u+2
u

«

(i) 8.4

31 mod 36 T1 −2 D (3, 5)
“

1− u,
p

(1 − u)3 − 2/u
”

(ii) 7.9

⋆ ⋆ ⋆ ⋆ ⋆ 7, 43 mod 108 T1 −4 M (2, 2)
“

−2, 2
p

−(u+ 2)
”

(iii) 5.3

79 mod 108 T1 3 M (1, 2)
`

−1,
√
−1 + 3u

´

(iv) 2.9

16 mod 108 T1 6 M
“

−1,
√

5
”

`

2,
√

2 + 6u
´

2.9

13 mod 36 T2 2 D (−1, 1) - 8.3
⋆ ⋆ ⋆ ⋆ 61, 97 mod 108 T2 −4 M (2, 2)

`

2, 2
√

2− 2u
´

(v) 5.5
25 mod 108 T2 3 M (1, 2) - 2.8

37 mod 108 T3 3 D (1, 2)

„

1,
q

2u+3
2u

«

2.9

{109, ...,3565}16 mod 3708 T3 −9 M
`

1, 2
√
−2

´ `

−3, 6
√
−1

´

1.4
{568, ...,3673}13 mod 3708 T3 5 M (−1, 2) - (vi) 1.0

⋆ ⋆ ⋆ {328, ...,3628}6 mod 3708 T3 5 D (−1, 2) - (vi) 0.5
{1189, ...,3457}4 mod 3708 T3 −7 M (2, 1) - (vii) 0.4

{1, ...,2512}8 mod 3708 T3 7 M
“

7, 5
√

14
”

- 0.7

{64, ...,3736}24 mod 3708 T3 6 D -
“

u− 1,
p

(u− 1)3 + 3/u
”

1.9

Table 6.8: Our favourite picks from the k = 18 KSS tree.

6.6 BLS k = 27 curves

The polynomial parameterisations for BLS family with k = 27 are:

q(x) = (x+ 1)2(x18 − x9 + 1)/3 − x19; r(x) = x18 − x9 + 1;

f(x) = (x10 − 2x9 + x+ 1)/3; n(x) = (x2 − x+ 1)(x18 − x9 + 1)/3;

t(x) = −x10 + x+ 1; h(x) = (x2 − x+ 1)/3. (6.5)

6.6. BLS k = 27 curves 193

There were three common towers found in the family tree. They are defined by

the cubic binomial from Fq to Fq3 and the binomial from Fq3 to Fq27 (see Table

6.9). The polynomials for q(x) and n(x) in (6.5) insist that x ≡ 1 mod 3, which

Fq
Fq[u]/(u3+ui)−−−−−−−−−→ Fq3

Fq3 [v]/(v9−vi)−−−−−−−−−→ Fq27

Ti T1 T2 T3

(ui, vi) (3, u) (5, u) (7, u)

Table 6.9: Efficient towering options in the k = 27 BLS tree.

we use to branch off into sub-congruences, forming the family tree in Figure

6.6 (see Appendix C for the proofs). As it stands, r(x) will always contain 3

as a factor, so division by 3 is necessary for (the updated) r(x) to represent

primes. Our favourite picks and the associated generators are in Table 6.10.

x ≡ 2 mod 3

2 (9)

T1

{2} + 9i (1260)

b−5

D
38
128
173
218
308
353
398
488
533
578
668
713
758
848
893
938
1028
1073
1118
1208
1253

b−7

D
2
65
254
317
380
506
569
632
821
884
1010
1136

b7

D
110
191
236
362
425
443
614
677
695
740
866
929
947
992
1199
1181
1244

b9

D
11,20,29,47
56,74,83,92

101,119,137,146
155,164,182,200
209,227,245,263
272,281,290,299
326,335,344,371
389,407,416,434
452,461,470,479
497,515,524,542
551,560,587,596
605,623,641,650
659,686,704,722
731,749,767,776
785,794,803,812
830,839,857,875
902,911,920,956
965,974,983,1001

1019,1037,1046,1055
1064,1082,1091,1100
1109,1127,1145,1154
1163,1172,1190,1217

1226,1235

5 (9)

T1

{2} + 9i (36)

b−3

M
5
14
32

b3

M
23

8 (9)

{8} + 9i (45)

T2

8

{8} + 45j
(180)

b−5

M
8
53
98

b?

143

T?

17, 26, 35, 44

{17, 26, 35, 44}
+45j (315)

T3

17, 26, 44, 80, 89, 107, 116, 152,
170, 179, 206, 215, 242, 269, 296, 305

{17, ..., 269}
+315ℓ (1260)

b−7

M
44 170
296 422
485 674
737 800
926 989

1052 1241

b7

M
26 89

107 152
341 359
530 611
656 782
845 1034
1097 1115

1160

b?

17 80 161 179
206 215 242 269
305 332 395 404
467 476 494 521
557 584 620 647
710 719 791 809
836 872 899 935

962 971 1025 1106
1124 1151 1187 1214

1250

T?

35
62
71
125
134
161
197
224
251
260
287
314

Figure 6.6: The k = 27 BLS family tree.

The frequencies in the final column were calculated from over 6, 000 different

194 Chapter 6. Particularly friendly members of family trees

BLS curves with k = 27 and behave as expected. Our 5-star picks constitute

approximately 66% of the entire family. The generators in G′2 = E ′(Fq9) use

v ∈ Fq9 , where Fq9 = Fq3 [v]/(v
3 − u).

rating equiv. class for x tower b twist G1 gen. G′2 gen. more %
type §D.4

5 mod 36 T1 −3 M - - 8.5
14, 32 mod 36 T1 −3 M [h]

`

1,
√
−2

´

- 16.8
23 mod 36 T1 3 M [h] (1, 2) - 7.8

⋆ ⋆ ⋆ ⋆ ⋆ {38, ...,1253}21 mod 1260 T1 −5 D - - 5.0
{2, ..,1136}12 mod 1260 T1 −7 D [h] (2, 1) - (i) 3.1
{110, .., 1244}17 mod 1260 T1 7 D [h]

`

−7, 4
√
−21

´

- (ii) 4.0
{11, .., 1235}89 mod 1260 T1 9 D [h] (−2, 1) - (iii) 21.0

⋆ ⋆ ⋆ ⋆ 8, 98 mod 180 T2 −5 M [h]
`

−3, 4
√
−2

´

- 3.3
53 mod 180 T2 −5 M - - 1.67

Table 6.10: Our favourite picks from the k = 27 BLS tree.

6.7 KSS k = 32 curves

The polynomial parameterisations for the KSS family with k = 32 are:

q(x) = (x18 − 6x17 + 13x16 + 57120x10 − 344632x9 + 742560x8 + 815730721x2

− 4948305594x + 10604499373)/2970292;

r(x) = x16 + 57120x8 + 815730721; f(x) = 3x9 − 13x8 + 86158x − 371280;

n(x) = (x2 − 6x+ 13)(x16 + 57120x8 + 815730721)/2970292;

h(x) = (x2 − 6x+ 13)/2970292. t(x) = (−2x9 − 56403x + 3107)/3107; (6.6)

There were only two common (and efficient) towers found in the family tree.

They are defined by the quadratic binomial from Fq to Fq2 and the binomial

from Fq2 to Fq32 (see Table 6.11). The polynomials for q(x) and n(x) in (6.6)

Fq
Fq[u]/(u2+ui)−−−−−−−−−→ Fq2

Fq2 [v]/(v16−vi)−−−−−−−−−−→ Fq32

Ti T1 T2

(ui, vi) (2, u) (3, u)

Table 6.11: Efficient towering options in the k = 32 KSS tree.

insist that x ≡ ±325 mod 6214, so we rescale with x′ = x/13 and begin with x′ ≡
±25 mod 478, which branches off into sub-congruences forming the family tree in

6.7. KSS k = 32 curves 195

Figure 6.7 (see Appendix C for the proofs). As it stands, r(x) will always contain

2 · 138 · 2392 as a factor, so we must divide this factor out before (the updated)

r(x) can represent primes. Our favourite picks and the associated generators are

x′ ≡ ±25 mod 478

25, 453 (478)

{25, 453} + 478i (3824)

a1

T1

M
2365
2893

D
453
981

a−2

T1

M
1887
2415

a2

25, 503, 3321, 3799

T1

D
503
3799

T?

25, 3321

{25, 3321}
+3824j (11472)

T2

D
7145
7673

T?

25
3321
3849
10969

a?

931, 1409, 1459
1937, 2843, 3371

{931, ..., 3371}
+3824j (11472)

a3

T2

M
2843
3371
8579
9107

a?

931 1409
1459 1937
4755 5233
5283 5761
6667 7195
9057 9585

10491 11019

Figure 6.7: The k = 32 KSS family tree.

in Table 6.12. The frequencies in the final column were calculated from over

2, 600 different KSS curves with k = 32 and are roughly as expected. Our 5-

star picks constitute approximately 51% of the entire family. The generators in

G′2 = E ′(Fq8) use w ∈ Fq8 , where Fq8 = Fq4 [w]/(w2−v), and Fq4 = Fq2[v]/(v
2−u).

rating equiv. class tower a twist G1 gen. G′2 gen. more %
for x′ = x/13 type [h](·, ·) [h′](·, ·) §D.5

2365, 2893 mod 3824 T1 1 M -
“

w − 1,
√
w3 − 2w2 + 2w − 1

”

13.2

⋆ ⋆ ⋆ ⋆ ⋆ 453, 981 mod 3824 T1 1 D
“

w,
√
w3 + 1

”

11.5

1887, 2415 mod 3824 T1 −2 M (−1, 1) - (i) 13.3
503, 3799 mod 3824 T1 2 D - - 12.7

7145, 7673 mod 11472 T2 2 D
“

4, 6
√

2
”

- (ii) 5.4

⋆ ⋆ ⋆ ⋆ {2843, ...,9107}4 T2 3 M (1, 2) - (iii) 13.0
mod11472

Table 6.12: Our favourite picks from the k = 32 KSS tree.

196 Chapter 6. Particularly friendly members of family trees

6.8 KSS k = 36 curves

The polynomial parameterisations for the KSS family with k = 36 are:

q(x) = (x14 − 4x13 + 7x12 + 683x8 − 2510x7 + 4781x6 + 117649x2 − 386569x

+ 823543)/28749; r(x) = x12 + 683x6 + 117649; t(x) = (259 + 757x+ 2x7)/259;

n(x) = (x2 − 4x+ 7)(x12 + 683x6 + 117649)/28749 h(x) = (x2 − 4x+ 7)/28749;

f(x) = (4x7 − 14x6 + 1255x − 4781)/777. (6.7)

x′ ≡ ±7 mod 37

7, 30 (37)

{44, 104} + 111i (444)

q ≡ 1(4)

155, 215, 266, 326

{155, 266, 215, 326} +444j (2664)

T4

b2 - 710 - D
1214

155
659
1598
1931
2102
2435

{155, ..., 2435}
+2664ℓ (13320)

b5

M
155
7430
9590
11315

D
5099
7259

b?

659
1598
1931
2102
2435
2819
3323
4262
4595
4766
5483
5987
6926
7763
8147
8651
9923
10094
10427
10811
12254
12587
12758
13091

T?

215 266
326 599
770 1043
1103 1154
1487 1547
1658 1991
2042 2375
2486 2546

{215, ..., 2546}
+2664ℓ(13320)

T5

b2
M

6875
9035

D
11699
b10
D

1487
b5
D
770
2930
4322
6482
7874
10034
10982
13142

215
1154
2375
2879
3767
5039
5210
5654
5927
7319
7370
7814
8762
9095
9479
10922
11255
12314

T?

266 326
599 1043
1103 1547
1658 1991
2042 2486
2546 2990
3263 3434
3707 3818
4151 4211
4655 4706
5150 5543
5594 6098
6371 6431
6815 6986
7703 8207
8258 8318
8591 9146
9650 10367
10478 10538
10871 11426
11759 11810
12143 12698
13031 13202

q ≡ 3(4)

44, 104, 377, 437

{44, 104, 377, 437}+ 444jj (2664)

T1

b2 - 1376 - D
1880

b−1 - 821 - M
1325

b−1 - 437 - D
2597

104, 2264

{104, 2264}
+ 2664ℓ(7992)

b−4

M
104
5432
7592

2264

b3

M
2768
4928

T?

44, 377, 488, 548, 881, 932, 992, 1265,
1436, 1709, 1769, 1820, 2153, 2213, 2324, 2657

{44, ..., 2657}+ 2664ℓ(13320)

T2

b−1

M
3545
5705
7097
9257
10205
10649
12365
12809

D
1265
1709
2657
4817
6209
8369
12425
12869

932, 992, 2324,
3152, 4100, 4484,
6260, 7652, 8984,

9812, 11144, 12092

{3152, ..., 9812}
+ 13320m(39960)

b3

M
932
2324
4484
22304
24464
38732

D
14312
16472
30740
32900
34292
36452

b−4

M
12092
14252

D
4100
6260
17420
19580

b5

D
992
3152
7652
9812
20972
23132
27632
29792

b?

8984
11144
15644
17804
25412
27572
28964
31124
35624
37784

b−2

M
8540
10700

D
44

11204

T3

b−2 - 5372 - D
b−1 - 10145 - M
b−1 - 3929 - D

4373

488, 5816, 8924

{488,..., 8924 }
+13320m(39960)

b3

M
488
8924
38288
6764

D
30296
32456

b−5

D
3656
5816
16976
19136

b−4

M
20084
22244
33404
35564

b?

11648
13808
24968
27128

T?

377 548
881 1436
1820 2153
2708 3041
3596 4433
4877 4988
5321 5876
6320 6593
7037 7148
7481 7541
8036 8480
8873 9701
9761 10316
11033 11537
11588 11921
12476 12980

13313

Figure 6.8: The k = 36 KSS family tree.

6.8. KSS k = 36 curves 197

There are five common towers found in the family tree. They are defined by

the quadratic binomial from Fq to Fq2 and the binomial from Fq2 to Fq36 (see

Table 6.13).

Fq
Fq[u]/(u2+ui)−−−−−−−−−→ Fq2

Fq2 [v]/(v18−vi)−−−−−−−−−−→ Fq36

Ti T1 T2 T3 T4 T5

(ui, vi) (1, u + 1) (1, u + 2) (1, u + 3) (2, u) (5, u)

Table 6.13: Efficient towering options in the k = 36 KSS tree.

rating equiv. class for x′ = x/7 tower b twist G1 gen. G′2 gen. %
type [h](·, ·) [h′](·, ·) §D.6

1376, 1880 mod 2664 T1 2 D (−1, 1)

„

−1,
q

2−v
v

«

4.1

821, 1325 mod 2664 T1 −1 M
`

−1,
√
−2

´ `

1,
√

1− v
´

4.1
⋆ ⋆ ⋆ ⋆ ⋆ 437, 2597 mod 2664 T1 −1 D

`

−1,
√
−2

´

- 4.3

{104, ...,7592}4 mod 7992 T1 −4 M (2, 2)
“

1− v,
p

(1− v)3 − 4v
”

(i) 3.0

2768, 4928 mod 7992 T1 3 M (1, 2)
“

1− v,
p

(1− v)3 + 3v
”

1.1

{3545, ...,12809}8 mod 13320 T2 −1 M -
`

v,
√
u+ 2− v

´

2.2

{1265, ...,12869}8 mod 13320 T2 −1 D -
“

1/v,
q

1
u+2
− v

”

3.4

8540, 10700 mod 13320 T2 −2 M (3, 5)
“

1,
p

1− 2/v
”

(ii) 1.0

44, 11204 mod 13320 T2 −2 D (3, 5) - (ii) 0.9
⋆ ⋆ ⋆ ⋆ {932, ..., 38732}5 mod 39960 T2 3 M (1, 2) - (iii) 0.7

{14312, ...,36452}6 mod 39960 T2 3 D (1, 2) - (iii) 1.0
12092, 14252 mod 39960 T2 −4 M (2, 2) - - 0.3

{4100, ...,19580}4 mod 39960 T2 −4 D (2, 2) - - 0.6

{992, ..., 29792}8 mod 39960 T2 5 D -

„

−v,
q

5−v4

v

«

1.1

5372 mod 13320 T3 −2 D (3, 5) - 0.5
10145 mod 13320 T3 −1 D - - 0.5

3929, 4373 mod 13320 T3 −1 M - - 0.8
⋆ ⋆ ⋆ {488, ..., 38288}4 mod 39960 T3 3 M (1, 2) - - 0.5

30296, 32456 mod 39960 T3 3 D (1, 2) - - 0.3
{3656, ...,19136}4 mod 39960 T3 −5 D

`

−3, 4
√
−2

´

- (v) 0.6
{20084, ...,35564}4 mod 39960 T3 −4 M (2, 2) - (vi) 0.6

Table 6.14: Our favourite picks from the k = 36 KSS tree.

The polynomials for q(x) and n(x) in (6.7) insist that x ≡ ±49 mod 259, so

we rescale with x′ = x/7 and begin with x′ ≡ ±7 mod 37, which branches off

into sub-congruences forming the family tree in Figure 6.8 (see Appendix C for

the proofs). As it stands, r(x) will always contain 76 · 372 as a factor, so we

must divide this factor out before (the updated) r(x) can represent primes. Our

favourite picks and the associated generators are in Table 6.14. The frequencies

in the final column were calculated from almost 7, 000 different KSS curves with

k = 36 and are roughly as expected. Our 5-star picks constitute approximately

198 Chapter 6. Particularly friendly members of family trees

17% of the entire family. The generators in G′2 = E ′(Fq6) use v ∈ Fq6, where

Fq6 = Fq2[v]/(v
3 − u).

6.9 BLS k = 48 curves

The polynomial parameterisations for the BLS family with k = 48 are:

q(x) = (x− 1)2(x16 − x8 + 1)/3 + x; r(x) = x16 − x8 + 1; t(x) = x+ 1; (6.8)

n(x) = (x− 1)2(x16 − x8 + 1)/3; f(x) = (x− 1)(2x8 − 1)/3; h(x) = (x− 1)2/3.

There are five common towers found in the family tree. They are defined by the

quadratic binomial from Fq to Fq2 and the binomial from Fq2 to Fq48 (see Table

6.15). The polynomials for q(x) and n(x) in (6.8) insist that x ≡ ±1 mod 3,

Fq
Fq[u]/(u2+ui)−−−−−−−−−→ Fq2

Fq2 [v]/(v24−vi)−−−−−−−−−−→ Fq48

Ti T1 T2 T3 T4 T5

(ui, vi) (1, u+ 1) (1, u+ 2) (2, u) (2, u + 2) (5, u)

Table 6.15: Efficient towering options in the k = 48 BLS tree.

which branches off into sub-congruences forming the family tree in Figure 6.9 (see

Appendix C for the proofs). Our favourite picks and the associated generators

rating equiv. class for x tower b twist G1 gen. G′2 gen. more %
type [h](·, ·) [h′](·, ·) §D.7 %

64 mod 72 T1 −2 D (3, 5)
“

1− 2/w,
p

(1− 2/w)3 − 2
”

(i) 4.5

⋆ ⋆ ⋆ ⋆ ⋆ 31 mod 72 T1 1 M -
“

w + 1,
p

(w + 1)3 + 1
”

(ii) 4.5

7 mod 72 T1 1 D - - 4.4
55, 235, 259 mod 360 T2 1 M - - 2.0

115, 139 mod 360 T2 1 D
“

1,
√

2
”

- 1.4

100 mod 360 T2 2 M - - 0.7
{4, ...,724}4 mod 1080 T2 −5 D

`

−15, 26
√
−5

´

- 1.1
⋆ ⋆ ⋆ ⋆ 364, 700, 904 mod 1080 T2 −3 D - - 0.6

484 mod 1080 T2 −3 M - -
124, 844 mod 1080 T2 4 M -

`

2,
√

8 + 4w
´

(iii) 0.2
340, 1060 mod 1080 T2 4 D -

`

1,
√

1 + 4w
´

(iv) 0.4

13 mod 72 T3 1 M −
`

1,
√
w + 1

´

(v) 3.9
61 mod 72 T3 1 D − - 4.1

⋆ ⋆ ⋆ 34, 178 mod 216 T3 4 M
“

−1,
√

3
”

- (vi) 2.9

106 mod 216 T3 3 M (1, 2) - 1.4
10 mod 216 T3 3 D (1, 2) - 1.5

Table 6.16: Our favourite picks from the k = 48 BLS tree.

6.10. Recommendations 199

x ≡ 1 mod 3

1 (6)

b1

1 (12)

1 (24)

{1} + 24i
(120)

25
49

{25, 49}
+120j (360)

T5

M
145
169
D
25
49

T?

265
289

T?

1
73
97

13 (24)

{13} + 24i
(72)

T3

M
13
D
61

T?

37

{37} + 72j
(216)

T4

M
181
D
37

T?

109

7 (12)

{7} + 12i (72)

T1

M
31
D
7

T?

19
43
55
67

{19, ..., 67}
+72j(360)

T2

M
55
235
259
D
115
139

T?

19
43
67
91
127
163
187
199
211
271
283
307
331
343
355

4 (6)

4 (12)

{4} + 12i (72)

T1

b−2 - 64 - D

16

{16} + 72j (216)

b−3

M
160

b4

M
16
88

T?

4, 28, 40, 52

{4, 28, 40, 52}
+72j (360)

T2

b2 - 100 - M

4
124
184
340

{4, ..., 340}
+360ℓ(1080)

b−5

D
4

184
544
724

b−3

M
484
D
364
700
904

b4

M
124
844
D
340
1060

T?

28
40
52
76
112
148
172
196
220
244
256
268
292
316
328

10 (12)

10 (24)

{10} + 24i
(72)

T3

10, 34

{10, 34}
+72j(216)

b4

M
34
178

b3

M
106
D
10

b?

82
154

T?

58

{58} + 72j
(216)

T4

b3 - 202 - D

130

{130}
+216ℓ(1080)

b9

M
130
562
778
994

b5

M
346

T?

58

22 (24)

{22} + 24i
(120)

70
94

{70, 94}
+120j (360)

T5

b2 - 190 - M
b4 - 214- M

70
94

{70, 94}+
360ℓ(1080)

b4

D
70
790

b3

D
430
94

b?

454
814

T?

310
334

T?

22
46
118

Figure 6.9: The k = 48 BLS family tree.

are in Table 6.16. The frequencies in the final column were calculated from

over 5, 000 different BLS curves with k = 48 and are as expected. Our 5-star

picks constitute approximately 51% of the entire family. The generators in G′2 =

E ′(Fq8) use w ∈ Fq8 , where Fq8 = Fq4[w]/(w2 − v), and Fq4 = Fq2 [v]/(v
2 − u).

6.10 Recommendations

For all curve families under consideration, as well as BN k = 12 and BLS k = 24

curves, Table 6.17 gives the approximate security level at which the DLP and

ECDLP complexities are balanced. The ECDLP security is computed as half the

bit-length of the group order r, whilst the calculation of the security in Fqk comes

directly from the formula in [Sma10, §6.2.1]. This gives a rough indication of

which security level(s) a family is particularly suitable for, and where the family

will best compete against other families. For such security levels, we point to

200 Chapter 6. Particularly friendly members of family trees

where examples of strong curves with low Hamming weights and implementation-

friendly parameters can be found.

where security balance occurs example curves

family ρ-value x0 E[r(x0)] sec. Fq(x0)k sec. security where to

(log q/ log r) (bits) (bits) (bits) levels (bits) find curves
BW k = 8 1.5 60 121 121 112 Table B.1
BN k = 12 1 60 122 122 80 - 192 [PJNB11, §4]
BLS k = 12 1.5 85 170 170 192, 224 Table B.2, Table B.3
KSS k = 16 1.25 49 188 189 192, 224 Table B.2, Table B.3
KSS k = 18 1.33 74 217 217 192, 224 Table B.2, Table B.3
BLS k = 24 1.25 62 252 253 192 - 320 Appendix A
BLS k = 27 1.11 28 251 253 256, 288 Table B.4, Table B.5
KSS k = 32 1.125 41 304 302 288, 320 Table B.5, Table B.6
KSS k = 36 1.167 57 328 330 320, 352 Table B.6, Table B.7
BLS k = 48 1.125 49 392 390 352, 384 Table B.7, Table B.8

Table 6.17: Balancing ECDLP and DLP security in families, and where example
curves are found.

Our advice on how to proceed agrees almost entirely with that at the end

of Scott’s note [Sco09, §6], who recommends first finding the optimal degree k

binomial xk − i ∈ Fq[x] to define the entire tower, before going searching for

curves (that support this tower). The only difference in our recommendation

is in the slight performance gain that’s achieved when defining the tower using

two binomials. Thus, we recommend choosing one or more of the subfamilies

that guarantee our favourite tower choices (or yours), and restricting the search

parameter x0 to the corresponding congruences and to be of low Hamming weight

before kick-starting a search. If, in addition, there is a preference in the size of a

curve constant, the nature of the twist, or the existence of compact generators,

then the subfamilies herein give a concrete way to also simultaneously prescribe

these desired properties in advance.

Alternatively, the lists of curves in Appendix B should stand implementors

in good stead for a while yet, at least until accepted levels of security go beyond

the AES equivalent of 384 bits, or perhaps until even better curve families are

found.

6.11 Summary of contributions

This chapter presents an in depth analysis of eight attractive families that have

not yet been examined in the context of defining implementation-friendly subfam-

ilies. We have provided implementors with comprehensive lists of low Hamming

6.11. Summary of contributions 201

weight curves belonging to our favourite choices from each family, all of which

offer highly efficient pairing instantiations. Our approach also facilitates imple-

mentors to easily define their own searches that target requirements they desire

in any particular family.

202 Chapter 6. Particularly friendly members of family trees

Chapter 7

Hyperelliptic arithmetic via

linear algebra

This chapter presents a novel method of divisor composition on arbitrary hyper-

elliptic curves. Whilst the algorithm we propose can immediately be used for

pairing computation on a (pairing-friendly) hyperelliptic curve of any genus, its

application currently has a greater impact outside the context of PBC. This is

in large part due to the fact that ordinary pairing-friendly hyperelliptic curves

of genus g ≥ 2 and with ρ-value low enough to compete against their genus 1

counterparts have not yet been found. Thus, for this chapter only our discussion

will assume a broader context than just that of PBC, but we reiterate that the

application of our results to hyperelliptic pairings is inherent. Specifically, the

functions that are needed in Miller’s algorithm for hyperelliptic pairings come

for free in our algorithm. For excellent surveys on the arena of hyperelliptic

pairings, we refer to the works of Galbraith, Hess and Vercauteren [GHV07], and

of Balakrishnan et al. [BBC+09].

We derive an explicit method of computing the composition step in Cantor’s

algorithm for group operations on Jacobians of hyperelliptic curves. Our tech-

nique is inspired by the geometric description of the group law and applies to

hyperelliptic curves of arbitrary genus. While Cantor’s general composition in-

volves arithmetic in the polynomial ring Fq[x], the algorithm we propose solves

a linear system over the base field which can be written down directly from the

Mumford coordinates of the group elements.

203

204 Chapter 7. Hyperelliptic arithmetic via linear algebra

We apply this method to give more efficient formulas for group operations

in both affine and projective coordinates for cryptographic systems based on

Jacobians of genus 2 hyperelliptic curves in general form.

7.1 Motivation

In 1989, Koblitz [Kob89] generalised the idea of ECC by proposing Jacobians

of hyperelliptic curves of arbitrary genus as a way to construct Abelian groups

suitable for cryptography. Roughly speaking, hyperelliptic curves of genus g can

achieve groups of the same size and security as elliptic curves, whilst being defined

over finite fields with g times fewer bits1. At the same time however, increasing

the genus of a hyperelliptic curve significantly increases the computational cost

of performing a group operation in the corresponding Jacobian group. Thus, the

question that remains of great interest to the public-key cryptography community

is, under which circumstances elliptic curves are preferable, and vice versa. At

the present time, elliptic curves carry on standing as the front-runner in most

practical scenarios, but whilst both ECC and hyperelliptic curve cryptography

(HECC) continue to enjoy a wide range of improvements, this question remains

open in general. For a nice overview of the progress in this race and of the state-

of-the-art in both cases, the reader is referred to the talks by Bernstein [Ber06],

and by Lange [Lan06].

Cantor [Can87] was the first to give a concrete algorithm for performing

computations in Jacobian groups of hyperelliptic curves over fields of odd char-

acteristic. Shortly after, Koblitz [Kob89] modified this algorithm to apply to

fields of any characteristic. Cantor’s algorithm makes use of the polynomial rep-

resentation of group elements proposed by Mumford [Mum84], and consists of

two stages: (i) the composition stage, based on Gauss’s classical composition of

binary quadratic forms, which generally outputs an unreduced divisor, and (ii)

the reduction stage, which transforms the unreduced divisor into the unique re-

duced divisor that is equivalent to the sum, whose existence is guaranteed by the

Riemann-Roch theorem [Lan72]. Cantor’s algorithm has since been substantially

optimised in work initiated by Harley [Har], who was the first to obtain practical

explicit formulas in genus 2, and extended by Lange [Lan01,Lan05], who, among

1The security argument becomes more complicated once venturing beyond genus 2, where
the attacks by Gaudry [Gau00] and others [Die06,GTTD07,Smi09] overtake the Pollard Rho
method [Pol78].

7.1. Motivation 205

several others [MCT01,Tak02,MDM+02,SMCT02], generalised and significantly

improved Harley’s original approach. Essentially, all of these improvements in-

volve unrolling the polynomial arithmetic implied by Cantor’s algorithm into

operations in the underlying field, and finding specialized shortcuts dedicated to

each of the separate cases of input (see [Lan02a, §4]).

In this work we propose an explicit alternative to unrolling Cantor’s polyno-

mial arithmetic in the composition phase. Our method is inspired by considering

the geometric description of the group law and applies to hyperelliptic curves of

any genus. The equivalence of the geometric group law and Cantor’s algorithm

was proved by Lauter [Lau03] in the case of genus 2, but since then there have

been almost no reported improvements in explicit formulas that benefit from this

depiction, the notable exception being the work of Leitenberger [Lei05], who used

Gröbner basis reduction to show that in the addition of two distinct divisors on

the Jacobian of a genus 2 curve, one can obtain explicit formulas to compute

the required geometric function directly from the Mumford coordinates without

(unrolling) polynomial arithmetic. Leitenberger’s idea of obtaining the necessary

geometric functions in a simple and elementary way is central to the theme of

our work in this chapter, although we note that the affine addition formulas that

result from our description (which do not rely on any Gröbner basis reduction)

are significantly faster than the direct translation of those given in [Lei05].

We use the geometric description of the group law to prove that the interpo-

lating functions for the composition step can be found by writing down a linear

system in the ground field to be solved in terms of the Mumford coordinates of

the divisors. Therefore, the composition algorithm for arbitrary genera proposed

in this work is immediately explicit in terms of arithmetic in Fq, in contrast

to Cantor’s composition which operates in the polynomial ring Fq[x], the opti-

misation of which calls for ad-hoc attention in each genus to unravel the Fq[x]

operations into explicit formulas in Fq.

To illustrate the value of our approach, we show that, for group operations

on Jacobians of general genus 2 curves over large prime fields, the (affine and

projective) formulas that result from this description are more efficient than

their predecessors. Also, when applying this approach back to the case of genus

1, we are able to recover several of the tricks previously explored for merging

simultaneous group operations to optimise elliptic curve computations.

The rest of this chapter is organised as follows. We briefly touch on some

206 Chapter 7. Hyperelliptic arithmetic via linear algebra

more related work below, before moving to Section 7.2 where we give a short

background on hyperelliptic curves and the Mumford representation of Jaco-

bian elements; this ties back to Section 2.2 where we defined the divisor class

group. Section 7.3 discusses the geometry of Jacobian arithmetic on hyperelliptic

curves, and shows that we can use simple linear algebra to compute the required

geometric functions from the Mumford coordinates. Section 7.4 is dedicated to

illustrating how this technique results in fast explicit formulas in genus 2, whilst

Section 7.5 generalises the algorithm for all g ≥ 2. As we hope this work will

influence further progress in higher genus arithmetic, in Section 7.6 we high-

light some further implications of adopting this geometrically inspired approach.

Magma scripts that verify our proposed algorithms and formulas can be found

in the full version of our original work2.

More related work. There are several high-level papers (e.g. [HI94,Hes02])

which discuss general methods for computing in Jacobians of arbitrary alge-

braic curves. In addition, there has also been work which specifically addresses

arithmetic on non-hyperelliptic Jacobians from a geometric perspective (e.g.

[FOR08,FO04]).

Khuri-Makdisi treated divisor composition on arbitrary algebraic curves with

linear algebra techniques in [KM04] and [KM07]. In contrast to Khuri-Makdisi’s

deep and more general approach, our work specifically aims to present an ex-

plicit algorithm in an implementation-ready format that is specific to hyperel-

liptic curves, much like his joint work with Abu Salem which applied his earlier

techniques to present explicit formulas for arithmetic on C3,4 curves [AKM06].

Some other authors have also applied techniques from the realm of linear al-

gebra to Jacobian operations: two notable examples being the work of Guyot

et al. [GKP04] and Avanzi et al. [ATW08] who both used matrix methods to

compute the resultant of two polynomials in the composition stage.

Since we have focused on general hyperelliptic curves, our comparison in genus

2 does not include the record-holding work by Gaudry [Gau07], which exploits the

Kummer surface associated with curves of a special form to achieve the current

outright fastest genus 2 arithmetic for those curve models. Gaudry and Harley’s

second exposition [GH00] further describes the results in [Har]. Finally, we do

not draw comparisons with any work on real models of hyperelliptic curves, which

2See http://eprint.iacr.org/2011/306

http://eprint.iacr.org/2011/306

7.2. The Mumford representation 207

usually result in slightly slower formulas than imaginary hyperelliptic curves, but

we note that both Galbraith et al. [GHM08] and Erickson et al. [EJSS10] achieve

very competitive formulas for group law computations on real models of genus 2

hyperelliptic curves.

7.2 The Mumford representation

We revisit some of the discussion from Section 2.2 before defining the Mumford

representation of points in the Jacobian. For a more in depth discussion, we refer

to [ACD+05, §4] and [Gal12, §11]. Recall from Equation (2.13) that over the field

K, we use Cg to denote the general (“imaginary quadratic”) hyperelliptic curve

of genus g given by

Cg : y2 + h(x)y = f(x),

h(x), f(x) ∈ K[x], deg(f) = 2g + 1, deg(h) ≤ g, f monic, (7.1)

with the added stipulation that no point (x, y) ∈ K simultaneously sends both

partial derivatives 2y + h(x) and f ′(x) − h′(x)y to zero [ACD+05, §14.1]. As

long as char(K) 6= 2g + 1, we can isomorphically transform Cg into Ĉg, given as

Ĉg : y2+h(x)y = x2g+1+ f̂2g−1x
2g−1+ ...+ f̂1x+ f̂0, so that the coefficient of x2g is

zero [ACD+05, §14.13]. In the case of odd characteristic fields, it is standard to

also annihilate the presence of h(x) completely under a suitable transformation,

in order to obtain a simpler model (we will make use of this in §7.4). We abuse

notation and use Cg from hereon to refer to the simplified version of the curve

equation in each context. Although the proofs in §7.3 apply to any K, it better

places the intention of the discussion to henceforth regard K as a finite field Fq.

We work in the Jacobian group Jac(Cg) of Cg, where the elements are equiva-

lence classes of degree zero divisors on Cg – i.e. the reader can identify the Jaco-

bian with the Picard group Div0
K(Cg) from Section 2.2 (but see [GHV07, §2.1] for

the precise definition). It follows from the Riemann-Roch Theorem (see Section

2.2.2) that for hyperelliptic curves, each class D has a unique reduced represen-

tative of the form

ρ(D) = (P1) + (P2) + ... + (Pr)− r(P∞),

such that r ≤ g, Pi 6= −Pj for i 6= j, no Pi satisfying Pi = −Pi appears more

208 Chapter 7. Hyperelliptic arithmetic via linear algebra

than once, and with P∞ being the point at infinity on Cg. We drop the ρ from

hereon and, unless stated otherwise, assume divisor equations involve reduced

divisors. When referring to the non-trivial elements in the reduced divisor D,

we mean all P ∈ supp(D) where P 6= P∞, i.e. the elements corresponding to the

effective part of D. For each of the r non-trivial elements appearing in D, write

Pi = (xi, yi). Mumford proposed a convenient way to represent such divisors

as D = (u(x), v(x)), where u(x) is a monic polynomial with deg(u(x)) ≤ g

satisfying u(xi) = 0, and v(x) (which is not monic in general) with deg(v(x)) <

deg(u(x)) is such that v(xi) = yi, for 1 ≤ i ≤ r. In this way we have a one-

to-one correspondence between reduced divisors and their so-called Mumford

representation [Mum84]. In this chapter we return to the notation ⊕ (resp. ⊖)

to distinguish group additions (resp. subtractions) between Jacobian elements

from “additions” in formal divisor sums - this is because we now assume that

more than one point is contained in the effective part of D. We use D̄ to denote

the divisor obtained by taking the hyperelliptic involution of each of the non-

trivial elements in the support of D.

When developing formulas for implementing genus g arithmetic, we are largely

concerned with the frequent case that arises where both (not necessarily distinct)

reduced divisors D = (u(x), v(x)) and D′ = (u′(x), v′(x)) in the sum D⊕D′ are

such that deg(u(x)) = deg(u′(x)) = g. This means that D = E − g(P∞) and

D′ = E ′ − g(P∞), with both E and E ′ being effective divisors of degree g; from

hereon we interchangeably refer to such divisors D as full degree or degree g di-

visors, and we use Ĵac(Cg) to denote the set of all such divisor classes of full

degree, where Ĵac(Cg) ⊂ Jac(Cg). In Section 7.5.2 we discuss how to handle the

special case when a divisor of degree less than g is encountered.

7.3 Computations in the Mumford function field

The purpose of this section is to show how to compute group law operations in

Jacobians by applying linear algebra to the Mumford coordinates of divisors. The

geometric description of the group law is an important ingredient in the proof

of the proposed linear algebra approach (particularly in the proof of Proposition

7.5), so we start by reviewing the geometry underlying arithmetic on Jacobians

of hyperelliptic curves.

Since the Jacobian of a hyperelliptic curve is the group of degree zero divisors

7.3. Computations in the Mumford function field 209

modulo principal divisors, the group operation is formal addition modulo the

equivalence relation. Thus two divisors D and D′ can be added by finding a

function whose divisor contains the support of both D and D′, and then the

sum is equivalent to the negative of the complement of that support. Such a

function ℓ(x) can be obtained by interpolating the points in the support of the

two divisors. The complement of the support of D and D′ in the support of

div(ℓ) consists of the other points of intersection of ℓ with the curve. In general

those individual points may not be defined over the ground field for the curve.

We are thus led to work with Mumford coordinates for divisors on hyperelliptic

curves, since the polynomials in Mumford coordinates are defined over the base

field and allow us to avoid extracting individual roots and working with points

defined over extension fields.

For example, consider adding two full degree genus 3 divisorsD,D′ ∈ Ĵac(C3),

with respective supports supp(D) = {P1, P2, P3} ∪ {P∞} and supp(D′) =

{P ′1, P ′2, P ′3} ∪ {P∞}, as in Figure 7.1 and Figure 7.2.

•P1

•P2•P3

•P
′
1

•
P ′2

•P
′
3•P̃1

•
P̃2

•P̃3

•P̃4

Figure 7.1: The composition stage of a
general addition on the Jacobian of a
genus 3 curve C3 over the reals R: the
6 points in the combined supports of
D and D′ are interpolated by a quin-
tic polynomial which intersects C in 4
more places to form the unreduced di-
visor D̃ = P̃1 + P̃2 + P̃3 + P̃4.

•P̃1

•̃
P2

•P̃3

•P̃4

•P ′′1
•P ′′2

•P ′′3

Figure 7.2: The reduction stage: a
(vertically) magnified view of the cubic
function which interpolates the points
in the support of D̃ and intersects C3

in three more places to form D̄′′ =
(P ′′1 +P ′′2 +P ′′3) ∼ D̃, the reduced equiv-
alent of D̃.

After computing the quintic function ℓ(x, y) =
∑5

i=0 ℓix
i that interpolates

210 Chapter 7. Hyperelliptic arithmetic via linear algebra

the six non-trivial points in the composition phase, computing the x-coordinates

of the remaining (four) points of intersection explicitly would require solving

ℓ25 ·
3∏

i=1

(x− xi) ·
3∏

i=1

(x− x′i)
4∏

i=1

(x− x̄i) =
(

5∑

i=0

ℓix
i
)2 − f(x)

for x̄1,x̄2,x̄3 and x̄4, which would necessitate multiple root extractions. On the

other hand, the exact division
∏4

i=1(x − x̄i) =
((∑5

i=0 ℓix
i
)2 − f(x)

)

/
(

ℓ25 ·
∏3

i=1(x− xi) ·
∏3

i=1(x− x′i)
)

can be computed very efficiently (and entirely over

Fq) by equating coefficients of x.

Whilst the Mumford representation is absolutely necessary for efficient reduc-

tion, the price we seemingly pay in deriving formulas from the simple geometric

description lies in the composition phase. In any case, finding the interpolating

function y = ℓ(x) would be conceptually trivial if we knew the (x, y) coordinates

of the points involved, but computing the function directly from the Mumford

coordinates appears to be more difficult. In what follows we detail how this can

be achieved in general, using only linear algebra over the base field. The mean-

ings of the three propositions in this section are perhaps best illustrated through

the examples that follow each of them.

Proposition 7.1. On the Jacobian of a genus g hyperelliptic curve, the dense

set Ĵac(Cg) of divisor classes with reduced representatives of full degree g can be

described exactly as the intersection of g hypersurfaces of dimension (at most)

2g.

Proof. Let D =
(
u(x), v(x)

)
=
(
xg +

∑g−1
i=0 uix

i ,
∑g−1

i=0 vix
i
)
∈ Ĵac(Cg(K)) be

an arbitrary degree g divisor class representative with supp(D) = {(x1, y1), ...,

(xg, yg)} ∪ {P∞}, so that u(xi) = 0 and v(xi) = yi for 1 ≤ i ≤ g. Let Ψ(x) =
∑g−1

i=0 Ψix
i be the polynomial obtained by substituting y = v(x) into the equation

for Cg and reducing modulo the ideal generated by u(x). Clearly, Ψ(xi) ≡ 0 mod

〈u(x)〉 for each of the g non-trivial elements in supp(D), but since deg(Ψ(x)) ≤
g−1, it follows that each of its g coefficients Ψi must be identically zero, implying

that every element D ∈ Ĵac(Cg) of full degree g lies in the intersection of the

g hypersurfaces Ψi = Ψi(u0, ..., ug−1, v0, ..., vg−1) = 0. On the other hand, each

unique 2g-tuple in K which satisfies Ψi = 0 for 1 ≤ i ≤ g defines a unique full

degree representative D ∈ Ĵac(Cg(K)) (cf. [Gal12, ex 11.3.7]).

7.3. Computations in the Mumford function field 211

Definition 7.2 (Mumford ideals). We call the g ideals 〈Ψi〉 arising from the g

hypersurfaces Ψi = 0 in Proposition 7.1 the Mumford ideals.

Definition 7.3 (Mumford function fields). The function fields of Ĵac(Cg) and

Ĵac(Cg)× Ĵac(Cg) are respectively identified with the quotient fields of

K[u0, ..., ug−1, v0, ..., vg−1]

〈Ψ0, ...,Ψg−1〉
and

K[u0, ..., ug−1, v0, ..., vg−1, u
′
0, ..., u

′
g−1, v

′
0, ..., v

′
g−1]

〈Ψ0, ...,Ψg−1,Ψ
′
0, ...,Ψ

′
g−1〉

,

which we call the Mumford function fields and denote by KMum
DBL = K(Ĵac(Cg))

and KMum
ADD = K(Ĵac(Cg)× Ĵac(Cg)) respectively. We abbreviate and use Ψi,Ψ

′
i to

differentiate between Ψi = Ψi(u0, ..., ug−1, v0, ..., vg−1) and Ψ′i = Ψi(u
′
0, ..., u

′
g−1, v

′
0,

..., v′g−1) when working in KMum
ADD .

Example 7.3.1. Consider the genus 2 hyperelliptic curve defined by C : y2 =

(x5 + 2x3 − 7x2 + 5x + 1) over F37. A general degree two divisor D ∈ Ĵac(C)

takes the form D = (x2 + u1x + u0, v1x+ v0). Substituting y = v1x+ v0 into C

and reducing modulo 〈x2 + u1x+ u0〉 gives

(v1x+ v0)
2 − (x5 + 2x3 − 7x2 + 5x+ 1) ≡ Ψ1x+ Ψ0 ≡ 0 mod 〈x2 + u1x+ u0〉

where

Ψ1(u1, u0, v1, v0) = 3 u0u1
2 − u1

4 − u0
2 + 2 v0v1 − v1

2u1 + 2 (u0 − u1
2)− 7u1 − 5,

Ψ0(u1, u0, v1, v0) = v0
2 − v1

2u0 + 2 u0
2u1 − u1

3u0 − 2u1u0 − 7u0 − 1.

The number of tuples (u0, u1, v0, v1) ∈ F37 lying in the intersection of Ψ0 = Ψ1 =

0 is 1373, which is the number of degree 2 divisors on Jac(C), i.e. #Ĵac(C) =

1373 . There are 39 other divisors on Jac(C) with degrees less than 2, each of

which is isomorphic to a point on the curve, so that #Jac(C) = #Ĵac(C)+#C =

1373 + 39 = 1412. Formulas for performing full degree divisor additions are de-

rived inside the Mumford function fieldKMum
ADD = Quot(K[u0, u1, v0, v1, u

′
0, u
′
1, v
′
0, v
′
1]

/〈Ψ0,Ψ1,Ψ
′
0,Ψ

′
1〉), whilst formulas for full degree divisor doublings are derived

inside the Mumford function field KMum
DBL = Quot(K[u0, u1, v0, v1]/〈Ψ0,Ψ1〉).

Performing the efficient composition of two divisors amounts to finding the

least degree polynomial function that interpolates the union of their (assumed

disjoint) non-trivial supports. The following two propositions show that in the

212 Chapter 7. Hyperelliptic arithmetic via linear algebra

general addition and doubling of divisors, finding the interpolating functions in

the Mumford function fields can be accomplished by solving linear systems.

Proposition 7.4 (General divisor addition). Let D and D′ be reduced divi-

sors of degree g on Jac(Cg) such that supp(D) = {(x1, y1), ..., (xg, yg)} ∪ {P∞},
supp(D′) = {(x′1, y′1), ..., (x′g, y′g)}∪{P∞} and xi 6= x′j for all 1 ≤ i, j ≤ g. A func-

tion ℓ on Cg that interpolates the 2g non-trivial elements in supp(D)∪ supp(D′)

can be determined by solving a linear system of dimension 2g inside the Mumford

function field KMum
ADD .

Proof. Let D =
(
u(x), v(x)

)
=
(
xg +

∑g−1
i=0 uix

i ,
∑g−1

i=0 vix
i
)

and D′ =
(
u′(x),

v′(x)
)

=
(
xg+

∑g−1
i=0 u

′
ix
i ,
∑g−1

i=0 v
′
ix
i
)
. Let the polynomial y = ℓ(x) =

∑2g−1
i=0 ℓix

i

be the desired function that interpolates the 2g non-trivial elements in supp(D)∪
supp(D′), i.e. yi = ℓ(xi) and y′i = ℓ(x′i) for 1 ≤ i ≤ g. Focussing firstly on D, it

follows that v(x) − ℓ(x) = 0 for x ∈ {xi}1≤i≤g. As in the proof of Proposition

7.1, we reduce modulo the ideal generated by u(x) giving Ω(x) = v(x)− ℓ(x) ≡
∑g−1

i=0 Ωix
i ≡ 0 mod 〈xg +

∑g−1
i=0 uix

i〉. Since deg(Ω(x)) ≤ g − 1 and Ω(xi) = 0

for 1 ≤ i ≤ g, it follows that the g coefficients Ωi = Ωi(u0, ..., ug−1, v0, ..., vg−1,

ℓ0, ..., ℓ2g−1) must be all identically zero. Each gives rise to an equation that

relates the 2g coefficients of ℓ(x) linearly inside KMum
ADD . Defining Ω′(x) from D′

identically and reducing modulo u′(x) gives another g linear equations in the 2g

coefficients of ℓ(x).

Example 7.3.2. Consider the genus 3 hyperelliptic curve defined by C : y2 = x7+1

over F71, and take D =
(
u(x), v(x)

)
, D′ =

(
u′(x), v′(x)

)
∈ Ĵac(C) as

D =
(
x3 + 6x2 + 41x+ 33, 29x2 + 22x+ 47

)
,

D′ =
(
x3 + 18x2 + 15x+ 37, 49x2 + 46x+ 59

)
.

We compute the polynomial ℓ(x) =
∑5

i=0 ℓix
i that interpolates the six non-

trivial elements in supp(D) ∪ supp(D′) using ℓ(x) − v(x) ≡ 0 mod 〈u(x)〉 and

ℓ(x)− v′(x) ≡ 0 mod 〈u′(x)〉, to obtain Ωi and Ω′i for 0 ≤ i ≤ 2. For D and D′,

we respectively have that

0 ≡ ℓ(x)− (29x2 + 22x+ 47) ≡ Ω2x
2 + Ω1x+ Ω0 mod 〈x3 + 6x2 + 41x+ 33〉,

0 ≡ ℓ(x)− (49x2 + 46x+ 59) ≡ Ω′2x
2 + Ω′1x+ Ω′0 mod 〈x3 + 18x2 + 15x+ 37〉,

7.3. Computations in the Mumford function field 213

with

Ω2 = ℓ2 + 65ℓ3 + 66ℓ4 + 30ℓ5 − 29; Ω′2 = ℓ2 + 53ℓ3 + 25ℓ4 + 67ℓ5 − 49;

Ω1 = ℓ1 + 30ℓ3 + 48ℓ5 − 22; Ω′1 = ℓ1 + 56ℓ3 + 20ℓ4 + 7ℓ5 − 46;

Ω0 = ℓ0 + 38ℓ3 + 56ℓ4 + 23ℓ5 − 47; Ω′0 = ℓ0 + 34ℓ3 + 27ℓ4 + 69ℓ5 − 59.

Solving Ω0≤i≤2,Ω
′
0≤i≤2 = 0 simultaneously for ℓ0, ..., ℓ5 gives ℓ(x) = 21x5 + x4 +

36x3 + 46x2 + 64x+ 57.

Proposition 7.5 (General divisor doubling). Let D be a divisor of degree g

representing a class on Jac(Cg) with supp(D) = {P1, ..., Pg}∪ {P∞}. A function

ℓ on Cg such that each non-trivial element in supp(D) occurs with multiplicity

two in div(ℓ) can be determined by a linear system of dimension 2g inside the

Mumford function field KMum
DBL .

Proof. Let D =
(
u(x), v(x)

)
=
(
xg +

∑g−1
i=0 uix

i ,
∑g−1

i=0 vix
i
)

and write Pi =

(xi, yi) for 1 ≤ i ≤ g. Let the polynomial y = ℓ(x) =
∑2g−1

i=0 ℓix
i be the desired

function that interpolates the g non-trivial elements of supp(D), and also whose

derivative ℓ′(x) is equal to dy/dx on Cg(x, y) at each such element. Namely,

ℓ(x) =
∑2g−1

i=0 ℓix
i is such that ℓ(xi) = yi and dℓ

dx
(xi) = dy

dx
(xi) on C for 1 ≤ i ≤ g.

This time the first g equations come from the direct interpolation as before,

whilst the second g equations come from the general expression for the equated

derivates, taking dℓ
dx

(xi) = dy
dx

(xi) on Cg as

g−1
∑

i=1

iℓix
i−1 =

(2g + 1)x2g +
∑2g−1

i=1 ifix
i−1 + (

∑g
i=0 ihix

i−1) · y
2y +

∑g
i=0 hix

i

for each xi with 1 ≤ i ≤ g. Again, it is easy to see that substituting y = v(x)

and reducing modulo the ideal generated by u(x) will produce a polynomial

Ω′(x) with degree less than or equal to g− 1. Since Ω′(x) has g roots, Ω′i = 0 for

0 ≤ i ≤ g− 1, giving rise to the second g equations which importantly relate the

coefficients of ℓ(x) linearly inside KMum
DBL .

Example 7.3.3. Consider the genus 3 hyperelliptic curve defined by C : y2 =

x7 + 5x+ 1 over F257, and take D ∈ Ĵac(C) as D = (u(x), v(x)) = (x3 + 57x2 +

26x + 80, 176x2 + 162x + 202). We compute the polynomial ℓ(x) =
∑5

i=0 ℓix
i

that interpolates the three non-trivial points in supp(D), and also has the same

214 Chapter 7. Hyperelliptic arithmetic via linear algebra

derivative as C at these points. For the interpolation only, we obtain Ω0,Ω1,Ω2

(collected below) identically as in Example 7.3.2.

For Ω′0,Ω
′
1,Ω

′
2, equating dy/dx on C with ℓ′(x) gives

7x6 + 5

2y
≡ 5ℓ5x

4 + 4ℓ4x
3 + 3ℓ3x

2 + 2ℓ2x+ ℓ1 mod 〈x3 + 57x2 + 26x+ 80〉,

which, after substituting y = 176x2 + 162x+ 202, rearranges to give 0 ≡ Ω′2x
2 +

Ω′1x+ Ω′0, where

Ω2 = 118ℓ4 + 256ℓ2 + 57ℓ3 + 96ℓ5; Ω′2 = 76ℓ5 + 2541ℓ4 + 254ℓ3 + 166;

Ω1 = 140ℓ4 + 256ℓ1 + 26ℓ3 + 82ℓ5; Ω′1 = 209 + 255ℓ2 + 104ℓ4 + 186ℓ5;

Ω0 = 256ℓ0 + 80ℓ3 + 69ℓ5 + 66ℓ4; Ω′0 = 73ℓ5 + 63ℓ4 + 256ℓ1 + 31.

Solving Ω0≤i≤2,Ω
′
0≤i≤2 = 0 simultaneously for ℓ0, ..., ℓ5 gives ℓ(x) = 84x5+213x3+

78x2 + 252x+ 165.

This section showed that divisor composition on hyperelliptic curves can be

achieved via linear operations in the Mumford function fields.

7.4 Generating explicit formulas in genus 2

This section applies the results of the previous section to develop explicit formulas

for group law computations involving full degree divisors on Jacobians of genus 2

hyperelliptic curves. Assuming an underlying field of large prime characteristic,

such genus 2 hyperelliptic curves C ′/Fq can always be isomorphically transformed

into C2/Fq given by C2 : y2 = x5 + f3x
3 + f2x

2 + f1x + f0, where C2
∼= C ′

(see §7.2). The Mumford representation of a general degree two divisor D ∈
Ĵac(C2) ⊂ Jac(C2) is given as D = (x2 + u1x + u0, v1x + v0). From Proposition

7.1, we compute the g = 2 hypersurfaces whose intersection is the set of all such

divisors Ĵac(C2) as follows. Substituting y = v1x + v0 into the equation for C2

and reducing modulo the ideal 〈x2 + u1x+ u0〉 gives the polynomial Ψ(x) as

Ψ(x) ≡ Ψ1x+ Ψ0 ≡ (v1x+ v0)
2 − (x5 + f3x

3 + f2x
2 + f1x+ f0)

mod 〈x2 + u1x+ u0〉,

7.4. Generating explicit formulas in genus 2 215

where

Ψ0 = v0
2 − f0 + f2u0 − v1

2u0 + 2 u0
2u1 − u1f3u0 − u1

3u0,

Ψ1 = 2 v0v1 − f1 − v1
2u1 + f2u1 − f3(u1

2 − u0) + 3 u0u1
2 − u1

4 − u0
2. (7.2)

We will derive doubling formulas inside KMum
ADD = Quot(K[u0, u1, v0, v1]/〈Ψ0,Ψ1〉)

and addition formulas inside KMum
ADD = Quot(K[u0, u1, v0, v1, u

′
0, u
′
1, v
′
0, v
′
1]

/〈Ψ0,Ψ1,Ψ
′
0,Ψ

′
1〉). In §7.4.2 particularly, we will see how the ideal 〈Ψ0,Ψ1〉 is

useful in simplifying the formulas that arise.

•P ′1 •
P ′2

•P1
•P2 •

•P ′′1

•

•P
′′
2

Figure 7.3: The group law (general ad-
dition) on the Jacobian of the genus 2
curve C2 over the reals R, for (P1 +
P2)⊕ (P ′1 + P ′2) = P ′′1 + P ′′2 .

•
P1

•P2

•
•

P ′′1

•

Figure 7.4: A general point doubling
on the Jacobian of a genus 2 curve C2

over the reals R, for [2](P1+P2) = P ′′1 +
P ′′2 .

7.4.1 General divisor addition in genus 2

Let D = (x2 + u1x + u0, v1x + v0), D
′ = (x2 + u′1x + u′0, v

′
1x + v′0) ∈ Ĵac(C2) be

two divisors with supp(D) = {P1, P2} ∪ {P∞} and supp(D′) = {P ′1, P ′2} ∪ {P∞},
such that no Pi has the same x coordinate as P ′j for 1 ≤ i, j ≤ 2. Let D′′ =

(x2 + u′′1x+ u′′0, v
′′
1x+ v′′0) = D ⊕D′. The composition step in the addition of D

and D′ involves building the linear system inside KMum
ADD that solves to give the

216 Chapter 7. Hyperelliptic arithmetic via linear algebra

coefficients ℓi of the cubic polynomial y = ℓ(x) =
∑3

i=0 ℓix
i which interpolates

P1, P2, P
′
1, P

′
2. Following Proposition 7.4, we have

0 ≡ Ω1x+ Ω0 ≡ ℓ3x
3 + ℓ2x

2 + ℓ1x+ ℓ0 − (v1x+ v0)

≡ (ℓ3(u1
2 − u0)− ℓ2u1 + ℓ1 − v1)x+ (ℓ3u1u0 − ℓ2u0 + ℓ0 − v0)

mod 〈x2 + u1x+ u0〉 ,

(7.3)

which provides two equations (Ω1 = 0 and Ω0 = 0) relating the four coefficients

of the interpolating polynomial linearly inside KMum
ADD . Identically, interpolating

the support of D′ produces two more linear equations which allow us to solve for

the four ℓi as

1 0 −u0 u1u0

0 1 −u1 u2
1 − u0

1 0 −u′0 u′1u
′
0

0 1 −u′1 u′ 21 − u′0

·

ℓ0

ℓ1

ℓ2

ℓ3

=

v0

v1

v′0

v′1

.

Observe that the respective subtraction of rows 1 and 2 from rows 3 and 4 gives

rise to a smaller system that can be solved for ℓ2 and ℓ3, as

(

u0 − u′0 u′1u
′
0 − u1u0

u1 − u′1 (u′ 21 − u′0)− (u2
1 − u0)

)

·
(

ℓ2

ℓ3

)

=

(

v′0 − v0

v′1 − v1

)

. (7.4)

Remark 7.4.1. We will see in Section 7.5.1 that for all g ≥ 2, the linear system

that arises in the computation of ℓ(x) can always be trivially reduced to be of

dimension g, but for now it is useful to observe that once we solve the dimension

g = 2 matrix system for ℓi with i ≥ g, calculating the remaining ℓi where i < g

is computationally straightforward.

The next step is to determine the remaining intersection points of y = ℓ(x)

on C2. Since y = ℓ(x) is cubic, its substitution into C2 will give a degree six

equation in x. Four of the roots will correspond to the four non-trivial points

in supp(D) ∪ supp(D′), whilst the remaining two will correspond to the two x

coordinates of the non-trivial elements in supp(D̄′′), which are the same as the

x coordinates in supp(D′′) (see the intersection points in Figure 3). Let the

Mumford representation of D̄′′ be D̄′′ = (x2 + u1
′′x + u0

′′,−v′′1x − v′′0); we then

7.4. Generating explicit formulas in genus 2 217

have

(x2 + u1x+ u0) · (x2 + u′1x+ u′0) · (x2 + u1
′′x+ u0

′′) =
(
∑3

i=0 ℓix
i)2 − f(x)

ℓ23
.

Equating coefficients is an efficient way to compute the exact division required

above to solve for u′′(x). For example, equating coefficients of x5 and x4 above

respectively gives

u1
′′ = −u1 − u′1 −

1− 2ℓ2ℓ3
ℓ23

;

u0
′′ = −(u0 + u′0 + u1u

′
1 + (u1 + u′1)u1

′′) +
2ℓ1ℓ3 + ℓ22

ℓ23
. (7.5)

It remains to compute v′′1 and v′′0 . Namely, we wish to compute the linear function

that interpolates the points in supp(D′′). Observe that reducing ℓ(x) modulo

〈x2 + u′′1x + u′′0〉 gives the linear polynomial −v′′1x + −v′′0 which interpolates the

points in supp(D̄′′), i.e. those points which are the involutions of the points in

supp(D′′). Thus, the computation of v′′1 and v′′0 amounts to negating the result

of ℓ(x) mod 〈x2 + u′′1x+ u′′0〉. From equation (7.3) then, it follows that

v′′1 = −(ℓ3(u
′′
1
2 − u′′0)− ℓ2u′′1 + ℓ1), v′′0 = −(ℓ3u

′′
1u
′′
0 − ℓ2u′′0 + ℓ0). (7.6)

We summarise the process of computing a general addition D′′ = D ⊕ D′ on

Ĵac(C2), as follows. Composition involves constructing and solving the linear

system in (7.4) for ℓ2 and ℓ3 before computing ℓ0 and ℓ1 via (7.3), whilst reduction

involves computing u′′1 and u′′0 from (7.5) before computing v′′1 and v′′0 via (7.6).

The explicit formulas for these computations are in Table 7.1, where I, M and S

represent the costs of an Fq inversion, multiplication and squaring respectively.

We postpone comparisons with other works until after the doubling discussion.

Remark 7.4.2. The formulas for computing v′′0 and v′′1 in (7.6) include operations

involving u′′21 and u′′1u
′′
0. Since those quantities are also needed in the first step of

the addition formulas (see the first line of Table 7.1) for any subsequent additions

involving the divisor D′′, it makes sense to carry those quantities along as extra

coordinates to exploit these overlapping computations. It turns out that an

analogous overlap arises in geometric group operations for all g ≥ 2, but for now

we remark that both additions and doublings on genus 2 curves will benefit from

extending the generic affine coordinate system to include two extra coordinates

218 Chapter 7. Hyperelliptic arithmetic via linear algebra

AFFINE

ADDITION

Input: D = (u1, u0, v1, v0, U1 = u2

1
, U0 = u1u0), D′ = (u′

1
, u′

0
, v′

1
, v′

0
, U′

1
= u′2

1
, U′

0
= u′

1
u′
0
) Operations in Fq

σ1 ← u1 + u′
1
, ∆0 ← v0 − v′

0
, ∆1 ← v1 − v′

1
, M1 ← U1 − u0 − U′

1
+ u′

0
, M2 ← U′

0
− U0,

M3 ← u1 − u′
1
, M4 ← u′

0
− u0, t1 ← (M2 −∆0) · (∆1 −M1), t2 ← (−∆0 −M2) · (∆1 + M1), 2M

t3 ← (−∆0 + M4) · (∆1 −M3), t4 ← (−∆0 −M4) · (∆1 + M3), 2M

ℓ2 ← t1 − t2 ℓ3 ← t3 − t4, d← t3 + t4 − t1 − t2 − 2(M2 −M4) · (M1 + M3), 1M

A← 1/(d · ℓ3), B ← d · A, C ← d · B, D ← ℓ2 · B, E ← ℓ2
3
· A, CC ← C2, I + 5M + 2S

u′′
1
← 2D − CC − σ1, u′′

0
← D2 + C · (v1 + v′

1
)− ((u′′

1
− CC) · σ1 + (U1 + U′

1
))/2, 2M + 1S

U′′
1
← u′′2

1
, U′′

0
← u′′

1
· u′′

0
, v′′

1
← D · (u1 − u′′

1
) + U′′

1
− u′′

0
− U1 + u0, 2M + 1S

v′′
0
← D · (u0 − u′′

0
) + U′′

0
− U0, v′′

1
← E · v′′

1
+ v1 v′′

0
← E · v′′

0
+ v0. 3M

Output: D′′ = ρ(D ⊕D′) = (u′′
1

, u′′
0

, v′′
1

, v′′
0

, U′′
1

= u′′2
1

, U′′
0

= u′′
1

u′′
0
). Total I + 17M + 4S

PROJECTIVE

ADDITION

Input: D = (U1, U0, V1, V0, Z), D′ = (U′
1
, U′

0
, V ′

1
, V ′

0
, Z′), Operations

ZZ ← Z1 · Z2, U1Z ← U1 · Z2, U1Z′ ← U′
1
· Z1, U1ZS ← U1Z2 , U1ZS′ ← U1Z′2, 3M + 2S

U0Z ← U0 · Z2, U0Z′ ← U′
0
· Z1, V 1Z ← V1 · Z2, V 1Z′ ← V ′

1
· Z1, 4M

M1 ← U1ZS − U1ZS′ + ZZ · (U0dZ − U0Z), M2 ← U1Z′ · U0Z′ − U1Z · U0Z; 3M

M3 ← U1Z − U1Z′, M4 ← U0Z′ − U0Z, z1 ← V 0 · Z2 − V 0′ · Z1, z2 ← V 1Z − V 1Z′, 2M

t1 ← (M2 − z1) · (z2 −M1), t2 ← (−z1 −M2) · (z2 + M1), 2M

t3 ← (−z1 + M4) · (z2 −M3), t4 ← (−z1 −M4) · (z2 + M3), 2M

ℓ2 ← t1 − t2, ℓ3 ← t3 − t4, d← t3 + t4 − t1 − t2 − 2 · (M2 −M4) · (M1 + M3), 1M

A← d2, B ← ℓ3 · ZZ, C ← ℓ2 · B, D ← d · B, E ← ℓ3 · B, F ← U1Z · E, G← ZZ · E, 6M + 1S

H ← U0Z ·G, J ← D ·G, K ← Z2 · J, U′′
1
← 2 · C − A − E · (U1Z + U1Z′), 4M

U′′
0
← ℓ2

2
· ZZ + D · (V 1Z + V 1Z′)− ((U′′

1
− A) · (U1Z + U1Z′) + E · (U1ZS + U1ZS′))/2, 4M + 1S

V ′′
1
← U′′

1
· (U′′

1
− C) + F · (C − F) + E · (H − U′′

0
), 3M

V ′′
0
← H · (C − F) + U′′

0
· (U′′

1
− C), V ′′

1
← V ′′

1
· ZZ + K · V1, V ′′

0
← V ′′

0
+ K · V0, 5M

U′′
1
← U′′

1
·D · ZZ, U′′

0
← U′′

0
·D, Z′′ ← ZZ · J. 4M

Output: D′′ = ρ(D ⊕D′) = (U′′
1

, U′′
0

, V ′′
1

, V ′′
0

, Z′′). Total 43M + 4S

AFFINE

DOUBLING

Input: D = (u1, u0, v1, v0, U1 = u2

1
, U0 = u1u0), with constants f2, f3 Operations

vv ← v2

1
, vu← (v1 + u1)2 − vv − U1, M1 ← 2v0 − 2vu, M2 ← 2v1 · (u0 + 2U1), 1M + 2S

M3 ← −2v1, M4 ← vu + 2v0, z1 ← f2 + 2U1 · u1 + 2U0 − vv, z2 ← f3 − 2u0 + 3U1, 1M

t1 ← (M2 − z1) · (z2 −M1), t2 ← (−z1 −M2) · (z2 + M1), 2M

t3 ← (M4 − z1) · (z2 −M3), t4 ← (−z1 −M4) · (z2 + M3), 2M

ℓ2 ← t1 − t2, ℓ3 ← t3 − t4, d← t3 + t4 − t1 − t2 − 2(M2 −M4) · (M1 + M3), 1M

A← 1/(d · ℓ3), B ← d · A, C ← d · B, D ← ℓ2 · B, E ← ℓ2
3
· A, I + 5M + 1S

u′′
1
← 2D − C2 − 2u1, u′′

0
← (D − u1)2 + 2C · (v1 + C · u1), U′′

1
← u′′2

1
, U′′

0
← u′′

1
· u′′

0
, 3M + 3S

v′′
1
← D · (u1 − u′′

1
) + U′′

1
− U1 − u′′

0
+ u0, v′′

0
← D · (u0 − u′′

0
) + U′′

0
− U0, 2M

v′′
1
← E · v′′

1
+ v1, v′′

0
← E · v′′

0
+ v0. 2M

Output: D′′ = ρ([2]D) = (u′′
1

, u′′
0

, v′′
1

, v′′
0

, U′′
1

= u′′2
1

, U′′
0

= u′′
1

u′′
0
). Total I + 19M + 6S

PROJECTIVE

DOUBLING

Input: D = (U1, U0, V1, V0, Z), curve constants f2, f3 Operations

UU ← U1 · U0, U1S ← U2
1

, ZS ← Z2, V 0Z ← V 0 · Z, U0Z ← U0 · Z, V1S ← V 12, 3M + 3S

UV ← (V1 + U1)2 − V1S − U1S , M1 ← 2 · V 0Z − 2 · UV, M2 ← 2 · V 1 · (U0Z + 2 · U1S), 1M + 1S

M3 ← −2 · V1, M4 ← UV + 2 · V 0Z, z1 ← Z · (f2 · ZS − V1S) + 2 · U1 · (U1S + U0Z), 2M

z2 ← f3 · ZS − 2 · U0Z + 3 · U1S , t1 ← (M2 − z1) · (z2 −M1), t2 ← (−z1 −M2) · (z2 + M1), 2M

t3 ← (−z1 + M4) · (z2 −M3), t4 ← (−z1 −M4) · (z2 + M3), 2M

ℓ2 ← t1 − t2, ℓ3 ← t3 − t4, d← t3 + t4 − t1 − t2 − 2 · (M2 −M4) · (M1 + M3), 1M

A← ℓ2
2
, B ← ℓ2

3
, C ← ((ℓ2 + ℓ3)2 − A − B)/2, D ← B · Z, E ← B · U1, 2M + 3S

F ← d2, G← F · Z, H ← ((d + ℓ3)2 − F − B)/2, J ← H · Z, K ← V1 · J, L← U0Z · B, 4M + 2S

U′′
1
← 2 · C − 2 · E −G, U′′

0
← A + U1 · (E − 2 · C + 2 ·G) + 2 ·K, 1M

V ′′
1
← (C − E − U′′

1
) · (E − U′′

1
) + B · (L − U′′

0
), V ′′

0
← L · (C − E) + (U′′

1
− C) · U′′

0
. 4M

V ′′
1
← V ′′

1
· Z + K ·D, V ′′

0
← V ′′

0
+ V 0Z ·H · D, M ← J · Z, U′′

1
← U′′

1
·M, U′′

0
← U′′

0
· J, 7M

Z′′ ←M ·D. 1M

Output: D′′ = ρ([2]D) = (U′′
1

, U′′
0

, V ′′
1

, V ′′
0

, Z′′). Total 30M + 9S

Table 7.1: Explicit formulas for a divisor addition D′′ = D ⊕ D′ involving two
distinct degree 2 divisors on Jac(C2), and for divisor doubling D′′ = [2]D of a
degree 2 divisor on Jac(C2).

7.4. Generating explicit formulas in genus 2 219

u2
1 and u1u0.

7.4.2 General divisor doubling in genus 2

LetD = (x2+u1x+u0, v1x+v0) ∈ Ĵac(C2) be a divisor with supp(D) = {P1, P2}∪
{P∞}. To compute [2]D = D⊕D, we seek the cubic polynomial ℓ(x) =

∑3
i=0 ℓix

i

that has zeroes of order two at both P1 = (x1, y1) and P2 = (x2, y2). We can

immediately make use of the equations arising out of the interpolation of supp(D)

in (7.3) to obtain the first g = 2 equations.

There are two possible approaches to obtaining the second set of g = 2 equa-

tions. The first is the geometric flavoured approach that was used in the proof

of Proposition 7.5 and in Example 7.3.3, which involves matching the deriva-

tives. The second involves reducing the substitution of ℓ(x) into Cg by 〈u(x)2〉
to ensure the prescribed zeros are of multiplicity two, and using the associated

Mumford ideals to linearise the equations. For the purpose of presenting both

approaches, we will illustrate the latter approach in this subsection, but it is

important to highlight that the guaranteed existence of linear equations follows

from the expression gained when matching derivatives in the geometric approach.

We start by setting y = ℓ(x) into C2 and reducing modulo the ideal 〈(x2 +

u1x+ u0)
2〉, which gives

Ω(x) = Ω0 + Ω1x+ Ω2x
2 + Ω3x

3 ≡ (

3∑

i=0

ℓix
i)2 − f(x) mod 〈(x2 + u1x+ u0)

2〉

where

Ω0 = ℓ23(2u
3
0 − 3u2

1u
2
0) + 4ℓ3ℓ2u1u

2
0 − 2ℓ3ℓ1u

2
0 + ℓ20 − ℓ22u2

0 − 2u1u
2
0 − f0,

Ω1 = 6ℓ23(u1u
2
0 − u3

1u0) + 2ℓ3ℓ2(4u
2
1u0 − u2

0) + 2ℓ1ℓ0 − 4ℓ3ℓ1u0u1

− 2ℓ22u0u1 − 4u2
1u0 + u2

0 − f1,

Ω2 = 3ℓ23(u
2
0 − u4

1) + ℓ21 − ℓ22(u2
1 + 2u0)− 2u0u1 − 2u3

1 + 4ℓ3ℓ2(u
3
1 + u0u1)

− 2ℓ3ℓ1(2u0 + u2
1) + 2ℓ2ℓ0 − f2,

Ω3 = 2ℓ23(3u1u0 − 2u3
1) + 2ℓ2ℓ1 + 2ℓ3ℓ2(3u

2
1 − 2u0)− 2ℓ22u1 − 4ℓ3ℓ1u1 + 2ℓ3ℓ0

− 3u2
1 + 2u0 − f3.

It follows that Ωi = 0 for 0 ≤ i ≤ 3. Although we now have four more equations

relating the unknown ℓi coefficients, these equations are currently nonlinear.

220 Chapter 7. Hyperelliptic arithmetic via linear algebra

We linearize by substituting the linear equations taken from (7.3) above, and

reducing the results modulo the Mumford ideals given in (7.2). We use the two

linear equations Ω̃2, Ω̃3 resulting from Ω2,Ω3, given as

Ω̃2 = 4ℓ1v1 + 2ℓ2(v0 − 2v1u1)− 6ℓ3u0v1 − 2u0u1 − 2u3
1 − 3v2

1 − f2,

Ω̃3 = 2v1ℓ2 + ℓ3(2v0 − 4u1v1) + 2u0 − 3u2
1 − f3,

which combine with the linear interpolating equations (in (7.3)) to give rise to
the linear system

−1 0 u0 −u1u0

0 −1 u1 −u2
1 + u0

0 4v1 2v0 − 2v1u1 −6u0v1

0 0 2v1 −4v1u1 + 2v0

·

ℓ0

ℓ1

ℓ2

ℓ3

=

−v0
−v1

f2 + 2u1u0 + 2u3
1 + 3v2

1

f3 − 2u0 + 3u2
1

.

As was the case with the divisor addition in the previous section, we can first

solve a smaller system for ℓ2 and ℓ3, by adding the appropriate multiple of the

second row to the third row above, to give

(

2v1u1 + 2v0 −2u0v1 − 4v1u
2
1

2v1 −4v1u1 + 2v0

)

·
(

ℓ2

ℓ3

)

=

(

f2 + 2u1u0 + 2u3
1 − v2

1

f3 − 2u0 + 3u2
1

)

.

After solving the above system for ℓ2 and ℓ3, the process of obtaining D′′ =

[2]D = (x2 + u′′1x + u′′0, v
′′
1x + v′′0) is identical to the case of addition in the

previous section, giving rise to the analogous explicit formulas in Table 7.1.

7.4.3 Comparisons of formulas in genus 2

Table 7.2 draws comparisons between the explicit formulas obtained from the

above approach and the explicit formulas presented in previous work. In im-

plementations where inversions are expensive compared to multiplications (i.e.

I > 20M), it can be advantageous to adopt projective formulas which avoid

inversions altogether. Our projective formulas compute scalar multiples faster

than all previous projective formulas for general genus 2 curves. We also note

that our homogeneous projective formulas require only 5 coordinates in total,

which is the heuristic minimum for projective implementations in genus 2.

In the case of the affine formulas, it is worth commenting that, unlike the case

of elliptic curves where point doublings are generally much faster than additions,

affine genus 2 operations reveal divisor additions to be the significantly cheaper

7.5. The general description 221

Fq inversions Previous work # Doubling Addition Mixed

I coords M S M S M S

Harley [Har,GH00] 4 30 - 24 3 -
2 Lange [Lan01] 4 24 6 24 3 -

Matsuo et al. [MCT01] 4 27 - 25 - -
Takahashi [Tak02] 4 29 - 25 - -

Miyamoto et al. [MDM+02] 4 27 - 26 - -
1 Lange [Lan05] 4 22 5 22 3 -

This work 6 19 6 17 4 -
Wollinger and Kovtun [WK07] 5 39 6 46 4 39 4

Lange [Lan02b,Lan05] 5 38 6 47 4 40 3
- Fan et al. [FGJ08] 5 39 6 - - 38 3

Fan et al. [FGJ08] 8 35 7 - - 36 5
Lange [Lan02c,Lan05] 8 34 7 47 7 36 5

This work 5 30 9 43 4 36 5

Table 7.2: Comparisons between our explicit formulas for genus 2 curves over
prime fields and previous formulas using CRT based composition.

operation. In cases where an addition would usually follow a doubling to compute

[2]D⊕D′, it is likely to be computationally favourable to instead compute (D⊕
D′) ⊕ D, provided temporary storage of the additional intermediate divisor is

not problematic.

Lastly, the formulas in Table 7.1 all required the solution to a linear system of

dimension 2. This would ordinarily require 6 Fq multiplications, but we applied

Hisil’s trick [His10, eq. 3.8] to instead perform these computations using 5 Fq

multiplications. In implementations where extremely optimised multiplication

routines give rise to Fq addition costs that are relatively high compared to Fq

multiplications, it may be advantageous to undo such tricks (including M-S

trade-offs) in favour of a lower number of additions.

7.5 The general description

This section presents the algorithm for divisor composition on hyperelliptic Jaco-

bians of any genus g. The general method for reduction has essentially remained

the same in all related publications following Cantor’s original paper (at least

in the case of low genera), but we give a simple geometric interpretation of the

number of reduction rounds required in Section 7.5.3 below.

222 Chapter 7. Hyperelliptic arithmetic via linear algebra

7.5.1 Composition for g ≥ 2

We extend the composition described for genus 2 in sections 7.4.1 and 7.4.2 to

hyperelliptic curves of arbitrary genus. Importantly, there are two aspects of this

general description to highlight.

(i) In contrast to Cantor’s general description of composition which involves

polynomial arithmetic, this general description is immediately explicit in

terms of Fq arithmetic.

(ii) The required function ℓ(x) is of degree 2g−1 and therefore has 2g unknown

coefficients. Thus, we would usually expect to solve a linear system of

dimension 2g, but the linear system that requires solving in the Mumford

function field is actually of dimension g.

Henceforth we use M · x = z to denote the associated linear system of di-

mension g, and we focus our discussion on the structure of M and z.

In the case of a general divisor addition, M is computed as M = U − U′,

where U and U′ are described by D and D′ respectively. In fact, as for the

system derived from coordinates of points above, the matrix M is completely

dependent on u(x) and u′(x), whilst the vector z depends entirely on v(x) and

v′(x). Algorithm 7.1 details how to build U (resp. U′), where the first column of

U is initialised as the Mumford coordinates {ui}1≤i<g of D, and the remaining

g2− g entries are computed by proceeding across the columns and taking Ui,j =

ui−1 ·Ug,j−1 + Ui−1,j−1. This relationship is obtained by a careful generalisation

of the process that computed (7.4) from (7.3) in the case of genus 2.

Depending on the genus, we remark that Algorithm 7.1 will most likely not be

the fastest way to compute M. Instead, we propose that a faster routine is likely

to be achieved by using Algorithm 7.1 to determine the algebraic expression for

each of the elements in M, and tailor making optimized formulas to generate its

entries, in the same way that the previous section did for genus 2.

In addition, there is alternative way to view the structure (and computation)

of the matrix M. This follows from observing that both U and U′ can actually

be written as a sum of g matrices that are computed as outer products; let

c = (c1, .., cg), c̃ = (c̃1, ..., c̃g) ∈ Fgq be two vectors that are derived solely from

7.5. The general description 223

Algorithm 7.1 General composition (addition) of two distinct divisors.

Input: D = {ui, vi}0≤i≤g−1, D
′ = {u′i, v′i}0≤i≤g−1.

Output: ℓ(x) =
∑2g−1

i=0 ℓix
i such that supp(D) ∪ supp(D′) ⊂ supp(div(ℓ)).

1: U,U′,M← {0}g×g ∈ Fg×gq , z← {0}g ∈ Fgq .
2: for i from 1 to g do

3: Ug+1−i,1 ← −ug−i ; U′g+1−i,1 ← −u′g−i
4: end for

5: for j from 2 to g do

6: U1,j ← Ug,j−1 ·U1,1 ; U′1,j ← U′g,j−1 ·U′1,1.
7: for i from 2 to g do

8: Ui,j ← Ug,j−1 ·Ui,1 + Ui−1,j−1 ; U′i,j ← U′g,j−1 ·U′i,1 + U′i−1,j−1.
9: end for

10: end for

11: M← U−U′.
12: for i from 1 to g do

13: zi ← vi−1 − v′i−1

14: end for

15: Solve M · x = z

16: Compute x̃ = U · x
17: for i from 1 to g do

18: x̃i ← vg−i − x̃i
19: end for

20: return ℓ(x) (from x̃ = {ℓ0, ..., ℓg−1} and x = {ℓg, ..., ℓ2g−1})

the g Mumford coordinates belonging to D, then U is given by the sum

c1c̃1 . . . c1c̃g

c2c̃1 . . . c2c̃g
.
..

. . .
.
..

cg−1c̃1 . . . cg−1c̃g

cg c̃1 . . . cg c̃g

+

0 0 . . . 0

0 c1c̃1 . . . c1c̃g−1

.

.. . . .
. . .

.

..

0 cg−2c̃2 . . . cg−2c̃g−1

0 cg−1c̃2 . . . cg−1c̃g−1

+. . .+

0 . . . 0 0

0 . . . 0 0

.

.. . . .
. . .

.

..

0 . . . 0 0

0 . . . 0 c1c̃1

.

Example 7.5.1. Assume a general genus 3 curve and let the Mumford represen-

tations of the divisors D and D′ be as usual. The matrix U is given as

U =

(
−u0 u2u0 (−u2

2 + u1)u0

−u1 u2u1 (−u2
2 + u1)u1

−u2 u2
2 (−u2

2 + u1)u2

)

+

(
0 0 0

0 −u0 u2u0

0 −u1 u2u1

)

+

(
0 0 0

0 0 0

0 0 −u0

)

,

and U′ is given identically. In this case c = (u0, u1, u2)
T and c̃ = (−1, u2,−u2

2 +

u1)
T . Setting M = U − U′ and z = (v0 − v′0, v1 − v′1, v2 − v′2)

T , we find the

g = 3 coefficients ℓ3, ℓ4 and ℓ5 of the quintic ℓ(x) =
∑5

i=0 ℓix
i that interpolates

the 6 non-trivial elements in supp(D) ∪ supp(D′) by solving M · x = z for

224 Chapter 7. Hyperelliptic arithmetic via linear algebra

x = (ℓ3, ℓ4, ℓ5)
T . The remaining coefficients are found via a straightforward

matrix multiplication as x̃ = (ℓ0, ℓ1, ℓ2)
T = U · x.

The immediate observation in general is that cc̃T is the only outer product

that requires computation in order to determine U entirely.

For general divisor doublings the description of the linear system is much

longer; this is because the right hand side vector z is slightly more complicated

than in the case of addition: as is the case with general Weierstrass elliptic

curves, additions tend to be independent of the curve constants whilst doublings

do not. We reiterate that, for low genus implementations at least, Algorithm 7.2

is intended to obtain the algebraic expressions for each element in M; as was the

case with genus 2, a faster computational route to determining the composition

function will probably arise from genus specific attention that derives tailor-made

explicit formulas. Besides, the general consequence of Remark 7.4.2 is that many

(if not all) of the values constituting U will have already been computed in the

previous point operation, and can therefore be temporarily stored and reused.

7.5.2 Handling special cases

The description of divisor composition herein naturally encompasses the special

cases where either (or both) of the divisors have degree less than g. In fact,

Proposition 7.1 trivially generalises to describe the set of divisors on Jac(Cg)

whose effective parts have degree d ≤ g, and can therefore be used to obtain the

Mumford ideals associated with special input divisors3.

This will often result in fewer rounds of reduction and a simpler linear system.

For example, whilst the general addition of two full degree divisors in genus 3

requires an additional round of reduction after the first points of intersection are

found (see Figure 1 and Figure 2), it is easy to see that any group operation on a

genus 3 curve involving a divisor of degree less than 3 will give rise to a reduced

divisor immediately. Clearly, the linear systems in these cases are smaller, and

therefore the explicit formulas arising in these special cases will always be much

faster, in agreement with all prior expositions (cf. [ACD+05, §14]). In higher

genus implementations that do not explicitly account for all special cases of

inputs, Katagi et al. [KKAT04] noted that it can still be very advantageous to

3Perhaps the most general consequence of Proposition 7.1 is using it to describe (or enu-
merate) the entire Jacobian by summing over all d, as #Jac(Cg) = #Cg +

∑g

d=2 nd, where nd

is the number of 2d-tuples lying in the intersection of the d associated hypersurfaces.

7.5. The general description 225

Algorithm 7.2 General composition (doubling) of a unique divisor with itself.

Input: D = {ui, vi}0≤i≤g−1 and curve coefficients f0, f1, ..., f2g−1.

Output: ℓ(x) =
∑2g−1

i=0 ℓix
i such that each non-trivial element in supp(D) occurs with

multiplicity two in div(ℓ) .

1: U,M← {0}g×g ∈ Fg×gq , v← {0}g−1 ∈ Fg−1
q , z← {0}g ∈ Fgq

2: for i from 1 to g do

3: Ug+1−i,1 ← −ug−i
4: end for

5: for j from 2 to g do

6: U1,j ← Ug,j−1 ·U1,1.
7: for i from 2 to g do

8: Ui,j ← Ug,j−1 ·Ui,1 + Ui−1,j−1.
9: end for

10: end for

11: uextra ← Ug,1 ·Ug,g + Ug−1,g.
12: for i from 1 to g do

13: Mg+1−i,1 ← vg−i
14: end for

15: for j from 2 to g do

16: Mi,j ←Mi,j + Ug,j−1 ·Mi,1 + Mg,j−1 ·Ui,1 + Mi−1,j−1.
17: end for

18: for i from 1 to g − 1 do

19: zg+1−i ← zg+1−i + 2 ·Ug,1 ·Ug+1−i,1 + Ug−i,1 + Ug,i+1 + f2g−i.
20: for j from 1 to i do

21: zg−i ← zg−i + f2g−1−i+j · Ug,j .
22: vi ← vi −Mg+1−j,1 ·Mg−i+j,1.
23: end for

24: end for

25: z1 ← z1 + 2 ·Ug,1 ·U1,1 + fg.
26: zg−1 ← zg−1 + v1.
27: for i from 3 to g do

28: for j from 2 to i− 1 do

29: zg+1−i ← zg+1−i + vi−j ·Ug,j−1.
30: end for

31: zg+1−i ← zg+1−i + vi−1.
32: end for

33: z1 ← z1 + uextra.
34: for i from 1 to g do

35: zi ← zi/2.
36: end for

37: Solve M · x = z

38: Compute x̃ = −U · x
39: for i from 1 to g do

40: x̃i ← vg−i + x̃i
41: end for

42: return ℓ(x) (from x̃ = {ℓ0, ..., ℓg−1} and x = {ℓg, ..., ℓ2g−1})

226 Chapter 7. Hyperelliptic arithmetic via linear algebra

explicitly implement and optimize one of the special cases.

7.5.3 Reduction in low genera

Gaudry’s chapter [Gau05] gives an overview of different algorithms (and com-

plexities) for the reduction phase. Our experiments lead us to believe that the

usual method of reduction is still the most preferable for small g. In genus 2

we saw that point additions and doublings do not require more than one round

of reduction, i.e. the initial interpolating function intersects C2 in at most two

more places (refer to Figure 3), immediately giving rise to the reduced divisor

that is the sum. In genus g ≥ 3 however, this is generally not the case. Namely,

the initial interpolating function intersects Cg in more than g places, giving rise

to an unreduced divisor that requires further reduction. We restate Cantor’s

complexity argument concerning the number of rounds of reduction [Can87, §4]

in a geometric way in the following proposition.

Proposition 7.6. In the addition of any two reduced divisor classes on the Ja-

cobian of a genus g hyperelliptic curve, the number of rounds of further reduction

required to form the reduced divisor is at most ⌊g−1
2
⌋, with equality occurring in

the general case.

Proof. For completeness note that addition on elliptic curves in Weierstrass form

needs no reduction, so take g ≥ 2. The composition polynomial y = ℓ(x) with

the 2g prescribed zeros (including multiplicities) has degree 2g− 1. Substituting

y = ℓ(x) into Cg : y2+h(x)y = f(x) gives an equation of degree max{2g+1, 3g−
1, 2(2g−1)} = 2(2g−1) in x, for which there are at most 2(2g−1)−2g = 2g−2

new roots. Let nt be the maximum number of new roots after t rounds of

reduction, so that n0 = 2g − 2. While nt > g, reduction is not complete, so

continue by interpolating the nt new points with a polynomial of degree nt − 1,

producing at most 2(nt−1)−nt = nt−2 new roots. It follows that nt = 2g−2t−2,

and since t, g ∈ Z, the result follows.

7.6 Further implications and potential

This section is intended to further illustrate the potential of coupling a geometric

approach with linear algebra when performing arithmetic in Jacobians. It is our

7.6. Further implications and potential 227

hope that the suggestions in this section encourage future investigations and

improvements.

We start by commenting that our algorithm can naturally be generalised to

much more than standard divisor additions and doublings. Namely, given any

set of divisors D1, ..., Dn ∈ Cg and any corresponding set of scalars r1, ..., rn ∈ Z,

we can theoretically compute D =
∑n

i=1[ri]Di at once, by first prescribing a

function that, for each 1 ≤ i ≤ n, has a zero of order ri at each of the non-trivial

points in the support of Di. Note that if ri 6∈ Z+, then prescribing a zero of

order ri at some point P is equivalent to prescribing a pole of order −ri ∈ Z+ at

P instead. We first return to genus 1 to show that this technique can be used to

recover several results that were previously obtained by alternatively merging or

overlapping consecutive elliptic curve computations (cf. [ELM03,CJLM06]).

7.6.1 Simultaneous operations on elliptic curves

In the case of genus 1, the Mumford representation of reduced divisors is trivial,

i.e. if P = (x1, y1), the Mumford representation of the associated divisor is

DP = (x−x1, y1), and the associated Mumford ideal is (isomorphic to) the curve

itself. However, we can again explore using the Mumford representation as an

alternative to derivatives in order to generate the required linear systems arising

from prescribing multiplicities of greater than one. In addition, when unreduced

divisors in genus 1 are encountered, the Mumford representation becomes non-

trivial and very necessary for efficient computations.

To double-and-add or point triple on an elliptic curve, we can prescribe a

parabola ℓ(x) = ℓ2x
2 + ℓ1x + ℓ0 ∈ Fq(E) with appropriate multiplicities in ad-

vance, as an alternative to Eisenträger et al.’s technique of merging two con-

secutive chords into a parabola [ELM03]. Depending on the specifics of an im-

plementation, computing the parabola in this fashion offers the same potential

advantage as that presented by Ciet et al. [CJLM06]; we avoid any intermedi-

ate computations and bypass computing P + P ′ or [2]P along the way. When

tripling the point P = (xP , yP) ∈ E, the parabola is determined from the three

equalities ℓ(x)2 ≡ x3 + f1x + f0 mod 〈(x − u0)
i〉 for 1 ≤ i ≤ 3, from which we

take one of the coefficients that is identically zero in each of the three cases. As

one example, we found projective formulas which compute triplings on curves of

the form y2 = x3 + f0 and cost 3M + 10S. These are the second fastest tripling

formulas reported across all curve models [BL07a], being only slightly slower

228 Chapter 7. Hyperelliptic arithmetic via linear algebra

•P •P ′
•

•[2]P + P ′

Figure 7.5: Computing
[2]P +P ′ by prescribing
a parabola which inter-
sects E at P with mul-
tiplicity three.

•P

•

•[3]P

Figure 7.6: Tripling
the point P ∈ E by
prescribing a parabola
which intersects E at P
with multiplicity three.

•P •P̂1

•P̂2

Figure 7.7: Quadru-
pling the point P ∈ E
by prescribing a cubic
which intersects E at P
with multiplicity four.

(unless S < 0.75M) than the formulas for tripling-oriented curves introduced by

Doche et al. [DIK06] which require 6M + 6S.

We can quadruple the point P by prescribing a cubic function ℓ(x) = ℓ3x
3 +

ℓ2x
2+ℓ1x+ℓ0 which intersects E at P with multiplicity four (see Figure 7.7). This

time however, the cubic is zero on E in two other places, resulting in an unreduced

divisor DP̂ = P̂1 + P̂2, which we can represent in Mumford coordinates as DP̂ =

(û(x), v̂(x)) (as if it were a reduced divisor in genus 2). Our experiments agree

with prior evidence that it is unlikely that point quadruplings will outperform

consecutive doublings in the preferred projective cases, although we believe that

one application which could benefit from this description is pairing computations,

where interpolating functions are necessary in the computations. To reduce

DP̂ , we need the line y = ℓ̂(x) joining P̂1 with P̂2, which can be computed via

ℓ̂(x) ≡ ℓ(x) mod 〈û(x)〉. The update to the pairing function requires both ℓ(x)

and ℓ̂(x), as fupd = ℓ(x)/ℓ̂(x). We claim that it may be attractive to compute

a quadrupling in this fashion and only update the pairing function once, rather

than two doublings which update the pairing functions twice, particularly in

implementations where inversions don’t compare so badly against multiplications

[LMN10]. It is also worth pointing out that in a quadruple-and-add computation,

the unreduced divisor DP̂ need not be reduced before adding an additional point

P ′. Rather, it could be advantageous to immediately interpolate P̂1, P̂2 and P ′

7.6. Further implications and potential 229

with a parabola instead.

7.6.2 Simultaneous operations in higher genus Jacobians

Increasing the prescribed multiplicity of a divisor not only increases the degree

of the associated interpolating function (and hence the linear system), but also

generally increases the number of rounds of reduction required after composition.

In the case of genus 1, we can get away with prescribing an extra zero (double-

and-add or point tripling) without having to encounter any further reduction,

but for genus g ≥ 2, this will not be the case in general. For example, even

when attempting to simultaneously compute [2]D +D′ for two general divisors

D,D′ ∈ Jac(C2), the degree of the interpolating polynomial becomes 5, instead

of 3, and the dimension of the linear system that arises can only be trivially

reduced from 6 to 4. Our preliminary experiments seem to suggest that unless

the linear system can be reduced further, it is likely that computing [2]D + D′

simultaneously using our technique won’t be as fast as computing two consecutive

straightforward operations. However, as in the previous paragraph, we argue that

such a trade-off may again become favourable in pairing computations where

computing the higher-degree interpolating function would save a costly function

update.

7.6.3 Explicit formulas in genus 3 and 4

Developing explicit formulas for hyperelliptic curves of genus 3 and 4 has also

received some attention [Wol04,WPP05,GMA+05]. It will be interesting to see

if the composition technique herein can further improve these results. In light of

Remark 7.4.2 and the general description in Section 7.5, the new entries in the

matrix M will often have been already computed in the previous point operation,

suggesting an obvious extension of the coordinates if the storage space permits

it. Therefore the complexity of our proposed composition essentially boils down

to the complexity of solving the dimension g linear system in Fq, and so it would

also be interesting to determine for which (practically useful) genera one can find

tailor-made methods of solving the special linear system that arises in Section

7.5.1.

230 Chapter 7. Hyperelliptic arithmetic via linear algebra

7.6.4 Characteristic two, special cases, and more coordi-

nates

Although the proofs in Section 7.3 were for arbitrary hyperelliptic curves over

general fields, Section 7.4 simplified the exposition by focusing only on finite

fields of large prime characteristic. Of course, it is possible that the description

herein can be tweaked to also improve explicit formulas in the cases of special

characteristic two curves (see [ACD+05, §14.5]). In addition, it is possible that

the geometrically inspired derivation of explicit formulas for special cases of in-

puts will enhance implementations which make use of these (refer to Section

7.5.2). Finally, we only employed straightforward homogeneous coordinates to

obtain the projective versions of our formulas. As was the case with the pre-

vious formulas based on Cantor’s composition, it is possible that extending the

projective coordinate system will give rise to even faster formulas.

7.7 Summary of contributions

This chapter presents a new and explicit method of divisor composition for hyper-

elliptic curves. The method is based on using simple linear algebra to derive the

required geometric functions directly from the Mumford coordinates of Jacobian

elements. In contrast to Cantor’s composition which operates in the polynomial

ring Fq[x], the algorithm we propose is immediately explicit in terms of Fq op-

erations. We showed that this achieves the current fastest general group law

formulas in genus 2, and pointed out several other potential improvements that

could arise from our work.

Chapter 8

Conclusions and Future Work

We surveyed the broad field of pairing computation in Chapter 2, which laid

the foundations for our novel contributions in Chapters 3-7. In Chapter 3 we

presented the fastest explicit formulas for cryptographic pairing computations

on elliptic curves, which find immediate application in practice. In Chapter 4 we

gave systematic techniques for loop unrolling in the context of Miller’s algorithm,

and further showed that this technique gives significant improvements when it is

applied to “fixed argument pairings”, i.e. pairings that allow for precomputation.

In Chapter 5 we targeted pairings at the 256-bit level by looking for optimal

pairing-friendly curves from the BLS family with k = 24 – this extended the

earlier work by Pereira et al. [PJNB11] which focussed on the 128-bit security

level and k = 12 BN curves. In Chapter 6 we generalised the techniques from

Chapter 5 and applied them to several other families of pairing-friendly curves

that target all practical levels of security. Finally, in Chapter 7 we gave a new

algorithm for performing divisor arithmetic in Jacobians of hyperelliptic curves of

any genus. This algorithm not only finds application within the realm of pairing-

based cryptography, but also within the arena of hyperelliptic curve cryptography

(HECC).

For the moment at least, it seems that the pace of progress in the computation

of a standalone Tate pairing (variant) on an ordinary elliptic curve has steadied.

Indeed, Vercauteren [Ver10] and Hess [Hes08] showed that the Miller loop lengths

are now optimal, whilst at the same time (and in part due to our work) it

seems that all the avenues for savings within each iteration of Miller’s algorithm

231

232 Chapter 8. Conclusions and Future Work

have also been thoroughly explored. In addition, very recent results suggest

that finding complete families of pairing-friendly curves with ideal ρ values (like

k = 12 BN curves) for higher security levels is unlikely [Oka12]. Such “negative”

results could discourage those in the field (or even worse, newcomers) to keep

searching for further improvements. However, there is still a lot that remains to

be done.

While most of the effort has justifiably been concentrated towards the com-

putation of the pairing itself, non-pairing operations that are specific to pairing-

based protocols and which are often of equal importance have received less at-

tention. For example, fast hashing and exponentiation routines in G2 are a

necessity, and this has attracted attention in recent years [SBC+09b,FCKRH11].

Another important avenue that warrants further investigation is protocol-specific

optimisations in the context of multi-pairings or pairing products [Sco11].

Following on from our work in Chapter 4, fixed argument optimisations cer-

tainly have a lot more potential. In particular, since the final exponentiation

routine dilutes the relative speed ups obtained in Tate and ate-like pairings, it is

natural to consider the potential of precomputation when there is no final expo-

nentiation. We note the Weil pairing and the hyperelliptic ate pairing [GHO+07]

as two possible candidates. In the former case one might further consider the

potential of a fixed argument pairing in parallel (following the recent results

in [AKMRH11]), whilst in the latter case one could consider a superfluous (but

very fast) tailor-made final exponentiation to dispel any security doubts.

For now it appears that pairings on curves with genus g ≥ 2 are doomed to

remain slower than pairings on elliptic curves unless hyperelliptic curves with

ρ = g log q
log r

values much closer to 1 are found. The absence of a (necessary) final

exponentiation in the hyperelliptic ate pairing [GHO+07] makes the discovery

of such curves highly desirable, particularly for applications at higher levels of

security where the final exponentiation of the Tate and ate pairings on elliptic

curves dominates the complexity of the pairing algorithm.

Of course, one cannot rule out the existence of an algorithm that computes

the Tate or Weil pairings faster than Miller’s algorithm. Stange [Sta07] recently

presented the first such practical alternative for Tate pairing computations via

elliptic nets, and although her algorithm is currently slightly slower, there could

be optimisations that push it ahead of Miller’s algorithm.

In the most broad sense, we can perhaps dream that other cryptographically

233

suitable pairings exist beyond the realm of Weil and Tate pairings on abelian

varieties over finite fields, and hope that in such a case a more efficient method

of computation is possible. The discovery of such a pairing would no doubt send

the community in a flurry of excitement again.

234 Chapter 8. Conclusions and Future Work

Appendix A

Implementation-friendly BLS

curves with k = 24

Here we provide four lists of implementation-friendly BLS curves at security

levels where the entire BLS family is either competitive across all families, or are

clearly the current outright favorite. Each list (Table A.1 through to Table A.4)

corresponds to one of the four proposed subfamilies.

Each table lists curves where x0 is very sparse in signed binary representa-

tion, meaning here that it has weight 3, 4 or 5. Working with signed binary

representation for the Miller loop parameter and the powerings in the final ex-

ponentiation can be considered standard and extends the space of nice curves

compared to just using plain binary representation. Nevertheless, we also in-

cluded many x0 values which have the same plain binary representation as the

signed binary representation; these are the x0 values which share the same sign

for each power of 2.

All curves given have the implementation-friendly properties outlined in the

previous sections. In particular, curves in Table A.1 and Table A.3 have x0 ≡ 7

(mod 72) and x0 ≡ 31 (mod 72) respectively, and are given by E : y2 = x3 + 1;

curves in Table A.2 have x0 ≡ 16 (mod 72) and are given by E : y2 = x3 +4, and

curves in Table A.4 have x0 ≡ 64 (mod 72) and are given by E : y2 = x3− 2. In

all cases all parameters are uniquely defined by the short value x0.

The curves in all four tables were found by trying all possibilities for the signed

binary representation of x0 with a fixed weight such that x0 belongs to the right

235

236 Appendix A. Implementation-friendly BLS curves with k = 24

congruence class modulo 72. In our search, we did not find any curves in the

considered range of parameter sizes where x0 is plus or minus a power of 2 (i.e.

weight 1) or where it is a binomial, a sum of two such powers (i.e. weight 2). In

this sense, our search indicates that weights 3, 4 and 5 are optimal for the security

levels considered in this work. The even congruences (x0 ≡ 16, 64 (mod 72)) gain

the slight advantage over the odd congruences (x0 ≡ 7, 31 (mod 72)), since the

last bit of the binary representation of odd congruences is obviously forced to

be 1. Thus, curves in the even congruence classes commonly have weights 3 and

4 whilst curves in the odd congruence classes commonly have weights 4 and 5.

On the other hand, the odd congruences both give rise to curves with b = 1

which would make for slightly faster point operations, but (all other things being

equal) one would probably achieve a faster implementation by taking the x0 value

with the lowest weight possible, since one less bit in x0 saves over 10 full Fq24

multiplications per single pairing.

Restricting x0 to sparse values only results in a certain inflexibility when

adjusting the parameter sizes to exact values, for example certain multiples of

word sizes on a target implementation platform. However, recent high-speed

implementations of pairings at the 128-bit security level have shown that lazy

reduction techniques give significant improvements in the field tower arithmetic

and thus the overall pairing computation [BGDM+10,AKL+11]. Such techniques

can be employed efficiently when the bit size of the prime characteristic q is a

few bits less than a multiple of the word size, which provides a certain space

for delaying reductions for field arithmetic. In Tables A.1, A.2, A.3 and A.4 we

have tried to account for this (as far as possible), by including different choices of

curves at each security level that have a varying gap between the prime field size

and multiples of standard word sizes 32 and 64, which are also given in the table.

We believe that most implementors of pairings in software will find a suitable

curve at the desired security level in our tables, or else will be able to find a

suitable curve themselves with similar properties.

237

security x0 ≡ 7 (mod 72) weight q words r words security
level (bits) for q (bits) for r (bits)

192 −1− 28 + 238 + 245 4 449 8× 64 361 12× 32 181
−1 + 23 − 25 − 219 + 246 5 459 368 184
−1− 211 − 226 − 235 − 247 5 469 377 189
−1 + 219 − 224 + 227 − 248 5 479 384 6× 64 192
−1− 211 − 228 − 235 − 249 5 489 16× 32 393 13× 32 197
−1− 24 − 221 − 250 4 499 401 201
−1 + 211 − 228 − 251 4 509 409 205

−1− 222 − 226 − 236 − 252 5 519 9× 64 417 7× 64 209
−1 + 244 + 251 + 253 4 532 427 214

224 −1− 23 − 229 − 238 − 255 5 549 18× 32 441 14× 32 221
−1 + 23 − 211 − 251 + 256 5 558 448 224
−1− 215 − 222 − 256 4 559 449 8× 64 225

−1− 216 + 223 − 228 + 257 5 569 456 228
−1− 228 + 251 + 258 4 579 10× 64 465 233

−1− 212 − 228 − 250 − 258 5 579 465 233

256 −1 + 215 + 243 − 261 4 609 20× 32 488 16× 32 244
−1 + 249 + 255 + 262 4 619 497 249

−1− 219 − 223 − 226 − 263 5 629 505 253
−1− 28 − 235 − 261 − 263 5 632 507 254
−1 + 217 − 254 + 261 − 264 5 637 511 256
−1 + 235 + 260 − 264 4 638 512 256

−1 + 210 + 214 − 218 + 264 5 639 512 256
−1− 23 − 237 − 250 − 265 5 649 11× 64 521 9× 64 261

288 −1− 252 + 259 − 281 4 809 13× 64 648 11× 64 282
−1− 226 − 274 + 282 4 819 656 283
−1 + 221 − 273 − 282 4 819 657 283

−1− 27 − 213 − 227 − 282 5 819 657 283
−1− 211 − 223 − 232 − 283 5 829 665 285
−1− 248 − 252 − 272 − 284 5 839 14× 64 673 22× 32 286
−1 + 28 − 212 + 216 − 285 5 849 680 287
−1− 23 + 231 − 286 4 859 688 289
−1− 216 − 220 − 287 4 869 28× 32 697 290
−1 + 253 − 256 + 288 4 879 704 292
−1 + 223 + 267 + 290 4 899 15× 64 721 12× 64 295

320 −1− 212 − 293 − 295 − 2107 5 1069 17× 64 857 14× 64 317
−1 + 265 − 275 + 2109 4 1089 18× 64 872 319
−1− 264 − 2100 + 2110 4 1099 880 321
−1 + 215 + 293 − 2111 4 1109 888 322
−1− 213 + 257 − 2112 4 1119 896 28× 32 323

Table A.1: BLS curves with low-weight parameter x0 ≡ 7 (mod 72) aiming at
several security levels given in the first column. The columns “words for q” and
“words for r” give the necessary number of 32- or 64-bit words to store the values
for q and r, respectively. The last column provides the estimated actual security
by the formula in [Sma10].

238 Appendix A. Implementation-friendly BLS curves with k = 24

security x0 ≡ 16 (mod 72) weight q words r words security
level (bits) for q (bits) for r (bits)

192 247 + 216 − 25 3 469 15× 32 377 12× 32 188
247 + 243 + 236 + 23 4 470 377 188
247 + 244 − 232 + 27 4 471 378 189
−247 − 245 + 232 + 228 4 472 379 189
−248 + 245 + 231 − 27 4 477 383 191
248 − 214 − 212 − 24 4 479 384 192
−250 + 221 + 217 − 213 4 499 8× 64 400 7× 64 200
251 − 248 + 246 − 216 4 507 407 203
−251 + 247 − 222 + 215 4 508 408 204
−251 − 28 − 26 − 24 4 509 409 204
−251 − 248 + 245 + 239 4 510 410 205

224 256 − 253 − 231 − 29 4 557 9× 64 447 7× 64 223
−256 + 240 − 226 − 26 4 559 448 224

256 + 240 − 220 3 559 449 15× 32 224
257 + 225 + 218 + 211 4 569 457 228
257 + 254 + 251 + 239 4 571 458 229

256 263 − 247 + 238 3 629 10× 64 504 8× 64 252
263 + 259 + 245 − 217 4 630 505 252
−263 − 260 − 244 − 216 4 631 506 253
−264 + 261 − 235 + 23 4 637 511 254
264 − 246 + 215 + 29 4 639 512 255

288 283 − 278 + 260 − 222 4 828 13× 64 664 11× 64 284
−283 − 246 + 224 3 829 665 285

283 + 281 + 212 + 27 4 832 667 285
−286 + 282 + 271 − 224 4 858 27× 32 688 22× 32 289
286 + 277 − 254 + 227 4 859 689 289
−289 + 286 + 228 − 215 4 887 14× 64 711 12× 64 293
289 − 284 − 250 + 210 4 888 712 293
289 + 233 − 229 − 26 3 889 713 293

320 2108 + 266 − 242 3 1079 17× 64 865 14× 64 318
−2108 − 2105 + 255 + 211 4 1081 866 318
2109 − 2106 + 271 + 222 4 1087 871 319

2111 + 270 + 266 3 1109 35× 32 889 28× 32 322
2111 + 2109 − 2100 − 283 4 1112 891 322
2111 + 2110 + 2103 + 243 4 1115 893 322
−2112 + 2107 − 257 + 233 4 1118 896 323

2112 − 266 + 242 3 1119 896 323

Table A.2: BLS curves with low-weight parameter x0 ≡ 16 (mod 72) aiming at
several security levels given in the first column. The columns “words for qs”
and “words for r” give the necessary number of 32- or 64-bit words to store the
values for q and r, respectively. The last column provides the estimated actual
security by the formula in [Sma10].

239

security x0 ≡ 31 (mod 72) weight q words r words security
level (bits) for q (bits) for r (bits)

192 −1 + 216 + 221 + 245 4 449 8× 64 361 12× 32 181
−1− 217 + 220 − 236 + 246 5 459 368 184
−1− 228 − 237 + 247 4 469 376 188
−1− 26 − 216 − 247 4 469 377 189

−1− 213 − 225 − 230 + 248 5 479 384 6× 64 192
−1− 215 − 232 − 248 4 479 385 13× 32 193
−1 + 227 − 243 − 248 4 479 385 193

−1− 215 − 219 − 231 − 248 5 479 385 193
−1− 28 + 215 + 217 − 250 5 499 16× 32 400 200
−1− 28 − 215 + 251 4 509 408 204
−1 + 218 − 228 − 252 4 519 9× 64 417 7× 64 209

224 −1− 237 + 240 − 243 + 255 5 549 18× 32 440 14× 32 220
−1− 218 + 229 + 235 − 256 5 559 448 224
−1 + 214 − 222 + 257 4 569 456 8× 64 228
−1 + 217 + 227 − 257 4 569 456 228

−1− 28 − 234 − 250 − 258 5 579 10× 64 465 233
−1 + 213 − 230 − 259 4 589 473 237

256 −1 + 216 + 220 − 224 + 262 5 619 20× 32 496 16× 32 248
−1 + 245 − 249 + 263 4 629 504 252

−1− 29 + 211 − 227 + 264 5 639 512 256
−1− 210 − 222 − 224 − 264 5 639 513 257
−1− 23 − 236 − 257 − 265 5 649 11× 64 521 9× 64 261
−1 + 220 − 243 + 258 + 265 5 649 521 261

288 −1 + 225 + 249 − 281 4 809 13× 64 648 11× 64 282
−1 + 23 − 274 − 281 4 809 649 282
−1− 211 + 257 − 282 4 819 656 283
−1− 218 − 239 + 283 4 829 664 285
−1− 218 − 239 + 283 4 829 664 285
−1 + 231 − 277 − 284 4 839 14× 64 673 22× 32 286
−1− 220 + 271 + 286 4 859 689 289

320 −1− 239 − 254 + 2107 4 1069 17× 64 856 14× 64 317
−1 + 23 + 210 + 218 − 2109 5 1089 18× 64 872 319
−1 + 226 + 236 + 257 − 2111 5 1109 888 322
−1− 28 − 224 + 237 + 2111 5 1109 889 28× 32 322

Table A.3: BLS curves with low-weight parameter x0 ≡ 31 (mod 72) aiming at
several security levels given in the first column. The columns “words for q” and
“words for r” give the necessary number of 32- or 64-bit words to store the values
for q and r, respectively. The last column provides the estimated actual security
by the formula in [Sma10].

240 Appendix A. Implementation-friendly BLS curves with k = 24

security x0 ≡ 64 (mod 72) weight q words r words security
level (bits) for q (bits) for r (bits)

192 −216 − 227 + 246 3 459 8× 64 368 12× 32 184
28 + 212 + 240 + 246 4 459 369 185
−214 + 219 + 221 − 247 4 469 376 6× 64 188
−212 − 230 − 235 − 248 4 479 385 13× 32 193
−210 − 214 − 217 − 248 4 479 385 193
215 + 222 + 225 + 249 4 489 16× 32 393 197
212 − 217 − 231 − 249 4 489 393 197

231 − 233 − 249 3 489 393 197

224 210 + 221 − 228 + 255 4 549 18× 32 440 14× 32 220
−24 − 230 + 232 − 256 4 559 448 224
25 − 210 + 227 + 256 4 559 449 8× 64 225
28 + 210 + 216 − 257 4 569 456 228
231 + 235 − 241 + 257 4 569 456 228
−27 + 210 + 216 + 258 4 579 10× 64 465 233
27 − 225 + 231 − 260 4 599 480 240

256 219 − 226 − 237 − 262 4 619 20× 32 497 16× 32 249
216 − 242 − 260 − 262 4 622 499 250
29 − 238 − 256 − 263 4 629 505 253
−214 + 239 − 256 − 263 4 629 505 253
−223 − 242 − 244 − 264 4 639 513 257
−212 − 221 − 260 − 264 4 640 513 257
217 − 252 − 254 − 265 4 649 11× 64 521 9× 64 261
−211 − 235 − 255 − 265 4 649 521 261

288 −240 − 249 − 281 3 809 13× 64 649 11× 64 282
−27 − 248 − 270 − 282 4 819 657 283
−27 − 246 − 254 − 282 4 819 657 283
−215 − 217 + 283 3 829 664 285

241 + 247 + 268 + 283 4 829 665 285
217 + 221 + 229 + 284 4 839 14× 64 673 22× 32 286
29 + 213 + 234 + 285 4 849 681 287
−231 − 266 + 286 3 859 688 289

28 + 226 + 234 + 286 4 859 689 289
234 − 282 − 287 3 869 28× 32 697 290

213 + 217 − 227 − 288 4 879 705 292
−210 − 212 − 214 − 289 4 889 713 293
−26 − 245 + 290 3 899 15× 64 720 12× 64 295
260 − 267 + 291 3 909 728 296

320 214 + 217 − 238 + 2107 4 1069 17× 64 856 14× 64 317
26 − 232 + 239 + 2107 4 1069 857 317
25 − 218 − 225 − 2108 4 1079 865 318
220 + 249 + 271 + 2111 4 1109 18× 64 889 28× 32 322

Table A.4: BLS curves with low-weight parameter x0 ≡ 64 (mod 72) aiming at
several security levels given in the first column. The columns “words for q” and
“words for r” give the necessary number of 32- or 64-bit words to store the values
for q and r, respectively. The last column provides the estimated actual security
by the formula in [Sma10].

Appendix B

Implementation-friendly curves

for attractive families with k ≤ 50

We provide numerous examples of low (Hamming or signed binary) weight im-

plementation friendly curves from all of the families considered in Chapter 6.

All of the curves given come from 5-star families. Those curves marked with an

asterisk have Hamming weights equal to their signed binary weight - we refer

back to the discussion at the beginning of Appendix A for more details on how

these curves were found.

241

242 Appendix B. Implementation-friendly curves for attractive families

112-bit secure curves
family subfamily/details x0 weight Fq (bits) / F

qk sec. r (bits) / E[r] sec.

1− 221 + 248 − 252 4 316 / 113 210 / 104

1 − 246 − 249 − 252 4 318 / 113 211 / 105

1 + 218 + 252 3∗ 317 / 113 211 / 105

1 + 212 + 228 + 252 4∗ 317 / 113 211 / 105

1− 26 + 233 + 253 4 323 / 114 215 / 107

1 − 24 − 214 − 254 4 329 / 115 219 / 109

1 − 224 + 233 + 254 4 329 / 115 219 / 109

1 − 217 − 235 − 254 4 329 / 115 219 / 109

x ≡ 1 mod 16 1 + 216 − 248 − 254 4 329 / 115 219 / 109

T1, a1, D 1 + 243 − 253 + 255 4 332 / 116 221 / 110

1 + 29 + 255 3∗ 335 / 116 223 / 111

1− 25 + 220 − 255 4 335 / 116 223 / 111

1 + 218 + 237 − 255 4 335 / 116 223 / 111

1− 221 + 240 − 255 4 335 / 116 223 / 111

1 + 237 + 241 + 255 4∗ 335 / 116 223 / 111

1 + 25 + 246 + 255 4∗ 335 / 116 223 / 111

1− 243 − 247 + 255 4 335 / 116 223 / 111

1− 213 + 254 − 256 4 338 / 117 225 / 112

−1 + 22 − 218 − 252 4 317 / 113 211 / 105

−1 + 22 + 225 + 227 + 253 5 323 / 114 215 / 107

−1 + 22 − 221 − 249 − 253 5 323 / 114 215 / 107

−1 + 22 + 29 + 251 − 254 5 328 / 115 218 / 108

−1 + 22 − 24 − 212 − 254 5 329 / 115 219 / 109

x ≡ 3 mod 16 −1 + 22 − 218 + 220 + 254 5 329 / 115 219 / 109

T1, a−2, D −1 + 22 + 213 + 224 + 254 5 329 / 115 219 / 109

−1 + 22 − 234 − 254 4 329 / 115 219 / 109

−1 + 22 − 26 − 218 + 255 5 335 / 116 223 / 111

−1 + 22 + 211 − 226 − 255 5 335 / 116 223 / 111

−1 + 22 + 234 − 240 + 255 5 335 / 116 223 / 111

Brezing- −1 + 22 + 211 − 243 − 255 5 335 / 116 223 / 111

Weng −1 + 22 + 241 + 248 + 255 5 335 / 116 223 / 111

k = 8 1 − 23 + 224 + 248 − 253 5 323 / 114 214 / 106

(see §6.2) 1 + 23 + 25 − 225 + 253 5 323 / 114 215 / 107

1 − 23 − 25 + 248 + 253 5 323 / 114 215 / 107

1− 23 − 219 − 229 − 254 5 329 / 115 219 / 109

1 + 23 − 27 − 242 − 254 5 329 / 115 219 / 109

1 + 23 − 239 + 245 + 254 5 329 / 115 219 / 109

1 + 23 + 235 − 248 − 254 5 329 / 115 219 / 109

1 − 23 − 241 − 253 + 255 5 332 / 116 221 / 110

1 − 23 − 211 + 216 − 255 5 335 / 116 223 / 111

x ≡ 9 mod 16 1 + 23 + 26 + 230 + 255 5∗ 335 / 116 223 / 111

T1, a1, M 1 − 23 + 213 + 238 − 255 5 335 / 116 223 / 111

1 − 23 − 220 + 238 − 255 5 335 / 116 223 / 111

1 + 23 − 223 + 238 + 255 5 335 / 116 223 / 111

1 − 23 − 217 + 239 + 255 5 335 / 116 223 / 111

1 − 23 + 237 + 239 − 255 5 335 / 116 223 / 111

1 − 23 − 223 − 244 + 255 5 335 / 116 223 / 111

1 − 23 + 29 − 246 + 255 5 335 / 116 223 / 111

1 + 23 − 236 − 247 − 255 5 335 / 116 223 / 111

1− 23 − 228 − 249 − 255 5 335 / 116 223 / 111

1− 23 − 237 − 252 − 255 5 336 / 116 223 / 111

−1 − 22 − 25 − 213 + 253 5 323 / 114 215 / 107

−1 − 22 − 29 + 223 + 253 5 323 / 114 215 / 107

−1− 22 + 219 + 233 + 253 5 323 / 114 215 / 107

−1− 22 − 212 − 227 − 254 5∗ 329 / 115 219 / 109

−1− 22 − 224 − 237 − 254 5∗ 329 / 115 219 / 109

−1− 22 + 237 + 239 + 254 5 329 / 115 219 / 109

x ≡ 11 mod 16 −1 − 22 − 27 + 213 − 255 5 335 / 116 223 / 111

T1, a2, M −1− 22 + 213 + 217 − 255 5 335 / 116 223 / 111

−1− 22 + 242 − 245 + 255 5 335 / 116 223 / 111

−1− 22 − 225 + 246 + 255 5 335 / 116 223 / 111

−1− 22 − 211 + 248 + 255 5 335 / 116 223 / 111

−1− 22 + 232 + 254 − 256 5 338 / 117 225 / 112

Table B.1: Low weight curves offering 112-bit security.

243

192-bit secure curves
family subfamily/details x0 weight Fq (bits) / F

qk sec. r (bits) / E[r] sec.

248 − 272 − 2105 3 629 / 187 421 / 210

223 + 234 + 2106 3∗ 635 / 188 425 / 212

246 + 274 − 2108 3 647 / 189 432 / 215

x ≡ 64 mod 72 −271 + 281 − 2109 3 653 / 190 436 / 217

T1, b−2, D −221 + 291 − 2109 3 653 / 190 436 / 217

−249 + 273 − 2111 3 665 / 192 444 / 221

−240 − 267 − 2111 3∗ 665 / 192 445 / 222

279 − 291 − 2111 3 665 / 192 445 / 222

−252 + 262 − 2105 3 629 / 187 420 / 209

219 + 284 − 2107 3 641 / 189 428 / 213

x ≡ 16, 88 mod 216 −223 + 296 + 2109 3 653 / 190 437 / 218

T1, b4, M 211 − 225 + 2110 3 659 / 191 440 / 219

BLS −241 + 282 − 2110 3 659 / 191 440 / 219

k = 12 260 − 2107 − 2112 3 671 / 192 449 / 224

(see §6.3) −224 − 232 − 234 − 2105 4∗ 629 / 187 421 / 210

−214 − 216 − 244 − 2107 4∗ 641 / 189 429 / 214

−24 − 230 − 261 − 2108 4∗ 647 / 189 433 / 216

−28 − 245 − 294 − 2108 4∗ 647 / 189 433 / 216

x ≡ 160 mod 216 −234 − 296 − 2103 − 2108 4∗ 647 / 189 433 / 216

T1, M, b−3 215 + 225 + 244 + 2109 4∗ 653 / 190 437 / 218

−29 − 291 − 299 − 2109 4∗ 653 / 190 437 / 218

−216 − 281 + 2110 3 659 / 191 440 / 219

−24 − 262 − 2101 − 2110 4∗ 659 / 191 441 / 220

25 + 247 + 258 + 2111 4∗ 665 / 192 445 / 222

223 + 225 + 266 + 2111 4∗ 665 / 192 445 / 222

−273 − 285 − 293 − 2111 4∗ 665 / 192 445 / 222

1 + 212 + 225 + 245 − 248 5 469 / 186 367 / 183

1 − 226 − 233 + 240 − 248 5 471 / 187 369 / 184

1 + 221 − 239 + 246 + 248 5 474 / 187 371 / 185

1 − 212 − 242 + 244 − 246 + 249 6 479 / 188 375 / 187

x′ ≡ 61, 93 mod 112 1 − 25 + 27 + 229 + 243 − 249 6 480 / 188 376 / 187

T1, a1, M 1 + 214 + 221 + 225 + 230 + 249 6∗ 481 / 189 377 / 188

1 − 214 + 224 + 236 + 246 + 249 6 482 / 189 378 / 188

1 − 229 + 231 − 241 − 247 − 249 6 484 / 189 379 / 189

1 − 229 − 236 + 238 − 248 + 250 6 486 / 189 381 / 190

1 − 220 + 223 − 227 + 230 − 250 6 491 / 190 385 / 192

−1 + 22 − 217 − 232 − 245 + 249 6 480 / 188 376 / 187

−1 + 22 − 27 − 211 + 220 + 249 6 481 / 189 377 / 188

x′ ≡ 23, 103 mod 112 −1 + 22 + 28 + 220 + 223 + 249 6 481 / 189 377 / 188

T1, M, a−2 −1 + 22 − 221 − 229 + 238 + 249 6 481 / 189 377 / 188

KSS −1 + 22 + 234 + 236 + 248 − 250 6 486 / 189 381 / 190

k = 16 −1 + 22 − 220 − 222 + 231 + 250 6 491 / 190 385 / 192

(see §6.4) −1 + 22 − 27 + 237 + 251 5 501 / 192 393 / 196

1 + 23 − 217 + 229 + 247 − 249 6 476 / 188 373 / 186

1− 23 + 215 + 220 + 232 + 249 6 481 / 189 377 / 188

1 + 23 + 29 − 215 + 238 − 249 6 481 / 189 377 / 188

x′ ≡ 5, 37 mod 112 1− 23 + 218 − 232 + 241 + 249 6 481 / 189 377 / 188

T1, a1, D 1 − 23 + 230 + 239 − 247 − 249 6 484 / 189 379 / 189

1 − 23 − 210 − 212 + 231 + 250 6 491 / 190 385 / 192

1 + 23 + 27 − 210 − 237 + 250 6 491 / 190 385 / 192

1 + 23 + 226 − 244 + 251 5 500 / 192 393 / 196

−1 − 22 − 231 − 235 + 248 5 471 / 187 369 / 184

x′ ≡ 47, 79 mod 112 −1 − 22 + 220 − 241 + 247 − 249 6 481 / 189 377 / 188

T1, a2, D −1 − 22 + 211 − 221 − 235 + 249 6 481 / 189 377 / 188

−1 − 22 − 24 − 216 − 226 − 250 6∗ 491 / 190 385 / 192

218 + 234 − 245 − 264 4 508 / 203 376 / 187

x′ ≡ 4 mod 36 212 + 246 − 251 − 264 4 508 / 203 376 / 187

T1, b2, D 228 + 247 − 251 + 264 4 508 / 203 376 / 187

25 − 215 + 242 − 265 4 516 / 205 382 / 190

220 − 224 + 228 + 235 − 264 5 508 / 203 376 / 187

24 − 28 − 223 + 239 − 264 5 508 / 203 376 / 187

−213 − 231 − 244 − 262 − 264 5∗ 511 / 204 378 / 188

222 − 236 − 238 − 263 + 265 5 513 / 204 380 / 189

KSS −215 − 220 + 245 + 263 − 265 5 513 / 204 380 / 189

k = 18 x′ ≡ 16 mod 108 −212 + 225 − 260 + 262 − 265 5 515 / 205 381 / 190

(see §6.5) T1, b6, M 218 + 229 − 235 + 237 + 265 5 516 / 205 382 / 190

27 − 216 + 240 + 260 + 265 5 516 / 205 382 / 190

−25 + 221 + 235 − 262 − 265 5 517 / 205 383 / 191

−224 − 231 + 243 + 262 + 265 5 517 / 205 383 / 191

225 + 234 + 237 + 264 − 266 5 521 / 206 386 / 192

−23 − 232 − 242 − 264 + 266 5 521 / 206 386 / 192

x′ ≡ 79 mod 108 21 + 229 + 259 + 265 4∗ 516 / 205 382 / 190
T1, M, b3

x′ ≡ 7, 43 mod 108 21 − 215 + 218 + 263 + 265 5 519 / 205 384 / 191
T1, M, b−4

Table B.2: Low weight curves offering 192-bit security.

244 Appendix B. Implementation-friendly curves for attractive families

224-bit secure curves
family subfamily/details/rating x0 weight Fq (bits) / F

qk sec. r (bits) / E[r] sec.

−234 + 258 + 2150 3 899 / 219 601 / 300

276 + 295 − 2151 3 905 / 219 604 / 301

−2101 − 2138 − 2151 3∗ 905 / 219 605 / 302

243 − 259 + 2152 3 911 / 220 608 / 303

−25 − 261 + 2153 3 917 / 221 612 / 305

x ≡ 64 mod 72 250 − 2131 − 2154 3 923 / 221 617 / 308

T1, b−2, D 296 − 2131 + 2155 3 929 / 222 620 / 309

27 − 295 − 2155 3 929 / 222 621 / 310

−265 + 277 + 2156 3 935 / 222 625 / 312

−275 + 2111 + 2156 3 935 / 222 625 / 312

230 − 259 − 2158 3 947 / 224 633 / 316

−221 + 260 + 2159 3 953 / 224 637 / 318

BLS −251 + 288 − 2150 3 899 / 219 600 / 299

k = 12 288 + 291 − 2151 3 905 / 219 604 / 301

(see §6.3) 222 + 246 + 2151 3∗ 905 / 219 605 / 302

x ≡ 16, 88 mod 216 −2105 − 2124 + 2152 3 911 / 220 608 / 303

T1, b4, M −247 + 2144 − 2154 3 923 / 221 616 / 307

−24 + 288 + 2154 3 923 / 221 617 / 308

−27 + 2137 − 2155 3 929 / 222 620 / 309

−2127 + 2140 + 2155 3 929 / 222 621 / 310

−227 − 2147 + 2155 3 929 / 222 620 / 309

−295 + 2116 − 2150 3 899 / 219 600 / 299

−259 − 267 − 2152 3∗ 911 / 220 609 / 304

x ≡ 160 mod 216 222 − 269 + 2153 3 917 / 221 612 / 305

T1, b−3, M −222 − 235 − 2153 3∗ 917 / 221 613 / 306

−283 − 2150 − 2155 3∗ 929 / 222 621 / 310

214 − 234 − 2159 3 953 / 224 637 / 318

−289 − 2100 − 2159 3∗ 953 / 224 637 / 318

1 − 222 + 256 + 266 − 269 5 679 / 219 535 / 267

1 + 214 + 217 + 236 + 269 5 681 / 220 537 / 268

1 + 225 − 233 − 265 − 270 5 691 / 221 545 / 272

x′ ≡ 61, 93 mod 112 1 − 220 − 262 + 269 − 271 5 696 / 222 549 / 274

KSS T1, a1, M 1 − 247 − 254 − 265 + 271 5 700 / 222 552 / 275

k = 16 1 + 221 − 238 + 251 + 271 5 701 / 222 553 / 276

(see §6.4) 1 + 223 + 248 + 257 + 271 5∗ 701 / 222 553 / 276

1− 215 − 255 − 266 − 272 5 711 / 224 561 / 280

x′ ≡ 5, 37 mod 112 1 − 23 + 212 + 222 + 230 − 269 6 681 / 220 537 / 268

T1, a1, D 1 − 23 + 211 − 247 − 271 5 701 / 222 553 / 276

220 + 226 + 236 − 276 4 604 / 219 448 / 223

231 − 236 + 251 − 276 4 604 / 219 448 / 223

238 + 241 + 262 + 276 4∗ 604 / 219 448 / 223

26 + 218 − 239 − 278 4 620 / 222 460 / 229

x′ ≡ 4 mod 36 −219 − 245 + 250 − 278 4 620 / 222 460 / 229

T1, b2, D 218 − 257 + 261 − 279 4 628 / 223 466 / 232

27 − 224 − 226 − 280 4 636 / 224 472 / 235

−23 − 218 − 249 + 280 4 636 / 224 472 / 235

224 − 240 + 256 + 280 4 636 / 224 472 / 235

26 − 213 − 273 − 280 4 636 / 224 472 / 235

KSS 218 − 240 − 266 + 274 − 276 5 601 / 219 446 / 222

k = 18 −230 + 240 + 250 + 276 4 604 / 219 448 / 223

(see §6.5) 213 + 241 + 258 + 271 + 276 5∗ 604 / 219 448 / 223

x′ ≡ 16 mod 108 −215 + 218 − 226 − 272 − 276 5 605 / 220 449 / 224

T1, b6, M 213 + 223 − 228 + 272 + 276 5 605 / 220 449 / 224

−26 − 224 − 237 + 275 − 277 5 609 / 220 452 / 225

−220 − 262 + 268 + 275 − 277 5 609 / 220 452 / 225

220 + 232 − 262 − 277 4 612 / 221 454 / 226

−213 + 231 + 237 + 254 + 277 5 612 / 221 454 / 226

x′ ≡ 7, 43 mod 108 21 + 217 − 222 + 230 + 276 5 604 / 219 448 / 223

T1, b−4, M 21 − 214 − 255 − 263 − 276 5 604 / 219 448 / 223

21 + 214 − 261 − 264 − 276 5 604 / 219 448 / 223
x′ ≡ 79 mod 108

T1, b3, M 21 + 27 − 211 − 241 + 277 5 612 / 221 454 / 226

Table B.3: Low weight curves offering 224-bit security.

245

256-bit secure curves
subfamily/details x0 weight Fq (bits) / F

qk sec. r (bits) / E[r] sec.

−211 − 215 − 223 − 226 4∗ 522 / 245 470 / 234

−24 − 27 + 221 − 225 + 227 5 531 / 247 478 / 238

22 + 27 − 218 − 221 + 227 5 538 / 249 484 / 241

26 − 212 − 217 − 227 4 539 / 249 485 / 242

24 + 28 + 216 − 223 − 227 5 541 / 249 486 / 242

−22 + 211 + 214 − 224 − 227 5 542 / 249 488 / 243

29 + 219 − 221 − 226 + 228 5 550 / 251 495 / 247

−24 − 212 + 224 − 226 + 228 5 553 / 252 498 / 248

24 − 27 + 214 − 225 + 228 5 555 / 252 499 / 249

x ≡ 5, 14, 32 mod 36 23 + 27 − 219 − 224 + 228 5 557 / 252 501 / 250

T1, b−3, M −22 − 29 + 211 + 217 + 228 5 559 / 253 503 / 251

−26 + 211 + 213 + 224 + 228 5 561 / 253 504 / 251

−21 − 24 + 222 − 226 − 228 5 565 / 254 508 / 253

−211 + 214 + 220 + 226 + 228 5 565 / 254 509 / 254

−23 − 25 + 212 − 214 + 227 − 229 6 571 / 255 513 / 256

26 − 213 + 219 + 222 − 227 + 229 6 571 / 255 514 / 256

210 + 212 − 218 − 223 + 227 − 229 6 571 / 255 514 / 256

21 + 25 + 215 + 226 − 229 5 575 / 256 517 / 258

−1 + 27 + 214 + 223 − 227 5 537 / 248 483 / 241

BLS −1 − 29 − 214 + 216 + 227 5 539 / 249 485 / 242

k = 27 21 + 25 + 215 − 225 + 228 5 555 / 252 499 / 249

(see §6.6) 24 + 27 + 222 + 225 − 228 5 555 / 252 499 / 249

x ≡ 11, ..., 1235 mod 1260 −21 + 25 − 221 + 223 − 228 5 558 / 253 502 / 250

T1, b9, D −22 + 25 + 215 − 228 4 559 / 253 503 / 251

23 − 211 + 217 + 223 + 228 5 560 / 253 504 / 251

1− 210 + 213 + 220 + 226 + 228 6 565 / 254 509 / 254

1 + 29 − 213 − 215 + 227 − 229 6 571 / 255 513 / 256

1 + 22 − 210 + 218 + 227 − 229 6 571 / 255 513 / 256

−1 + 28 + 213 − 215 + 227 5 539 / 249 485 / 242

−1− 28 − 220 − 224 + 226 − 228 6 553 / 252 498 / 248

−1− 27 − 217 − 221 + 224 − 228 6 557 / 252 501 / 250

x ≡ 23 mod 36 −1 + 22 + 25 + 210 + 212 + 228 6 559 / 253 503 / 251

T1, b3, M −1 + 22 − 221 − 224 + 226 + 228 6 564 / 254 507 / 253

−1− 26 + 214 − 220 − 226 − 228 6 565 / 254 509 / 254

−1− 211 − 217 − 221 − 227 + 229 6 570 / 255 513 / 256

−1 − 22 − 26 + 227 4 539 / 249 485 / 242

−23 − 27 + 219 − 227 4 539 / 249 485 / 242

x ≡ 110, ..., 1244(1260) 1 − 211 − 218 + 220 − 226 + 228 6 551 / 251 496 / 247

T1, b7, D 1 − 213 + 215 − 221 + 224 − 228 6 557 / 252 501 / 250

1− 29 − 212 + 214 + 220 − 228 6 559 / 253 503 / 251

x ≡ 2, ..., 1136 mod 1260 21 + 28 − 214 + 222 − 228 5 558 / 253 503 / 251

T1, b−7, D 1 − 24 − 26 + 225 + 228 5 562 / 253 506 / 252

Table B.4: Low weight curves offering 256-bit security.

246 Appendix B. Implementation-friendly curves for attractive families

288-bit secure curves
subfamily/details x0 weight Fq (bits) / F

qk sec. r (bits) / E[r] sec.

1− 24 − 29 + 236 4 719 / 281 647 / 323

1 + 220 + 226 − 230 − 235 + 237 6 730 / 283 657 / 328

1 + 28 + 212 + 219 − 235 + 237 6 731 / 283 657 / 328

1− 22 + 216 + 232 − 235 + 237 6 732 / 284 659 / 329

1 + 22 − 211 + 233 − 235 + 237 6 733 / 284 660 / 329

1 − 210 − 218 − 224 − 234 + 237 6 735 / 284 661 / 330

1 + 217 + 220 + 224 − 233 + 237 6 737 / 284 663 / 331

1 + 211 + 215 + 217 + 231 + 237 6∗ 739 / 285 665 / 332

210 + 212 − 217 + 237 4 739 / 285 665 / 332

x ≡ 5, 14, 32 mod 36 1 + 27 − 29 + 215 + 237 5 739 / 285 665 / 332

T1, b−3, M 27 + 224 − 229 − 237 4 739 / 285 665 / 332

1 + 22 + 218 − 222 + 232 + 237 6 740 / 285 666 / 332

1 + 210 + 217 + 221 − 235 − 237 6 745 / 286 671 / 335

−29 + 224 − 236 + 238 4 751 / 287 675 / 337

1− 212 − 220 − 232 + 238 5 758 / 288 683 / 341

1 + 28 − 225 − 231 + 238 5 759 / 288 683 / 341

226 − 235 − 237 + 239 4 768 / 289 691 / 345

−1 + 25 + 27 − 226 − 231 + 237 6 738 / 285 664 / 331

1 + 28 − 212 + 217 + 237 5 739 / 285 665 / 332

−21 − 214 − 220 + 224 + 237 5 739 / 285 665 / 332

BLS 25 − 217 − 221 − 224 + 237 5 739 / 285 665 / 332

k = 27 x ≡ 11, ..., 1235 mod 1260 25 − 29 + 225 − 227 + 237 5 739 / 285 665 / 332

(see §6.6) T1, b9, D 1 + 23 + 215 + 219 + 227 + 237 6∗ 739 / 285 665 / 332

26 + 211 + 227 − 229 + 237 5 739 / 285 665 / 332

21 + 25 − 215 + 229 − 237 5 739 / 285 665 / 332

−1 + 216 − 226 − 234 − 237 5 742 / 285 668 / 333

28 + 224 − 233 − 238 4 760 / 288 684 / 341

−1 + 213 + 223 + 228 + 236 5 719 / 281 647 / 323

−1 − 225 − 229 − 231 − 235 + 237 6 730 / 283 657 / 328

−1 + 27 − 216 + 222 − 234 + 237 6 735 / 284 661 / 330

x ≡ 23 mod 36 −1 − 210 − 222 − 229 − 237 5∗ 739 / 285 665 / 332

T1, b3, M −1 + 27 − 213 − 230 − 237 5 739 / 285 665 / 332

−1 + 215 + 229 − 231 + 238 5 759 / 288 683 / 341

−1− 22 − 28 − 221 − 230 − 238 6∗ 759 / 288 683 / 341

−1 + 215 + 229 − 231 + 238 5 759 / 288 683 / 341

−1 − 28 − 211 − 222 + 238 5 759 / 288 683 / 341

x ≡ 110, ..., 1244 mod 1260 −26 − 220 − 227 − 230 − 237 5∗ 739 / 285 665 / 332

T1, b7, D −22 − 220 − 226 − 231 − 237 5∗ 739 / 285 665 / 332

−1 + 22 − 26 − 226 + 238 5∗ 759 / 288 683 / 341

27 + 213 − 237 3 739 / 285 665 / 332

1 − 24 − 28 − 227 + 237 5 739 / 285 665 / 332

x ≡ 38, ..., 1253 mod 1260 27 + 29 + 222 − 226 − 237 5 739 / 285 665 / 332

T1, b−5, D −21 + 28 + 211 − 228 + 237 5 739 / 285 665 / 332

28 + 215 − 218 + 228 + 237 5 739 / 285 665 / 332

1 + 216 + 233 + 238 4∗ 760 / 288 684 / 341

1 + 214 + 217 + 221 + 230 − 232 + 237 − 239 8 674 / 294 572 / 285

1 − 25 + 210 + 212 − 218 − 237 + 239 7 674 / 294 571 / 285

1 + 26 − 214 − 221 − 230 + 232 + 235 − 239 8 679 / 295 576 / 287

KSS x′ ≡ 453, 981 mod 3824 1 − 27 − 29 + 221 + 226 − 228 − 230 + 239 8 681 / 296 578 / 288

k = 32 T1, a1, D 1 + 29 − 211 + 214 + 219 − 221 − 224 − 239 8 681 / 296 578 / 288

(see §6.7) 1 + 27 − 29 − 214 − 217 − 220 − 229 − 239 8 681 / 296 578 / 288

1 − 27 − 29 + 221 + 226 − 228 − 230 + 239 8 681 / 296 578 / 288

1− 27 − 212 + 217 + 222 − 228 − 235 − 239 8 683 / 296 580 / 289

1− 223 − 232 + 235 + 239 5 682 / 296 579 / 289

x′ ≡ 2365, 2893 mod 3824 1 − 23 − 27 + 225 − 236 + 238 6 656 / 291 555 / 277

T1, a1, M 1 − 23 + 27 − 212 − 228 − 231 − 235 − 239 8 683 / 296 580 / 289

Table B.5: Low weight curves offering 288-bit security.

247

320-bit secure curves
subfamily/details x0 weight Fq (bits) / F

qk sec. r (bits) / E[r] sec.

1− 29 − 213 − 228 + 231 + 240 − 245 7 788 / 314 673 / 336

1− 27 − 210 − 219 + 235 + 240 − 245 7 788 / 314 673 / 336

KSS 1 + 29 + 212 − 215 + 221 − 223 − 225 + 245 8 789 / 315 674 / 336

k = 32 x′ ≡ 453, 981 mod 3824 1 + 24 + 26 − 218 + 226 − 228 − 234 + 245 8 789 / 315 674 / 336

(see §6.7) T1, a1, D 1− 26 + 214 − 220 − 222 + 234 − 246 7 807 / 318 690 / 344

1 + 25 + 217 − 225 + 229 − 236 + 246 7 807 / 318 690 / 344

1 + 26 + 28 − 213 − 218 − 236 − 247 7 825 / 320 706 / 352

1 − 28 − 218 + 224 + 237 − 246 + 248 7 836 / 322 715 / 357

−23 − 217 − 228 − 252 + 255 5 753 / 324 631 / 315

23 + 214 − 223 + 234 − 236 − 255 6 756 / 325 633 / 316

25 + 29 + 226 − 231 + 240 − 255 6 756 / 325 633 / 316

x′ ≡ 1376, 1880 mod 2664 −29 + 225 − 227 + 238 + 242 + 255 6 756 / 325 633 / 316

T1, b2, D −23 + 212 + 214 − 233 + 243 + 255 6 756 / 325 633 / 316

−23 − 28 − 229 − 234 − 245 − 255 6∗ 756 / 325 633 / 316

−28 − 221 − 231 + 242 + 245 − 255 6 756 / 325 633 / 316

−27 − 219 − 232 + 244 − 248 − 255 6 756 / 325 633 / 316

−23 + 212 − 215 + 224 − 234 + 255 6 756 / 325 633 / 316

−25 + 28 − 211 + 235 + 237 − 255 6 756 / 325 633 / 316

x′ ≡ 104, ..., 7592 mod 7992 −27 − 225 + 231 − 234 − 239 − 255 6 756 / 325 633 / 316

KSS T1, b−4, M −211 + 221 + 236 + 242 − 244 − 255 6 756 / 325 633 / 316

k = 36 23 + 27 − 224 − 233 + 247 + 255 6 756 / 325 633 / 316

(see §6.8) 210 − 217 + 219 − 221 − 251 + 255 6 754 / 324 632 / 315

24 + 27 + 232 − 248 + 252 − 255 6 753 / 324 631 / 315

−230 − 233 − 240 − 248 − 250 + 255 6 755 / 324 633 / 316

212 + 232 + 241 − 245 + 250 + 255 6 756 / 325 634 / 316

−26 − 219 − 244 + 247 + 251 + 255 6 757 / 325 634 / 316

x′ ≡ 2768, 4928 mod 7992 23 + 215 + 217 + 224 − 229 + 240 + 255 7 756 / 325 633 / 316

T1, b3, M −25 + 211 − 224 − 230 + 239 − 241 − 255 7 756 / 325 633 / 316

−25 − 216 + 218 − 221 − 231 − 241 − 255 7 756 / 325 633 / 316

−215 + 222 + 227 − 231 − 233 − 241 − 255 7 756 / 325 633 / 316

211 + 216 + 223 + 234 − 237 + 256 6 770 / 327 645 / 322

26 + 210 + 231 + 234 + 250 − 256 6 769 / 327 645 / 322

−227 − 234 + 239 − 244 − 250 − 256 6 770 / 327 646 / 322

23 − 26 − 234 + 239 + 253 + 256 6 772 / 327 647 / 323

Table B.6: Low weight curves offering 320-bit security.

248 Appendix B. Implementation-friendly curves for attractive families

352-bit secure curves
subfamily/details x0 weight Fq (bits) / F

qk sec. r (bits) / E[r] sec.

x′ ≡ 2768, 4928 mod 7992

T1, b3, M −212 − 232 + 234 − 245 + 265 5 896 / 348 753 / 376

KSS −25 − 216 − 218 + 227 + 231 + 265 6 896 / 348 753 / 376

k = 36 x′ ≡ 1376, 1880 mod 2664 −210 + 223 + 242 + 257 − 265 5 896 / 348 753 / 376

(see §6.8) T1, b2, D −226 + 241 − 245 + 262 + 265 5 898 / 349 755 / 377

221 − 231 + 249 − 258 + 266 5 910 / 351 765 / 382

x′ ≡ 104, ..., 7592 mod 7992 −25 − 216 − 246 + 250 + 265 5 896 / 348 753 / 376

T1, b−4, M 210 + 216 − 223 − 230 + 232 + 265 6 896 / 348 753 / 376

x′ ≡ 821, 1325 mod 2664 −1 + 22 + 233 + 237 + 243 − 255 + 266 7 910 / 351 765 / 382

T1, b−1, M −1 + 22 + 27 − 29 + 219 + 228 − 266 7 910 / 351 765 / 382

−1 + 22 − 219 − 231 − 249 + 252 + 266 7 910 / 351 765 / 382

x ≡ 437, 2597 mod 2664 −1 + 22 + 25 − 221 + 245 + 254 − 266 7 910 / 351 765 / 382

T1, b−1, D −1 − 22 + 26 + 218 − 222 − 233 − 266 7 910 / 351 765 / 382

−211 − 221 + 243 3 773 / 369 688 / 343

x ≡ 16, 88 mod 216 −230 − 236 − 238 + 244 4 790 / 373 704 / 351

T1, b4, M 23 − 211 − 221 − 224 + 244 5 791 / 373 704 / 351

29 + 226 − 242 − 244 4 797 / 374 710 / 354

−23 + 28 − 213 + 219 − 244 5 791 / 373 704 / 351

x ≡ 64 mod 72 −27 + 210 + 217 + 220 − 244 5 791 / 373 704 / 351

T1, b−2, D −28 − 215 − 217 + 223 + 244 5 791 / 373 705 / 352

212 − 214 + 217 + 226 + 244 5 791 / 373 705 / 352

−215 + 229 + 231 − 241 + 244 5 787 / 372 701 / 350

−220 − 226 − 238 + 241 − 244 5 788 / 372 702 / 350

BLS x ≡ 160 mod 216 211 + 218 + 227 − 231 + 244 5 791 / 373 704 / 351

k = 48 T1, b−3, M −24 − 218 − 221 + 224 + 244 5 791 / 373 705 / 352

(see §6.9) −28 + 213 − 225 + 234 + 244 5 791 / 373 705 / 352

−28 + 215 + 230 + 240 + 244 5 792 / 373 706 / 352

−27 + 225 − 229 + 243 − 245 5 801 / 375 714 / 356

−1 + 23 + 233 + 241 − 244 5 787 / 372 701 / 350

−1 + 26 − 223 + 228 − 244 5 791 / 373 704 / 351

x ≡ 7 mod 72 −1 − 26 − 211 − 225 − 228 − 244 6∗ 791 / 373 705 / 352

T1, b1, D −1 + 218 − 225 + 229 + 244 5 791 / 373 705 / 352

−1 − 230 − 237 + 240 + 244 5 792 / 373 706 / 352

−1 + 218 − 225 + 229 + 244 5 791 / 373 705 / 352

−1 − 214 − 217 − 226 − 231 − 244 6∗ 791 / 373 705 / 352

−1 + 24 − 215 − 219 − 223 + 244 6 791 / 373 704 / 351

x ≡ 31 mod 72 −1 − 27 − 210 − 213 − 216 − 244 6∗ 791 / 373 705 / 352

T1, b1,M −1− 213 + 218 − 227 − 244 5 791 / 373 705 / 352

−1 + 217 − 219 + 240 + 244 5 792 / 373 706 / 352

Table B.7: Low weight curves offering 352-bit security.

384-bit secure curves
subfamily/details x0 weight Fq (bits) / F

qk sec. r (bits) / E[r] sec.

27 + 217 + 232 − 248 4 863 / 387 768 / 383

x ≡ 64 mod 72 −217 + 230 − 235 + 248 4 863 / 387 768 / 383

T1, b−2, D −26 − 222 + 236 − 248 4 863 / 387 768 / 383

−24 + 211 − 216 + 219 − 248 5 863 / 387 768 / 383

27 + 235 + 247 − 249 4 873 / 388 778 / 388

x ≡ 160 mod 216 27 − 210 + 216 − 229 + 248 5 863 / 387 768 / 383

T1, b−3, M 26 + 234 + 240 + 248 4∗ 863 / 387 769 / 384

−1 + 24 − 216 − 231 + 248 5 863 / 387 768 / 383

−1 + 216 + 218 + 230 − 248 5 863 / 387 768 / 383

x ≡ 7 mod 72 −1 + 212 + 217 − 220 + 222 − 248 6 863 / 387 768 / 383

BLS T1, b1, D −1 + 26 − 213 + 220 − 223 + 248 6 863 / 387 768 / 383

k = 48 −1− 213 + 215 + 218 + 248 5 863 / 387 769 / 384

(see §6.9) −1 + 28 − 215 + 217 − 224 − 248 6 863 / 387 769 / 384

−1− 210 − 213 + 223 − 229 − 248 6 863 / 387 769 / 384

23 + 214 + 217 − 219 + 248 5 863 / 387 768 / 383

23 − 29 − 219 + 230 − 248 5 863 / 387 768 / 383

x ≡ 16, 88 mod 216 −24 − 216 + 220 − 225 + 248 5 863 / 387 768 / 383

T1, b4, M 27 − 212 − 217 − 227 + 248 5 863 / 387 768 / 383

25 + 218 − 227 + 236 − 248 5 863 / 387 768 / 383

−25 − 211 + 225 + 229 + 248 5 863 / 387 769 / 384

25 − 28 + 215 − 236 − 248 5 863 / 387 769 / 384

−1 + 24 − 28 − 227 + 248 5 863 / 387 768 / 383

x ≡ 31 mod 72 −1 + 213 + 223 + 228 − 230 + 248 6 863 / 387 768 / 383

T1, b1, M −1 − 210 − 221 + 225 + 230 − 248 6 863 / 387 768 / 383

−1 + 29 − 222 + 225 + 230 + 248 6 863 / 387 769 / 384

−1 + 27 + 217 + 219 + 226 + 248 6 863 / 387 769 / 384

Table B.8: Low weight curves offering 384-bit security.

Appendix C

Proofs of family trees

For each family, we first give proofs for the towers Ti in the corresponding tree,

before giving proofs for the correct curve constants ai or bi. The proofs for

the curve constants sometimes need results that follow from the towers they are

associated with, so rather than prove things twice, we occasionally rely on the

reader to match congruences with their corresponding reciprocity results from

the tower proofs.

C.1 Towers

Our proofs of the towers mostly make use of the following theorem.

Theorem C.1 (Benger-Scott [BS10], Theorem 4). Let m > 1, n > 0 be integers,

q and odd prime and α ∈ F×qn. The binomial xm − α is irreducible in Fqn [x] if

the following two conditions are satisfied:

1. Each prime factor p of m divides q − 1 and NFqn/Fq(α) ∈ Fq is not a pth

residue in Fq;

2. If m ≡ 0 mod 4, then qn ≡ 1 mod 4.

The Norm of α ∈ Fqn over Fq is defined as

NFqn/Fq(α) =

n−1∏

i=0

αq
i

249

250 Appendix C. Proofs of family trees

We will only be using Theorem C.1 to prove irreducibility in Fq2 [x] or Fq3 [x],

i.e. we only need to compute NFq2/Fq and NFq3/Fq , which we abbreviate to N2,1

and N3,1 respectively. The norm computation usually requires a trivial (possibly

repeated) application of Fermat’s little theorem, so we omit the details to save

space.

Whether towering up to Fq2 or Fq3 , or towering beyond them to Fqk then, the

proofs all amount to showing quadratic or cubic non-reciprocity in Fq. We write

the quadratic and cubic characters of a as usual, i.e. (a
q
)2 and (a

q
)3 respectively,

and for quadratic reciprocity, we use the following two results.

Proposition C.2 ([IR90], §5, Prop. 5.1.3). 2 is a quadratic residue modulo q

iff q ≡ 1, 7 mod 8.

Theorem C.3 ([IR90], §5, Theorem 2). Let p be an odd prime.

(a) If p ≡ 1 mod 4, then p is a quadratic residue modulo p iff q ≡ r mod p, where

r is a quadratic residue modulo p.

(b) If p ≡ 3 mod 4, then p is a quadratic residue modulo q iff q ≡ ±b2 mod 4p,

where b is an odd integer prime to p.

For cubic reciprocity, we apply Euler’s conjectures [Lem00], which were orig-

inally based on Fermat’s observation that for q ≡ 1 mod 3, q can be written as

q = a2+3b2, where a and b are unique up to sign. For our purposes, a more conve-

nient formulation of Euler’s conjectures (which are also special cases of Lehmer’s

result [Leh58]) can be made in the following theorem, by instead writing 4q as

4q = L2 + 27M2, where L and M are unique up to sign ([IR90, Prop. 8.3.2]).

Theorem C.4 (Euler’s conjectures [Lem00], Prop. 7.1 - 7.4). For q ≡ 1 mod 3,

let L and M be the unique integers (up to sign) such that 4q = L2+27M2. Then,

(i) :

(
2

q

)

3

= 1↔ L ≡M ≡ 0 mod 2; (ii) :

(
3

q

)

3

= 1↔M ≡ 0 mod 3;

(iii) :

(
5

q

)

3

= 1↔ LM ≡ 0 mod 5; (iv) :

(
7

q

)

3

= 1↔ LM ≡ 0 mod 7;

The convenience of analyzing the equation 4q = L2 + 27M2 comes from the

CM norm equation for curves with discriminant D: 4q = t2 − Df 2. Curves of

discriminant D = −3 are the only curves requiring cubic reciprocity (extensions)

in this work, so we can always write 4q = t2 + 3f 2 where t = t(x) and f = f(x)

C.2. Curve equations 251

are given in the family parameterizations. Depending on the different cases for

(t, f) mod 6, three different manipulations of the CM norm equation (taken from

our proofs in Chapter 5) can be employed to write 4q = L2 +27M2, given below.

(i) 4q = t2 + 27 (f/3)2

(ii) 4q =

(
3f + t

2

)2

+ 27

(
t− f

6

)2

(iii) 4q =

(
t− 3f

2

)2

+ 27

(
t+ f

6

)2

(C.1)

Throughout the towering proofs we refer to equation (C.1)-(i),(ii), or (iii) de-

pending on how L and M (in 4q = L2 + 27M2) are computed from t(x) and

f(x), which we abbreviate to t and f for short.

C.2 Curve equations

For k = 8, k = 16 and k = 32 KSS curves, the correct curve has CM discriminant

D = −1 and is of the form E/Fq : y2 = x3 + ax. If g is a fourth-power-

free integer, then a is precisely one of {1, g, g2, g3} ([Sil09, §X.6]). For all the

other families, the correct curve has discriminant D = −3 and is of the form

E/Fq : y2 = x3 + b. In this scenario, if g is neither square or cube in Fq, then

b is precisely one of {1, g, g2, g3, g4, g5} ([Sil09, §X.5, Corr. 5.4.1]). For both of

these special scenarios (CM discriminants), Rubin and Silverberg [RS10] present

simple algorithms (Alg. C.1 and Alg. C.2 below) to determine the correct a or b

value, both of which they say are “essentially due to Gauss”. Our proofs make

constant use of these algorithms.

Notice that the choice of a in Alg. C.1 is such that y2 = x3−ax is the correct

curve, whilst we have been using y2 = x3 + ax as the correct curve throughout.

Thus, a specific proof that a = ã will actually use −ã when Alg. C.1 is invoked.

C.3 Proofs for each family

We shrink the proofs themselves for space considerations.

252 Appendix C. Proofs of family trees

Algorithm C.1 The Rubin-Silverberg algorithm for finding the correct curve
y2 = x3 + ax [RS10, Alg 3.4].

Suppose D = −1, i.e. 4q = t2 + f 2 and E/Fq : y2 = x3 − ax. Set L = t/2 and
M = f/2. A correct curve (value of a) is found by the following algorithm.

− Step 1: If L is odd and L− 1 ≡M mod 4, then a = 1.

− Step 2: If L is odd and L − 1 6≡ M mod 4, then a ∈ Fq is any square
that is not a fourth power (i.e. a(q−1)/4 ≡ −1 mod q).

− Step 3: If L is even, replace M by −M if necessary to ensure that
M−1 ≡ L mod 4, then output any a ∈ Fq such that a(q−1)/4 ≡ L/M mod q.

Algorithm C.2 The Rubin-Silverberg algorithm for finding the correct curve
y2 = x3 + b [RS10, Alg 3.5].

Suppose D = −3, i.e. 4q = t2 + 3f 2 and E/Fq : y2 = x3 + b. A correct curve
(value of b) is found by the following algorithm.

− Step 1: If f ≡ 0 mod 3 and t ≡ 2 mod 3, then b = 16.

− Step 2: If f ≡ 0 mod 3 and t ≡ 1 mod 3, then b = 16b′, where b′ ∈ Fq is
any cube that is not a square (i.e. b′(q−1)/6 ≡ −1 mod q).

− Step 3: If f 6≡ 0 mod 3. replace f by −f if necessary to ensure that
f ≡ 1 mod 3. If t ≡ 2 mod 3, output b = 16b′ for any b′ satisfying b′(q−1)/6 ≡
2t/(3f − t) mod q.

− Step 4: Otherwise, output b = 16b′ for any b′ satisfying b′(q−1)/6 ≡
2t/(3f + t) mod q.

k = 8 Brezing-Weng curves

T1: x ≡ 1, 3, 9, 11 mod 16 all imply q ≡ 5 mod 8, so that Fq2 = Fq(u) = Fq[u]/(u
2 + 2)

by Prop. C.2. Now, N2,1(u) = 2 and we already have (2
q)2 = −1, so that x4 − u is

irreducible in Fq2[x] by Theorem C.1.

T2: x ≡ 5, 7, 13, 23 mod 24 all imply q ≡ 17 mod 24. Using Theorem C.3-(b), with

q ≡ 5 mod 12, and since the odd squares modulo 12 are either 1 or 9, we have that

(±3
q)2 = −1, so that Fq2 = Fq(u) = Fq[u]/(u

2 + 3). We also have that N2,1(u) = 3, so

that x4 − u is irreducible in Fq2[x] by Theorem C.1.

T3: x ≡ 21, ..., 117 mod 120 all give q ≡ 13, 17 mod 20, invoking Theorem C.3-(b), and

since the odd squares modulo 20 are either 1, 5 or 9, we have that (±5
q)2 = −1, so

that Fq2 = Fq(u) = Fq[u]/(u
2 + 5). We also have that N2,1(u) = 5, so that x4 − u is

C.3. Proofs for each family 253

irreducible in Fq2 [x] by Theorem C.1.

a1: x ≡ 1, 9 mod 16 gives (L,M) ≡ (1, 2) mod 4, then Step 2 of Alg. C.1 equipped

with (−1
q)2 = 1 but (−1

q)4 = −1 gives the result.

a2: x ≡ 11 mod 16 gives (L,M) ≡ (2, 1) mod 4, so replace M by −M and use Alg. C.1-

Step 3 to give −2(q−1)/4 ≡ L/M mod q. x ≡ 13, 29 mod 48 and x ≡ 141, 189, 237 mod

240 gives (L,M) ≡ (3, 0) mod 4, so Step 2 of Alg. C.1 this time equipped with (−2
q)2 =

1 but (−2
q)4 = −1 ([Sil09, Prop. 6.6]) gives the result.

a−2: x ≡ 3 mod 16 gives (L,M) ≡ (2, 1) mod 4, so replace M by −M in Alg. C.1 -

Step 3 and observe that 2(q−1)/4 ≡ L/M mod q.

a3: x ≡ 7 mod 24 gives (L,M) ≡ (0, 3) mod 4, so replace M by −M and use Alg.

C.1-Step 3 and observe that −3(q−1)/4 ≡ L/M mod q. x ≡ 21, 69, 117 mod 240 gives

(L,M) ≡ (3, 0) mod 4, so Step 2 of Alg. C.1 this time equipped with (−3
q)2 = 1 but

(−3
q)4 = −1 gives the result.

a5: x ≡ 11 mod 120 and x ≡ 71, 191 mod 240 give (L,M) ≡ (0, 3) mod 4, so replace

M by −M and use Alg. C.1-Step 3 and observe that −5(q−1)/4 ≡ L/M mod q. x ≡
5, 85 mod 240 gives (L,M) ≡ (3, 0) mod 4, so Step 2 of Alg. C.1 equipped with (−5

q)2 =

1 but (−5
q)4 = −1 gives the result.

a6: x ≡ 47, 95, 143, 239 mod 240 gives (L,M) ≡ (0, 3) mod 4, so replace M by −M
and use Alg. C.1-Step 3 and observe that −6(q−1)/4 ≡ L/M mod q.

k = 12 BLS curves

T1: x ≡ 7, 31, 64 mod 72 and 160 mod 216 all imply q ≡ 19 mod 24, so that Fq2 =

Fq(u) = Fq[u]/(u
2 + 1). Note that 2, 3 | q − 1, and N2,1(u + 1) = 2, (2

q)2 = −1

(Prop. C.2) and (2
q)3 = −1 as follows. For x ≡ 7 mod 72, t ≡ f ≡ 2 mod 6, so use

Equation (C.1)-(ii) and observe that both L and M are both odd. For x ≡ 31 mod 72,

t ≡ 2 mod 6 and f ≡ 4 mod 6, so use Equation (C.1)-(iii) to see that L and M are both

odd. For x ≡ 64 mod 72, Equation (C.1)-(i) yields this directly since f is a multiple of

3, say f = 3M , giving 4q = L2 + 27M2, where L = t = x+ 1 ≡ 65 mod 72 is odd. For

x ≡ 160 mod 216, observe that t ≡ f ≡ 5 mod 6 so use Equation (C.1)-(ii) to further

deduce that L and M are both odd. Thus N2,1(u+ 1) = 2, and (2
q)3 = (2

q)2 = −1 by

Theorem C.4-(i), so that v6 − (u+ 1) is irreducible in Fq2[x] by Theorem C.1.

T2: x ≡ 55, 127, 343 mod 360 imply q ≡ 19 mod 144, x ≡ 43, ..., 307 mod 360 imply q ≡
7 mod 24, x ≡ 28, 100, 172 mod 360 implies q ≡ 127 mod 216, x ≡ 124, ..., 1060 mod

1800 implies q ≡ 127 mod 360, x ≡ 4, ..., 1012 mod 1080 implies q ≡ 79 mod 108.

In all cases, q ≡ 7 mod 12, so that Fq2 = Fq(u) = Fq[u]/(u
2 + 1). N2,1(u + 2) = 5,

(5
q)2 = −1 (q ≡ 2, 3 mod 5 in all cases, and use Theorem C.3), and (5

q)3 = −1 as follows.

x ≡ 28, 100, 172 mod 360 gives (t, f) ≡ 5, 3 mod 6, and x ≡ 55, ..., 307 mod 360 gives

254 Appendix C. Proofs of family trees

(t, f) ≡ (2, 0) mod 6, so applying Equation (C.1)-(i) to both gives one of (L,M) ≡
(1, 4), (3, 3), (4, 1) mod 5, so that LM 6≡ 0 mod 5. x ≡ 43, 115, 259 gives (t, f) ≡
(2, 2) mod 6, so using Equation (C.1)-(ii) further gives (L,M) ≡ (1, 4), (4, 1) mod 5,

so that LM 6≡ 0 mod 5. Finally, x ≡ 139 mod 360 gives (t, f) ≡ (2, 4) mod 6, so we use

Equation (C.1)-(iii) to give (L,M) ≡ (1, 1) mod 5, implying LM 6≡ 0 mod 5. Thus,

(5
q)3 = (5

q)2 = −1 by Theorem C.4-(iii), so that v6 − (u+ 2) is irreducible in Fq2[x] by

Theorem C.1.

T3: x ≡ 187, 283, 355 mod 360 implies q ≡ 7 mod 336, x ≡ 412, 772 mod 1800 implies

q ≡ 343 mod 360, x ≡ 616, 976, 256 mod 1080 implies q ≡ 331 mod 360, so that Fq2 =

Fq(u) = Fq[u]/(u
2 + 1). Note that 2, 3 | q − 1, and this time N2,1(u + 3) = 10.

For x ≡ 187, 283, 355 mod 360 and x ≡ 412, 772 mod 1800 we will prove that 2 is a

quadratic residue but a cubic non-residue, whilst 5 is a quadratic non-residue but is a

cube in Fq. 2 being a quadratic residue follows from Prop. C.2. 5 being a quadratic

non-residue follows from q ≡ 2, 3 mod 5 for these cases. For x ≡ 187 mod 360 and x ≡
283, 355 mod 360, we have (t, f) ≡ (2, 2) mod 6 and (t, f) ≡ (2, 4) mod 6 respectively,

which use Equation (C.1)-(ii) and Equation (C.1)-(iii) respectively to show that L and

M are always odd, meaning that 2 is a cubic non-residue. Furthermore, both cases

further reveal that L ≡ 0 mod 5 so that 5 is always a cubic residue. Combining (2
q)2 =

1, (5
q)2 = −1, (2

q)3 = −1 and (5
q)3 = 1 yields the result for x ≡ 187, 283, 355 mod 360

and x ≡ 412, 772 mod 1800. We now address x ≡ 256, 616, 976 mod 1080. This time

we prove the opposite of the previous cases: namely that 5 is a quadratic but non-cubic

residue, and that 2 is a non-quadratic but cubic residue. (2
q)2 = −1 follows from Prop.

C.2. (5
q)2 = 1 follows from q ≡ 1 mod 5 and Theorem C.3. For all three congruences

we have (t, f) ≡ (5, 1) mod 6 which invokes the use of Equation (C.1)-(iii) to show

that L and M are always even (so that (2
q)3 = 1)), but (L,M) ≡ (1, 2) mod 5, so that

(5
q)3 = −1 from LM 6≡ 0 mod 5 and Theorem C.4-(iii). This completes the proof.

T4: x ≡ 13, 61 mod 72 implies q ≡ 13 mod 24, x ≡ 70, 142, 214 mod 216 implies q ≡
37 mod 72, x ≡ 118, ..., 1054 mod 1080 implies q ≡ 37 mod 72, so that Fq2 = Fq(u) =

Fq[u]/(u
2 + 2) (Prop. C.2). Since 2, 3 | q − 1 and N2,1(u) = 2, (2

q)2 = −1 (Prop.

C.2), and (2
q)3 = −1 as follows. For x ≡ 13 mod 72, t ≡ 2 mod 6 and f ≡ 4 mod 6,

so use Equation (C.1)-(iii) to see that L and M are both odd. For x ≡ 61 mod 72,

t ≡ f ≡ 2 mod 6, so use Equation (C.1)-(ii) to see that L and M are both odd.

For x ≡ 70, 142, 214 mod 216, t ≡ f ≡ 5 mod 6, so use Equation (C.1)-(ii) to further

observe that L and M are again both odd. For all x ≡ 118, ..., 1054 mod 1080, f = 3M

so use Equation (C.1)-(i) and observe that M is always odd. Thus N2,1(u) = 2 and

(2
q)3 = (2

q)2 = −1 by Theorem C.4-(i), so that v6−u is irreducible in Fq2[x] by Theorem

C.1.

T5: x ≡ 37, 181 mod 216 implies q ≡ 37 mod 144, x ≡ 94, ..., 670 mod 1080 implies q ≡

C.3. Proofs for each family 255

133 mod 216, so that Fq2 = Fq(u) = Fq[u]/(u
2 + 2) (Prop. C.2). Since 2, 3 | q − 1 and

N2,1(u) = 6, which is not a quadratic or cubic residue as follows. To show (6
q)2 = −1,

we see immediately that (−2
q)2 = −1 from Prop. C.2. To see that (3

q)2 = 1, we use

Theorem C.3-(b) with q ≡ 1 mod 12. For the cubic non-residuosity, we have to split

the cases. Observe that for x ≡ 37, 181 mod 216 we have (t, f) ≡ (2, 0) mod 6 so that

Equation (C.1)-(i) can be used to see that (L,M) ≡ (2,±2) mod 3, so that 3 is a cubic

non-residue. On the other hand, (L,M) ≡ (0, 0) mod 2 for this case so that 2 is a cubic

residue, which concludes the first case(s). For x ≡ 94, ..., 670 mod 1080, we always have

(t, f) ≡ (5, 1) mod 6, so using Equation (C.1)-(iii) gives (L,M) ≡ (4,±2) mod 6, so

that 3 is again a cubic non-residue but a quadratic residue. Thus, (6
q)3 = (6

q)2 = −1 by

Theorem C.4-(i),(ii), so that v6 − (u+ 2) is irreducible in Fq2[x] by Theorem C.1.

T6: x ≡ 25, ..., 337 mod 360 implies q ≡ 1 mod 24, x ≡ 10, 82, 288 mod 360 implies

q ≡ 73 mod 144. In all cases, q ≡ 2, 3 mod 5 so that Fq2 = Fq(u) = Fq[u]/(u
2+5). Now,

N2,1(u) = 5 so it remains to show (5
q)3 = −1. x ≡ 73, 145, 217 mod 360 gives (t, f) ≡

(2, 0) mod 6 so that Equation (C.1)-(i) gives (L,M) ≡ (1, 4), (3, 3), (4, 1) mod 5. For

x ≡ 25, 169, 313 mod 360 we get (t, f) ≡ (2, 2) mod 6, so applying Equation (C.1)-

(ii) gives (L,M) ≡ (1, 4), (4, 1) mod 5. x ≡ 49, 337 mod 360 gives (t, f) ≡ (2, 4) mod

6, so applying Equation (C.1)-(iii) gives (L,M) ≡ (3, 2), (1, 1) mod 5. Lastly, x ≡
10, 82, 288 mod 360 all give (t, f) ≡ (5, 3) mod 6, so we can apply Equation (C.1)-

(i) to see (L,M) ≡ (3, 3), (1, 4) mod 5. In all cases then, LM 6≡ 0 mod 5, so that

(5
q)3 = (5

q)2 = −1 by Theorem C.4-(iii), so v6 − u is irreducible in Fq2[x] by Theorem

C.1.

b1: n ≡ 0 mod 12. b must be square and cube, and one of {1, g, g2 , g3, g4, g5} for g

non-square and non-cube, so b = 1 is the only option.

b2: n ≡ 27 mod 108, q ≡ 1 mod 16. (t, f) ≡ (2, 0) mod 3, so apply Algorithm C.2-Step

1 and take b = 16. (2
q)2 = 1 by Prop C.2. so 8 = µ6 for µ2 = 2, thus the curve with

b = 16/µ6 = 2 is isomorphic.

b−2: n ≡ 27 mod 432, q ≡ 19 mod 72. (t, f) ≡ (2, 0) mod 3, so apply Algorithm C.2 -

Step 1 and take b = 16. This time (−2
q)2 = 1 by Prop C.2, so −8 = µ6 for µ2 = −2,

thus the curve with b = 16/µ6 = −2 is isomorphic.

b4: n ≡ 3 mod 36, q ≡ 1 mod 12. Proof is identical to case x0 ≡ 16 mod 72 for k = 24

BLS curves in [CLN11, Prop. 3].

b3: n ≡ 15 mod 24, q ≡ 1 mod 12. There are three cases that arise: (t, f) ≡
(2, 0), (2, 1), (2, 2) mod 3. For (t, f) ≡ (2, 0) mod 3, we terminate with b = 16 from

C.2, so b = 3 follows from observing 16/3 (equivalently 2435) is µ6 for some µ,

which follows from the cubic and quadratic reciprocities of 2 and 3. For the other

two cases (t, f) ≡ (2, 1) mod 3 and (t, f) ≡ (2, 2) mod 3, we use Alg. C.1 and take

b′(q−1)/6 = 12(q−1)/6 ≡ 2t/(3f−t) mod q and b′(q−1)/6 = 12(q−1)/6 ≡ 2t/(−3f−t) mod q

256 Appendix C. Proofs of family trees

respectively, so we can take b = 16b′/26 = 3 in both cases.

b−3: n ≡ 147 mod 216, q ≡ 7 mod 12. This time the two latter cases of the previous

proof arise: (t, f) ≡ (2, 1) mod 3 and (t, f) ≡ (2, 2) mod 3, so again we use Alg. C.1,

but this time it we take b′ = −12 to see b′(q−1)/6 = −12(q−1)/6 ≡ 2t/(3f − t) mod q and

b′(q−1)/6 = −12(q−1)/6 ≡ 2t/(−3f − t) mod q respectively, so we can take b = 16b′/26 =

−3 in both cases.

b−5: n ≡ 3 mod 360, q ≡ 727 mod 1620. We always have (t, f) ≡ (2, 1) mod 3, so Alg.

C.1 with b′ = −20 gives b′(q−1)/6 = −20(q−1)/6 ≡ 2t/(3f − t) mod q, so we can take

b = 16b′/26 = −5.

b5: n ≡ 75 mod 900, q ≡ 214 mod 810. Again we always have (t, f) ≡ (2, 1) mod 3, so

Alg. C.1 this time with b′ = 20 gives b′(q−1)/6 = 20(q−1)/6 ≡ 2t/(3f − t) mod q, so we

can take b = 16b′/26 = 5.

b9: n ≡ 3 mod 12, q ≡ 1 mod 6. Two cases: (t, f) ≡ (2, 0) mod 3 means b = 16 is

the curve from Alg. C.1. It is easily seen that (36
q)3 = 1, so (36

q)6 = 1, meaning

we can multiply b by 36/26 to get the isomorphic curve with b = 9. For the second

case we have (t, f) ≡ (2, 1) mod 3, so Alg. C.1 - Step 3 with b′ = 36 gives b′(q−1)/6 =

36(q−1)/6 ≡ 2t/(3f − t) mod q, so we can take b = 16b′/64 = 9.

b10: n ≡ 183 mod 240, q ≡ 37 mod 120. Two cases: (t, f) ≡ (2, 0) mod 3 means b = 16

is the curve from Alg. C.1. It is easily seen that (40
q)6 = 1, meaning we can multiply

b by 40/26 to get the isomorphic curve with b = 10. For the second case we have

(t, f) ≡ (2, 1) mod 3, so Alg. C.1 - Step 3 with b′ = 40 gives b′(q−1)/6 = 40(q−1)/6 ≡
2t/(3f − t) mod q, so we can take b = 16b′/64 = 10.

k = 16 KSS curves

T1: x′ ≡ 5, 37, 61, 93 mod 112, x′ ≡ 47, 79 mod 112, x′ ≡ 23, 103 mod 112 all imply

q ≡ 5 mod 8, so that Fq2 = Fq(u) = Fq[u]/(u
2 + 2) by Prop. C.2. Now, N2,1(u) = 2

and we already have (2
q)2 = −1, so that x8 − u is irreducible in Fq2[x] by Theorem

C.1.

T2: x′ ≡ 19, ..., 1531 mod 1680, x′ ≡ 1153, 1633 mod 1680 all imply q ≡ 17 mod 24.

Using Theorem C.3-(b), with q ≡ 5 mod 12, and since the odd squares modulo 12 are

either 1 or 9, we have that (±3
q)2 = −1, so that Fq2 = Fq(u) = Fq[u]/(u

2 + 3). We also

have that N2,1(u) = 3, so that x8 − u is irreducible in Fq2[x] by Theorem C.1.

T3: This proof requires a special splitting of the elements in bunches. Namely, x′ ≡
9, 89 mod 560 implies q ≡ 57 mod 80; x′ ≡ 121, 201 implies q ≡ 73 mod 180; x′ ≡
401, 1601 implies q ≡ 193 mod 240; x′ ≡ 929, 1409 implies q ≡ 97 mod 240. We can

now use Theorem C.3-(b), with q ≡ 13, 17 mod 20, and since the odd squares modulo

20 are either 1, 5 or 9, we have that (±5
q)2 = −1, so that Fq2 = Fq(u) = Fq[u]/(u

2 + 5).

C.3. Proofs for each family 257

We also have that N2,1(u) = 5, so that x8 − u is irreducible in Fq2[x] by Theorem

C.1.

a1 : n ≡ 2500 mod 10000, q ≡ 5 mod 8. (L,M) ≡ (1, 2) mod 4, so we use Step 2 of

Alg. C.1 and −1 is easily seen to be a square that is not a quartic residue.

a2 : n ≡ 0 mod 1250, q ≡ 1 mod 4. Two cases arise: (L,M) ≡ (3, 0) mod 4, so use Step

2 of C.1 where (−2
q)2 = 1 but (−2

q)4 = −1 gives the result. For (L,M) ≡ (2, 3) mod 4,

we use Step 3 of Alg. C.1 and the fact that −2(q−1)/4 ≡ L/M mod q to give the

result.

a−2 : n ≡ 1250 mod 40000, q ≡ 13 mod 16. (L,M) ≡ (2, 3) mod 4, and this time we

have 2(q−1)/4 ≡ L/M mod q.

a3 : n ≡ 0 mod 1250, q ≡ 1 mod 8. Two cases: (L,M) ≡ (3, 0) mod 4, so Step 2 of

C.1 and (−3
q)2 = 1 but (−3

q)4 = −1 gives the result. For the second case, (L,M) ≡
(0, 1) mod 4, so Step 3 of Alg. C.1 and −3(q−1)/4 ≡ L/M gives the result.

a5 : n ≡ 0 mod 1250, q ≡ 1 mod 8. Two cases: (L,M) ≡ (3, 0) mod 4 so Step 2 of Alg.

C.1 with (−5
q)2 = 1 and (−5

q)4 = −1 gives the result. For (L,M) ≡ (0, 1) mod 4, Step

3 of Alg. C.1 with −5(q−1)/4 ≡ L/M mod q finishes the proof.

k = 18 KSS curves

T1: x′ ≡ 4, 7, 16, 31 mod 36 implies q ≡ 1 mod 6. We need to prove (2
q)3 = −1.

x′ ≡ 4, 31 mod 36 gives t ≡ 1 mod 6 and f ≡ 3 mod 6, so f ≡ 3M and further

M ≡ 1 mod 2, so we can use Equation (C.1)-(i) to give 4q = L2 + 27M2, where L and

M are both odd. x′ ≡ 7, 16 mod 36 gives t ≡ f ≡ 1 mod 6, so we can use Equation

(C.1)-(ii) to further show that L and M are both odd. Thus, (±2
q)3 = −1 by Theorem

C.4-(i), so that Fq3 = Fq(u) = Fq[u]/(u
3 + 2). Note that x′ ≡ 4, 16 mod 36 gives

q ≡ 5 mod 8, and x′ ≡ 7, 31 mod 36 gives q ≡ 7 mod 8, so (−2
q)2 = −1 by Prop. C.2.

Now, N3,1(u) = −2 and (2
q)2 = −1, so that x6 − u is irreducible in Fq3[x] by Theorem

C.1.

T2: x′ ≡ 13, 25 mod 36 implies q ≡ 7 mod 24. We need to prove that (2
q)3 = −1.

With x′ ≡ 13 mod 36, f ≡ 0 mod 3, i.e. f = 3M , insists use of Equation (C.1)-(i),

which further reveals 4q = L2 + 27M2 has L and M as odd. With x′ ≡ 25 mod 36,

f ≡ t ≡ 1 mod 6 insists use of Equation (C.1)-(ii) to give (3f + t)/2 and (t−f)/6 both

odd. Thus, Fq3 = Fq(u) = Fq[u]/(u
3 + 2). This time, we have N3,1(2u) = −16 and

(−16
q)2 = −1 (since (−1

q)2 = −1 and −16 = −1 · 42), and further (−16
q)3 = −1 (since

(−2
q)3 = −1 by Theorem C.4-(i) and −16 = −2 · 23), so x6 − u is irreducible in Fq3[x]

by Theorem C.1.

T3: x′ ≡ 1, 28, 37, 64 mod 108 implies q ≡ 7 mod 18, and also that f ≡ 2, 8 mod 9,

so that (3
q)3 = −1 by Theorem C.4-(ii), and Fq3 = Fq(u) = Fq[u]/(u

3 + 3). Now,

258 Appendix C. Proofs of family trees

N3,1(u) = −24, which is not a cubic residue (since −3 isn’t). To apply Theorem

C.1, it remains to show that (−24
q)2 = −1. x′ ≡ 1, 28, 37, 64 mod 108 also implies

q ≡ 3, 5 mod 8, so that (2
q)2 = −1. Since −24 = 2 · −3 · 22, and (2

q)2 = −1, we have

that (−24
q)2 · (−3

q)2 = −1, so it suffices to show that (−3
q)2 = 1. We have to split the

possible congruences: for x′ ≡ 1, 37 we always have q ≡ 7 mod 12, and taking q = 3

in Theorem C.3 does the trick, since 1 and 9 are the only “odd squares” modulo 12.

Thus, for x′ ≡ 1, 37, (3
q)2 = −1 and (−1

q)2 = −1 gives (−3
q)2 = 1. For x′ ≡ 28, 64, we

have q ≡ 1 mod 12, which does just the opposite, meaning (3
q)2 = 1, but (−1

q)2 = 1

also, meaning (−3
q)2 = 1 as well.

T4: x
′ ≡ 22, 58, 142, 178 mod 180 implies q ≡ 1 mod 12. To prove (−2

q)3 = −1, we need

to split into two separate cases and use Theorem C.4-(i). For x′ ≡ 22, 58 mod 180,

we have f ≡ 0 mod 3, i.e. f = 3M , insists use of Equation (C.1)-(i), which further

reveals 4q = L2 + 27M2 has L and M always odd. For x′ ≡ 142, 178 mod 180 we

have t ≡ f ≡ 1 mod 6 and application of Equation (C.1)-(ii) shows that L and M are

both odd. Thus, Fq3 = Fq(u) = Fq[u]/(u
3 + 2). N3,1(5u) = −250, and (−250

q)3 = −1

follows from (2
q)3 = −1 (since −250 = −2 · 53), so it remains to prove (−250

q)2 = −1

before applying Theorem C.1. Since q ≡ 1 mod 4, (−1
q)2 = 1 so that (−250

q)2 = (10
q)2.

Further, x′ ≡ 22, 58, 142, 178 mod 180 implies q ≡ 1 mod 8 so Prop. C.2 says that

(2
q)2 = 1, meaning that (10

q)2 = (2
q)2 · (5

q)2 = (5
q)2. For this, combine the fact that

x′ ≡ 22, 58, 142, 178 mod 180 implies q ≡ 2, 3 mod 5 with Theorem C.3-(a) to give that

(5
q)2 = −1. Thus, (−250

q)2 = −1 so that x6 − 2u is irreducible in Fq3[x] by Theorem

C.1.

T5: x
′ ≡ 19, 181, 208, 262 mod 270 implies q ≡ 7 mod 54. We now show that (−5

q)3 =

(5
q)− 1 using Theorem C.4 - (iii). First, for x′ ≡ 19, 181, 208, 262 mod 270, we always

have t ≡ 1 mod 6 and f ≡ 5 mod 6, so we make use Equation (C.1)-(iii) and see that

niether L nor M is divisible by 5. Thus, (5
q)3 = −1 and Fq3 = Fq(u) = Fq[u]/(u

3 + 5).

N3,1(u) = −5, so to finish the proof we need to show that (−5
q)2 = −1. We split the

congruences into two cases: x′ ≡ 19, 181 mod 270 gives q ≡ 3 mod 4 and q ≡ ±1 mod 5

which means firstly that (−5
q)2 = −(5

q)2, and also that (5
q)2 = 1 from Theorem C.3-(a).

For the other two congruences x′ ≡ 208, 262 mod 270, q ≡ 1 mod 4 and q ≡ ±2 mod 5

which means firstly that this time (−5
q)2 = (5

q)2, but secondly that (5
q)2 = −1 from

Theorem C.3-(a). In both cases then, (−5
q) = −1 and (−5

q)2 =)−5
q)3 = −1, so that

x6 − u is irreducible in Fq3 [x] by Theorem C.1.

b3: n ≡ 16807 mod 37044, q ≡ 7 mod 36. Two cases arise: (t, f) ≡ (1, 1) mod 3, so

Step 4 of Alg. C.2 with b′ = 12 gives 12(q−1)/6 ≡ 2t/(3f + t) mod q, and dividing

b = 16b′ by 26 gives the result. For the other case, (t, f) ≡ (1, 2) mod 3, so Step 3 of

Alg. C.2 with b′ = 12 (and the division by 26) gives the same result.

b−9: n ≡ 4459 mod 37044. We always have the case (t, f) ≡ (1, 2) mod 3, so Step 4 of

C.3. Proofs for each family 259

Alg. C.2 with b′ = −36 gives −36(q−1)/6 ≡ 2t/(−3f + t) mod q. Division of b = 16b′

by 26 gives the result.

b5: n ≡ 343 mod 2058, q ≡ 1 mod 6. Two cases arise: (t, f) ≡ (1, 0) mod 3, so Step 2 of

Alg. C.2 with b′ = 20 gives 20(q−1)/6 ≡ −1 mod q gives the result. For the second case,

(t, f) ≡ (1, 2) mod 3 so Step 4 of Alg. C.2 with b′ = 20 gives the same constant.

b7: n ≡ 343 mod 2058, q ≡ 1 mod 6. Three cases arise: (t, f) ≡ (1, 0) mod 3 means

Step 2 of Alg. C.2 applies, here with b′ = 36 gives 36(q−1)/6 ≡ −1 mod q. The second

two cases are (t, f) ≡ (1, 1) mod 3 and (t, f) ≡ (1, 2) mod 3, which both use Step 4. of

Alg. C.2 and b′ = 36 to give 36(q−1)/6 ≡ 2t/(3f + t), 2t/(−3f + t) mod q respectively.

All three cases give b = 16b′ which can be divided by 26 to give b = 7.

b−7: n ≡ 53851 mod 86436, q ≡ 115 mod 252. One case: (t, f) ≡ (1, 2) mod 3 so Step

4. of Alg C.2 with b′ = −28 gives −28(q−1)/6 ≡ 2t/(−3t + f) mod q. Division of

b = 16b′ by 26 gives the result.

b6: n ≡ 22981 mod 24696, q ≡ 61 mod 72. Two cases arise, both requiring Step 4 of

Alg. C.2. Namely (t, f) ≡ (1, 2) mod 3 and (t, f) ≡ (1, 1) mod 3 take b′ = 24 to give

24(q−1)/6 mod q as 2t/(−3f + t) and 2t/(3f + t) respectively. Division of b = 16b′ by

26 gives the result.

b2: n ≡ 12691 mod 18522, q ≡ 31 mod 54. (t, f) ≡ (1, 0) mod 3 is the only case, so

taking b′ = 8 gives 8(q−1)/6 ≡ −1 mod q in Step 2 of Alg. C.2, and dividing b = 16b′

by 26 gives the result.

b−4: n ≡ 4459 mod 12348, q ≡ 7 mod 36. The only case is (t, f) ≡ (1, 1) mod 3 which

requires Step 4 of Alg. C.2 with b′ = −16 to give −16(q−1)/6 ≡ 2t/(3f + t) to give the

result (again, after division of b by 26).

b−2: n ≡ 49735 mod 74088, q ≡ 31 mod 216. The only case is (t, f) ≡ (1, 0) mod 3, for

which we can use Step 2 of Alg. C.2 to deduce that b′ = −8 always gives −8(q−1)/6 ≡
−1 mod q. Division of b by 26 gives b = −2.

b10: n ≡ 10633 mod 41160, q ≡ 97 mod 120. Two cases arise: (t, f) ≡ (1, 0) mod 3

requires Step 2 of Alg. C.2 with b′ = 40 to always give 40(q−1)/6 ≡ −1 mod q. The

second case is (t, f) ≡ (1, 1) mod 3, which uses b′ = 40 in Step 4 of Alg. C.2 to give

40(q−1)/6 ≡ 2t/(3f+t) mod q. In both cases we again divide b by 26 to give the smaller

constant.

k = 27 BLS curves

T1: x ≡ 2 mod 9 implies q ≡ 7 mod 9. Once case: t ≡ 5 mod 6 and f ≡ 1 mod 6, so

applying Equation (C.1)-(iii) gives further that M 6≡ 0 mod 3 so Theorem C.4-(ii) gives

(3
q)3 = −1. Thus, Fq3 = Fq(u) = Fq[u]/(u

3 + 3), and furthermore since N3,1(u) = −3,

we immediately have that x9 − u is irreducible in Fq3[x] by Theorem C.1.

260 Appendix C. Proofs of family trees

T2: x ≡ 8 mod 45 implies q ≡ 37 mod 45. Again, x ≡ 8 mod 45 gives t ≡ 5 mod 6 and

f ≡ 1 mod 6, insisting the use of Equation (C.1)-(iii) which gives both L,M 6≡ 0 mod 5,

so (5
q)3 = −1 by Theorem C.4-(iii). Thus, Fq3 = Fq(u) = Fq[u]/(u

3 + 5), and since

N3,1(u) = −5, we immediately have that x9 − u is irreducible in Fq3[x] by Theorem

C.1.

T3: x ≡ 17, ..., 269 mod 315 implies q ≡ 1 mod 45. Again, x ≡ 17, ..., 269 mod 45 gives

t ≡ 5 mod 6 and f ≡ 1 mod 6, so applying Equation (C.1)-(iii) to see that L,M 6≡
0 mod 7 and Theorem C.4-(iv) gives (7

q)3 = −1. Thus, Fq3 = Fq(u) = Fq[u]/(u
3 + 7),

and since N3,1(u) = −7, x9 − u is irreducible in Fq3[x] by Theorem C.1.

b−5: n ≡ 1083 mod 1350. We always have (t, f) ≡ (2, 1) mod 3, so Step 3 of Alg. C.2

with b′ = −20 gives −20(q−1)/6 ≡ 2t/(3f − t) mod q. Division by 26 gives a smaller

constant as usual.

Other b’s: All other proofs are identical, i.e. have (t, f) ≡ (1, 2) mod 3 and use Step 3

of Alg. C.2 with the appropriate b′.

k = 32 KSS curves

T1: x′ ≡ 453, ..., 2893 mod 3824, x′ ≡ 1887, 2415 mod 3824 and x′ ≡ 503, 3799 mod

3824 all imply q ≡ 5 mod 8, so that (2
q)2 = (−2

q)2 − 1 by Prop. C.2. Thus, Fq2 =

Fq(u) = Fq[u]/(u
2 + 2), and since N2,1(u) = 2, x16 − u is irreducible in Fq2 [x] by

Theorem C.1.

T2: x
′ ≡ 7145, 7673 mod 11472 implies q ≡ 17 mod 48, x′ ≡ 2843, 3371, 8579, 9148 mod

11472 implies q ≡ 17 mod 24. So we always have q ≡ 5 mod 12. The “odd squares”

modulo 12 are 1 and 9 only, so that Theorem C.3-(ii) allows us to immediately conclude

that (3
q)2 = (−3

q)2 = −1 in all cases. Thus, Fq2 = Fq(u) = Fq[u]/(u
2 + 3), and since

N2,1(u) = 3, x16 − u is irreducible in Fq2[x] by Theorem C.1.

a1: n ≡ 81573072100 mod 117465223824, q ≡ 5 mod 8. (L,M) ≡ (1, 2) mod 4, so

using Step 2 of Alg. C.1 with (−1
q)2 = 1 and (−1

q)4 = −1 gives the result.

a−2: n ≡ 8157307210 mod 939721790592, q ≡ 5 mod 16. (L,M) ≡ (2, 1) mod 4, so

using Step 3 of Alg. C.1 with 2(q−1)/4 ≡ L/M mod q gives the result.

a2: n ≡ 8157307210 mod 14683152978, q ≡ 1 mod 4. Two cases: (L,M) ≡ (2, 1) mod

4, so using Step 3 of Alg. C.1 with −2(q−1)/4 ≡ L/M mod q gives the first result.

For the second result (L,M) ≡ (3, 0) mod 4 so Step 2 of Alg. C.1 with −2(q−1)/4 ≡
−1 mod q completes the proof.

a3: n ≡ 301820366770 mod 469860895296, q ≡ 17 mod 72. (L,M) ≡ (0, 3) mod 4 is

the only scenario, so Step 2 of Alg. C.1 with −3(q−1)/4 ≡ −1 mod q gives the result.

C.3. Proofs for each family 261

k = 36 KSS curves

T1: x′ ≡ 1880, ..., 2264 mod 2664 implies q ≡ 19 mod 24, so that Fq2 = Fq(u) =

Fq[u]/(u
2 +1). Now, N2,1(u+1) = 2, and (2

q)2 = −1 from Prop. C.2. To prove (2
q)3 =

−1, we need to split the congruences into 4 sets. Firstly, x′ ≡ 1376, 1880 mod 2664

gives t ≡ 1 mod 6 and f ≡ 3 mod 6, so Equation (C.1)-(i) with f = 3M gives L and

M both odd. For x′ ≡ 821, 1325 mod 2664 gives t ≡ 4 mod 6 and f ≡ 2 mod 6, so

Equation (C.1)-(iii) reveals that L and M are both odd. For x′ ≡ 437, 2597 mod 2664,

we have t ≡ f ≡ 4 mod 6, and using Equation (C.1)-(ii) reveals that L and M are both

odd. Lastly, x′ ≡ 104, 2264 mod 2664 gives t ≡ f ≡ 1 mod 6, so again using Equation

(C.1)-(ii) gives L and M as both odd. Thus, (2
q)3 = −1 by Theorem C.4-(i) so that

x18 − (u+ 1) is irreducible in Fq2[x] by Theorem C.1.

T2: x′ ≡ 3152, ..., 7652 mod 13320 implies q ≡ 31 mod 36, so that Fq2 = Fq(u) =

Fq[u]/(u
2 + 1). N2,1(u+ 2) = 5, and (5

q)2 = −1 since x′ ≡ 3152, ..., 7652 mod 13320 al-

ways gives q ≡ 2, 3 mod 5, allowing us to apply Theorem C.3-(i). To prove (5
q)3 = −1,

we must split the congruences into 6 different sets: x′ ≡ 932, 6260, 4100, 12092 mod

13320 gives t ≡ f ≡ 1 mod 6, so using Equation (C.1)-(ii) gives (L,M) ≡ (1, 4), (2, 2) mod

5. x′ ≡ 3152, ..., 7652 mod 13320 gives t ≡ 1 mod 6 and f ≡ 5 mod 6 so using

Equation (C.1)-(iii) gives (L,M) ≡ (3, 3), (1, 4) mod 5. x′ ≡ 44, ..., 11204 mod 13320

gives t ≡ 1 mod 6 and f ≡ 3 mod 6 so using Equation (C.1)-(i) gives (L,M) ≡
(1, 1), (1, 4) mod 5. x′ ≡ 1709, ...12869 mod 13320 gives t ≡ 4 mod 6 and f ≡ 0 mod 6,

so using Equation (C.1)-(i) with f ≡ 3M gives (L,M) ≡ (1, 1), (1, 4) mod 5. x′ ≡
1265, ..., 12425 mod 13320 gives t ≡ f ≡ 4 mod 6 so we can use Equation (C.1)-(ii)

to further give (L,M) ≡ (1, 4), (2, 2) mod 5. Lastly, x′ ≡ 2657, ..., 10649 mod 13320

gives t ≡ 4 mod 6 and f ≡ 2 mod 6, and then Equation (C.1)-(iii) gives (L,M) ≡
(3, 3), (1, 4) mod 5. Thus, (5

q)3 = (5
q)2 = −1 by Theorem C.4-(iii), so that x18− (u+2)

is irreducible in Fq2[x] by Theorem C.1.

T3: x′ ≡ 5372, ..., 10145 mod 13320 implies q ≡ 7 mod 12, so that Fq2 = Fq(u) =

Fq[u]/(u
2 + 1). N2,1(u + 3) = 10. To show (10

q)3 = (10
q)2 = −1 we must split the

congruences. x′ ≡ 3929, ..., 10145 mod 13320 implies q ≡ 7 mod 24 so that (2
q)2 = 1,

and also that q ≡ 2, 3 mod 5 so that (5
q)2 = −1, which gives (10

q)2 = −1. Each

of the four congruences give a different pair for (t, f) mod 6: x′ ≡ 5372 mod 13320 →
(t, f) ≡ (1, 3) mod 6, so using Equation (C.1)-(i) gives L,M both odd but L ≡ 0 mod 5.

x′ ≡ 3929 mod 13320 → (t, f) ≡ (4, 4) mod 6, so using Equation (C.1)-(ii) gives L, M

both odd but again L ≡ 0 mod 5. x′ ≡ 8924 mod 13320 → (t, f) ≡ (1, 1) mod 6,

so using Equation (C.1)-(ii) again gives L, M both odd and L ≡ 0 mod 5. x′ ≡
10145 mod 13320 → (t, f) ≡ (4, 2) mod 6, so using Equation (C.1)-(iii) this time gives

L, M both odd and L ≡ 0 mod 5. Thus, for all four cases (2
q)3 = −1 by Theorem

262 Appendix C. Proofs of family trees

C.4-(i) and (5
q)3 = 1 by Theorem C.4-(iii) so that (10

q)3 = −1. For the second set x′ ≡
488, 4373, 5816 mod 13320. For both x′ ≡ 488, 5816 mod 13320, (t, f) ≡ (1, 5) mod 6

so using Equation (C.1)-(iii) gives both L and M as even, but with either (L,M) ≡
(3, 1), (3, 4) mod 5 so that (2

q)3 = −1 but (5
q)3 = 1 from C.4-(i) and (iii), meaning

(10
q)3 = −1. Lastly, x′ ≡ 4373 mod 13320 gives (t, f) ≡ (4, 0) mod 6 so Equation

(C.1)-(i) shows that (L,M) ≡ (2, 4) mod 10, meaning again that (10
q)3 = −1. Thus,

(10
q)2 = (10

q)3 = −1 in all cases so x18 − (u + 3) is irreducible in Fq2 [x] by Theorem

C.1.

T4: x′ ≡ 710, ..., 2102 mod 2664 implies q ≡ 13 mod 24 so that Fq2 = Fq(u) =

Fq[u]/(u
2 + 2) (by Prop. C.2). N2,1(u) = 2, and (2

q)3 = −1 as follows. Again, we

need to split the possibilities: x′ ≡ 710, 1214 mod 2664 gives (t, f) ≡ (1, 3) mod 6

so using Equation (C.1)-(i) gives L and M both odd. x′ ≡ 155, 659 mod 2664 gives

(t, f) ≡ (4, 2) mod 6 so that Equation (C.1)-(iii) gives both L and M as odd. x′ ≡
1931, 2435 mod 2664 gives (t, f) ≡ (4, 4) mod 6 so that this time Equation (C.1)-(ii)

gives both L and M as odd. Lastly, 1598, 2102 mod 2664 gives (t, f) ≡ (1, 1) mod 6

so again Equation (C.1)-(ii) gives both L and M as odd. Thus, (2
q)3 = (2

q)3 = −1 by

Theorem C.4-(i), so that x18 − u is irreducible in Fq2 [x] by Theorem C.1.

T5: x
′ ≡ 9035, ..., 5210 mod 13320 implies q ≡ 37 mod 180, and the only possibilities

for q modulo 5 are 2, 3, so that Fq2 = Fq(u) = Fq[u]/(u
2 + 5) by Theorem C.3.

N2,1(u) = 5, and (5
q)3 = −1 as follows. Again we require splitting the congruences: for

x′ ≡ 4322, ..., 10982 mod 13320 we have (t, f) ≡ (1, 5) mod 6 and x′ ≡ 1487 mod 13320

we have (t, f) ≡ (4, 2) mod 6, so for both these cases Equation (C.1)-(iii) reveals that

(L,M) ≡ (3, 3) mod 5 so that LM 6≡ 0 mod 5. x′ ≡ 7874, 10034 mod 13320 gives

(t, f) ≡ (1, 3) mod 6 and x′ ≡ 6875, 11699, 9035 mod 13320 gives (t, f) ≡ (4, 0) mod 6

so applying Equation (C.1)-(i) to both gives (L,M) ≡ (1, 4), (1, 1) mod 5 so that LM 6≡
0 mod 5. Lastly, x′ ≡ 770, 2930 mod 13320 gives (t, f) ≡ (1, 1) mod 6 demanding the

use of Equation (C.1)-(ii) to show that (L,M) ≡ (1, 4) mod 5 so that LM 6≡ 0 mod 5.

In all cases then, (5
q)3 = (5

q)2 = −1 by Theorem C.4-(iii), x18 − u is irreducible in

Fq2[x] by Theorem C.1.

b5: n ≡ 117649 mod 352947, q ≡ 1 mod 6. Three cases arise: (t, f) ≡ (1, 0) mod

3 uses Step 2 of Alg. C.2 with b′ = 20 to give 20(q−1)/6 ≡ −1 mod q. (t, f) ≡
(1, 1) mod 3 needs Step 4 and (t, f) ≡ (1, 2) mod 3 both use Step 4 with b′ = 20 to give

20(q−1)/6 mod q as 2t/(3f + t) and 2t/(−3f + t) respectively. All three cases require

further division of b by 26 to give the smaller constant b = 5.

b2: n ≡ 470596 mod 3176523, q ≡ 19 mod 54. (t, f) ≡ (1, 0) mod 3 always, so Step 2

of Alg. C.2 with b′ = 8 gives 8(q−1)/6 ≡ −1 mod q, and division of b by 26 gives the

result.

b10: n ≡ 117649 mod 1764735, q ≡ 1 mod 12. Three cases arise: (t, f) ≡ (1, 0) mod

C.3. Proofs for each family 263

3 uses Step 2 of Alg. C.2 with b′ = 40 to give 40(q−1)/6 ≡ −1 mod q. (t, f) ≡
(1, 1) mod 3 needs Step 4 and (t, f) ≡ (1, 2) mod 3 both use Step 4 with b′ = 40 to give

40(q−1)/6 mod q as 2t/(3f + t) and 2t/(−3f + t) respectively. All three cases require

further division of b by 26 to give the smaller constant b = 10.

b−1: n ≡ 470596 mod 2823576, q ≡ 7 mod 12. Three cases arise: (t, f) ≡ (1, 0) mod

3 uses Step 2 of Alg. C.2 with b′ = −4 to give −4(q−1)/6 ≡ −1 mod q. (t, f) ≡
(1, 1) mod 3 needs Step 4 and (t, f) ≡ (1, 2) mod 3 both use Step 4 with b′ = −4 to

give −4(q−1)/6 mod q as 2t/(3f + t) and 2t/(−3f + t) respectively. All three cases

require further division of b by 26 to give the smaller constant b = −1.

b−4: n ≡ 30471091 mod 33882912, q ≡ 31 mod 36. (t, f) ≡ (1, 1) mod 3 is the only

case. Thus, b′ = −16 into Step 4 of Alg. C.2 gives −16(q−1)/6 ≡ 2t/(3f + t), and

division of b by 26 gives b = −4.

b3: n ≡ 30471091 mod 33882912, q ≡ 103 mod 108. Two cases arise: (t, f) ≡ (1, 1) mod

3 and (t, f) ≡ (1, 2) mod 3, so applying Step 4 of Alg. C.2 with b′ = 12 to both gives

−16(q−1)/6 mod q as 2t/(3f + t) and 2t/(−3f + t) respectively. Division by 26 gives

the result.

b−2: n ≡ 41765395 mod 101648736, q ≡ 127 mod 216. We always have (t, f) ≡
(1, 0) mod 3, so Step 2 of Alg. C.2 with b′ = −8 gives −8(q−1)/6 ≡ −1 mod q. Further

division of b = 16b′ by 26 gives the result.

b−5: n ≡ 166002739 mod 169414560, q ≡ 139 mod 180. We always have (t, f) ≡
(1, 2) mod 3 so Step 4 of Alg. C.2 with b′ = −20 gives −20(q−1)/6 ≡ 2t/(−3f+t) mod q.

Again, further division of b = 16b′ by 26 gives the result.

k = 48 BLS curves

T1: x ≡ 7, 31 mod 72 implies q ≡ 19 mod 24, x ≡ 16, 64 mod 72 implies q ≡ 19 mod 24,

so that Fq2 = Fq(u) = Fq[u]/(u
2 + 1). N2,1(u) = 2, (2

q)2 = −1 (Prop. C.2) and

(2
q)3 = −1 as follows. We have to prove each case separately: x ≡ 7 mod 72 gives

t ≡ f ≡ 2 mod 6, whilst x ≡ 16 mod 72 gives t ≡ f ≡ 5 mod 6, so using Equation

(C.1)-(ii) gives L and M both odd for both cases. x ≡ 31 mod 72 gives t ≡ 2 mod 6

and f ≡ 4 mod 6, so using C.1-(iii) gives L and M both odd for both cases. Lastly,

x ≡ 64 mod 72 gives t ≡ 5 mod 6 and f ≡ 3 mod 6, so applying Equation (C.1)-(i)

further gives L and M both odd for both cases. Thus, (2
q)3 = (2

q)2 = −1 by Theorem

C.4-(i), so that x24 − (u+ 1) is irreducible in Fq2[x] by Theorem C.1.

T2: x ≡ 235, ..., 139 mod 360 implies q ≡ 7 mod 60, x ≡ 4, ..., 340 mod 360 implies

q ≡ 7 mod 60, so that Fq2 = Fq(u) = Fq[u]/(u
2 + 1). N2,1(u + 2) = 5, which is

not a quadratic residue since x ≡ 235, ..., 139 mod 360 gives q ≡ 2 mod 5, invoking

Theorem C.3. To prove (5
q)3 = −1, we need to case bash. x ≡ 55, 235 mod 360 gives

264 Appendix C. Proofs of family trees

(t, f) ≡ (2, 0) mod 6 so we can apply Equation (C.1)-(i) to further yield (L,M) ≡
(1, 4) mod 5, so that LM 6≡ 0 mod 5, x ≡ 115, 259 mod 360 gives (t, f) ≡ (2, 2) mod 6

so we apply Equation (C.1)-(ii) to further yield (L,M) ≡ (1, 1), (1, 4) mod 5, giving

LM 6≡ 0 mod 5. Lastly, x ≡ 139 mod 360 gives (t, f) ≡ (2, 4) mod 6, so applying C.1-

(iii) to further yield (L,M) ≡ (1, 1) mod 5 gives LM 6≡ 0 mod 5. Thus, (5
q)3 = (5

q)2 =

−1 by Theorem C.4-(iii), meaning that x24−(u+2) is irreducible in Fq2[x] by Theorem

C.1.

T3: x ≡ 13, 61 mod 72 implies q ≡ 13 mod 24, x ≡ 10, 34 mod 72 implies q ≡ 13 mod

24,so that Fq2 = Fq(u) = Fq[u]/(u
2 +2) from (Prop. C.2). N2,1(u) = 2, and (2

q)3 = −1

as follows. x ≡ 34, 61 mod 72 gives (t, f) ≡ (5, 5) mod 6 and (t, f) ≡ (2, 2) mod 6

respectively, which insists use of Equation (C.1)-(ii) to give L and M as both odd.

x ≡ 10 mod 72 gives (t, f) ≡ (1, 0) mod 6 so that Equation (C.1)-(i) can be used to

show L is odd. Lastly, x ≡ 13 mod 72 gives (t, f) ≡ (2, 4) so that C.1-(iii) can be used

to show L and M are both odd. Thus, (2
q)3 = (2

q)2 = −1 by Theorem C.4-(i), so that

x24 − u is irreducible in Fq2[x] by Theorem C.1.

T4: x ≡ 37, 181 mod 216 implies q ≡ 37 mod 144, x ≡ 130, 202 mod 216 implies q ≡
133 mod 216, so that Fq2 = Fq(u) = Fq[u]/(u

2 + 2). N2,1(u + 2) = 6. We first have

that (2
q)2 = −1 Prop. C.2, but (2

q)3 = 1 for all cases as follows. x ≡ 37, 181 mod 216

gives (t, f) ≡ (2, 0) mod 6 so that we can use Equation (C.1)-(i) to show that L and M

are both even. x ≡ 130, 202 mod 216 gives (t, f) ≡ (5, 1) mod 6 so we can use C.1-(iii)

to show that L and M are both even. Thus, (2
q)3 = 1. On the other hand, we show

that (3
q)2 = 1 but (3

q)3 = −1. Note that q ≡ 1 mod 12 so that Theorem C.3-(b) gives

(3
q)2 = 1. To show (3

q)3 = −1, the same congruences and corresponding (t, f) pairs

immediately give that M 6≡ 0 mod 3 in all cases. Thus, (6
q)3 = (6

q)2 = −1 by Theorem

C.4-(i) and (ii), so that x24 − (u+ 2) is irreducible in Fq2[x] by Theorem C.1.

T5: x ≡ 25, 145, 49, 169 mod 360 implies q ≡ 97 mod 120, x ≡ 70, 190, 94, 214 mod 360

implies q ≡ 97 mod 120, so that Fq2 = Fq(u) = Fq[u]/(u
2 +5). N2,1(u) = 5, and (5

q)2 =

−1 (by Theorem C.3-(a) with q ≡ 2 mod 5), and further (5
q)3 = −1 as follows. x ≡

190 mod 360 gives (t, f) ≡ (5, 3) mod 6 and x ≡ 145 mod 360 gives (t, f) ≡ (2, 0) mod

6. In both cases, Equation (C.1)-(i) gives (L,M) ≡ (1, 4) mod 5 so that LM 6≡ 0 mod

5. For x ≡ 25, 169 mod 360, (t, f) ≡ (2, 2) mod 6 whilst for x ≡ 70, 214 mod 360,

(t, f) ≡ (5, 5) mod 6, so Equation (C.1)-(ii) gives (L,M) ≡ (1, 4), (4, 4) mod 5 so that

LM 6≡ 0 mod 5. Lastly, x ≡ 49 mod 360 gives (t, f) ≡ (2, 4) mod 6 so application

of C.1-(iii) further reveals that (L,M) ≡ (1, 1) mod 5, meaning that LM 6≡ 0 mod 5.

Thus, (5
q)3 = (5

q)2 = −1 by Theorem C.4-(iii), so that x24 − u is irreducible in Fq2[x]

by Theorem C.1.

b1: n ≡ 0 mod 12. n ≡ 0 mod 12 needs b as square and cube, so for any non-square,

non-cube g, 1 is the only possibility in {1, g, g2, g3, g4, g5}.

C.3. Proofs for each family 265

b−2: n ≡ 27 mod 432, q ≡ 19 mod 72. (t, f) ≡ (2, 0) mod 3 means b = 16, and

(−2
q)2 = 1 so −8 ≡ µ6 for µ =

√
−2, so b = −2 gives an isomorphic curve.

b−3: n ≡ 147 mod 216, q ≡ 7 mod 12. Two cases: (t, f) ≡ (2, 1) mod 3 and (t, f) ≡
(2, 2) mod 3, both of which use Step 3 of Alg. C.2 with b′ = −12 to give −12(q−1)/6 mod

q as 2t/(3f − t) and 2t/(−3f − t) respectively. Division of b = 16b′ by 26 gives the

result.

b4: n ≡ 3 mod 72, q ≡ 1 mod 18. (t, f) ≡ (2, 2) mod 3 is the only option, so b′ = 16

into Step 3 of Alg. C.2 gives 16(q−1)/6 ≡ 2t/(−3f − t) mod q. Division of b = 16b′ by

26 finishes the proof.

b2: n ≡ 243 mod 432. (t, f) ≡ (2, 0) mod 3 means b = 16 from Step 1 of Alg. C.2.

Division by 8 = µ3 for µ =
√

2 gives an isomorphic curve with b = 2.

b−5: n ≡ 3 mod 360, q ≡ 1267 mod 1620. (t, f) ≡ (2, 1) mod 3 is the only option, so

Step 3 with b′ = −20 yields −20(q−1)/6 ≡ 2t/(3f − t) mod q. Division of b = 16b′ by

26 gives the result.

b3: n ≡ 3 mod 24, q ≡ 1 mod 12. Three cases arise: (t, f) ≡ (2, 0) mod 3 means b = 16.

It isn’t hard to show 3/16 = µ6 for µ ∈ Fq so that b = 3 gives an isomorphic curve. The

other two cases are (t, f) ≡ (2, 1) mod 3 and (t, f) ≡ (2, 2) mod 3, both of which use

b′ = 12 in Step 3 of Alg. C.2 to give 12(q−1)/6 mod q as 2t/(3f − t) and 2t/(−3f − t)
respectively. Division of b = 16b′ by 26 gives an isomorphic curve and finishes the

proof.

b9: n ≡ 3 mod 24, q ≡ 1 mod 6. Two cases: (t, f) ≡ (2, 0) mod 3 means b = 16, for

which it isn’t hard to show 9/16 = µ3 (and hence µ̃6), giving b = 9 as an isomorphic

curve.

b5: n ≡ 3 mod 24, q ≡ 1 mod 30. Two cases: (t, f) ≡ (2, 0) mod 3 means b = 16. Again

we use 5/16 = µ6 for some µ to give the smaller constant. For the second case, (t, f) ≡
(2, 1) mod 3, so Step 3 of Alg. C.2 with b′ = 20 gives 20(q−1)/6 ≡ 2t/(3f − t) mod q,

and division of b = 16b′ by 26 finishes the proof.

b2: n ≡ 243 mod 432. (t, f) ≡ (2, 0) mod 3 is the only case, which immediately gives

b = 16 from Step 1 of Alg. C.2. (2
q)2 = 1 is easy (Prop. C.2), so 8 = µ6 and b = 2 is a

smaller constant.

266 Appendix C. Proofs of family trees

Appendix D

Some more generators

For the sake of protocols or implementations that may require them, this section

lists extra generators that were found in the pairing groups G1 and G2 in each

of the subfamilies. For the most part we stopped looking for any more once we

had found 2 or 3 extra generators in any subfamily.

D.1 More compact generators for k = 8

Refer back to Table 6.2 - (i) : In G2, we also have [h′](2/u,
√

−4/u− 1). (ii) :

In G2, [h′](u− 3,
√

(u− 3)3 + (u− 3)u, [h′](u+ 2,
√

(u+ 2)3 + u(u+ 2)). (iii) :

In G1, (−1,
√

1), (−2,
√
−4), (2, 2). In G2, (u + 2,

√

(u+ 2)3 − 2(u+ 2)/u) and

(u − 3,
√

(u− 3)3 − 2(u− 3)/u also work. (iv) : In G2 is [h′](−1,
√
−1− 2u).

(v) : In G2 we also have [h](−3, 2
√
−6), [h](−1,

√
2) and [h](3,

√
30); G2 also

has [h′](−1,−1 + 3/u). (vi) : G1 also has [h](−4, 6
√
−2). (vii) : Again, G1 also

has [h](−4, 6
√
−2). (viii) : G1 also has [h](−2, 2

√
−3). (ix) : Again, G1 has

[h](−2, 2
√
−3) too. G2 also has [h′]

(

−5,
√

−125− 25/u
)

.

D.2 More compact generators for k = 12

Refer back to Table 6.4 - (i) : In G1, we also have [h′]
(
−5,
√
−128

)
, [h′]

(
3,
√

24
)

and [h′]
(
9,
√

726
)
.

267

268 Appendix D. Some more generators

D.3 More compact generators for k = 18

Refer back to Table 6.8 - for all cases here, the extra generators are in G1:

(i) [h](−3,
√
−25), [h](1,

√
3); (ii) [h](−1,

√
3); (iii) [h](−2, 4

√
−3), [h](1,

√
−3),

[h](5, 11); (iv) [h](−3, 2
√
−6), [h](−1,

√
2); (v) [h](−2, 2

√
−3), [h](1,

√
−3); (vi)

[h](−5, 2
√
−30), [h](−2,

√
−3); (vii) [h](−1, 2

√
−2).

D.4 More compact generators for k = 27

Refer back to Table 6.10 - all the extra generators are in G1: (i) : [h](−5, 8
√
−2),

[h](3, 2
√

6) [h](9, 11
√

6); (ii): [h](7, 4
√

21); (iii) : [h](3, 6), [h](6, 3
√

5).

D.5 More compact generators for k = 32

Refer back to Table 6.12 - all the extra generators are in G1: (i): [h](−5, 8
√
−2),

[h](3, 2
√

6), [h](9, 11
√

6); (ii): [h](−4, 6
√

2); (iii): [h](−3, 6
√
−1), [h](−1, 2

√
−1),

[h](3, 6).

D.6 More compact generators for k = 36

Refer back to Table 6.14 - all the extra generators are in G1: (i): [h](−2, 2
√
−3),

[h](1,
√
−3), [h](5, 11); (ii): [h](−2,

√
−10), [h](−1,

√
−3); (iii): [h](−2,

√
−5);

(iv): [h](3,
√

30); (v): [h](5, 2
√

30); (vi): [h](−2, 2
√
−3), [h](−1,

√
−5), [h](1,

√
−3),

[h](4, 2
√

15).

D.7 More compact generators for k = 48

Refer back to Table 6.16 - (i): Both in G2 are [h′](−1−2/w,
√

(−1− 2/w)3 − 2),

[h′](±5 − 2/w,
√

(±5− 2/w)3 − 2); (ii): In G2 is [h′](1 − w,
√

(1− w)3 + 1);

(iii): In G2 is [h′](−2,
√
−8 + 4w); (iv): All in G2 are [h′](−1,

√
−1 + 4w),

[h′](−3,
√
−27 + 4w), [h′](3,

√
27 + 4w); (v): In G2 is [h′](−1,

√
1− w); (vi): All

in G1 are [h](−5, 11
√

1), [h](−2, 2
√
−1), [h](2, 2

√
3).

Bibliography

[AB10] M. Abdalla and P. S. L. M. Barreto, editors. Progress in Cryptology

- LATINCRYPT 2010, First International Conference on Cryptol-

ogy and Information Security in Latin America, Puebla, Mexico,

August 8-11, 2010, Proceedings, volume 6212 of Lecture Notes in

Computer Science. Springer, 2010.

[ACD+05] R. M. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen,

and F. Vercauteren. The Handbook of Elliptic and Hyperelliptic

Curve Cryptography. CRC, 2005.

[AFCK+12] D. F. Aranha, L. Fuentes-Castañeda, E. Knapp, A. J. Menezes,

and F. Rodŕıguez-Henŕıquez. Implementing pairings at the 192-bit

security level. Cryptology ePrint Archive, Report 2012/232, 2012.

http://eprint.iacr.org/.

[AKL+11] D. F. Aranha, K. Karabina, P. Longa, C. H. Gebotys, and

J. López. Faster explicit formulas for computing pairings over or-

dinary curves. In K. G. Paterson, editor, EUROCRYPT, volume

6632 of Lecture Notes in Computer Science, pages 48–68. Springer,

2011.

[AKM06] F. K. Abu Salem and K. Khuri-Makdisi. Fast Jacobian group

operations for C3,4 curves over a large finite field. CoRR,

abs/math/0610121, 2006.

[AKMRH11] D. F. Aranha, E. Knapp, A. Menezes, and F. Rodŕıguez-Henŕıquez.

Parallelizing the Weil and Tate pairings. In Chen [Che11], pages

275–295.

269

http://eprint.iacr.org/

270 BIBLIOGRAPHY

[ALNR10] C. Arène, T. Lange, M. Naehrig, and C. Ritzenthaler. Faster

computation of the Tate pairing. Journal of Number Theory,

131(5):842–857, 2010.

[AM93] A.O.L. Atkin and F. Morain. Elliptic curves and primality proving.

Mathematics of computation, 61:29–29, 1993.

[ANM09] M. Akane, Y. Nogami, and Y. Morikawa. Fast ate pairing compu-

tation of embedding degree 12 using subfield-twisted elliptic curve.

IEICE Transactions, 92-A(2):508–516, 2009.

[ATW08] R. Avanzi, N. Thériault, and Z. Wang. Rethinking low genus hy-

perelliptic Jacobian arithmetic over binary fields: interplay of field

arithmetic and explicit formulæ. Journal of Mathematical Cryptol-

ogy, 2(3):227–255, 2008.

[BB11] D. Boneh and X. Boyen. Efficient selective identity-based encryp-

tion without random oracles. J. Cryptology, 24(4):659–693, 2011.

[BBC+09] J. Balakrishnan, J. Belding, S. Chisholm, K. Eisenträger, K.E.

Stange, and E. Teske. Pairings on hyperelliptic curves. WIN-

Women in Numbers: Research Directions in Number Theory, Fields

Institute Communications, 60:87–120, 2009.

[BCP97] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra sys-

tem. I. The user language. J. Symbolic Comput., 24(3-4):235–265,

1997. Computational algebra and number theory (London, 1993).

[Ben10] N. Benger. Cryptographic Pairings: Efficiency and DLP Security.

PhD thesis, Dublin City University, May 2010.

[Ber01] D.J. Bernstein. Multidigit multiplication for mathematicians. Ad-

vances in Applied Mathematics, 2001.

[Ber06] D. J. Bernstein. Elliptic vs. Hyperelliptic, part I. Talk at ECC,

September 2006.

[BF03] D. Boneh and M. K. Franklin. Identity-based encryption from the

Weil pairing. SIAM J. Comput., 32(3):586–615, 2003.

http://cr.yp.to/talks/2006.09.20/slides.pdf

BIBLIOGRAPHY 271

[BGDM+10] J. Beuchat, J. E. González-Dı́az, S. Mitsunari, E. Okamoto,

F. Rodŕıguez-Henŕıquez, and T. Teruya. High-speed software

implementation of the optimal ate pairing over Barreto-Naehrig

curves. In Joye et al. [JMO10], pages 21–39.

[BGN05] D. Boneh, E. Goh, and K. Nissim. Evaluating 2-DNF formulas

on ciphertexts. In J. Kilian, editor, TCC, volume 3378 of Lecture

Notes in Computer Science, pages 325–341. Springer, 2005.

[BGOS07] P. S. L. M. Barreto, S. D. Galbraith, C. O’Eigeartaigh, and

M. Scott. Efficient pairing computation on supersingular abelian

varieties. Des. Codes Cryptography, 42(3):239–271, 2007.

[BJ03] O. Billet and M. Joye. The Jacobi model of an elliptic curve

and side-channel analysis. In M. P. C. Fossorier, T. Hoholdt, and

A. Poli, editors, AAECC, volume 2643 of Lecture Notes in Com-

puter Science, pages 34–42. Springer, 2003.

[BK98] R. Balasubramanian and N. Koblitz. The improbability that an

elliptic curve has subexponential discrete log problem under the

Menezes - Okamoto - Vanstone algorithm. J. Cryptology, 11(2):141–

145, 1998.

[BKLS02] P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient

algorithms for pairing-based cryptosystems. In Yung [Yun02], pages

354–368.

[BKMX06] I.F. Blake, V. Kumar Murty, and G. Xu. Refinements of Miller’s

algorithm for computing the Weil/Tate pairing. Journal of Algo-

rithms, 58(2):134–149, 2006.

[BL07a] D. J. Bernstein and T. Lange. Explicit-formulas database.

http://www.hyperelliptic.org/EFD, 2007.

[BL07b] D. J. Bernstein and T. Lange. Faster addition and doubling on

elliptic curves. In K. Kurosawa, editor, ASIACRYPT, volume 4833

of Lecture Notes in Computer Science, pages 29–50. Springer, 2007.

[BLS02] P. S. L. M. Barreto, B. Lynn, and M. Scott. Constructing elliptic

curves with prescribed embedding degrees. In S. Cimato, C. Galdi,

http://www.hyperelliptic.org/EFD

272 BIBLIOGRAPHY

and G. Persiano, editors, SCN, volume 2576 of Lecture Notes in

Computer Science, pages 257–267. Springer, 2002.

[BLS03] P. S. L. M. Barreto, B. Lynn, and M. Scott. On the selection of

pairing-friendly groups. In M. Matsui and R. J. Zuccherato, editors,

Selected Areas in Cryptography, volume 3006 of Lecture Notes in

Computer Science, pages 17–25. Springer, 2003.

[BLS04] P. S. L. M. Barreto, B. Lynn, and M. Scott. Efficient implementa-

tion of pairing-based cryptosystems. J. Cryptology, 17(4):321–334,

2004.

[BMW05] X. Boyen, Q. Mei, and B. Waters. Direct chosen ciphertext secu-

rity from identity-based techniques. In V. Atluri, C. Meadows, and

A. Juels, editors, ACM Conference on Computer and Communica-

tions Security, pages 320–329. ACM, 2005.

[BN05] P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic curves

of prime order. In B. Preneel and S. E. Tavares, editors, Selected

Areas in Cryptography, volume 3897 of Lecture Notes in Computer

Science, pages 319–331. Springer, 2005.

[BRS11] D. Boneh, K. Rubin, and A. Silverberg. Finding composite order

ordinary elliptic curves using the Cocks-Pinch method. Journal of

Number Theory, 131(5):832–841, 2011.

[BS10] N. Benger and M. Scott. Constructing tower extensions of finite

fields for implementation of pairing-based cryptography. In Hasan

and Helleseth [HH10], pages 180–195.

[BW05] F. Brezing and A. Weng. Elliptic curves suitable for pairing based

cryptography. Des. Codes Cryptography, 37(1):133–141, 2005.

[CA66] S.A. Cook and S.O. Aanderaa. On the minimum computation time

of functions. PhD thesis, Harvard., 1966.

[Can87] D. G. Cantor. Computing in the Jacobian of a hyperelliptic curve.

Mathematics of computation, 48(177):95–101, January 1987.

BIBLIOGRAPHY 273

[CBNW10a] C. Costello, C. Boyd, J. M. González Nieto, and K. Koon-Ho Wong.

Avoiding full extension field arithmetic in pairing computations.

In D. J. Bernstein and T. Lange, editors, AFRICACRYPT, vol-

ume 6055 of Lecture Notes in Computer Science, pages 203–224.

Springer, 2010.

[CBNW10b] C. Costello, C. Boyd, J. M. González Nieto, and K. Koon-Ho Wong.

Delaying mismatched field multiplications in pairing computations.

In Hasan and Helleseth [HH10], pages 196–214.

[CCS07] L. Chen, Z. Cheng, and N. P. Smart. Identity-based key agreement

protocols from pairings. Int. J. Inf. Sec., 6(4):213–241, 2007.

[CHB+09] C. Costello, H. Hisil, C. Boyd, J. M. González Nieto, and K. Koon-

Ho Wong. Faster pairings on special Weierstrass curves. In Shacham

and Waters [SW09], pages 89–101.

[Che11] L. Chen, editor. Cryptography and Coding - 13th IMA Interna-

tional Conference, IMACC 2011, Oxford, UK, December 12-15,

2011. Proceedings, volume 7089 of Lecture Notes in Computer Sci-

ence. Springer, 2011.

[CJLM06] M. Ciet, M. Joye, K. Lauter, and P. L. Montgomery. Trading

inversions for multiplications in elliptic curve cryptography. Des.

Codes Cryptography, 39(2):189–206, 2006.

[CK03] L. Chen and C. Kudla. Identity based authenticated key agreement

protocols from pairings. In CSFW, pages 219–233. IEEE Computer

Society, 2003.

[CL11] C. Costello and K. Lauter. Group law computations on Jacobians of

hyperelliptic curves. In Miri and Vaudenay [MV12], pages 92–117.

[CLN10] C. Costello, T. Lange, and M. Naehrig. Faster pairing computa-

tions on curves with high-degree twists. In Nguyen and Pointcheval

[NP10], pages 224–242.

[CLN11] C. Costello, K. Lauter, and M. Naehrig. Attractive subfamilies

of BLS curves for implementing high-security pairings. In D. J.

Bernstein and S. Chatterjee, editors, INDOCRYPT, volume 7107

274 BIBLIOGRAPHY

of Lecture Notes in Computer Science, pages 320–342. Springer,

2011.

[CM09] S. Chatterjee and A. J. Menezes. On cryptographic protocols em-

ploying asymmetric pairings - the role of psi revisited. IACR Cryp-

tology ePrint Archive, 2009:480, 2009.

[Coh96] H. Cohen. A course in computational algebraic number theory, vol-

ume 138. Springer-Verlag, 3rd printing, 1996.

[Cos12] C. Costello. Particularly friendly members of family

trees. Cryptology ePrint Archive, Report 2012/072, 2012.

http://eprint.iacr.org/.

[CP01] C. Cocks and R.G.E. Pinch. Id-based cryptosystems based on the

Weil pairing. Unpublished manuscript, 2001.

[CS10] C. Costello and D. Stebila. Fixed argument pairings. In Abdalla

and Barreto [AB10], pages 92–108.

[CSB04] S. Chatterjee, P. Sarkar, and R. Barua. Efficient computation of

Tate pairing in projective coordinate over general characteristic

fields. In C. Park and S. Chee, editors, ICISC, volume 3506 of

Lecture Notes in Computer Science, pages 168–181. Springer, 2004.

[CV11] W. Castryck and F. Vercauteren. Toric forms of elliptic curves and

their arithmetic. J. Symb. Comput., 46(8):943–966, 2011.

[DEM05] R. Dupont, A. Enge, and F. Morain. Building curves with arbitrary

small MOV degree over finite prime fields. J. Cryptology, 18(2):79–

89, 2005.

[Deu41] M. Deuring. Die typen der multiplikatorenringe elliptischer funktio-

nenkörper. Abh. Math. Sem. Hansischen Univ., 14:197–242, 1941.

[DH76] W. Diffie and M. E. Hellman. New directions in cryptography.

IEEE Transactions on Information Theory, 22(6):644–654, 1976.

[Die06] C. Diem. An index calculus algorithm for plane curves of small

degree. In Hess et al. [HPP06], pages 543–557.

http://eprint.iacr.org/

BIBLIOGRAPHY 275

[Die12] C. Diem. What on earth is “index calculus”? The ECC

blog: http://ellipticnews.wordpress.com/2012/05/07/246/,

May 2012.

[DIK06] C. Doche, T. Icart, and D. R. Kohel. Efficient scalar multiplication

by isogeny decompositions. In M. Yung, Y. Dodis, A. Kiayias,

and T. Malkin, editors, Public Key Cryptography, volume 3958 of

Lecture Notes in Computer Science, pages 191–206. Springer, 2006.

[DKS09] L. J. Dominguez Perez, E. J. Kachisa, and M. Scott. Implement-

ing cryptographic pairings: a magma tutorial. Cryptology ePrint

Archive, Report 2009/072, 2009. http://eprint.iacr.org/.

[DL03] I. M. Duursma and H. Lee. Tate pairing implementation for hyper-

elliptic curves y2 = xp-x + d. In C. Laih, editor, ASIACRYPT,

volume 2894 of Lecture Notes in Computer Science, pages 111–123.

Springer, 2003.

[DOSD06] A. J. Devegili, C. O’Eigeartaigh, M. Scott, and R. Dahab. Multi-

plication and squaring on pairing-friendly fields. Cryptology ePrint

Archive, Report 2006/471, 2006. http://eprint.iacr.org/.

[DS08] M. P. L. Das and P. Sarkar. Pairing computation on twisted Ed-

wards form elliptic curves. In Galbraith and Paterson [GP08], pages

192–210.

[DS10] L. J. Dominguez Perez and M. Scott. Private communication,

November 2010.

[DSD07] A. J. Devegili, M. Scott, and R. Dahab. Implementing crypto-

graphic pairings over Barreto-Naehrig curves. In Takagi et al.

[TOOO07], pages 197–207.

[Edw07] H.M. Edwards. A normal form for elliptic curves. Bulletin of the

American Mathematical Society, 44(3):393–422, 2007.

[EJSS10] S. Erickson, M. J. Jacobson, N. Shang, and S. Shen A. Stein. Ef-

ficient formulas for real hyperelliptic curves of genus 2 in affine

representation. In C. Carlet and B. Sunar, editors, Arithmetic of

http://ellipticnews.wordpress.com/2012/05/07/246/
http://eprint.iacr.org/
http://eprint.iacr.org/

276 BIBLIOGRAPHY

finite fields, volume 4547 of Lecture Notes in Computer Science,

pages 202–218. Springer Berlin / Heidelberg, 2010.

[ELM03] K. Eisenträger, K. Lauter, and P. L. Montgomery. Fast elliptic

curve arithmetic and improved Weil pairing evaluation. In Joye

[Joy03], pages 343–354.

[ELM04] K. Eisenträger, K. Lauter, and P. L. Montgomery. Improved Weil

and Tate pairings for elliptic and hyperelliptic curves. In D. A.

Buell, editor, ANTS, volume 3076 of Lecture Notes in Computer

Science, pages 169–183. Springer, 2004.

[FCKRH11] L. Fuentes-Castañeda, E. Knapp, and F. Rodŕıguez-Henŕıquez.

Faster hashing to G2. In Miri and Vaudenay [MV12], pages 412–

430.

[FGJ08] X. Fan, G. Gong, and D. Jao. Efficient pairing computation on

genus 2 curves in projective coordinates. In R. M. Avanzi, L. Ke-

liher, and F. Sica, editors, Selected Areas in Cryptography, volume

5381 of Lecture Notes in Computer Science, pages 18–34. Springer,

2008.

[FO04] S. Flon and R. Oyono. Fast arithmetic on Jacobians of Picard

curves. In F. Bao, R. H. Deng, and J. Zhou, editors, Public Key

Cryptography, volume 2947 of Lecture Notes in Computer Science,

pages 55–68. Springer, 2004.

[FOR08] S. Flon, R. Oyono, , and C. Ritzenthaler. Fast addition on non-

hyperelliptic genus 3 curves. Algebraic geometry and its applica-

tions, 5(3):227–256, 2008.

[FR94] G. Frey and H.G. Rück. A remark concerning m-divisibility and the

discrete logarithm in the divisor class group of curves. Mathematics

of computation, 62(206):865–874, 1994.

[Fre06] D. Freeman. Constructing pairing-friendly elliptic curves with em-

bedding degree 10. In Hess et al. [HPP06], pages 452–465.

BIBLIOGRAPHY 277

[Fre10] D. M. Freeman. Converting pairing-based cryptosystems from

composite-order groups to prime-order groups. In Gilbert [Gil10],

pages 44–61.

[Fri05] S. Friedl. An elementary proof of the group

law for elliptic curves. Personal webpage:

http://math.rice.edu/~friedl/papers/AAELLIPTIC.PDF,

August 2005.

[FST10] D. Freeman, M. Scott, and E. Teske. A taxonomy of pairing-friendly

elliptic curves. J. Cryptology, 23(2):224–280, 2010.

[Ful08] W. Fulton. Algebraic curves: an intro-

duction to algebraic geometry (3rd edition).

http://www.math.lsa.umich.edu/~wfulton/CurveBook.pdf,

2008.

[Gal01] S. D. Galbraith. Supersingular curves in cryptography. In C. Boyd,

editor, ASIACRYPT, volume 2248 of Lecture Notes in Computer

Science, pages 495–513. Springer, 2001.

[Gal05] S. D. Galbraith. Pairings, volume 317 of London Mathematical

Society Lecture Notes, chapter IX, pages 183–213. Cambridge Uni-

versity Press, 2005.

[Gal09] S. D. Galbraith. Twists of Edwards curves. unpublished

manuscript, 2009.

[Gal12] S. D. Galbraith. Mathematics of Public Key Cryptography. Cam-

bridge University Press, March 2012.

[Gau00] P. Gaudry. An algorithm for solving the discrete log problem on

hyperelliptic curves. In B. Preneel, editor, EUROCRYPT, volume

1807 of Lecture Notes in Computer Science, pages 19–34. Springer,

2000.

[Gau05] P. Gaudry. Hyperelliptic curves and the HCDLP, volume 317 of

London Mathematical Society Lecture Notes, chapter VII, pages

133–150. Cambridge University Press, 2005.

http://math.rice.edu/~friedl/papers/AAELLIPTIC.PDF
http://www.math.lsa.umich.edu/~wfulton/CurveBook.pdf

278 BIBLIOGRAPHY

[Gau07] P. Gaudry. Fast genus 2 arithmetic based on Theta functions. Jour-

nal of Mathematical Cryptology, 1(3):243–265, 2007.

[GH00] P. Gaudry and R. Harley. Counting points on hyperelliptic curves

over finite fields. In W. Bosma, editor, ANTS, volume 1838 of

Lecture Notes in Computer Science, pages 313–332. Springer, 2000.

[GHM08] S. D. Galbraith, M. Harrison, and D. J. Mireles Morales. Efficient

hyperelliptic arithmetic using balanced representation for divisors.

In A. J. van der Poorten and A. Stein, editors, ANTS, volume 5011

of Lecture Notes in Computer Science, pages 342–356. Springer,

2008.

[GHO+07] R. Granger, F. Hess, R. Oyono, N. Thériault, and F. Vercauteren.

Ate pairing on hyperelliptic curves. In M. Naor, editor, EURO-

CRYPT, volume 4515 of Lecture Notes in Computer Science, pages

430–447. Springer, 2007.

[GHS02] S. D. Galbraith, K. Harrison, and D. Soldera. Implementing the

Tate pairing. In C. Fieker and D. R. Kohel, editors, ANTS, vol-

ume 2369 of Lecture Notes in Computer Science, pages 324–337.

Springer, 2002.

[GHV07] S. D. Galbraith, F. Hess, and F. Vercauteren. Hyperelliptic pair-

ings. In Takagi et al. [TOOO07], pages 108–131.

[Gil10] H. Gilbert, editor. Advances in Cryptology - EUROCRYPT 2010,

29th Annual International Conference on the Theory and Applica-

tions of Cryptographic Techniques, French Riviera, May 30 - June

3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer

Science. Springer, 2010.

[GKP04] C. Gurot, K. Kaveh, and V. M. Patankar. Explicit algorithm for

the arithmetic on the hyperelliptic Jacobians of genus 3. Journal

of the Ramanujan Mathematical Society, 19:75–115, 2004.

[GL09] S. D. Galbraith and X. Lin. Computing pairings using x-coordinates

only. Designs, Codes and Cryptography, 50(3):305–324, 2009.

BIBLIOGRAPHY 279

[GLS11] S. D. Galbraith, X. Lin, and M. Scott. Endomorphisms for faster

elliptic curve cryptography on a large class of curves. J. Cryptology,

24(3):446–469, 2011.

[GLV01] R. P. Gallant, R. J. Lambert, and S. A. Vanstone. Faster point

multiplication on elliptic curves with efficient endomorphisms. In

J. Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Com-

puter Science, pages 190–200. Springer, 2001.

[GMA+05] M. Gonda, K. Matsuo, K. Aoki, J. Chao, and S. Tsujii. Improve-

ments of addition algorithm on genus 3 hyperelliptic curves and

their implementation. IEICE Transactions, 88-A(1):89–96, 2005.

[GMV07] S. D. Galbraith, J. F. McKee, and P. C. Valença. Ordinary abelian

varieties having small embedding degree. Finite Fields and Their

Applications, 13(4):800–814, 2007.

[GP08] S. D. Galbraith and K. G. Paterson, editors. Pairing-Based Cryp-

tography - Pairing 2008, Second International Conference, Egham,

UK, September 1-3, 2008. Proceedings, volume 5209 of Lecture

Notes in Computer Science. Springer, 2008.

[GPS06] R. Granger, D. Page, and M. Stam. On small characteristic alge-

braic tori in pairing-based cryptography. LMS Journal of Compu-

tation and Mathematics, 9(1):64–85, 2006.

[GPS08] S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for

cryptographers. Discrete Applied Mathematics, 156(16):3113–3121,

2008.

[GPSW06] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based

encryption for fine-grained access control of encrypted data. In

A. Juels, R. N. Wright, and S. D. C. di Vimercati, editors, ACM

Conference on Computer and Communications Security, pages 89–

98. ACM, 2006.

[GS10] R. Granger and M. Scott. Faster squaring in the cyclotomic sub-

group of sixth degree extensions. In Nguyen and Pointcheval

[NP10], pages 209–223.

280 BIBLIOGRAPHY

[GTTD07] P. Gaudry, E. Thomé, N Thériault, and C. Diem. A double large

prime variation for small genus hyperelliptic index calculus. Math.

Comput., 76(257):475–492, 2007.

[Har] R. Harley. Fast arithmetic on genus 2 curves. See

http://cristal.inria.fr/∼harley/hyper for C source code and further

explanations.

[Har77] R. Hartshorne. Algebraic Geometry, volume 52 of Graduate texts

in mathematics. Springer-Verlag, 1977.

[Hes02] F. Hess. Computing Riemann-Roch spaces in algebraic function

fields and related topics. J. Symb. Comput., 33(4):425–445, 2002.

[Hes08] F. Hess. Pairing lattices. In Galbraith and Paterson [GP08], pages

18–38.

[HH10] M. A. Hasan and T. Helleseth, editors. Arithmetic of Finite Fields,

Third International Workshop, WAIFI 2010, Istanbul, Turkey,

June 27-30, 2010. Proceedings, volume 6087 of Lecture Notes in

Computer Science. Springer, 2010.

[HI94] M. A. Huang and D. Ierardi. Efficient algorithms for the Riemann-

Roch problem and for addition in the jacobian of a curve. J. Symb.

Comput., 18(6):519–539, 1994.

[His10] H. Hisil. Elliptic curves, group law, and efficient computation. PhD

thesis, Queensland University of Technology, 2010.

[HLX12] Z. Hu, P. Longa, and M. Xu. Implementing the 4-dimensional

GLV method on GLS elliptic curves with j-invariant 0. Des. Codes

Cryptography, 63(3):331–343, 2012.

[HMS08] D. Hankerson, A. J. Menezes, and M. Scott. Software implementa-

tion of pairings. In M. Joye and G. Neven, editors, Identity-Based

Cryptography, pages 188–206. IOS Press, 2008.

[HPP06] F. Hess, S. Pauli, and M. E. Pohst, editors. Algorithmic Num-

ber Theory, 7th International Symposium, ANTS-VII, Berlin, Ger-

many, July 23-28, 2006, Proceedings, volume 4076 of Lecture Notes

in Computer Science. Springer, 2006.

BIBLIOGRAPHY 281

[HSV06] F. Hess, N. P. Smart, and F. Vercauteren. The eta pairing revis-

ited. IEEE Transactions on Information Theory, 52(10):4595–4602,

2006.

[HWCD08] H. Hisil, K. Koon-Ho Wong, G. Carter, and E. Dawson. Twisted

Edwards curves revisited. In J. Pieprzyk, editor, ASIACRYPT,

volume 5350 of Lecture Notes in Computer Science, pages 326–343.

Springer, 2008.

[HWCD09] H. Hisil, K. Koon-Ho Wong, G. Carter, and E. Dawson. Jacobi

quartic curves revisited. In C. Boyd and J. M. González Nieto,

editors, ACISP, volume 5594 of Lecture Notes in Computer Science,

pages 452–468. Springer, 2009.

[IJ08] S. Ionica and A. Joux. Another approach to pairing computation in

Edwards coordinates. In D. R. Chowdhury, V. Rijmen, and A. Das,

editors, INDOCRYPT, volume 5365 of Lecture Notes in Computer

Science, pages 400–413. Springer, 2008.

[IR90] K. Ireland and M. Rosen. A Classical Introduction to Modern Num-

ber Theory, volume 84 of Graduate texts in mathematics. Springer-

Verlag, 1990.

[IT02] T. Izu and T. Takagi. Efficient computations of the Tate pairing

for the large MOV degrees. In P. J. Lee and C. H. Lim, editors,

ICISC, volume 2587 of Lecture Notes in Computer Science, pages

283–297. Springer, 2002.

[JMO10] M. Joye, A. Miyaji, and A. Otsuka, editors. Pairing-Based Cryp-

tography - Pairing 2010 - 4th International Conference, Yamanaka

Hot Spring, Japan, December 2010. Proceedings, volume 6487 of

Lecture Notes in Computer Science. Springer, 2010.

[Jou04] A. Joux. A one round protocol for tripartite Diffie-Hellman. J.

Cryptology, 17(4):263–276, 2004.

[Joy03] M. Joye, editor. Topics in Cryptology - CT-RSA 2003, The Cryp-

tographers’ Track at the RSA Conference 2003, San Francisco, CA,

USA, April 13-17, 2003, Proceedings, volume 2612 of Lecture Notes

in Computer Science. Springer, 2003.

282 BIBLIOGRAPHY

[JQ01] M. Joye and J.J. Quisquater. Hessian elliptic curves and side-

channel attacks. In Cryptographic Hardware and Embedded

Systems—CHES 2001, pages 402–410. Springer, 2001.

[JTV10] M. Joye, M. Tibouchi, and D. Vergnaud. Huff’s model for elliptic

curves. In G. Hanrot, F. Morain, and E. Thomé, editors, ANTS,

volume 6197 of Lecture Notes in Computer Science, pages 234–250.

Springer, 2010.

[Kar10] K. Karabina. Squaring in cyclotomic subgroups. IACR Cryptology

ePrint Archive, 2010:542, 2010.

[KKAT04] M. Katagi, I. Kitamura, T. Akishita, and T. Takagi. Novel effi-

cient implementations of hyperelliptic curve cryptosystems using

degenerate divisors. In C. H. Lim and M. Yung, editors, WISA,

volume 3325 of Lecture Notes in Computer Science, pages 345–359.

Springer, 2004.

[KM04] K. Khuri-Makdisi. Linear algebra algorithms for divisors on an

algebraic curve. Math. Comput., 73(245):333–357, 2004.

[KM05] N. Koblitz and A. Menezes. Pairing-based cryptography at high

security levels. In N. P. Smart, editor, IMA Int. Conf., volume

3796 of Lecture Notes in Computer Science, pages 13–36. Springer,

2005.

[KM07] K. Khuri-Makdisi. Asymptotically fast group operations on Jaco-

bians of general curves. Math. Comput., 76(260):2213–2239, 2007.

[KO63] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers

on automata. In Soviet physics doklady, volume 7, page 595, 1963.

[Kob87] N. Koblitz. Elliptic curve cryptosystems. Mathematics of compu-

tation, 48(177):203–209, 1987.

[Kob89] N. Koblitz. Hyperelliptic cryptosystems. J. Cryptology, 1(3):139–

150, 1989.

[Koh11] D. Kohel. Addition law structure of elliptic curves. Journal of

Number Theory, 2011.

BIBLIOGRAPHY 283

[KSS08] E. J. Kachisa, E. F. Schaefer, and M. Scott. Constructing Brezing-

Weng pairing-friendly elliptic curves using elements in the cyclo-

tomic field. In Galbraith and Paterson [GP08], pages 126–135.

[Lan72] S. Lang. Introduction to algebraic geometry. Addison-Wesley, 1972.

[Lan01] T. Lange. Efficient arithmetic on hyperelliptic curves. PhD thesis,

Universität-Gesamthochschule Essen, 2001.

[Lan02a] T. Lange. Efficient arithmetic on genus 2 hyperelliptic curves over

finite fields via explicit formulae. Cryptology ePrint Archive, Re-

port 2002/121, 2002. http://eprint.iacr.org/.

[Lan02b] T. Lange. Inversion-free arithmetic on genus 2 hyperelliptic

curves. Cryptology ePrint Archive, Report 2002/147, 2002.

http://eprint.iacr.org/.

[Lan02c] T. Lange. Weighted coordinates on genus 2 hyperelliptic

curves. Cryptology ePrint Archive, Report 2002/153, 2002.

http://eprint.iacr.org/.

[Lan05] T. Lange. Formulae for arithmetic on genus 2 hyperelliptic curves.

Appl. Algebra Eng. Commun. Comput., 15(5):295–328, 2005.

[Lan06] T. Lange. Elliptic vs. Hyperelliptic, part II. Talk at ECC, Septem-

ber 2006.

[Lau03] K. Lauter. The equivalence of the geometric and algebraic group

laws for Jacobians of genus 2 curves. In Topics in algebraic and

noncommutative geometry: proceedings in memory of Ruth Mich-

ler, July 20-22, 2001, Luminy, France [and] October 25-28, 2001,

Annapolis, Maryland, volume 324, page 165. Amer Mathematical

Society, 2003.

[LD98] J. López and R. Dahab. Improved algorithms for elliptic curve

arithmetic in GF(2n). In S. E. Tavares and H. Meijer, editors,

Selected Areas in Cryptography, volume 1556 of Lecture Notes in

Computer Science, pages 201–212. Springer, 1998.

[Leh58] E. Lehmer. Criteria for cubic and quartic residuacity. Mathematika,

5(20-29), 1958.

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.hyperelliptic.org/tanja/vortraege/ECC_06.ps

284 BIBLIOGRAPHY

[Lei05] F. Leitenberger. About the group law for the Jacobi variety of

a hyperelliptic curve. Contributions to Algebra and Geometry,

46(1):125–130, 2005.

[Lem00] F. Lemmermeyer. Reciprocity laws: from Euler to Eisenstein.

Springer Verlag, 2000.

[Lew12] A. B. Lewko. Tools for simulating features of composite order bilin-

ear groups in the prime order setting. In D. Pointcheval and T. Jo-

hansson, editors, EUROCRYPT, volume 7237 of Lecture Notes in

Computer Science, pages 318–335. Springer, 2012.

[Lic69] S. Lichtenbaum. Duality theorems for curves over P-adic fields.

Inventiones mathematicae, 7(2):120–136, 1969.

[LLP09] E. Lee, H.-S. Lee, and C.-M. Park. Efficient and generalized pairing

computation on abelian varieties. IEEE Transactions on Informa-

tion Theory, 55(4):1793–1803, 2009.

[LMN10] K. Lauter, P. L. Montgomery, and M. Naehrig. An analysis of affine

coordinates for pairing computation. In Joye et al. [JMO10], pages

1–20.

[LOS+10] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters.

Fully secure functional encryption: Attribute-based encryption and

(hierarchical) inner product encryption. In Gilbert [Gil10], pages

62–91.

[Lyn07] B. Lynn. On the Efficient Implementation of Pairing-Based Cryp-

tosystems. PhD thesis, Stanford University, June 2007.

[LZZW08] X. Lin, C. Zhao, F. Zhang, and Y. Wang. Computing the ate

pairing on elliptic curves with embedding degree k = 9. IEICE

Transactions, 91-A(9):2387–2393, 2008.

[MB05] N. McCullagh and P. S. L. M. Barreto. A new two-party identity-

based authenticated key agreement. In Menezes [Men05], pages

262–274.

[MCT01] K. Matsuo, J. Chao, and S. Tsujii. Fast genus two hyperelliptic

curve cryptosystems. Technical Report 214, IEIC, 2001.

BIBLIOGRAPHY 285

[MDM+02] Y. Miyamoto, H. Doi, K. Matsuo, J. Chao, and S. Tsujii. A fast

addition algorithm of genus two hyperelliptic curve. In Symposium

on Cryptography and Information Security - SCICS, In Japanese,

2002.

[Men93] A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer

Academic Publishers, 1993.

[Men05] A. J. Menezes, editor. Topics in Cryptology - CT-RSA 2005, The

Cryptographers’ Track at the RSA Conference 2005, San Francisco,

CA, USA, February 14-18, 2005, Proceedings, volume 3376 of Lec-

ture Notes in Computer Science. Springer, 2005.

[Men09] A. J. Menezes. Asymmetric Pairings. Talk at ECC 2009, University

of Calgary, Canada., August 2009.

[MGI09] N. El Mrabet, N. Guillermin, and S. Ionica. A study of

pairing computation for elliptic curves with embedding de-

gree 15. Cryptology ePrint Archive, Report 2009/370, 2009.

http://eprint.iacr.org/.

[Mil85] V. S. Miller. Use of elliptic curves in cryptography. In H. C.

Williams, editor, CRYPTO, volume 218 of Lecture Notes in Com-

puter Science, pages 417–426. Springer, 1985.

[Mil04] V. S. Miller. The Weil pairing, and its efficient calculation. J.

Cryptology, 17(4):235–261, 2004.

[Min10] H. Minkowski. Geometrie der zahlen, volume 1896. Teubner, 1910.

[MKHO07] S. Matsuda, N. Kanayama, F. Hess, and E. Okamoto. Optimised

versions of the ate and twisted ate pairings. In S. D. Galbraith,

editor, IMA Int. Conf., volume 4887 of Lecture Notes in Computer

Science, pages 302–312. Springer, 2007.

[MNT01] A. Miyaji, M. Nakabayashi, and S. Takano. New explicit condi-

tions of elliptic curve traces for FR-reduction. IEICE transactions

on fundamentals of electronics, communications and computer sci-

ences, 2001.

http://math.ucalgary.ca/sites/ecc.math.ucalgary.ca/files/u5/Menezes_ECC2009.pdf
http://eprint.iacr.org/

286 BIBLIOGRAPHY

[Mon87] P.L. Montgomery. Speeding the Pollard and elliptic curve meth-

ods of factorization. Mathematics of computation, 48(177):243–264,

1987.

[MOV93] A. J. Menezes, T. Okamoto, and S. A. Vanstone. Reducing elliptic

curve logarithms to logarithms in a finite field. IEEE Transactions

on Information Theory, 39(5):1639–1646, 1993.

[MS07] R. Murty and I. Shparlinski. Group structure of elliptic curves over

finite fields and applications. Topics in Geometry, Coding Theory

and Cryptography, pages 167–194, 2007.

[Mum84] D. Mumford. Tata lectures on theta II. In Progress in Mathematics,

volume 43. Birkhiauser Boston Inc., Boston, MA, 1984.

[MV12] A. Miri and S. Vaudenay, editors. Selected Areas in Cryptography

- 18th International Workshop, SAC 2011, Toronto, ON, Canada,

August 11-12, 2011, Revised Selected Papers, volume 7118 of Lec-

ture Notes in Computer Science. Springer, 2012.

[Nae09] M. Naehrig. Constructive and computational aspects of crypto-

graphic pairings. PhD thesis, Eindhoven University of Technology,

May 2009.

[NAS+08] Y. Nogami, M. Akane, Y. Sakemi, H. Katou, and Y. Morikawa.

Integer variable chi-based ate pairing. In Galbraith and Paterson

[GP08], pages 178–191.

[NBS08] M. Naehrig, P. S. L. M. Barreto, and P. Schwabe. On com-

pressible pairings and their computation. In S. Vaudenay, editor,

AFRICACRYPT, volume 5023 of Lecture Notes in Computer Sci-

ence, pages 371–388. Springer, 2008.

[NIS99] NIST. Recommended elliptic curves for Federal Government Use.

Technical report, National Institute of Standards and Technology,

July 1999.

[NNS10] M. Naehrig, R. Niederhagen, and P. Schwabe. New software speed

records for cryptographic pairings. In Abdalla and Barreto [AB10],

pages 109–123.

http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf

BIBLIOGRAPHY 287

[NP10] P. Q. Nguyen and D. Pointcheval, editors. Public Key Cryptography

- PKC 2010, 13th International Conference on Practice and The-

ory in Public Key Cryptography, Paris, France, May 26-28, 2010.

Proceedings, volume 6056 of Lecture Notes in Computer Science.

Springer, 2010.

[Oka12] K. Okano. On conditions for ρ-value is 1 or not

of complete family of pairing-friendly elliptic curves.

http://arxiv.org/abs/1205.1646, May 2012.

[Pat05] K. G. Paterson. Cryptography from Pairings, volume 317 of Lon-

don Mathematical Society Lecture Notes, chapter X, pages 215–251.

Cambridge University Press, 2005.

[PJNB11] G. C. C. F. Pereira, M. A. Simpĺıcio Jr., M. Naehrig, and P. S.

L. M. Barreto. A family of implementation-friendly BN elliptic

curves. Journal of Systems and Software, 84(8):1319–1326, 2011.

[Pol78] J.M. Pollard. Monte Carlo methods for index computation (mod

p). Mathematics of computation, 32(143):918–924, 1978.

[RS02] K. Rubin and A. Silverberg. Supersingular abelian varieties in cryp-

tology. In Yung [Yun02], pages 336–353.

[RS10] K. Rubin and A. Silverberg. Choosing the correct elliptic curve in

the CM method. Math. Comput., 79(269):545–561, 2010.

[SB04] M. Scott and P. S. L. M. Barreto. Compressed pairings. In M. K.

Franklin, editor, CRYPTO, volume 3152 of Lecture Notes in Com-

puter Science, pages 140–156. Springer, 2004.

[SB06] M. Scott and P. S. L. M. Barreto. Generating more MNT elliptic

curves. Des. Codes Cryptography, 38(2):209–217, 2006.

[SBC+09a] M. Scott, N. Benger, M. Charlemagne, L. J. Dominguez Perez, and

Ezekiel J. Kachisa. On the final exponentiation for calculating pair-

ings on ordinary elliptic curves. In Shacham and Waters [SW09],

pages 78–88.

http://arxiv.org/abs/1205.1646

288 BIBLIOGRAPHY

[SBC+09b] M. Scott, N. Benger, M. Charlemagne, L. J. Dominguez Perez, and

Ezekiel J. Kachisa. Fast hashing to G2 on pairing-friendly curves.

In Shacham and Waters [SW09], pages 102–113.

[SCA06] M. Scott, N. Costigan, and W. Abdulwahab. Implementing cryp-

tographic pairings on smartcards. In L. Goubin and M. Matsui,

editors, CHES, volume 4249 of Lecture Notes in Computer Science,

pages 134–147. Springer, 2006.

[Sch85] R. Schoof. Elliptic curves over finite fields and the computation of

square roots mod p. Math. Comp, 44(170):483–494, 1985.

[Sco04] M. Scott. Understanding the Tate pairing. Personal webpage:

http://www.computing.dcu.ie/~mike/tate.html, 2004.

[Sco05a] M. Scott. Computing the Tate pairing. In Menezes [Men05], pages

293–304.

[Sco05b] M. Scott. Faster pairings using an elliptic curve with an efficient en-

domorphism. In S. Maitra, C. E. V. Madhavan, and R. Venkatesan,

editors, INDOCRYPT, volume 3797 of Lecture Notes in Computer

Science, pages 258–269. Springer, 2005.

[Sco07a] M. Scott. An introduction to pairings. Talk at ICE-EM RNSA

2007 Cryptography Workshop, Queensland University of Technol-

ogy, Australia, June 2007.

[Sco07b] M. Scott. Efficient implementation of cryptographic pairings. Talk

at ICE-EM RNSA 2007 Cryptography Workshop, Queensland Uni-

versity of Technology, Australia, June 2007.

[Sco07c] M. Scott. Implementing cryptographic pairings. In Tsuyoshi Tak-

agi, Tatsuaki Okamoto, and Eiji Okamoto, editors, Pairing-Based

Cryptography – Pairing 2007, volume 4575 of Lecture Notes in

Computer Science, pages 177–196. Springer, 2007.

[Sco09] M. Scott. A note on twists for pair-

ing friendly curves. Personal webpage:

ftp://ftp.computing.dcu.ie/pub/resources/crypto/twists.pdf,

February 2009.

http://www.computing.dcu.ie/~mike/tate.html
http://conf.isi.qut.edu.au/ice-em2007/program/slides/aus0.ppt
http://conf.isi.qut.edu.au/ice-em2007/program/slides/aus2.ppt
ftp://ftp.computing.dcu.ie/pub/resources/crypto/twists.pdf

BIBLIOGRAPHY 289

[Sco11] M. Scott. On the efficient implementation of pairing-based proto-

cols. In Chen [Che11], pages 296–308.

[Sha05] H. Shacham. New Paradigms in Signature Schemes. PhD thesis,

Stanford University, December 2005.

[Sil09] J. H. Silverman. The Arithmetic of Elliptic Curves (2nd Edition).

Number 106 in Graduate texts in mathematics. Springer-Verlag,

2009.

[Sil10] J. H. Silverman. A survey of local and global pairings on elliptic

curves and abelian varieties. In Joye et al. [JMO10], pages 377–396.

[Sma01] N. P. Smart. The Hessian form of an elliptic curve. In Ç. K. Koç,

D. Naccache, and C. Paar, editors, CHES, volume 2162 of Lecture

Notes in Computer Science, pages 118–125. Springer, 2001.

[Sma02] N. P. Smart. Identity-based authenticated key agreement protocol

based on Weil pairing. Electronics Letters, 38(13):630–632, 2002.

[Sma10] N. P. Smart. ECRYPT II yearly report on algorithms

and keysizes (2009-2010). Technical report, ECRYPT II

– European Network of Excellence in Cryptology, EU FP7,

ICT-2007-216676, 2010. Published as deliverable D.SPA.13,

http://www.ecrypt.eu.org/documents/D.SPA.13.pdf.

[SMCT02] H. Sugizaki, K. Matsuo, J. Chao, and S. Tsujii. An extension of

Harley addition algorithm for hyperelliptic curves over finite fields

of characteristic two. Technical Report ISEC2002-9(2002-5), IE-

ICE, 2002.

[Smi09] B. Smith. Isogenies and the discrete logarithm problem in Jaco-

bians of genus 3 hyperelliptic curves, . J. Cryptology, 22(4):505–

529, 2009.

[SOK00] R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on

pairing. In The 2000 Symposium on Cryptography and Information

Security, Okinawa, Japan, pages 135–148, 2000.

[Sta07] K. E. Stange. The Tate pairing via elliptic nets. In Takagi et al.

[TOOO07], pages 329–348.

http://www.ecrypt.eu.org/documents/D.SPA.13.pdf

290 BIBLIOGRAPHY

[Sut12] A. V. Sutherland. Accelerating the CM method. LMS Journal of

Computation and Mathematics, 15:172–204, 2012.

[SV07] N. P. Smart and F. Vercauteren. On computable isomorphisms in

efficient asymmetric pairing-based systems. Discrete Applied Math-

ematics, 155(4):538–547, 2007.

[SW09] H. Shacham and B. Waters, editors. Pairing-Based Cryptography

- Pairing 2009, Third International Conference, Palo Alto, CA,

USA, August 12-14, 2009, Proceedings, volume 5671 of Lecture

Notes in Computer Science. Springer, 2009.

[Tak02] M Takahashi. Improving Harley algorithms for Jacobians of genus

2 hyperelliptic curves. In Symposium on Cryptography and Infor-

mation Security - SCICS, In Japanese., 2002.

[Too63] A.L. Toom. The complexity of a scheme of functional elements real-

izing the multiplication of integers. In Soviet Mathematics Doklady,

volume 3, pages 714–716, 1963.

[TOOO07] T. Takagi, T. Okamoto, E. Okamoto, and T. Okamoto, editors.

Pairing-Based Cryptography - Pairing 2007, First International

Conference, Tokyo, Japan, July 2-4, 2007, Proceedings, volume

4575 of Lecture Notes in Computer Science. Springer, 2007.

[Ver01] E. R. Verheul. Evidence that XTR is more secure than supersingu-

lar elliptic curve cryptosystems. In B. Pfitzmann, editor, EURO-

CRYPT, volume 2045 of Lecture Notes in Computer Science, pages

195–210. Springer, 2001.

[Ver06a] F. Vercauteren. Mathematics of Pairings: Part II. Talk at Pairing-

Based Cryptography Workshop, 2006.

[Ver06b] F. Vercauteren. Mathematics of Pairings: Part I. Talk at Pairing-

Based Cryptography Workshop, 2006.

[Ver10] F. Vercauteren. Optimal pairings. IEEE Transactions on Informa-

tion Theory, 56(1):455–461, 2010.

http://homes.esat.kuleuven.be/~fvercaut/talks/math_pairingII.pdf
http://homes.esat.kuleuven.be/~fvercaut/talks/math_pairingI.pdf

BIBLIOGRAPHY 291

[Wat05] B. Waters. Efficient identity-based encryption without random or-

acles. In R. Cramer, editor, EUROCRYPT, volume 3494 of Lecture

Notes in Computer Science, pages 114–127. Springer, 2005.

[WK07] T. Wollinger and V. Kovtun. Fast explicit formulae for genus 2

hyperelliptic curves using projective coordinates. In ITNG, pages

893–897. IEEE Computer Society, 2007.

[Wol04] T. Wollinger. Software and hardware implementation of hyperellip-

tic curve cryptosystems. PhD thesis, Ruhr-University of Bochum,

2004.

[WP06] A. Weimerskirch and C. Paar. Generalizations of the Karatsuba

algorithm for efficient implementations. Cryptology ePrint Archive,

Report 2006/224, 2006. http://eprint.iacr.org/.

[WPP05] T. J. Wollinger, J. Pelzl, and C. Paar. Cantor versus Harley: Op-

timization and analysis of explicit formulae for hyperelliptic curve

cryptosystems. IEEE Trans. Computers, 54(7):861–872, 2005.

[WS07] C. Whelan and M. Scott. The importance of the final expo-

nentiation in pairings when considering fault attacks. In Takagi

et al. [TOOO07], pages 225–246.

[Yun02] M. Yung, editor. Advances in Cryptology - CRYPTO 2002, 22nd

Annual International Cryptology Conference, Santa Barbara, Cali-

fornia, USA, August 18-22, 2002, Proceedings, volume 2442 of Lec-

ture Notes in Computer Science. Springer, 2002.

[ZZH08a] C. Zhao, F. Zhang, and J. Huang. All pairings are in a

group. Cryptology ePrint Archive, Report 2008/085, 2008.

http://eprint.iacr.org/.

[ZZH08b] C. Zhao, F. Zhang, and J. Huang. A note on the ate pairing. Int.

J. Inf. Sec., 7(6):379–382, 2008.

http://eprint.iacr.org/
http://eprint.iacr.org/

292 BIBLIOGRAPHY

Index

R-ate pairing, 100

admissable pairing, 49

ate pairing, 100, 102–104

entirely on the twist, 118–122, 131

bilinear, 48–49, 120

BKLS-GHS algorithm, 94–95, 103

Cantor’s algorithm, 204

Chinese remainder theorem (CRT), 25

CM equation, 85

denominator elimination, 92–95

divisor, 35–47

definition of, 35

degree of, 35

divisor class group, 39–40, 209

effective, 40, 208

equivalence, 39, 209

full degree, 208

function of, 45

group of, 35

of a function, 36–37

Picard group, 40, 207

principal, 38–39, 209

reduced, 40, 207

support of, 36

Edwards curves, 24, 118

elliptic curve, 8–34, 113

r-torsion, 25, 50–58

complex multiplication (CM), 30

discrete logarithm problem, 20, 25–27, 79–

81

division polynomials, 31–33

endomorphism ring, 29–30

Frobenius endomorphism, 28–29, 102, 105

general Weierstrass equation, 8

group axioms, 20

group law, 8, 10–24

explicit formulas, 15–18

group structure, 24–25

Hasse bound, 27

non-singular, 9

point at infinity, 8, 11, 13–15

point counting, 27–33

short Weierstrass equation, 8

singular, 9

supersingular, 56–58, 83–85

trace of Frobenius, 28

twisted curves, 62–65

embedding degree, 51–52

eta pairing, 100

explicit formulas, 135–137

cubic twists, 127–131

genus 2, 214–221

hyperelliptic curves, 203–230

octupling, 150–152

quadrupling, 144–150

quartic twists, 122–126

sextic twists, 126–127

special Weierstrass curves, 131–135

final exponentiation, 109–112

fixed argument pairings, 152–162

Galois theory, 54–55

genus, 42–45, 204

GLV/GLS method, 33–34, 113

Gröbner basis, 145, 205

Hamming weight, 108–109

293

294 INDEX

homogeneous projective coordinates, 15, 22–

23

hyperelliptic curve, 42–45, 203–230

Jacobian, 207, 208, 210

Karatsuba multiplication, 98, 148

loop shortening, 100–108

Magma, 7

Miller functions, 117–137

Miller’s algorithm, 73–78, 94, 95

2n-tuple-and-add, 141–143

loop unrolling, 139–162

octupling, 150–152

quadrupling, 144–150

sparse multiplications, 157

Mumford coordinates, 205–214

Mumford function field, 211

Mumford ideals, 210, 219

non-Weierstrass models, 23–24

not supersingular (NSS) curve, 101–102

optimal pairing, 100, 104–108

pairing types, 58–62

Type 1 pairing, 59

Type 2 pairing, 59

Type 3 pairing, 60, 62

Type 4 pairing, 60

pairing-friendly curve, 79–91

ρ-value of, 81

BLS families, 87, 108, 110–112, 158–159,

163–177, 187–188, 192–194, 198–199

BN family, 88, 106, 155–158, 163

Brezing-Weng family, 186

definition of, 82

family trees, 181–201

implementation-friendly, 163–201

KSS families, 89, 107, 134, 189–192, 194–

198

MNT criteria, 86

MNT curve, 86

ordinary, 85–90

parameterised families, 86–90, 179–201

supersingular, 83–85

with high-degree twists, 89

projective coordinates, 95–97, 122–135

projective space, 13–15

Riemann-Roch Theorem, 40–45, 207

Schoof’s algorithm, 31–33

special Weierstrass curves, 131–135

target group, 48

Tate pairing, 69–73, 92

over finite fields, 71

reduced Tate pairing, 72

Toom-Cook multiplication, 98

towered extension fields, 97–99, 169, 182

irreducibility criteria for, 249–251

trace map, 53–55

anti-trace map, 55

twisted curves, 62–65

cubic twists, 64, 127–131

quadratic twists, 64

quartic twists, 64, 122–126

sextic twists, 64, 126–127, 131–135

type of twist, 166, 173–175, 177, 183

Weil pairing, 67–69, 92, 113

Weil reciprocity, 45–47

	Front Matter
	Keywords
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Symbols and abbreviations
	Declaration
	Previously Published Material
	Acknowledgements

	Introduction
	Pairings
	Elliptic curves as cryptographic groups
	The group law: the chord-and-tangent rule
	Torsion, endomorphisms and point counting
	Section summary

	Divisors
	The divisor class group
	A consequence of the Riemann-Roch Theorem
	Weil reciprocity
	Section summary

	Elliptic curves as pairing groups
	The r-torsion
	Pairing types
	Twisted curves
	Section summary

	Miller's algorithm for the Weil and Tate pairings
	The Weil pairing
	The Tate pairing
	Miller's algorithm
	Section summary

	Pairing-friendly curves
	A balancing act
	Supersingular curves
	Constructing ordinary pairing-friendly curves
	Section summary

	The state-of-the-art
	Irrelevant factors (a.k.a. denominator elimination)
	Projective coordinates
	Towered extension fields
	Loop shortening
	Low Hamming weight loops
	The final exponentiation
	Other optimisations

	Chapter summary

	Fast Miller Functions
	Computing the ate pairing entirely on the twisted curve
	Pairings on y2=x3+ax with even embedding degrees
	Doubling formulas
	Line computation for doubling
	Addition and mixed addition
	Line computation for addition and mixed addition

	Pairings on y2=x3+b with even embedding degrees
	Point doubling and line computation
	Addition, mixed addition and line computation

	Fast formulas for pairing computations with cubic twists
	Point doubling and line computation
	Addition and line computation

	Fast pairings on special Weierstrass curves y2=cx3+1
	Point doubling and line computation
	Point addition and line computation
	Example curves

	Summary of contributions

	Loop Unrolling in Miller's Algorithm
	Miller 2n-tuple-and-add
	Quadruple-and-add
	Quadruple-and-add on y2=x3+b
	Quadruple-and-add on y2=x3+ax
	A detailed example

	Octuple-and-add
	Octuple-and-add on y2=x3+b
	Octuple-and-add on y2=x3+ax

	Fixed Argument Pairings
	Merging Miller functions (properly!)
	Example: the record-holding BN curve
	Example: a k=24 BLS curve
	Storage requirements and applications

	Summary of contributions

	Attractive subfamilies of BLS curves for high-security pairings
	Particularly friendly subfamilies
	Using the four classes x0 7,16,31,64 -5mumod5mu-72
	The other congruence classes
	Quadratic extension to Fq2
	Quadratic extension to Fq4
	Sextic extension to Fq24

	Choosing simple lines: twisting vs. untwisting
	Timings
	Summary of contributions

	Particularly friendly members of family trees
	Family Trees
	Branching out
	Extension field towers
	Curve equations
	Type of twist
	Fruits
	Our ``picks''
	Advantages
	Proofs
	Other parameters
	x or x'

	Brezing-Weng k=8 curves
	BLS k=12 curves
	KSS k=16 curves
	KSS k=18 curves
	BLS k=27 curves
	KSS k=32 curves
	KSS k=36 curves
	BLS k=48 curves
	Recommendations
	Summary of contributions

	Hyperelliptic arithmetic via linear algebra
	Motivation
	The Mumford representation
	Computations in the Mumford function field
	Generating explicit formulas in genus 2
	General divisor addition in genus 2
	General divisor doubling in genus 2
	Comparisons of formulas in genus 2

	The general description
	Composition for g 2
	Handling special cases
	Reduction in low genera

	Further implications and potential
	Simultaneous operations on elliptic curves
	Simultaneous operations in higher genus Jacobians
	Explicit formulas in genus 3 and 4
	Characteristic two, special cases, and more coordinates

	Summary of contributions

	Conclusions and Future Work
	Implementation-friendly BLS curves with k=24
	Implementation-friendly curves for attractive families
	Proofs of family trees
	Towers
	Curve equations
	Proofs for each family

	Some more generators
	More compact generators for k=8
	More compact generators for k=12
	More compact generators for k=18
	More compact generators for k=27
	More compact generators for k=32
	More compact generators for k=36
	More compact generators for k=48

	Bibliography

