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Abstract 

This PhD study has examined the population genetics of the Russian wheat 

aphid (RWA, Diuraphis noxia), one of the world’s most invasive agricultural 

pests, throughout its native and introduced global range.  

 

Firstly, this study investigated the geographic distribution of genetic diversity 

within and among RWA populations in western China. Analysis of 

mitochondrial data from 18 sites provided evidence for the long-term 

existence and expansion of RWAs in western China. The results refute the 

hypothesis that RWA is an exotic species only present in China since 1975. 

The estimated date of RWA expansion throughout western China coincides 

with the debut of wheat domestication and cultivation practices in western 

Asia in the Holocene. It is concluded that western China represents the limit 

of the far eastern native range of this species. Analysis of microsatellite data 

indicated high contemporary gene flow among northern populations in 

western China, while clear geographic isolation between northern and 

southern populations was identified across the Tianshan mountain range and 

extensive desert regions.  

 

Secondly, this study analyzed the worldwide pathway of invasion using both 

microsatellite and endosymbiont genetic data. Individual RWAs were 

obtained from native populations in Central Asia and the Middle East and 

invasive populations in Africa and the Americas. Results indicated two 

pathways of RWA invasion from 1) Syria in the Middle East to North Africa 

and 2) Turkey to South Africa, Mexico and then North and South America. 

Very little clone diversity was identified among invasive populations 

suggesting that a limited founder event occurred together with predominantly 

asexual reproduction and rapid population expansion. The most likely 

explanation for the rapid spread (within two years) from South Africa to the 

New World is by human movement, probably as a result of the transfer of 

wheat breeding material. Furthermore, the mitochondrial data revealed the 

presence of a universal haplotype and it is proposed that this haplotype is 



 

 

 

representative of a wheat associated super-clone that has gained dominance 

worldwide as a result of the widespread planting of domesticated wheat. 

 

Finally, this study examined salivary gland gene diversity to determine 

whether a functional basis for RWA invasiveness could be identified.  

Peroxidase DNA sequence data were obtained for a selection of worldwide 

RWA samples. Results demonstrated that most native populations were 

polymorphic while invasive populations were monomorphic, supporting 

previous conclusions relating to demographic founder effects in invasive 

populations. Purifying selection most likely explains the existence of a 

universal allele present in Middle Eastern populations, while balancing 

selection was evident in East Asian populations. Selection acting on the 

peroxidase gene may provide an allele-dependent advantage linked to the 

successful establishment of RWAs on wheat, and ultimately their invasion 

potential. 

 

In conclusion, this study is the most comprehensive molecular genetic 

investigation of RWA population genetics undertaken to date and provides 

significant insights into the source and pathway of global invasion and the 

potential existence of a wheat-adapted genotype that has colonised major 

wheat growing countries worldwide except for Australia. This research has 

major biosecurity implications for Australia’s grain industry. 
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1. 1 Biological Invasion 

Biological invasion is regarded as a worldwide environmental problem 

(Everett 2000; Mooney & Cleland 2001; Levine 2008; Liebhold & Tobin 2008). 

With the increase in human population numbers over the decades, an 

increase in human movement has been accompanied by the movement of a 

variety of plants and animals entering into new ecosystems beyond their own 

native ranges (Kolar & Lodge 2001). Irrespective of whether the introduction 

is intentional or accidental, the introduction of an alien species influences and 

accelerates the ecological change of new habitat (Mooney & Cleland 2001). 

Biological invasions have been recognized as an important factor influencing 

global change (Bright 1999), particularly biodiversity loss, as the global 

environment becomes increasingly compromised as a result of environmental 

degradation. As invasions can primarily change ecosystem processes, 

related fields of experts have been called on to develop a global strategy for 

dealing with detrimental non-indigenous species (Everett 2000). 

 

The process of invasion of non-indigenous species can be separated into 

three stages: arrival, establishment, and spread (Liebhold & Tobin 2006).  A 

newly introduced exotic species may initially distribute relatively small 

numbers of propagules to remote locations (Doren et al. 2009). To 

successfully establish, the primary step is for the exotic species to withstand 

the conditions (humidity, temperature, predators, etc.) in each location. Once 

established, as the species reproduces over time, additional propagules are 

released and new sites colonized. As new propagules are produced and 

distributed, more propagules can be released over an ever-increasing region, 

providing a greater opportunity for those propagules to encounter favorable 

conditions and to create greater spatial connectivity between populations 

(Mooney & Cleland 2001; Lockwood et al. 2005). 

 

The spread of an invasion may not always be continuous, but rather it may 

be stratified. In other words, part of the population may jump in front, and this 

is often a relatively isolated individual, which individually, or through its 

descendents ultimately coalesces with the rest of the population (Liebhold & 
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Tobin 2006). Continuous spread results from dispersal following population 

growth, however, many observed cases of spread fail to follow the theoretical 

model of diffusion. Such a model is too simplistic for most invasive species, 

particularly because it does not take into account long-distance dispersal. 

Stratified dispersal is defined as the combination of short-range and long-

range diffusion, and it is the fundamental process in exotic species dispersal. 

Invasive species that have exhibited this form of dispersal include the gypsy 

moth (Whitmire & Tobin 2006), soybean aphid (Venette & Ragsdale 2004), 

argentine ant (Suarez et al. 2001), and emerald ash borer (Muirhead et al. 

2006).  

 

Most pathways of introduction have resulted from increased worldwide trade.  

With increased trade, there has been an increase in the volume and speed of 

transportation by mobile vectors that move exotic species into new 

ecosystems (Everett 2000; Karatayev et al. 2007; Ascunce et al. 2011). It is 

critical to control new invaders in the arrival stage; however, this stage is 

often ignored (Puth & Post 2005). Invasion is generally recognized as being 

complete once the pest population has grown to a considerable level and is 

unlikely to go extinct in the environment.  

 

1.1.1 Genetic basis of biological invasion 

Most invasive species have the ability to respond quickly and to adapt to new 

and/or challenging environmental conditions (Mooney & Cleland 2001). 

Changing selective regimes may affect an invasive species through 

increased selection for adapted genotypes, or through relaxed selection for 

defense because of the absence of co-evolved natural enemies. Thus, rapid 

phenotypic response often occurs and has been reported in a large number 

of studies (Grosholz 2002; Hanfling & Kollmann 2002; Richards et al. 2012). 

For example, among introduced populations of the lizard, Anolis sagrei, 

phenotypic variation (body size, toe pad-lamella number, and body shape) 

was attributed to differential admixture of various source populations and 

adaptation to the new environment (Kolbe et al. 2007). Changes can also 

result in the evolution of highly competitive, but less well defended genotypes. 

Lythrum salicaria, a perennial plant showed greater biomass in introduced 
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individuals than their ancestral genotypes and were less resistant to, or 

tolerant of herbivores (Hanfling & Kollmann 2002). This case highlights that 

increased competitive capability may not only result from the growth or 

defense tradeoff, but also from weak co-adaptation between indigenous and 

exotic species.  

 

Populations of invasive species often exhibit low genetic diversity, and 

therefore a high degree of phenotypic plasticity might be an advantage when 

dealing with new environments and is thought to increase invasion success 

(Frankham 2005; Kolbe et al. 2004; Lindholm et al. 2005). A number of 

studies have shown that a species with low genetic diversity in its introduced 

range adapts better to new environments than the same species in its native 

range (Dlugosch & Parker 2008; Mergeay et al. 2006; Rollins et al. 2009; 

Shoemaker et al. 2006). However, the opposite has also been found where 

exotic species with low genetic variability are limited in their invasion success 

because they are constrained in their ability to adapt to the new environment 

(Roman & Darling 2007).  

 

If the invasive population is founded by a limited number of individuals and 

there is a low rate of reproduction resulting in a bottleneck (Nei et al. 1975), 

the genetic background will be further constrained as additive genetic 

variance is eroded (Lee 2002; Sakai et al. 2001). Such a loss of additive 

genetic variance will slow evolutionary responses to selection and limit the 

adaptive evolution of fitness-related traits. In Australia, invasive guppies, 

Poecilia reticulata, were found to have low genetic variability (limited mtDNA 

diversity and low microsatellite allelic diversity) as a result of having gone 

through a bottleneck (Lindholm et al. 2005). They found that the low genetic 

diversity was consistent with the release of additive genetic variation by 

dominance and epistasis following inbreeding, and with disruptive and 

negative frequency-dependent selection on fitness traits. 

 

Genetic studies on invasive species can provide valuable information on how 

frequently introductions are accompanied by severe genetic bottlenecks, 

whether bottlenecks constrain adaptive evolution in invaders, and whether 
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contemporary gene flow among introductions represents the key to invasion 

success.  

 

1.1.2 Molecular markers used in invasion genetics research 

Invasion genetics research can provide critical information on the source and 

invasion pathway of an exotic species (Bonizzoni et al. 2004). Reliable 

records of the precise origins of introduced populations do not exist for many 

invasive species. In this case, it is useful to survey molecular variation among 

individuals from within the native and invasive range to identify the source of 

the introduction. The accuracy of this approach will be determined by the 

intensity of sampling in introduced and source areas, by the resolution of the 

molecular markers involved, and by the scale of differentiation across the 

potential source area. Modern genetic marker types include enzyme variants 

(allozymes), microsatellites (SSR), amplified fragment length polymorphisms 

(AFLP) and randomly amplified polymorphic DNA (RAPD). markers All of 

these have been well utilized in genetic studies of invasive species. For 

example, microsatellites have been investigated in invasive populations of 

the common starling in Australia to provide data on gene flow and source 

populations of infestation (Rollins et al. 2009). Mitochondrial DNA sequences 

of Dendrobaena octaedra indicated that non-native earthworms were 

introduced via multiple pathways (Cameron et al. 2008). Both mtDNA and 

microsatellite analyses have been used to investigate multiple invasions of 

the European green crab to North America and South Africa, followed by 

secondary invasions to the north-eastern Pacific, Tasmania, and Argentina 

(Darling et al. 2008). Studies of the introduced wasp, Vespula germanica, in 

Australia have revealed a clear picture of their invasion pathway (Goodisman 

et al. 2001). Research on the garden ant, Lasius neglectus, has suggested 

that introduced populations in Europe have most likely arisen from only a 

very few independent introductions from the native range, and new 

infestations have come from introductions from other invasive populations 

(Ugelvig et al. 2008).  

 

Researchers are now armed with a range of innovative and reliable 

molecular tools that can be used to improve our understanding of the 
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population genetic structure of invasive species in their native and introduced 

ranges and importantly, these data can elucidate the occurrence of single vs. 

multiple introductions providing critical information on the mechanisms by 

which an invasive species may be introduced and spread. Invasion genetics 

data can also be used to predict the array of evolutionary responses and 

impacts that may result, as well as the future distribution of an invasive 

species. 

 

1.2 Aphids:  model organisms for invasion genetics research  

Aphids are small insects that feed on plant phloem sap (Brisson & Stern 

2006; international aphid genomics consortium 2010; Stern 2008). Many 

species have become important invasive economic pests because of their 

rapid population growth potential and resultant negative effect on plant 

growth and crop yield. Aphids exhibit a range of characteristics including high 

fecundity and phenotypic diversity that has likely aided their colonization of 

new environments, facilitating successful worldwide invasion, and making 

them an attractive study organism for invasion genetics research. 

 

1.2.1 Phenotypic plasticity 

Aphids exhibit polyphenism, a special case of phenotypic plasticity in which 

one genotype can produce several phenotypes without intermediate forms 

(Nijhout 1999). A common form of aphid polyphenism is the switch between 

viviparous parthenogenesis and sexual reproduction with eggs, depending on 

environmental cues. The major advantage of sexual reproduction in aphids is 

to resist negative ecological conditions and for asexual reproduction, to 

increase rapidly population numbers (colonies) (Miura et al. 2003). 

Reproductive polyphenism allows aphids to combine the immediate 

advantage of clonal growth conferred by parthenogenesis with the long-term 

advantages of recombination conferred by sexual reproduction (Simon et al. 

2002). Thus, aphids provide an opportunity for biologists to study the 

evolution of sex, adaptation, and coexistence of both modes of reproduction 

(Doncaster et al. 2000; Thomas et al. 2012).  
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Aphids also display a range of phenotypic morphs including winged or 

wingless morphs, nymphs or adults, asexual or sexual reproductive morphs, 

and even specialized soldier nymphs (Abbot et al. 2001; Brisson & Stern 

2006; Stern & Foster 1996; Strassmann & Queller 2001). Seasonal forms 

may have different host preferences (Tosh et al. 2002), as well as different 

physiological and ecological properties. The winged morph is specialized for 

migration and plays a major role in host selection by aphids (Powell et al. 

2006). Additionally, environmental cues (e.g., crowding, deteriorating plants, 

natural enemies, and abiotic factors such as temperature and photoperiod) 

may induce the production of winged aphids in response to habitat and 

resource deterioration.  

 

1.2.2 Aphid-host plant interactions 

Aphids interact with their hosts in a number of ways, but the most pervasive 

interaction comes from the action of withdrawing and injecting saliva when 

penetrating plant leaves (Goggin 2007; Miles 1999). The proteinaceous and 

watery saliva that aphids secrete has been found to contain various enzymes 

that can undergo translocation in the host and have toxic effects on plants 

(Burd 2002; Madhusudhan & Miles 1998; Miles 1999; Tjallingii 2006). The 

calcium-binding proteins in aphid saliva can reverse phloem occlusion, which 

allows aphids to feed at one site for hours at a time. Aphid saliva prevents 

sieve tube plugging in the host plant (Will et al. 2007). Research on pea 

aphids has shown that the knockdown of transcript C002, which is abundant 

in the salivary gland, contributes to the reduction of contact time between 

aphids and host sap, and has even led to aphid lethality (Mutti et al. 2006 & 

2008). Additionally, aphid-host interactions can have impacts on the 

physiology of both the hosts and the aphids. For example, aphids can modify 

host morphology resulting in the formation of foliar galls, and they can also 

affect the nutritional quality of the host (Botha & Matsiliza 2006; Girousse et 

al. 2005; Wool 2004).  

 

1.2.3 Fitness and host-based differentiation 

It is widely accepted that aphid fitness is determined by the capacity of the 

aphid to obtain nutrients (Powell et al. 2006), which is influenced by plant 
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nutritional quality, aphid nutritional requirements, and defensive mechanisms 

(Awmack & Leather 2002). Therefore, while aphids may make contact with a 

range of plant hosts that contain nutritionally suitable substances, they may 

not settle, feed, or reproduce on these hosts (Caillaud & Via 2000). Host-

based differentiation studies on aphids have found that plant preference and 

genetic divergence have resulted from long-term population development 

and mating on the same host (Hawthorne & Via 2001; Kirkpatrick & Ravigne 

2002; Servedio 2001). It has been shown that aphid populations often consist 

of a number of genetically divergent host-associated races (Via 1999). 

Peccoud et al. (2008) found that pea aphids show striking associations with 

particular host plants rather than sampling locations, and phenotypic 

analyses confirmed their strong host specialization. Simon (2003) found 

distinct host races of pea aphid on pea, clover and alfalfa in France, and that 

there was a very strong association between host races of pea aphid and 

their symbiotic microbiota.  

 

1.2.4 Aphid endosymbionts 

Over 150 million years ago, aphids evolved a mutualistic association with the 

bacteria Buchnera aphidicola, which live within specialized, polyploid aphid 

cells called bacteriocytes (Tagu et al. 2008). The genus Buchnera has one of 

the smallest known bacterial genomes (0.45 to 0.67 Mb), due to massive 

gene losses typical of endosymbiotic lineages (Moran and Wernegreen 2000, 

Tagu et al. 2008). Since the endosymbiont genome has lost many genes 

required for autonomous survival, it holds a strongly mutualistic relationship 

with aphids (Burke & Moran 2011). The genes that encode biosynthesis of 

some essential amino acids are still present suggesting that the symbiotic 

interaction is based mainly on nutritional exchange between Buchnera and 

the aphid (Baumann 2005). Aphids cannot survive without the endosymbiont, 

which is essential for nutrition and is transmitted from parent to offspring 

(Moran & Wernegreen 2000; Wernegreen 2002).  

 

Endosymbiont genome evolution has been shown to reflect the aphid host 

genome, but at an accelerated rate due to the rapid generation time of the 

bacteriocyte relative to its host (Burke & Moran 2011; Clark et al. 1999; 
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Peccoud et al. 2009a). Therefore partial fragments of the endosymbiont 

genome can be examined to investigate the genetic relationships among 

aphid populations (Peccoud et al. 2008; Simon et al. 2003). 

 

1.2.5 Aphid population genetics 

Molecular markers have been used in a number of studies to trace the origin 

and historical pathway of spread of aphid pests. Peccoud et al. (2008) 

analyzed microsatellite and endosymbiont genetic diversity to conclude that 

the invasion of the pea aphid, Acyrthosiphon pisum, in Chile resulted from 

multiple introductions of highly host-specialized, asexual clones. Multiple 

routes of invasion of the tobacco aphid (Myzus persicae nicotianae) into 

North America were revealed using microsatellite markers (Zepeda-Paulo et 

al. 2010). Conversely, due to limited polymorphism found for microsatellite 

loci, mitochondrial genes, and RAPD markers, Shufran & Payton (2009) 

concluded that the Russian wheat aphid (Diuraphis noxia) in North America 

was the result of a single introduction.  However, this conclusion has recently 

been challenged as AFLP markers have revealed that multiple introductions 

are likely to have occurred (Liu et al. 2010).  

 

To understand and forecast population increases and movement to other 

crop fields, knowledge of the genetic structure of pest insect populations is 

required. In most aphid species, significant genetic differentiation and 

population structure occurs for two reasons. First, as a result of adaptation 

and specialization on different host plants, aphids may become isolated and 

divergent host associated races may develop (Charaabi et al. 2008; Ferrari et 

al. 2006; Peccoud et al. 2009a; Via 2001). Second, as a result of weak flying 

ability, migration and gene flow is limited and populations may become 

genetically differentiated (Loxdale et al. 1993; Thomas et al. 2012). However, 

large-scale dispersal, presumably wind-aided, can also occur leading to 

limited genetic differentiation among populations and continued expansion of 

aphids in both their native and invasive ranges (Dolatti et al. 2005; Michel et 

al. 2009; Shufran & Payton 2009). The rapid spread of the soybean aphid 

(Aphis glycines) across North America in a short period after its arrival 

(Venette & Ragsdale 2004) has been attributed to large-scale dispersal. 
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Michel et al. (2009) revealed low genetic diversity and genetic differentiation 

among invasive populations indicating that from a small colonizing soybean 

aphid population in North America, there was rapid population growth and 

widespread dispersal. 

 

Population genetic studies have revealed that aphids generally have low 

mitochondrial DNA variation (Peccoud et al. 2009a; Shufran et al. 2007; 

Shufran & Payton 2009) and phylogenetic studies based on barcoding 

sequences have also shown limited genetic divergence among Aphidinae 

species (Lee et al. 2011; Wang et al. 2011). This may be the result of an 

interaction between inherited endosymbionts and mitochondria (Hurst & 

Jiggins 2005), however research is required to investigate this hypothesis in 

aphids. Interestingly, endosymbiont markers are rarely used in aphid 

population genetics research despite being successfully used to differentiate 

a continuum of pea aphid host races from divergent populations to almost 

complete speciation (Lozier et al. 2007; Peccoud et al. 2009a).  

 

1.2.6 Research context of the current study 

The Russian wheat aphid (Diuraphis noxia) was selected as our research 

species because of its capacity for rapid population growth (Burd et al. 2006; 

Jyoti et al. 2006; Morrison & Peairs 1998; Smith et al. 2004) and its fast and 

successful invasion throughout all major grain growing regions of the world 

(except Australia) during last thirty years. The global invasion of Russian 

wheat aphids provides an ideal opportunity to examine some of the 

fundamental questions relating to the evolutionary biology and genetics of 

invasive species. In particular, this PhD study aims to improve our 

understanding of the evolutionary processes and rapid responses that 

characterise a recently introduced invasive species. By examining neutral 

and functional gene diversity within native and invasive populations, the 

effect that selective pressures (such as virulence interactions with host) have 

on invasiveness can be evaluated.  Finally, this study will investigate the low 

variation that typifies aphid mitochondrial genomes and determine the utility 

of endosymbiont markers for invasion genetics research. 
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1.3 Russian wheat aphids  

The Russian wheat aphid (RWA), Diuraphis noxia (Kurdjumov) (Homoptera: 

Aphididae), is one of the world’s most important pests of grain (barley, 

Hordeum vulgare, and wheat, Triticum aestivum L.). Since its introduction to 

the United States of America in 1986, management of this pest has focused 

on the development of resistant wheat cultivars, while chemical control has 

had less efficient and economic results. In the USA, estimated losses were in 

excess of $800 million in the period 1987 to 1993 (Morrison & Peairs 1998). 

The infested plants display white, yellow, or purple longitudinal streaks on 

leaves and stems, develop rolled leaves, and bent heads (Jyoti et al. 2006). 

Various management approaches have been developed to alleviate damage 

by RWAs, but chemical and biological controls have not worked well (Noma 

et al. 2005).  

 

1.3.1 Worldwide distribution of Russian wheat aphids 

RWAs are native to central-western Asia and current evidence favors the 

center of origin to be in the Iranian-Turkestanian mountain range and 

extending to southern Russia, the Middle East, and central Asia (Kovalev et 

al. 1991).  The earliest documented record of RWA crop damage comes from 

the Ukraine in the early 1900s, however RWAs gained recognition as an 

emerging global pest during the 1970’s and 1980’s as a result of their rapid 

spread through major grain producing areas in Europe, Africa and the 

Americas (Kovalev et al. 1991; Smith et al. 2004; Stary 1999). RWAs have 

been recognized as an invasive pest in China since they were first detected 

in 1976 (Li & He 1990). A map of the worldwide distribution of RWAs can be 

found in Figure 1.1, the historical detection dates for different countries in 

Table 1.1. 
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Figure 1.1 Map of the worldwide distribution of Russian wheat aphids. 

 

 

Table 1.1 Year of first detection of Russian wheat aphid (from Zhang et al. 1999). 

 

Continent Country and record year 

Asia Kazakhstan (1919), China (1975), Yemen (1981), Iraq 

(1983), Nepal (1986), Iran (1988), Pakistan (1989), 

Jordan (1989), Kirghizstan (1993), Syria (1994) 

Europe Ukraine (1900), Russia (1915), Georgia (1916), Spain 

(1947), Portugal (1947), Belgium (1963), Bulgaria 

(1981), Czech (1989), Yugoslavia (1989), Poland 

(1989), France (1989), Turkey (1989) 

Africa Algeria (1938), Morocco (1938), Egypt (1957), Libya 

(1962), South Africa (1978), Namibia (1978), Ethiopia 

(1984), Burundi (1989), Tunisia (1990) 

North America Mexico (1980), United States (1986), Canada (1988) 

South America Argentina (1989), Chile (1988) 
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According to Zhang et al. (1999) the history of invasion of RWAs throughout 

the world can be divided into three stages. 

 

 Emergence in the early 20th Century. RWA only occurred in Ukraine, 

Russia, Georgia, and Kazakhstan during this period.  

 Spread up until the 1970s. This was a period of gradual colonisation, 

where RWAs slowly spread to many European countries. During this 

period, the RWA was recognized as an emerging pest.  

 Jeopardization after the 1980s. During this period, RWAs spread 

rapidly throughout the main grain production areas of Europe, Asia, 

North America, and South America and caused severe crop damage. 

 

1.3.2 Russian wheat aphid biology  

RWAs exhibit two patterns of life cycle; cyclical parthenogenesis (holocycly) 

and obligate parthenogenesis (anholocycly). RWAs are reported to have an 

anholocyclic life cycle in southern Africa, North America, South America, 

France, and Turkey, while they are holocyclic in the USSR, Hungary, Spain 

and China (Zhang et al. 2001). The difference in life cycle pattern depends 

on the temperature of the habitat and does not appear to be due to whether it 

is an invasive or native population. For example, the RWA is native to Iran, 

but an obligate parthenogen in this country (Dolatti et al. 2005).  

 

Typically, RWAs reproduce most of the year by viviparous parthenogenesis, 

a major factor in their destructive potential. In areas where RWAs are 

anholocyclic, obligate parthenogenesis occurs in asexual lines that have 

apomictic clonal generations throughout the whole year without sexual forms 

and mating. Wei et al. (1994) describes the holocyclic annual life cycle of 

RWAs as follows. Viviparous pregnant females are produced in late spring 

and early summer and each parthenogenetic female produces hundreds of 

genetically identical embryos. The progeny are either alate (winged) or 

apterous (wingless) virginopara. In early summer, RWA populations peak 

and large numbers of winged aphids migrate, often to an alternate host while 

the wheat crop is harvested. After oversummering on wheat volunteers or 
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native grasses, they move to winter wheat in early autumn. Induced by short 

photoperiod and low temperatures in autumn, sexual male and female aphids 

are produced. Sexual reproduction occurs and cold-resistant diapausing 

eggs are produced that survive the freezing conditions in winter.  

 

1.3.3 Russian wheat aphid virulence  

A range of RWA biotypes have been described and although they are 

morphologically identical, these biotypes display differential preference and 

fitness on specific host plants (Shufran et al. 2007). RWA biotypes are 

characterized according to an aphid’s ability to damage wheat with resistance 

genes, and are determined using leaf chlorosis damage ratings and an index 

of leaf rolling (Burd et al. 2006; Haley et al. 2004; Puterka et al. 2007; 

Shufran et al. 2007). Five biotypes have been discovered in the USA and 

named as RWA1 (originally collected in Texas), RWA2 (damages crops with 

the Dn4 gene), and RWA3, RWA4 and RWA5 (damages wheat crops with 

the Dn1-Dn9 resistance genes) (Burd et al. 2006). RWA biotype RWA2 in 

North America is characterized as having a rapid growth potential and wide 

spread distribution (Puterka et al. 2007). In South Africa, at least three 

distinct biotypes have been reported including RWASA1, RWASA2, and 

unannotated Clone1 (Tolmay et al. 2007). As is the case in North America, 

RWAs from Hungary, Russia, Syria, Chile, Czech Republic, and Ethiopia 

have all been identified to resist the Dn4 gene (Basky et al. 2002; Puterka et 

al. 1992; Smith et al. 2004).  

 

The injection of RWA salivary enzymes into plant tissues is toxic to plants 

and has a negative impact on the membranes of chloroplasts (Miles 1999). 

Protein fractions extracted from RWAs and injected into wheat seedlings 

have induced plant stunting and injury symptoms (Lapitan et al. 2007). 

Damage symptoms were compared between two wheat cultivars with and 

without the Dn7 resistance gene. The Dn7-containing cultivar was resistant to 

aphid injury and the extent of plant growth and higher levels of defense-

related enzyme activity suggested that this cultivar was in better defensive 

condition. These results are consistent with previous work on wheat 

responses to RWA infestation, and suggest a possible interaction between 
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Dn7 and a protein or proteins within the aphid. It may be a salivary elicitor, 

but no further research has been undertaken to purify or locate the 

protein/proteins responsible. Unfortunately, the degree of relatedness 

between the two wheat cultivars was not specified in this report; therefore, it 

was questionable whether other genes besides Dn7 may be involved in the 

differential plant reactions to aphid extracts. Nevertheless, Lapitan et al.’s 

(2007) study of the protein offers the prospect of identifying specific virulence 

factors from highly destructive RWA biotypes. Although RWA1 was first 

introduced to the USA in 1986 (Shufran et al. 2007), a second biotype 

(RWA2) emerged in 2003 (Burd et al. 2006). It is assumed that the 

emergence and prevalence of RWA2 in the USA results from plant resistance, 

and it is possible that an aphid saliva-plant interaction may be responsible. 

Cui et al. (2012) found that transcripts of putative virulence genes in salivary 

glands exhibit high diversity in RWA1 and RWA2. However, it remains 

unknown whether these diverse transcripts could affect protein function, or 

whether it could be detected in plant sap and tissue, or whether such 

transcripts could influence plant immunity and metabolism.  

 

1.3.4 Russian wheat aphid invasion genetics 

Knowledge of the genetic background of the founding native population of an 

invasive species will provide an improved ability to predict the array of 

evolutionary responses and impacts that may result, as well as the future 

distribution of the invasive species (Liebhold & Tobin 2008). However, only a 

limited number of population genetic studies on RWAs have been undertaken, 

and these have focused on introduced populations. Very little is known about 

this species in its native range (Shufran et al. 2007; Shufran & Payton 2009).  

 

An important consideration is that RWAs in their winged form possess the 

ability to migrate or disperse. Logistically, it is difficult to directly monitor flight 

of RWAs in the field, and levels of immigration and emigration among 

populations cannot be determined using traditional ecological methods. If 

RWAs possess a high migration potential, have they naturally colonized 

surrounding countries (eg. in a step-wise fashion) or has their expansion 

been human mediated? Genetic methods, combined with innovative 
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statistical analysis techniques, can be used to answer such questions 

concerning the pathway of invasion and mechanisms driving the colonization 

process worldwide. 

 

1.4 PhD research objectives 

The Russian wheat aphid is one of the greatest biosecurity threats to the 

grains industry in Australia. The Australian grains industry is developing a 

RWA response plan based on pre-emptive breeding (Australian CRC Plant 

Biosecuirity 2008-2012), but RWAs are known to develop virulent biotypes 

that can overcome host plant resistance. It is likely that more genetically 

diverse populations of RWA exist in native areas and that these areas may 

harbor an abundant source of virulent clones. With increasing global trade, 

there is a corresponding increase in the likelihood of RWA incursions from 

areas where this species is native, potentially increasing the biosecurity risk 

of this species to the Australian grains industry.  Despite this threat, there has 

been very little genetic research on native populations of RWA, and limited 

examination of the worldwide introduced populations. To address this 

knowledge gap, this PhD has analyzed the population genetics of native and 

introduced RWA populations to determine the invasion pathway of this 

species and to examine whether there is a functional basis for invasiveness. 

 

To achieve this aim, it was first necessary to obtain a comprehensive 

selection of samples from within the native range of RWAs. Political barriers 

prevented sampling in countries such as Iran, Iraq, Afghanistan, Kazakhstan, 

and other parts of the former USSR. However, in collaboration with the 

Chinese Academy of Sciences in Beijing, it was possible to sample RWA 

populations in Western China. While some scientists suggest that RWAs are 

native to central Asia (Kovalev et al. 1991), others report that RWAs are an 

introduced pest only present in China since the 1970s (Zhang et al. 1999). It 

is important to consider that existing historical data provides an indication of 

the date of detection of RWAs in different countries, but this may not be the 

actual time that RWAs colonized each country. An examination of molecular 

genetic variation can solve the dispute as to whether Chinese RWAs are a 
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native or invasive pest (in native populations we would expect high genetic 

and clonal diversity). It is also difficult to trace the worldwide invasion 

pathway of RWAs, based on largely anecdotal historical data. Thus, this PhD 

study also examined the genealogical and evolutionary relationships among 

individuals and traced the pathway of colonization worldwide. 

 

The reason for the successful invasion of RWAs worldwide is still an 

unanswered question. Essential factors influencing the successful 

introduction and establishment of RWAs may be related to its ability to adapt 

to new environments; however, the dispersal and stable spread of this 

species has been intrinsically linked with the presence of compatible host 

plants. The fundamental connection between an aphid and its host plant lies 

in the interaction between the injection of aphid saliva and the plant response. 

Based on the Jones–Dangl zigzag model (Jones and Dangl 2006), the 

salivary elicitor should be compatible with the plant immunity system so that 

the elicitor escapes from plant recognition and thus does not affect further 

injection. If variation exists in the salivary elicitors and is present in the 

founding population of a new invasion, aphids may have a greater chance of 

successfully colonizing new plants and rapidly increasing in number. 

Additionally, if variation in salivary gland genes can be aligned with the RWA 

invasion pathway, it may indicate that there is a functional genetic basis to 

the global invasiveness of RWAs.  

 

Finally, this PhD study has compared the mitochondrial genomes of a range 

of aphid species, including the RWA, to characterize the particular genome 

features that are unique to aphids and may be responsible for low 

mitochondrial DNA variation.  

 

1.4.1 Specific objectives of the study 

Studies on worldwide populations of RWA have not been undertaken, and 

therefore the invasion genetics and evolutionary biology of this species is not 

well understood.   
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The specific objectives of this PhD study are:  

 

 To characterize the population genetics of RWA in its native range. 

 To compare genetic diversity within and among native and introduced 

populations of RWA. 

 To determine the pathway of invasion of RWAs throughout the world and 

the potential mechanisms enhancing global invasion.  

 To examine whether natural selection has acted on salivary gland genes 

and has influenced the global invasion of RWA. 

 To investigate the low mitogenome variation of RWA.  
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Chapter 2 

Population genetics of the Russian wheat 

aphid in China 

 

 

 

This chapter has been published in the journal Molecular Ecology and gives 

an account of the population genetics of RWAs in China. In this paper the 

genetic diversity and population structure of RWA was investigated using ten 

microsatellite loci and two mitochondrial DNA genes to identify whether 

RWAs in China represent a native expansion or a recent introduction.  
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2.1 Abstract 

In this study we explore the population genetics of the Russian wheat aphid 

(Diuraphis noxia), one of the world’s most invasive agricultural pests, in 

northwestern China. We have analyzed the data of ten microsatellite loci and 

mitochondrial sequences from 27 populations sampled over two years in 

China. The results confirm that the Russian wheat aphids (RWAs) are 

holocyclic in China with high genetic diversity indicating widespread sexual 

reproduction. Distinct differences in microsatellite genetic diversity and 

distribution revealed clear geographic isolation between RWA populations in 

northern and southern Xinjiang, China, with gene flow interrupted across 

extensive desert regions. Despite frequent grain transportation from north to 

south in this region, little evidence for RWA translocation as a result of 

human agricultural activities was found. Consequently, frequent gene flow 

among northern populations most likely resulted from natural dispersal, 

potentially facilitated by wind currents. We also found evidence for the long-

term existence and expansion of RWAs in China, despite local opinion that it 

is an exotic species only present in China since 1975. Our estimated date of 

RWA expansion throughout China coincides with the debut of wheat 

domestication and cultivation practices in western Asia in the Holocene. We 

conclude that western China represents the limit of the far eastern native 

range of this species. This study is the most comprehensive molecular 

genetic investigation of the RWA in its native range undertaken to date, and 

provides valuable insights into the history of the association of this aphid with 

domesticated cereals and wild grasses.  
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2.2 Introduction 

Biological invasions have occurred in many ecosystems and have evoked 

concern in evolutionary ecology and biological conservation (Pysek et al. 

2008), as they are an important factor influencing global change (Bright 

1999). Comparative studies to examine an invasive species in both its 

introduced and native range can improve understanding of how a non-

indigenous species shapes its new environment (Scott 2007). Such studies 

not only provide information on the basic biological characteristics of an 

invader, but can also provide knowledge of the genetic background of the 

founding population of an invasive species (Ross et al. 2003, 2007; Ross & 

Shoemaker 2008), the dispersal pattern (Goodisman et al. 2001) and the 

invasion pathway of a species throughout its introduced range (Bonizzoni et 

al. 2004). Data of this kind improve our ability to predict the array of 

evolutionary responses and impacts that may result, as well as the future 

distribution of the invasive species.  

 

In this study, we analyze the population genetics of the Russian wheat aphid 

(RWA), Diuraphis noxia Kurdjumov, one of the world’s most invasive 

agricultural pests, in western China. RWAs infest native grasses and cereal 

crops, however they are most noted for their potential to severely damage 

grains such as wheat (Triticum aestivum L.) and barley (Hordeum vulgare) 

and their capacity for rapid population growth (Burd et al. 2006; Jyoti et al. 

2006; Smith et al. 2004). The native distribution of RWAs is believed to 

center on the Iranian-Turkestanian mountain range and extends to southern 

Russia, the Middle East, and central Asia (Kovalev et al. 1991), with the 

earliest documented record of damage coming from Ukraine in the early 

1900s. RWAs gradually spread to most European and North African 

countries during the early part of the 20th Century at which time it gained 

recognition as an emerging global pest. It was during the 1970’s and 1980’s 

that RWAs began to rapidly spread, causing severe crop damage in major 

grain producing areas in Europe, Africa and the Americas (Kovalev et al. 

1991; Smith et al. 2004; Stary 1999).  
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RWAs were first observed in north-western China in 1975 at Tacheng in the 

Xinjiang Uyghur Autonomous Region (Zhang et al. 1999a). RWAs have not 

been detected in any other province in China. There is some dispute as to 

whether the RWA is an exotic or native species in China, with most Chinese 

entomologists regarding it as an invasive pest (Zhang et al. 1999a, b), 

possibly because it was around this time that invasive populations of RWAs 

were first reported in South Africa (1978), Mexico (1980), North America 

(1986) and South America (1988). 

 

In recent years most research on RWAs has focused on documenting the 

biology and genetics of this species in its invasive range (Shufran et al. 2007; 

Shufran & Payton 2009; Liu et al. 2010) and much emphasis has been 

placed on documenting variant biotypes and discovering resistance genes in 

wheat and barley cultivars (Basky 2002; Burd et al. 2006; Haley et al. 2004; 

Puterka et al. 1992). Population genetic studies on RWAs from central Asia, 

including China, have not been undertaken. A significant body of research 

does exist however on the biology of this species in China. RWAs exhibit a 

holocyclic life cycle in China (Zhang et al. 1999a) with parthenogenesis the 

predominant mode of reproduction in late spring and summer, and sexual 

reproduction occurring in October. Cold-resistant eggs are laid in late 

October which over-winter on the basal leaves of the host plants (Zhang et al. 

1999a). Invasive populations of RWA have been characterized as primarily 

anholocyclic (obligatory parthenogenetic), although the appearance of sexual 

females and eggs has been reported recently in North America and 

Argentina (Clua et al. 2004; Kiriac et al. 1990). 

 

Host plants of RWA include cultivar crops, such as wheat, barley, and oats, 

and native grasses, wild oats and rye. Variable population growth rates and 

relative virulence on wheat and barley have been reported amongst invasive 

populations of RWA (Basky 2002; Jimoh et al. 2011; Puterka et al. 1992;  

Smith et al. 2004), however little is known about the level of host adaptation 

in native populations of RWA. Host-based adaptation has been reported in 

other aphid species (Charaabi et al. 2008; Ferrari et al. 2006; Peccoud et al. 

2009), and in the greenbug (Schizaphis graminum), another cereal aphid, 
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mitochondrial data suggest that genotypes associated with cultivated cereals 

have a single origin (Shufran et al. 2000). Parthenogenetic reproduction is 

thought to facilitate sympatric host specialization in aphids (Sunnucks et al. 

1997); parthenogenesis is also likely a key factor leading to the dominance of 

single genotypes (―superclones‖) across space and time (Abbot 2011). 

 

It is not yet clear what biological, genetic and/or ecological factors are 

responsible for RWA invasiveness, and which factors are limiting its range 

expansion after establishment. RWAs quickly spread through most of the 

wheat growing districts in the western USA soon after its introduction in 1986, 

but did not expand its range significantly to the east (Smith et al. 2004). 

Large-scale dispersal is important in facilitating the expansion of aphid 

populations in both their native and invasive ranges (Dolatti et al. 2005; 

Michel et al. 2009; Shufran & Payton 2009). Aphid dispersal morphs (alatae) 

exhibit weak flying ability (Loxdale et al. 1993; Zhang et al. 2008), with most 

movement across long distances attributed to wind-aided dispersal (Venette 

& Ragsdale 2004). Monitoring insect movement using traditional ecological 

methods is problematic (Roderick 1996). Genetic methods are now used 

widely to examine the levels of migration among populations and provide 

answers to a range of questions relating to movement patterns and 

population demographic history.  

 

Here we report results of the most comprehensive population genetic study 

yet undertaken on RWAs. We investigate the patterns of spatial and temporal 

genetic differentiation among sampled populations and infer possible 

dispersal mechanisms. We provide evidences for historical demographic 

population expansion throughout western China and predict the potential for 

future expansion of this species in other wheat growing districts with similar 

geographic features in China.   
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2.3 Materials and Methods 

2.3.1 Aphid sampling 

Russian wheat aphids (RWAs) were collected from wheat fields (Triticum 

aestivum L.) in northern and southern Xinjiang including desert, oasis and 

mountain foothill regions. In total, eighteen sites were sampled including 

fifteen in the north and three in south, from May to June of 2009 and 2010 

(Figure 2.1 & Appendix S2.1). Nine sites were sampled in both years to 

provide a temporal comparison. Up to fifty colonies were identified at each 

site and one parthenogenetic, wingless female aphid was collected from 

each plant. Consecutive samples at a location were collected a minimum of 

50 meters apart, or in different fields, to minimize the chance of sampling 

aphids from the same colony. RWA specimens were preserved in 100% 

ethanol until DNA extraction. 

 

2.3.2 DNA extraction and amplification 

Total genomic DNA was extracted from single adult aphids using a salting-

out method (Sunnucks & Hales 1996). All RWAs were screened for 12 

microsatellite loci, including three cross-species loci developed from Sitobion 

aphids (Sa4  – Simon et al. 1999; Sm11 – Wilson et al.1997; Sm23 – Wilson 

et al. 2004), and nine loci newly developed from RWAs. Microsatellite loci 

were amplified in a total volume of 10 l containing 10 nmol of fluorescent-

labeled primers (Sangong Company, China), 0.5 U Taq, 1× PCR Buffer, 0.3 

mM each dNTP, 2mM MgCl2 (TaKaRa Taq™, Takara Biomedical) and 20ng 

of aphid DNA. PCR cycling conditions followed Shufran and Payton (2009), 

except that different annealing temperatures were used. Electrophoresis of 

the amplification products was conducted in a capillary sequencer 

ABI3730×1 (Applied Biosystems), with an internal size ladder (500 LIZ). 

Allele sizes were analyzed using GeneMapper (version 3.0, Applied 

Biosystems) and allele designation was confirmed following visual 

examination.  

 

We also sequenced two mitochondrial DNA regions: partial cytochrome 

oxidase I (CO1) and a continuous fragment centered on NADH 
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dehydrogenase subunit 6 (ND6), including partial NADH subunit 4L, two 

tRNA genes, total ND6, and partial cytochrome B. The 436bp CO1 gene was 

amplified using the primers C1-J-1718 and C1-N-2191 (Simon et al. 1994), 

and the ND6 fragment (837bp) was amplified using the primers N4L-J9648 

and CB-N10608 (Simon et al. 2006). The PCR protocol and cycling 

conditions followed Shufran & Payton (2009), except that ExTaq (TaKaRa 

Taq™, Takara Biomedical) was used. PCR products were purified using an 

ABgene Ultra PCR Clean-Up Kit (Thermo Scientific) and run on an ABI3130 

sequencer.  

 

2.3.3 Genetic Diversity  

Genetic diversity estimates were calculated using FSTATv2.9.3. (Goudet 

2001) and included: observed and expected heterozygosity (Ho & He), allele 

size range, number of alleles (Na), allelic richness (Ar), and the f estimator of 

Fis and significance values (Weir & Cockerham, 1984). Allele frequencies, 

Hardy-Weinberg equilibrium (HWE), and linkage disequilibrium tests were 

calculated using Genepop v4.0 with1000 iterations and 100 Markov Chain 

approximations (Raymond & Rousset 1995; Rousset 2008). Significance was 

assessed following Bonferroni correction (Rice 1989). Micro-Checker v2.2.3 

was used to test for large allele dropout (Van Oosterhout et al. 2004). Null 

allele frequencies for each locus were estimated using Cervus v3.0 (Marshall 

et al. 1998). All individuals were also classified according to multilocus 

genotype (MLG) in GenClone v2.0 (Arnaud-Haond & Belkhir, 2007). Genetic 

diversity was analyzed based on gross genotypic diversity (GGD), which was 

calculated as G/N, with G equal to the number of MLGs, and N equal to the 

sample size (Llewellyn et al. 2003). 

 

Mitochondrial DNA sequences were aligned and edited using BioEdit v7.0.0 

(Hall 1999) and MEGA v4.1 (Tamura et al. 2007). The number and frequency 

of haplotypes were calculated using DnaSP v5 (Librado & Rozas 2009), and 

a phylogeographic network was inferred using TCS (Clement et al. 2000). 

We also calculated Tajima’s D (Tajima 1989) and Fu’s Fs (Fu 1997) 

implemented in Arlequin v3.5.1.2 (Excoffier et al. 2005) to infer deviations 
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from neutrality and to detect demographic changes or selection (Fu & Li 

1993).   

 

2.3.4 Genetic Differentiation  

Pairwise Fst estimates were calculated from the microsatellite data using 

Arlequin and exact G tests of allelic differentiation were calculated using 

Genepop. The datasets were analyzed by year, and one site, Fuhai, was 

excluded because of low sample size. A Mantel test implemented in 

Genepop (using 10000 permutations) was used to examine whether there 

was a relationship between Fst and geographic distance. The sampling 

coordinates were recorded in GPS, and the straight-line distance between 

each pairwise locality was calculated using Google Earth (Google inc., 

Mountain View CA).  

 

Three clustering methods were used to identify population structure. Firstly, a 

Bayesian Markov Chain Monte-Carlo (MCMC) method implemented in 

Structure v2.1 (Pritchard et al. 2000) was used. An admixture model was 

assigned by assuming independent allelic frequencies with 100,000 iterations 

of MCMC after a 20,000 burn-in period, and ten independent runs for each K 

were evaluated. To select the most likely K value, we adopted two criteria: 

first, the K reached a plateau in the Ln(K) plot, and △K attained its maximal 

value (Evanno et al. 2005); and second, a parsimony method was used in 

which the lowest K is selected that captures most differentiation among 

populations (DiLeo et al. 2010). We then used Distruct v1.1 (Rosenberg 2004) 

to display the bar plot under the most likely K value. Secondly, factorial 

correspondence analysis (FCA) was carried out in Genetix v4.05 (Belkhir et 

al. 1996-2004) to examine the three-dimensional spatial distribution of 

genetic variation for each individual. Finally, an analysis of molecular 

variance (AMOVA) was conducted in Arlequin to confirm population clusters 

and to differentiate the variation component among populations and years. 

 

We used the microsatellite data to examine evolutionary scenarios of 

expansion and gene flow among sites using DIYABC v 0.7 (Cornuet et al. 
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2008), MIGRATE v3.2.7 (Beerli 2008) and BayesAss 1.3 (Wilson & Rannala 

2003). DIYABC estimates the posterior distributions of different evolutionary 

scenarios by generating simulated data and comparing selected simulated 

data that are closest to the observed data (Cornuet et al. 2008). Five 

scenarios of simultaneous expansion were examined using four 

geographically widespread sites - Qapqia (Yili Valley, north-west Xinjiang), 

Yumin (north-west Xinjiang), Mori (north-east Xinjiang) and Wuqia (south 

Xinjiang) - and an unsampled site as the origin of expansion. We assumed a 

stable effective population size (Ne), a transitory bottleneck (db=5) and a 

generalized stepwise model (GSM) of mutation. 250000 simulated datasets 

were produced for each scenario and the 15000 closest simulations to the 

observed data were compared using logistic regression.  

 

MIGRATE detects gene flow over historical timescales - up to 4Ne 

generations in the past. It is implemented using a maximum likelihood model 

with two long chains, followed by ten short chains recorded at the sampling 

increment of 100 iterations, and with a burn-in of 10000 iterations. The 

program was run five times using different random seeds. BayesAss 

estimates recent migration rates with 95% confidence intervals. Five 

independent runs with different initial random seeds were undertaken using 

20 million iterations and a 10 million burn-in chain to check the congruence. 

 

2.3.5 Demographic Changes in Population Size 

Changes in demographic history are known to affect the frequency of alleles, 

the distribution of mutations, and the coalescent times of gene copies. Two 

tests were used to determine whether the microsatellite data displayed any 

signature for past population expansion or contraction. Firstly, using the 

program Bottleneck v1.2.02 (Cornuet & Luikart 1996), observed and 

expected heterozygosity were compared to detect any heterozygote excess 

(Piry et al. 1999).We also used Bottleneck to test for mode-shift. Secondly, k 

and g tests were used to detect any signal of population expansion in the 

ancestral generations (Reich & Goldstein 1998; Reich et al. 1999; Bilgin 

2007). Negative k values at each locus indicate population expansion. A low 

value of g (under 1) can be interpreted as evidence of population expansion.  
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The mitochondrial data were also examined for evidence of population 

expansion using a pairwise mismatch distribution implemented in Arlequin. 

The goodness-of-fit of the observed data to a simulated model of expansion 

was tested with the sum of squared deviations (SSD) and raggedness index. 

The age of expansion was estimated with the formula ô = 2ìt, where ì equals 

the aggregate mutation rate across all nucleotides per generation and t is the 

expansion time in generations. We also adopted Ramos-Onsins and Rosas’s 

R2 test (Ramos-Onsins & Rozas 2002) in DnaSP to complement the power 

of the pairwise mismatch distribution. The R2 test was conducted using 

coalescent simulations with 1000 replicates and 95% confidence intervals.  
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2.4 Results 

2.4.1 Genetic Diversity  

Twelve microsatellite loci were screened for 1040 RWA colonies sampled in 

western China in 2009 and 2010. Two of the cross-species loci (Sm11 and 

Sm23) were discarded as a high number of scoring errors were detected. 

The remaining ten loci were polymorphic (Appendix S2.2) and could be 

confidently scored (i.e. no large allele dropout or scoring errors were 

detected using Micro-Checker). Only one locus (Dn1) was potentially affected 

by null alleles, having a null allele frequency greater than 0.1, however no 

significant departure from HWE was found for this locus. Significant deviation 

from HWE was identified in five of the 27 tests as a result of heterozygote 

deficit or excess. Although a small proportion of linkage disequilibrium tests 

indicated significant linkage, no consistent pattern between any particular 

pair of loci was evident, therefore the ten loci are providing independent 

assessments of genetic variation.  

 

Within each site, the highest allelic number and richness was found in Haba, 

with 11.1 and 6.08 respectively (Table 2.1). In contrast, the lowest allelic 

number was found in Pishan with 2.7, and lowest allelic richness in Cele with 

2.51 (Table 2.2). Sites located in northern Xinjiang, including the regions 

surrounding Tacheng, Altay and Urumqi, presented similar average gene 

diversities during both years. An ANOVA revealed that sites in the south had 

significantly reduced gene diversity (F=3.68, df=3,22, p=0.027) and allelic 

richness (F=5.36, df=3,21, p=0.007) compared with the north. 

 

A total of 928 MLGs were identified from 1040 RWAs based on the data from 

ten microsatellite loci (Table 2.1 &2.2). The number of MLGs shared within a 

site ranged from 0 to 8, with the highest sharing occurring in Cele. Four sites 

were entirely composed of unique MLGs. Interestingly only one MLG was 

shared among sites (between two individuals from Pishan and Cele). No 

MLGs were shared among years at any site.  
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Figure 2.1 Topographical map of nor thwestern China, Xinjiang, with the 

sample localities represented by black dots. 
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Table 2.1 Indices of genetic diversity for the13 sites sampled in 2009. 

 

 

 

 

 

 

 

 

 

 

Ho, observed heterozygosity; He, expected heterozygosity; Hs, gene diversity; Na, numbers of alleles; Ar, allelic richness based on 9 samples per population; 

MLGs, number of multilocus genotypes; #within, number of MLGs shared within a population; # among, number of MLGs shared among populations; GGD, 

index of global genotypic diversity (MLGs/N); Fis, the inbreeding index, the asterisks indicate significance after Bonferroni correction at 0.05 level.  TCA, 

TachengA; TCB, TachengB; TL, Toli; EM, Emin; YM, Yumin; HF, Hobuksa; AL, Altay; FH, Fuhai; HB, Haba; BR, Berqin; UR,Urumqi; QT, Qitai; ML, Mori.  

   2009 TCA TCB TL EM YM BR UR QT ML HF AL FH HB 

N 49 31 50 50 31 44 16 50 42 40 10 6 50 

Ho 0.62 0.61 0.62 0.62 0.64 0.67 0.65 0.60 0.62 0.59 0.81 0.78 0.61 

He 0.65 0.65 0.67 0.66 0.68 0.67 0.64 0.61 0.64 0.64 0.76 0.70 0.68 

Hs 0.65 0.65 0.67 0.66 0.68 0.67 0.58 0.61 0.64 0.64 0.68 0.62 0.68 

Na 9.6 8.1 9.7 9.7 8.2 8.8 4.9 8 9.4 6.8 5.5 4.5 11.1 

Ar 5.42 5.47 5.7 5.68 5.63 5.56 4.23 4.75 5.49 4.73 5.30 - 6.08 

MLGs 48 31 49 36 30 36 15 44 42 25 9 5 48 

#within 2 0 1 6 1 6 1 5 0 6 1 1 2 

#among 0 0 0 0 0 0 0 0 0 0 0 0 0 

GGD 0.96 1 0.98 0.82 0.97 0.82 0.94 0.88 1 0.63 0.9 0.83 0.96 
Fis 0.036 0.065 0.081 0.06 0.059 0.007 -0.002 0.008 0.037 0.072 -0.077 -0.12 0.097* 
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Table2.2 Indices of genetic diversity for the14 sites sampled in 2010. 

 

 

 

 

 

 

The abbreviations are the same as indicated in Table 2.1. QP, Qapqia; MS, Manas; WQ, Wuqia; CL, Cele; PS, Pishan. 

 

 2010 TCA TCB TL EM YM BR UR QT ML QP MS WQ CL PS 

N 41 22 50 31 50 11 50 50 50 53 50 52 52 9 
Ho 0.61 0.76 0.64 0.71 0.62 0.74 0.62 0.57 0. 60 0.65 0.62 0.59 0.60 0.59 
He 0.63 0.73 0.65 0.71 0.67 0.60 0.60 0.64 0.59 0.65 0.65 0.71 0.42 0.52 
Hs 0.63 0.65 0.65 0.64 0.67 0.47 0.60 0.64 0.59 0.65 0.59 0.71 0.33 0.47 
Na 7.5 6.7 10 7.9 10.5 3.5 7.7 8.7 8.6 9.8 7.9 8.1 3.9 2.7 
Ar 4.99 5.27 5.57 5.382 5.85 3.3 4.51 5.29 5.00 5.50 4.76 5.4 2.52 2.7 

MLGs 30 30 49 30 50 5 34 48 46 51 43 52 41 7 
#within 4 3 1 1 0 2 7 2 2 2 5 0 8 1 
#among 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

GGD 0.73 0.77 0.98 0.97 1 0.45 0.68 0.96 0.92 0.96 0.86 1 0.79 0.78 
Fis 0.03 -0.044 0.004 0.011 0.079* -0.26 -0.032 0.12* -0.004 0.003 0.046 0.17* -0.43* -0.15 
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Concatenated, 1272bp of mitochondrial DNA was obtained from 178 RWAs. 

Eighteen haplotypes were identified, with one common haplotype found at all 

sites (relative frequency: 88.8%), and seventeen rare haplotypes found at low 

frequencies (0.5-1.1%). Three haplotypes were shared among sites: Hap1 

(universal), Hap3 (found at Yumin and Qapqia), and Hap7 (found at Haba 

and Toli). Hap10 was found in two individuals from Wuqia (Figure2.2). The 

remaining fourteen haplotypes were unique to one site. Mori in north-east 

Xinjiang had the highest nucleotide diversity as well as significant Tajima’s D 

and significant Fu’s Fs values (Appendix S2.3). Twenty variable sites were 

found and although eighteen of these occurred among protein coding regions, 

the majority of single base pair mutations were transitions (12/18) and 

synonymous mutations (13/18).   

 

 

 

 

Figure 2.2 Estimated mitochondrial DNA network with 95% plausible set of 

haplotype connections.  Each haplotype (1-18) is shown as a circle or square. 

The size of the circle or square relates to the number of individuals sampled 

(scale shown at base of figure). Small black circles represent putative 

haplotypes that were not sampled (not labeled). Lines between circles 

represent a single base pair mutation. 
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The TCS network revealed a star-like pattern centered on the widely 

distributed Hap1 (Figure 2.2).  From the central haplotype (Hap1), fifteen 

haplotypes diverged by one mutation, one haplotype (Hap13) diverged by 

two mutations and another haplotype (Hap9) diverged by three mutations. 

 

2.4.2 Genetic Differentiation (nDNA)  

Population differentiation was analyzed using pairwise Fst values and exact 

tests of allelic differentiation. In 2009, pairwise Fst values among northern 

sites were generally low (0.0055 to 0.1129), but majority of pairwise 

comparisons were significant (Table 2.3A). In 2010, the majority of Fst were 

significant among northern sites again, however, a much higher level of 

differentiation was detected between northern and southern sites (Table 

2.3B). The average Fst values of southern sites (Wuqia, Pishan, and Cele) to 

the other eleven northern sites were 0.112, 0.16, and 0.266, respectively. 

Furthermore, the pairwise Fst value between the two southern sites, Wuqia 

and Cele, was also very large 0.27. These data indicated that gene flow is 

considerably restricted among southern sites and between northern and 

southern sites. Mantel tests based on the 2009 data (only northern sites were 

sampled) did not reveal a significant correlation between Fst and geographic 

distance (r=0.25, p=0.17). However in 2010, both northern and southern sites 

were sampled and a strong pattern of isolation by distance was detected 

(r=0.57, p<0.0001).  

 

An AMOVA was conducted using 2010 data and separating sites into three 

groups (1. Wuqia, 2. Cele and Pishan, and 3. northern sites). The proportion 

of variance among groups (12.42%) was larger than that found among sites 

within groups (4.43%), and the fixation index (Fct=0.124) was significant, 

indicating extremely restricted gene flow among the three groups (Appendix 

S2.4).  
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Table 2.3 Fst values and significance of pairwise comparisons among (A) 2009 and (B) 2010 populations. The abbreviated names 

were the same as the localities in table 2.1. Bold values indicate significance after Bonferroni correction at 0.05 level. The grey cells 

highlight the Fst Between southern and northern populations. 

 

 

(A) 2009 EM TCA TCB UR HB TL QT BR HF YM ML AL   

Emin -              

TachengA 0.0061 -             

TachengB 0.0251 0.0318 -            

Urumqi 0.0917 0.1045 0.0770 -           

Haba 0.0089 0.0086 0.0336 0.0778 -          

Toli 0.0186 0.0200 0.0206 0.0710 0.0143 -         

Qitai 0.0444 0.0401 0.0466 0.1071 0.0366 0.0141 -        

Berqin 0.0338 0.0354 0.0264 0.0774 0.0275 0.0134 0.0223 -       

Hobuksa 0.0552 0.0639 0.0626 0.0868 0.0490 0.0575 0.0808 0.0569 -      

Yumin 0.0091 0.0058 0.0265 0.0981 0.0113 0.0055 0.0270 0.0237 0.0553 -     

Mori 0.0210 0.0234 0.0299 0.0943 0.0196 0.0096 0.0057 0.0167 0.0533 0.0088 -    

Altay 0.0248 0.0204 0.0525 0.1129 0.0214 0.0271 0.0665 0.0422 0.0768 0.0195 0.049 -   

               

(B) 2010 WQ CL PS QP MS UR QT ML YM TL TCA TCB EM BR 

Wuqia -              

Cele 0.2689 -             

Pishan 0.1304 0.1203 -            

Qapqia 0.0989 0.2214 0.1394 -           

Manas 0.1192 0.2525 0.1539 0.0682 -          

Urumqi 0.1085 0.2772 0.1648 0.0671 0.0653 -         

Qitai 0.1141 0.2673 0.1829 0.0294 0.0654 0.0527 -        

Mori 0.1346 0.2363 0.1812 0.0403 0.0735 0.0664 0.0167 -       

Yumin 0.0843 0.2097 0.1211 0.0212 0.0452 0.0440 0.0163 0.0262 -      

Toli 0.1116 0.2637 0.1715 0.0363 0.0479 0.0500 0.0125 0.0344 0.0081 -     

TachengA 0.0957 0.2375 0.1157 0.0440 0.0640 0.0374 0.0422 0.0676 0.0210 0.0393 -    

TachengB 0.1117 0.3004 0.1541 0.0743 0.0809 0.0666 0.0647 0.0906 0.0520 0.0615 0.0465 -   

Emin 0.0793 0.2794 0.1422 0.0307 0.0427 0.0220 0.0301 0.0517 0.0177 0.0214 0.0219 0.0407 -  

Berqin 0.1761 0.3768 0.2402 0.1210 0.1204 0.1233 0.1362 0.1620 0.1068 0.1156 0.1187 0.1521 0.1003 - 
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We also analyzed temporal differentiation among the nine sites that were 

sampled in both 2009 and 2010. Pairwise Fst and exact tests revealed 

significant differentiation between years in all populations except Ermin 

(Appendix S5). Genetic variation between years resulted in a fixation index 

(Fsc=0.028) greater than that for among sites (Fct=0.007), suggesting that 

more structure exists within a site when sampled from one year to the next 

than among sites sampled within a single year. 

 

2.4.3 Population Structure  

Similar patterns of hierarchical structure were obtained using individual-

based clustering in Structure and three-dimensional factorial correspondence 

analysis (FCA). Both methods revealed three clusters (k=3) among northern 

sites sampled in 2009 (Figure 2.3A, Appendix S2.6A). However, no distinct 

groups could be discerned that corresponded to any of the 13 sites, 

indicating that all individuals sampled were of mixed ancestry. Further 

increasing k in Structure did not reveal any distinct subdivisions. An analysis 

of 2010 data using Structure revealed four clusters corresponding to three 

regions with distinctive population groups: 1) Wuqia, 2) Cele and Pishan, and 

3) all other northern sites (Figure2.3B). The FCA analysis also identified the 

three southern sites as distinct from the northern sites, with Pishan 

genetically intermediate between Cele and Wuqia (Figure2.4). The three 

axes explained over 50% of the variation among the sites. Structure (k=2) 

and FCA identified a varying degree of admixture amongst the northern 

populations in 2010 (Figure 3B, Appendix S2.6B). 

 

Evolutionary scenario testing using DIYABC revealed higher posterior 

probabilities for simultaneous expansion from the three northern sites 

analyzed (Qapqia: 0.370, 95% CI 0.283-0.456; Yumin: 0.365, 95% CI 0.279-

0.451; Mori: 0.235, 95% CI 0.169-0.302) than from southern Xinjiang (Wuqia: 

0.005, 95% CI 0.002-0.007) or an unsampled alternative (0.025, 95% CI 

0.014-0.0037). Yumin and Qapqia abut the border with Kazakhstan and 

showed slightly higher posterior probabilities than Mori (north-east Xinjiang) 

as being the expansion origin. Similarly, MIGRATE estimates of long-term 

gene flow were significantly asymmetric based on non-overlapping 95% 
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confidence intervals (Appendix S2.7), indicating that Yumin and Qapqia may 

be expansion origins. Additionally, the most divergent mitochondrial 

haplotype was found at Qapqia further suggesting that this site may 

represent the ancestral origin of RWAs in China.  Given the low level of 

haplotype sharing detected (only three haplotypes shared out of 18), it is 

interesting to note that Yumin and Qapqia shared haplotype 3 (Figure 2.2). 

However, when we used BayesAss to look for evidence of recent gene flow 

between north and south Xinjiang, no trace of migration was detected among 

Yumin, Qapqia, Mori and Wuqia (non-migration rate: 0.833, 95% CI 0.675-

0.992). 
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Figure2.3 Structure bar plot of Chinese RWAs sampled in 2009 (A, k=3) and 2010 (B, k=4).  The 2010 data are also presented 

following removal of the three southern populations and reanalysis (k=2). Each individual is shown as a vertical bar representing 

ancestry.
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Figure2.4 Three-dimensional factorial correspondence analysis of Chinese 

RWAs sampled in 2010. The circles indicate populations that cluster 

according to geography. 

 

2.4.4 RWA Population Demographic History 

Population demographic history examined using Bottleneck and Kgtest 

displayed little evidence for past population fluctuation (Table 2.4). Significant 

heterozygote deficits were only detected at three sites. Therefore, the 

reduction in allele number within populations was probably due to founder 

events rather than rapid decline in population size. Likewise, the L-shaped 

mode of allele frequency distribution suggests a long-term stable population 

size. Furthermore, the k test was not significant for most sites indicating that 

the allele length distribution was not significantly different from a binomial 

distribution and that the population size has been steady. The g tests were 

also not significant providing further evidence of stable population size. 
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However, when considering all 18 sites as one population, the k test 

indicated significant population expansion. Although the g test value was not 

significant, it was less than one, thus supporting the conclusion of past 

population expansion in western China.  

 

The mtDNA data also provided evidence of rapid demographic expansion, 

with the universal haplotype at the center of a star-like cluster formed by the 

17 rare haplotypes (Figure2.2). Furthermore, the pairwise mismatch 

distribution was unimodal, with a strong peak evident at zero, which steeply 

declined from zero to one base pair. The goodness-of-fit tests were not 

significant [p(SSD)=0.52 and p(Harpending’s RI)=0.68], and evidence for 

highly significant population expansion was detected in the R2 statistic 

(R2=0.08347, p=0.002), Tajima’s D (D=-2.39352, p<0.01), and Fu’s Fs (Fs=-

28.395, p<0.0001). The estimated generation time since expansion for 

Chinese populations was approximately 3,200 years, based on ô value of 

0.146 and 1.77%/MY as mutation rate based on the rate given by 

Papadopoulou et al. (2010) for beetle mtDNA. 
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Table 2.4 Tests for Chinese RWA demographic fluctuation under bottleneck or expansion calculated using BOTTLENECK and 

KGTEST. *p<0.05; **p<0.01. Dash (-) indicates that the test was not performed because the sample size was too low. 

  

                             

 

 

2009 Hobaksa Altay Fuhai Haba Berqin Urumqi Qitai Mori Yumin Toli TachengA TachengB Emin 

 

Bottleneck 

TPM 1.000 0.734 - 0.160 0.432 0.820 0.105 0.01855* 0.432 0.557 0.232 0.193 0.432 

 Shape Mode  L L - L L L L L L L L L L 

 

kgtest 

K 5 5 7 6 5 4 6 7 6 6 8* 6 5 

 G 1.445 0.754 0.809 0.861 0.884 2.515 1.140 1.124 0.910 0.815 0.803 0.771 0.935   

 

2010 Wuqia Cele Pishan Qapqia Berqin Urumqi Qitai Mori Yumin Toli TachengA TachengB Emin Manas 

Bottleneck 

TPM 0.922 1.000 - 0.01855* 0.844 0.275 0.322 0.131 0.084 0.00488** 0.232 0.570 0.426 0.129 

Shape Mode  L L - L L L L L L L L L L L 

kgtest 

K 6 6 5 8* 7 6 6 6 8* 8* 6 3 6 9** 

G 0.546 3.397 1.859 0.851 2.813 1.088 1.377 1.320 0.743 0.784 1.095 1.160 0.781 1.149 
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2.5 Discussion 

This study has investigated the population genetics, demographic history and 

evolutionary adaptation of the Russian wheat aphid in its rarely investigated, 

far eastern native range in China. We have also rejected the hypothesis that 

this invasive pest had been introduced into Western China in the last couple 

of decades. An understanding of the levels and patterns of genetic variation 

in native populations can provide valuable insights into the factors that have 

facilitated the recent global invasion by this damaging pest species. 

 

2.5.1 Genetic Diversity of RWAs in China 

The microsatellite data revealed high genetic diversity and large numbers of 

MLGs. No MLGs were shared between two consecutive sampling years at 

any single site and very few MLGs were shared within and among sites in the 

Xinjiang region, strongly supporting previous research that sexual 

reproduction is prevalent in China (Zhang et al. 1999a). High population 

densities of RWAs in China, together with little, recent migration among sites 

may have also contributed to the high genetic diversity found in this study. 

 

Consistently, our findings revealed significantly higher genetic diversity of 

RWAs in northern sites compared with southern, suggesting limited gene 

flow among and possible founder events in southern sites. A gradual 

reduction in genetic diversity and gene flow was evident, declining from 

Wuqia, the most northerly of the southern sites, to Pishan and Cele (the most 

southerly located site). Of all the sites sampled, Cele was the least diverse 

having the lowest allelic richness and a number of MLGs shared among 

individuals within the population. From this, we surmise that the population in 

Cele was probably founded by very few RWAs – possibly colonising from 

Pishan. In contrast, the northern sites exhibited roughly equivalent levels of 

microsatellite variation. While the mtDNA data were generally less 

informative due to low levels of variation, one site in the north-east (Mori) 

displayed the highest diversity.  
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Genetic diversity within a site was correlated with geographic location and 

latitude; northern sites had higher diversity than southern sites. One possible 

explanation is that different patterns of introduction and establishment of 

RWAs occurred in the two regions. Given that ecological and environmental 

conditions in the north and south are quite different, RWAs would have 

experienced different selection pressures, potentially on different hosts and 

different ecological conditions influenced by climate and geography. In 

southern Xinjiang, microclimatic variation will have a strong effect on RWA 

populations as they occur in mountain regions above 2000 meters elevation 

(even above 3300 meters in Taxkorgan; Du 2000). In northern Xinjiang, 

RWAs occur at elevations ranging from 700-1000 meters, mostly on plains or 

flat areas. Broad (or macro) scale fluctuations in climate will have a greater 

influence in the north and elevation is less likely to be a barrier to insect 

dispersal or migration compared with the south. Furthermore, grain fields in 

the south are predominantly cultivated in small patches (ie. oases) that are 

discontinuously located along the edge of the Taklamakam Desert and the 

Tarim River basin. Conversely, cultivated fields and wild grasslands are 

continuously distributed along the northern slope of the Tianshan Mountain 

range, offering RWAs a selection of host plants on which they can live or use 

as stepping stones to migrate. Finally, in southern Xinjiang farmers plant only 

winter wheat and have one wheat-growing season per year, while in northern 

Xinjiang farmers plant both winter and spring wheat each year, with an 

overlapping growth season from April to June. As a result, RWAs can persist 

over longer time periods in the north and because of plentiful food resources 

their survival and reproductive success may be enhanced.  

 

The high genetic diversity observed at microsatellite loci contrasted markedly 

with the low level of mtDNA genetic diversity that we observed in the Chinese 

RWA populations. Only eighteen haplotypes were identified from 178 RWA 

individuals, and seventeen of these were rare and found at very low 

frequency. This level of mtDNA diversity is still much higher than that found in 

invasive RWA populations, which have no mtDNA variation (Shufran et al. 

2007; Shufran & Payton 2009). In other aphid species, anholocyclic 

populations have mitochondrial haplotypes that are distinct from holocyclic 
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populations, and often exhibit reduced mtDNA diversity (Martinez-Torres et al. 

1997).   

 

2.5.2 Gene Flow among RWA Populations in Xinjiang 

All methods of population structure analysis used in this study provided 

unequivocal support for strong differentiation among Chinese RWA 

populations relative to geography. Little evidence of gene flow between 

northern and southern regions was found. The Tianshan Mountain range 

segregates Xinjiang into northern and southern regions and the dominant 

wind direction is from west (Siberia) to east (China). The wind from north to 

south across the mountain range is weak and unlikely to facilitate passive 

RWA dispersal and although not conclusive evidence, RWAs have not been 

found along the southern slope of the Tianshan Mountains. However, aphids 

have been found suspended in air currents and are thought to be capable of 

long distance (100’s of kilometers) flight (Dixon 1998; Delmotte et al. 2002). 

In this study, the low level of gene flow between northern and southern 

Xinjiang suggests that RWAs probably have a low active flying capacity and 

this may be due to demographic or behavioral factors.  

 

Experiments have shown that live adult RWAs can survive and produce a 

viable colony after three days without food and water (Vitou and Edwards 

unpublished data). Therefore, it cannot be discounted that live adult RWAs 

may be transported on seedlings or human artifacts over long distances. In 

fact, wheat seeds are transferred frequently between northern and southern 

Xinjiang as Yili and Tacheng have wheat breeding centers that provide on an 

annual basis, high-quality improved seeds to wheat growers located 

throughout Xinjiang (―Greater Mekong Subregion Agricultural Information 

Network‖). Because of high shipping costs, forage grass species or wheat 

seedlings are not transferred between northern and southern regions. 

Consequently, as we detected little evidence of short-term gene flow from 

north to south, RWAs are probably not frequently transported by human 

agricultural activities. As more wheat fields are planted, the possibility 

remains however, that over time, aphid populations may expand into new 

areas via natural pathways (flight or wind currents).  
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2.5.3 Historical Expansion of RWAs in China 

The accepted opinion is that the original native eastern distribution of RWAs 

included northern Kazakhstan (Kovalev et al. 1991) and therefore, it is logical 

to suppose that RWAs could have been present along mountain ranges from 

central Asia (ie. Kazakhstan) to western China before they were first detected 

in the 1970s. Our study has provided strong evidence for a long-term 

association of RWAs with wheat and possibly other cereals in western China.  

 

Our mtDNA data indicate a relatively recent population expansion of Chinese 

RWAs during the last three thousand years. Although this estimate only 

provides an approximation, it is concordant with historical climate change 

events in central Asia and the spread of cereal domestication and cultivation 

practices. During the last 11000 years, the warm wet climate of the Holocene 

(Richerson et al. 2001) provided a relatively stable, warm, and CO2-rich 

environment facilitating rapid plant growth. During this time, plant 

domestication and associated cultivation spread rapidly. Wheat 

domestication was first recorded in the Fertile Crescent (including the 

modern day Turkey, Iran, Iraq, Syria, Lebanon, Jordan, Palestine and Israel) 

in 9500-7500BC (Bellwood, 2001; Diamond, 2002) and spread eastward to 

central Asia by 7000-6000BC, to north-western China by 4600-2000BC (Li et 

al. 2007; Thornton & Schurr 2004) and then to the Indian subcontinent by 

3,500-3,000BC (An et al. 2005). The earliest published record of wheat in 

Xinjiang comes from 2000BC (Thornton & Schurr 2004), a point in time when 

the Silk Road first became an active conduit for trade and agriculture 

between western and eastern Asia. We hypothesize that the expansion of 

RWAs in western China suggested by our mtDNA results was facilitated by 

agricultural activities associated with the human domestication of wheat.  

 

Our microsatellite data also revealed a signal of population expansion when 

all sites were combined. Most sites displayed a very slight growth trend, 

indicating long-term co-evolution of the RWA with its host in natural habitats. 

Thus, our data are consistent with the theory that long-term effective 

population size should be in general, closer to the actual size during the 

http://en.wikipedia.org/wiki/Iraq
http://en.wikipedia.org/wiki/Syria
http://en.wikipedia.org/wiki/Lebanon
http://en.wikipedia.org/wiki/Jordan
http://en.wikipedia.org/wiki/Palestinian_territories
http://en.wikipedia.org/wiki/Israel
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remission period than that in the initial expansion and growth period (Motro & 

Thomson 1982). In addition, high gene flow among populations of RWA in 

the north during the expansion and growth period probably enhanced the 

homogenizing effect, as has been found during an outbreak event of the 

migratory locust, Locusta migratoria (Chapuis et al. 2009).  

 

Our results from the mtDNA and microsatellite data are difficult to reconcile. 

The high gene flow we observed among northern Xinjiang RWA populations 

indicates that there should also be gene flow with populations in neighboring 

Kazakhstan, which all available evidence suggests is within the native range 

of RWAs (Kovalev et al. 1991). If so, why would the mtDNA point to a recent 

population expansion? It is possible that RWAs did not exist in Xinjiang 

before the arrival of domesticated wheat. However, an alternative explanation 

is that the widespread planting of domesticated wheat changed the 

population structure of RWAs across their entire native range by selecting for 

wheat-adapted genotypes. Exclusively parthenogenetic reproduction during 

the wheat growing season would facilitate the fixation of a single wheat-

adapted maternal lineage (a ―superclone‖), as has been observed in other 

aphid species (Abbot 2011; Harrison & Mondor 2011; Vorburger 2006). 

Under this hypothesis, all existing RWAs in Xinjiang and elsewhere in its 

native range would be descendents from this original wheat-adapted 

haplotype – the dominant Haplotype 1 in our study. Additional samples from 

throughout the native distribution of RWA should be analyzed to further test 

this hypothesis. 

 

Given the potential capacity of RWAs to invade provinces other than Xinjiang, 

it is interesting that the most easterly site in Xinjiang where RWAs have been 

detected in the past is Qincheng, located near the border of Gansu province 

(Du 2000; Zhang et al. 1999a).  Why have RWAs failed to establish in more 

Eastern wheat growing districts in China, when the climate is predicted to be 

conducive (Liang et al. 1999)? Though a geographic barrier (eg. Gobi desert) 

may be responsible, it is also possible that the same environmental factors 

are limiting range expansion eastward in both China and the USA, which may 
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be an obligate ecological association with high altitudes in areas where an 

overwintering stage is required (John Burd, personal communication). 

 

Finally, it is important to consider that in this study we have only sampled 

RWAs from wheat and thus, we may have examined the genetic structure of 

only a subsample of the RWAs in the region. Without sampling on other 

hosts, particularly perennial native hosts, we cannot discount the possibility 

that we have missed additional unsampled genotypes in the region. In 

addition, this study has examined the genetic differentiation of RWAs from 

only a relatively small part of their native range in Asia. However, our results 

will be critical in guiding future studies of patterns of invasion not only of 

RWAs, but also of other invasive insect herbivores. 
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2.8 Data Accessibility 

 

Mitochondrial sequences: Genbank accessions JN204386 - JN204421. 

Microsatellite sequences: Genbank accessions JN204377 -JN204385. 

Sample locations: Uploaded as online supporting material. 

Microsatellite data and mitochondrial haplotypes: DRYAD  

doi:10.5061/dryad.42sh717m. 
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2.9 Appendices 

Appendix S2.1 Sampling information for RWAs in Xinjiang. 

Locality Abbr. Coordinates Year Altitude (m) #Colonies per year 

Tacheng A TCA 46°50.684N 

82°53.842E 

2009, 2010 646 50, 41  

Tacheng B TCB 46°52.338N 

83°09.170E 

2009, 2010 758 33, 22 

Yumin YM 46°06.312N 

82°45.744E 

2009, 2010 1070 31, 50 

Toli TL 46°02.563N 

83°44.165E 

2009, 2010 843 50, 50 

Emin EM 46°39.649N 

84°01.108E 

2009, 2010 656 47, 31 

Hobuksa HF 46°29.905N 

86°00.225E 

2009 786 42 

Altay AL 47°48.617N 

87°56.656E 

2009 778 13 

Fuhai FH 46°41.047N 

88°02.698E 

2009 591 6 

Berqin BR 47°52.029N 

87°01.318E 

2009, 2010 525 44, 11 

Haba HB 48°09.127N 

86°25.901E 

2009 601 54 

Manas MS 43°57.621N 

86°18.402E 

2010 1113 50 

Urumqi UR 43°27.752N 

87°29.103E 

2009, 2010 1600 16, 50 

Qitai QT 43°39.207N 

89°44.469E 

2009, 2010 1556 50, 50  

Mori ML 43°46.767N 

90°10.618E 

2009, 2010 1234 44, 50  
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Wuqia WQ 39°42.533N 

75°10.611E 

2010 2151 50 

Pishan PS 37°02.731N 

78°54.233E 

2010 1904 9 

Cele CL 36°17.280N 

81°15.683E 

2010 2300 50 

Qapqia QP 43°35.892N 

81°10.075E 

2010 1178 50 
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Appendix S2.2 Primer details and indices of genetic variation for the ten microsatellite loci used in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Locus Primers (5’-3’) F/R Ta 

(℃) 

Repeat motif Size ranges 
(bp) 

Na Ho Hs Fis F(Null) 

Dn1 GCAGGGTTACCAATGTTTC 
TGAGTAGCAGGTAATTCAGGAG 

53 (CAA)n 218-242 9 0.050
  

0.067 0.209* 0.19  

DnE1 ATACTATGCGTCCGTCGTCC 
GCTGGACTTGTTGATGGTGA 

57 (CAA)n 130-154 9 0.355
  

0.368 -0.041 0.02  

Dn5 AATCGCACCCTGGGCAAC 
GTGGGATTCTAAACTGAGGGC 

60 (CAA)n 205-277 22 0.849
  

0.819 0.006 0.02  

Dn6 TGATCGGCTCCATAAAAAC 
GTAGCAAGTTTGACCCTAAA 

52 (GTT)n 331-451 31 0.639
  

0.697 0.087* 0.09  

Dn13 AGATTCTGCCGTATGTGATTC 
CGCAGCCAACAAGCTATTA 

55 (GT)n 158-258 33 0.712
  

0.749 0.087* 0.09  

Dn16 GTCCTCGTGGATACTCATCAT 
AATCGGTGTCAGGTTTCG 

53 (TG)n 116-178 26 0.726
  

0.741 0.023* 0.07  

Dn22 ACGGATTTAACGCAAATTTTA 
CGAATGTAATGCGATGTTGC 

55 (CA)n 176-242 29 0.820
  

0.803 -0.018 0.02  

Dn25 GCGTGATCCGAGGTCTTT 
GACGATTAGGGAGAAGTGAA 

55 (AC)n 102-124 12 0.670
  

0.690 0.048* 0.06  

Dn27 TTCTGTGGTAGTGGTCCCG 
GACCACTCACCCTATCTCAC 

55 (GT)n 180-206 11 0.694
  

0.638 -0.027 0.01  

Sa4 1 GTGACGTATACGCGATGCG 
GACGTCGATATTAGCCTAGCC 

55 (AC)5TT(AC)16 
 

150-176 17 0.631 0.634 0.033 0.04 
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Appendix S2.3 Mitochondrial genetic diversity in each population. 

 

*p<0.05; **p<0.01; ***p<0.001 

 N 

Number of 

Haplotypes 

Nucleotide 

Diversity Theta_S Tajima's D Fs 

Altay 9 3 0.4444 0.7359 -1.3624 -1.0811* 

Berqin 10 2 0.2 0.3535 -1.1117 -0.3393 

Emin 10 2 0.2 0.3535 -1.1117 -0.3393 

Fuhai 10 1 0 0 0 0 

Haba 10 3 0.4 0.707 -1.4009 -1.1639* 

Hobusksa 10 3 0.4 0.707 -1.4009 -1.1639* 

TachengA 10 1 0 0 0 0 

TachengB 10 1 0 0 0 0 

Yumin 10 2 0.2 0.3535 -1.1117 -0.3393 

Toli 10 3 0.4 0.707 -1.4009 -1.1639* 

Mori 10 6 1.2 1.7674 -1.7411* 3.2939** 

Qitai 10 1 0 0 0 0 

Urumqi 10 1 0 0 0 0 

Manas 10 1 0 0 0 0 

Pishan 8 1 0 0 0 0 

Wuqia 11 2 0.3273 0.3414 -0.1 0.3563 

Cele 10 1 0 0 0 0 

Qapqia 10 3 0.6 1.0605 -1.5622* -0.4586 

Global         178           18               0.196          2.968        2.3935**      -28.395*** 
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Appendix S2.4 AMOVA for RWAs sampled in 2010 and analyzed in three 

groups: Wuqia, Cele and Pishan, and northern populations.  

 

***: p<0.0001 

 

 

 

 

 

Source of 
Variation 

df Variance 
components 

Percentage of 
Variation 

Fixation Indices 

Among regions 2 0.45170 12.42 FCT = 0.12416*** 
Among sites 

within regions 
11 0.16111 4.43 FSC = 0.05056*** 

Within sites 1128 3.02531 83.16 FST = 0.16844*** 
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Appendix S2.5 

(A) Pairwise Fst and Exact G test of allele frequency differentiation for each 

site sampled in 2009 and 2010. Significant values (following Bonferroni 

correction) are given in bold. 

 

 

 

 

 

 

 

 

 

 

(B) AMOVA analysis in 9 groups (each group is a site sampled in 2009 and 

2010) 

 

Site Fst Exact G probability 

Ermin 0.003  0.05154 

Tacheng A 0.015  0.00001 

Tacheng B 0.060 0.00001 

Urumqi 0.123 0.00001 

Toli 0.012 0.00009 

Qitai 0.008 0.00001 

Berqin 0.120 0.00001 

Yumin 0.009 0.00002 

Mori 0.017 0.00001 

Source of Variation df Variance 

components 

Percentage 

of Variation 

Fixation Indices 

Among sites within 

years 

8 0.02246 0.68 FCT: 0.00679 

Between years 

within sites 

9 0.09525 2.88 FSC: 0.02897 

Among individuals 

within years 

700 0.09773 2.95 FIS:  0.03061 

Among individuals 

within sites 

718 3.09471 93.49 FIT:  0.06509 
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Appendix S2.6 FCA of Chinese RWAs from northern populations sampled in 

2009 (A) and 2010 (B). 

 

 

(A) 

(B)  
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Appendix S2.7 Gene flow patterns of RWAs in far eastern ranges based on 

long-term estimates of gene flow. 

 

 

Arrows indicate direction of gene flow between each population pair, and the 

relative thickness of each arrow represents the amount of directional gene 

flow. 

  

Wuqia 

Mori 

Yumin 

Qapqia 
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Chapter 3 

Worldwide invasion genetics of RWA 

 

 

Chapter 2 examined the population genetics of RWAs in their native range. 

Chapter 3 extends this research by including both native and introduced 

RWA populations in an analysis of the worldwide invasion genetics of RWAs.  

Three sources of genetic data were examined; microsatellite, mitochondrial 

and endosymbiont DNA. The results indicate the invasion pathways of RWAs 

to the New World, and the most likely source sites of these invasions. 
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3.1 Abstract 

We investigated the population genetics, demographic history and pathway 

of invasion of the Russian wheat aphid (RWA) from its native range in East 

Asia, the Middle East and Europe, to South Africa and the Americas. We 

screened microsatellite markers, mitochondrial DNA, and endosymbiont 

genes in 504 RWAs from eighteen sites worldwide. Higher genetic and clonal 

diversity was found in native populations compared with invasive populations. 

Strong genetic structure was identified among native populations, including 

Ethiopia. Following pathway analysis of microsatellite and endosymbiont data, 

we conclude that Turkey and Syria were the most likely sources of invasion 

to Kenya and South Africa, respectively. Furthermore we found that one 

clone transferred between South Africa and the Americas was responsible for 

the New World invasion. The comparison of native and invasive populations 

suggested two separate invasion events of RWA from the Middle East to 

Kenya and South Africa, most likely via human-aided transportation of 

contaminated materials. In addition, we did not detect any host-based 

differentiation in worldwide RWA populations. This study has provided 

valuable insights into the factors that may have facilitated the recent global 

invasion by this damaging pest. Finally, endosymbiont DNA was found to be 

a high resolution population genetic marker, extremely useful for studies of 

recent invasion over a relatively short evolutionary history timeframe.  
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3.2 Introduction 

Biological invasion is regarded as a worldwide environmental problem 

(Everett 2000; Levine 2008; Liebhold & Tobin 2008; Mooney & Cleland 2001). 

Concomitant with increasing human population densities, increasing human 

movement has facilitated the entry of a variety of plants and animals into new 

ecosystems beyond their native ranges (Kolar & Lodge 2001). Irrespective of 

whether the introduction is intentional or accidental, the invasion of an alien 

species influences and accelerates the ecological evolution of its new habitat 

(Mooney & Cleland 2001).  

 

Invasive species have the ability to respond quickly and to adapt to new 

and/or challenging environmental conditions and genetic diversity can 

positively or negatively influence the success of a invading species 

(Dlugosch & Parker 2008; Mergeay et al. 2006; Rollins et al. 2009; 

Shoemaker et al. 2006). Invasive species exhibit a high degree of phenotypic 

plasticity and rapid phenotypic response has been found to enhance invasion 

success (Frankham 2005; Kolbe et al. 2004; Lindholm et al. 2005). However, 

the opposite has also been found where exotic species with low genetic 

variability are limited in their invasion success because they are constrained 

in their ability to adapt to a new environment (Roman & Darling 2005). If the 

invasive population is founded by a limited number of individuals and mating 

occurs between related individuals, the genetic background will be further 

constrained as additive genetic variance is eroded (Lindholm et al. 2005). 

Such a loss of additive genetic variance will slow evolutionary responses to 

selection and will limit the adaptive evolution of fitness-related traits. 

 

Comparative studies that examine the genetic diversity of a species in both 

its introduced and native range allow inferences to be made on the pathway 

and source of an introduction. Research on the garden ant, Lasius neglectus, 

has suggested that the fourteen introduced populations in Europe have most 

likely arisen from only a very few independent introductions from the native 

range, and new infestations were typically started through introductions from 

other invasive populations (Ugelvig et al. 2008). Importantly, comparative 
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studies throughout an invasive species distributional range can provide 

valuable information on the chronological order of colonization (Rollins et al. 

2009), particularly when historical records of first incursion are sparse or 

incomplete.  

 

Knowledge of the genetic background of the founding population of an 

invasive species will provide an improved ability to predict the array of 

evolutionary responses and impacts that may result, as well as the future 

distribution of the invasive species. Researchers are now armed with a range 

of innovative and reliable molecular tools that can be used to improve our 

understanding of the population genetic structure of invasive species in their 

native and introduced ranges. Importantly, we can elucidate the occurrence 

of single vs. multiple introductions providing critical information on the 

mechanisms by which invasive species are introduced and spread, enabling 

pre-emptive action to prevent future incursions into new ranges. Critical data 

can be obtained on how frequently introductions are accompanied by severe 

genetic bottlenecks, whether bottlenecks constrain adaptive evolution in 

invaders, and whether contemporary gene flow among introductions 

represents the key to invasion success.  

 

In this study we have used a molecular approach to examine the global 

pattern of invasion of the Russian wheat aphid (RWA), Diuraphis noxia 

Kurdjumov, one of the world’s most invasive cereal (wheat and barley) crop 

pests (Burd et al. 2006; Jyoti et al. 2006; Smith et al. 2004). Current opinion 

favors the center of origin of the native distribution of RWAs to be in the 

Iranian-Turkestanian mountain range and extending to southern Russia, the 

Middle East, and central Asia (Kovalev et al. 1991).  The earliest documented 

record of RWA crop damage comes from the Ukraine in the early 1900s, 

however they gained recognition as an emerging global pest during the 

1970’s and 1980’s as a result of their rapid spread through major grain 

producing areas in Europe, Africa and the Americas (Kovalev et al. 1991; 

Stary 1999; Smith et al. 2004). Although RWAs have been recognized as an 

invasive pest in China since they were first detected in 1976, recent 
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population genetic studies have shown that western China forms part of this 

species native range (Zhang et al. 2012).  

 

While there is no direct evidence that RWA invasiveness is related to some 

biological, genetic and/or ecological response, the dispersal and stable 

spread of this species is likely to be linked with the presence of compatible 

host plants and mode of reproduction. RWAs exhibit both cyclical (holocyclic) 

and obligate (anholocyclic) parthenogenesis depending on environmental 

conditions (in particular minimum winter temperature). Native populations are 

generally, but not exclusively holocyclic. In Iran, for example, both modes of 

reproduction have been observed (Dolatti et al. 2005). Invasive populations 

of RWA are primarily anholocyclic, although the appearance of sexual 

females and eggs has been reported recently in North America and 

Argentina (Clua et al. 2004; Kiriac et al. 1990). Parthenogenetic reproduction 

enables rapid population growth and is likely to be a key factor influencing 

invasion success, particularly in countries experiencing mild winters where 

cereal crops are planted all year round or native grasslands are in close 

proximity providing an alternative overwintering host. 

 

Most of the population genetics research on RWAs has focused on 

characterizing levels of genetic diversity in invasive populations in North 

America, South America, and South Africa (Shufran et al. 2007; Shufran & 

Payton 2009). While some comparative studies of this species in its native 

and introduced ranges have been undertaken, they have not clearly resolved 

the pattern or pathway of worldwide invasion (Liu et al. 2010; Puterka et al. 

1992; Stary 1999), primarily due to the limited polymorphism of the markers.  

This is a common problem in pathway analysis: maternally-inherited markers 

are ideal for tracking lineages, but there is often insufficient genetic variability 

in mitochondrial genes.  In this study, we identify a solution to this problem by 

targeting fast-evolving regions of DNA in the aphid endosymbiont, Buchnera 

aphidicola.  B. aphidicola has an obligatory mutualistic association with its 

host and is responsible for biosynthesizing up to 90% of the aphid’s essential 

amino acids (Douglas 2006).  Endosymbiont genome evolution has been 

shown to reflect the aphid host genome, but at an accelerated rate due to the 
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rapid generation time of the bacteriocyte relative to its host (Burke & Moran 

2011; Clark et al. 1999; Peccoud et al. 2009a & b).   

 

Here we report results of the most comprehensive documentation of the 

invasion genetics of RWAs worldwide. This involved characterizing the levels 

and patterns of genetic diversity within and among native and introduced 

RWA populations using data from four genomes (nuclear and mitochondrial 

RWA, plasmid and genomic endosymbiont). We provide strong evidence for 

native demographic population expansion in the Middle East and eastern 

Asia, and we have reconstructed the pathway of invasion of RWAs from their 

native distribution in the Old World to their invasive distribution in the New 

World. 
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3.3 Material and Methods 

3.3.1 Aphid sampling 

Russian wheat aphids were sampled from wheat, rye, and barley crops and 

native grasses from eighteen sites worldwide (Table 3.1 & Appendix S3.1). In 

total, 504 parthenogenetic, wingless female aphids were collected and 

preserved in 100% ethanol until DNA extraction. 

 

3.3.2 DNA extraction and amplification 

Total genomic DNA was extracted from single adult aphids using a salting-

out method (Sunnucks & Hales 1996). All RWAs were screened for 10 

microsatellite loci, including nine loci developed from RWAs (Zhang et al. 

2012), and one cross-species locus, Sa4 , developed from Sitobion aphids 

(Simon et al. 1999). Microsatellite loci were amplified in a total volume of 10 l 

and PCR cycling conditions followed Zhang et al. (2012). Electrophoresis of 

the amplification products was conducted in a capillary sequencer 

ABI3730×1 (Applied Biosystems), with an internal size ladder (500 LIZ). 

Allele sizes were analyzed using GeneMapper (version 3.0, Applied 

Biosystems) and allele designation was confirmed following visual 

examination.  

 

Two mitochondrial DNA fragments were sequenced: partial cytochrome 

oxidase I (CO1) and a continuous fragment centered on NADH 

dehydrogenase subunit 6 (ND6), including partial NADH subunit 4L, two 

tRNA genes, total ND6, and partial cytochrome B. The 436bp CO1 gene was 

amplified using the primers C1-J-1718 and C1-N-2191 (Simon et al. 1994), 

and the ND6 fragment (837bp) was amplified using the primers N4L-J9648 

and CB-N10608 (Simon et al. 2006). The PCR protocol and cycling 

conditions followed Zhang et al. (2012).  

 

Three endosymbiont genes from the Buchnera aphidicola genomes of RWA 

were sequenced: two from plasmids, TrpEG pseudogene (Wernegreen & 

Moran2000) and LeuBC, as well as one from genomic DNA, ddlB 

pseudogene. The PCR cycling parameters were as follows: initial 



 

97 
 

denaturation 3 min at 94°C; 30 cycles of 30 s at 94°C, 30 s at 53°C (LeuBC) 

or 55°C (ddlB and TrpEG), 3min at 72°C; the final elongation of 10 min at 

72°C. The PCR products were visualized by electrophoresis in a 1.5% 

agarose gel and purified using an ABgene Ultra PCR Clean-Up Kit (Thermo 

Scientific) according to manufacturer’s directions, before being sequenced on 

a 3730xl DNA Analyser (Applied Biosystems). The three genes concatenated 

gave 3,258 bps of edited sequence.  

 

3.3.3 Genetic Diversity  

Microsatellite data were examined using Micro-Checker v2.2.3 (Van 

Oosterhout et al. 2004) for any evidence of large allele dropout or scoring 

errors. Each individual RWA was classified according to multilocus genotype 

(MLG) in GenClone v2.0 (Arnaud-Haond & Belkhir 2007). Gross genotypic 

diversity (GGD) was calculated as G/N, with G equal to the number of MLGs, 

and N equal to the sample size (Llewellyn et al. 2003). The dataset was 

pruned to include only one copy of each MLG and then genetic diversity 

estimates were calculated using FSTAT v2.9.3. (Goudet 2001). Observed 

and expected heterozygosity (Ho & He), number of alleles (Na), allelic 

richness (Ar), and the f estimator of Fis and significance values (Weir & 

Cockerham 1984) were calculated. Genepop v4.0 was used to calculate 

allele frequencies, Hardy-Weinberg equilibrium (HWE), and linkage 

disequilibrium tests (Raymond & Rousset 1995; Rousset 2008) and 

significance was assessed following Bonferroni correction (Rice 1989).  

 

Mitochondrial and endosymbiont DNA sequences were aligned and edited 

using BioEdit v7.0.0 (Hall 1999) and MEGA v4.1 (Tamura et al. 2007). 

DnaSP v5 was used to calculate the number and frequencies of haplotypes 

(Librado& Rozas 2009), and phylogeographic networks were inferred using 

TCS (Clement et al. 2000) and NETWORK 4.6 (Bandelt et al. 1999). To infer 

deviations from neutrality and to detect demographic changes or selection 

(Fu & Li 1993), Tajima’s D (Tajima 1989) and Fu’s Fs (Fu 1997) were 

calculated from the mitochondrial DNA data using Arlequin v3.5.1.2 (Excoffier 

et al. 2005).   
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3.3.4 Genetic Differentiation  

Pairwise Fst estimates were calculated from the microsatellite data using 

Arlequin and exact G tests of allelic differentiation were calculated using 

Genepop. Three clustering methods were used to identify population 

structure. Firstly, using Structure v2.1 (Pritchard et al. 2000) an admixture 

model was implemented assuming independent allelic frequencies, with 

100,000 iterations of Markov Chain Monte-Carlo after a 20,000 burn-in period.  

Ten independent runs of each K (inferred clusters) from 1 to 20 were 

evaluated. The most likely K value was determined using the Evanno method 

(Evanno et al. 2005) and then Distruct v1.1 (Rosenberg 2004) was used to 

display the bar plot. Secondly, the three-dimensional spatial distribution of 

genetic variation for each individual was examined using factorial 

correspondence analysis (FCA) implemented in Genetix v4.05 (Belkhir et al. 

1996-2004). Finally, to confirm population clusters and to differentiate the 

variation component among populations, an analysis of molecular variance 

(AMOVA) was conducted in Arlequin. 

 

We also measured the relatedness of each population based on 

microsatellite allele shared distance using Population v1.2.3 

(http://bioinformatics.org/~tryphon/populations/). The neighbor-joining tree 

was calculated based on Cavalli-Sforza's chord distance (Dc) from ten 

microsatellite loci, and 1000 bootstrap replications were performed to test the 

robustness of the nodes.  

 

Five evolutionary scenarios of expansion and gene flow among sites were 

examined using DIYABC v 0.7 (Cornuet et al. 2008). The posterior 

distributions of one evolutionary scenario of simultaneous expansion from the 

Middle East to the Americas and South Africa and four scenarios of stepwise 

expansion (including potential admixture events) were evaluated. 15000 sets 

of simulated data that were closest to the observed microsatellite data were 

compared using logistic regression. The following assumptions were made; a 

stable effective population size (Ne), a transitory bottleneck (db=5) and a 

generalised stepwise model (GSM) of mutation. 500000 simulated datasets 

were produced for each scenario.  
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3.4 Results 

3.4.1 Genetic diversity (nDNA) 

From a total of 504 RWAs screened for ten microsatellite loci, 370 MLGs 

were detected across the eighteen sites. Only one MLG was shared among 

sites (MLGAM). MLGAM was detected at all four sites in the Americas (Table 

3.1). A second MLG was detected in the USA, but this MLG only differed 

from MLGAM by one repeat (one allele out of 20 was different). Interestingly, 

although none of the MLGs present in Asia, the Middle East and Africa were 

identical to MLGAM, one MLG in Turkey was different to MLGAM by two alleles 

at one locus and one MLG in South Africa differed from MLGAM by only one 

repeat in one allele. Similarly, the other three MLGs from South Africa were 

all derivatives of MLGAM, differing by two alleles, each only one repeat 

different. Highest genetic diversity was found in Asian, Middle Eastern and 

Ethiopian samples, with the highest MLG diversity found in found in Asia, 

Ethiopia and Syria (GGD=1.00), the highest allelic richness in Ethiopia (4.23) 

and the highest number of alleles (11.1) and gene diversity (0.71) in China.  

Low genetic diversity was found in all the putative introduced populations 

(Table 3.1).  

 

HWE tests involving 190 pairwise comparisons (locus by population) 

revealed some significant departures, however, no consistent pattern was 

detected for any population or locus. Both deficit and excess observed 

heterozygosity were found in native populations, while in the putative 

invasive populations, only excess observed heterozygosity was evident. No 

linkage disequilibrium was observed for any pair of loci after Bonferroni 

correction. 

 

3.4.2 Genetic diversity (mtDNA) 

Concatenated, 1272bp of mitochondrial DNA was obtained from 

155individuals from eighteen sites worldwide. Haplotype diversity (Hd) was 

0.24. Thirteen haplotypes were identified, with one common haplotype found 

at all sites shared by 135 individuals. The frequency of the common 

haplotype was 87.1% and 12 rare haplotypes were found at low frequencies 
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(0.6-4.5%). Apart from the common haplotype, one other haplotype was 

shared among sites (Hap10 was found at Yumin and Qapqia in China), and 

two haplotypes were shared within a site (Hap2 was found in seven 

individuals from Iran, and Hap12 was found in two individuals from Wuqia in 

China) (Appendix S3.2). The highest nucleotide diversity was found in China 

(0.48), while the lowest nucleotide diversity (0) was found in introduced 

populations.  

 

3.4.3 Genetic differentiation (nDNA) 

Population genetic differentiation was analyzed using pairwise Fst. The 

majority of pairwise Fst comparisons among sites from Asia, the Middle East 

and Ethiopia were significant (64 out of 66), with Fst values ranging from 

0.008 to 0.427 (Appendix S3.3). Among introduced populations, Fst values 

were around zero and not significant.  

 

The Neighbor-joining tree based on genetic distance (Dc) revealed two clear 

groups, one including introduced populations, and the other including the 

twelve native populations plus the North African sites of Ethiopia and Kenya 

(Figure 3.1). The native populations were further separated into two 

geographical sub-groups including sites from the Middle East and East Asia.  
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Table3.1 Indices of genetic diversity for the 17 sites with a sample size (N) greater than four. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ch, China; MLGs, number of multilocus genotypes; #within, number of MLGs shared within a population; # among, number of MLGs shared among populations; GGD, index of 
global genotypic diversity (MLGs/N); Ho, observed heterozygosity; Hs, gene diversity; Na, numbers of alleles; Ar, allelic richness; Fis, the inbreeding index. Asterisks indicate 
significance after Bonferroni correction at 0.05 level, - indicates no genetic diversity and grey shading highlights putative invasive populations. 

Region Site N MLGs #within #among GGD Ho Na Ar Hs Fis 

East Asia Qapqia (Ch) 53 51 2 0 0.96 0.65 9.8 3.77 0.65 0.01 

 Yumin (Ch) 31 30 1 0 0.97 0.67 8.2 3.90 0.68 0.07 

 Mori (Ch) 42 42 0 0 1.00 0.64 9.4 3.73 0.64 0.04 

 Haba (Ch) 50 48 2 0 0.96 0.69 11.1 4.04 0.69 0.098* 

 Cele (Ch) 52 41 9 0 0.79 0.43 3.9 2.07 0.34 -0.413* 

 Wuqia (Ch) 52 52 0 0 1.00 0.71 8.1 3.93 0.71 0.17* 

 Tajikistan 30 25 4 0 0.83 0.70 5.9 3.59 0.70 -0.151* 

Middle East Turkey 49 26 6 0 0.53 0.73 6.6 3.52 0.65 -0.08 

 Iran 18 12 3 0 0.67 0.75 5.6 3.23 0.67 -0.177* 

 Syria2000 10 10 0 0 1.00 0.73 4.5 3.48 0.65 -0.06 

 Syria2011 30 7 2 0 0.23 0.64 3.1 2.03 0.49 -0.533* 

North Africa Ethiopia 17 17 0 0 1.00 0.76 7.4 4.23 0.69 0.13 

 Kenya 12 1 1 0 0.08 1.00 1.8 1.80 — — 

South  Africa Sth Africa 33 4 4 0 0.12 0.62 2.1 1.92 0.45 -0.794* 

Americas Mexico 6 1 1 1 0.17 1.00 1.8 1.80 — — 

 US 8 2 1 1 0.25 0.69 1.9 1.85 0.43 -0.882* 

 Chile 5 1 1 1 0.20 1.00 1.8 1.80 — — 

 Argentina 4 1 1 1 0.25 1.00 1.8 1.80 — — 
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Figure 3.1 Neighbor-joining population tree based on the chord distance of 

Cavalli-Sforza & Edwards (Dc). Bootstrap values were calculated using 1000 

replications and are given as percentages, with only values greater than 50% 

shown. Two samples from Syria are labeled Syria0, sampled in 2000; Syria1, 

sampled in 2011. 

 

The Structure analysis revealed the presence of clear population clusters 

(Figure 3.2). When we adopted k=5, three clusters from East Asia, one from 

the Middle East, and one including all introduced populations were separated 

(Figure 3.2A). Ethiopia was more closely related to the East Asian 

populations than to the Middle Eastern populations. Tajikistan (in central Asia) 

is geographically the closest site to Wuqia (in China) and the Structure 

analysis assigned these sites to the same cluster. The Middle East 

populations presented a strong pattern of mixed ancestry. When further 

increasing k to 7, Tajikistan became distinct from Wuqia, and the cluster of 

Kenya and Syria (sampled in 2011) became isolated from the entire invasive 

population cluster (Figure 3.2B). 
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Figure 3.2 Structure clusters of RWA worldwide. (A) k=5; (B) k=7. Each individual is shown as a vertical bar representing 

ancestry. 
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An AMOVA analysis was conducted and separated sites into seven groups. 

The proportion of variance among groups (15.91%) was larger than that 

found among sites within groups (4.79%), and the fixation index (Fct=0.159) 

was significant, indicating extremely restricted gene flow among these groups 

(Appendix S3.4). 

 

Factorial correspondence analysis depicted a similar pattern (Appendix S3.5). 

Accounting for 35% of the variation, the FCA revealed distinct clusters 

corresponding to geographical isolation in the native range (Middle East and 

East Asia) and introduced populations. Interestingly, Kenya samples were 

located between the invasive cluster and the Asian cluster. 

 

3.4.4 Genetic differentiation (endosymbiont DNA) 

The concatenated sequences of three endosymbiont genes of Buchnera 

showed 108 polymorphic sites resulting in 76 haplotypes among worldwide 

RWA populations. These polymorphic sites included 43 variable sites 

differing by a single base pair and 65 parsimony informative sites. Haplotype 

diversity (Hd) was 0.89, and nucleotide diversity (Pi) was 0.002. The 

haplotype network revealed two distinct clusters separated by a 21bp 

insertion in the plasmid psuedogene trpEG (Figure 3.3). This insertion 

appeared to be the result of a slipped-strand mispairing during DNA 

replication, as the inserted sequence was identical to the 21bps located 

either side of the insertion. Haplotypes containing the insertion were found in 

all individuals in the invasive range except Kenya. The Middle Eastern sites 

of Turkey, Iran and Syria and one Asian site (Tajikistan) contained 

haplotypes with and without the insertion, while all the Chinese populations 

did not have this insertion.  

 

In the network, Chinese haplotypes were central to all of the native 

populations (Figure 3.3). Two haplotypes connected the introduced and 

native branches of the network.  One of the haplotypes was shared between 

Syria and Kenya, and the other was detected in Tajikistan, Iran, South Africa, 
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and Mexico. Most of the haplotypes from the invasive clade (USA, Argentina 

and Chile) were tip haplotypes.  

 

 

 

 

 

Figure 3.3 Network of endosymbiont haplotypes found in worldwide RWAs. 

The color of each circle corresponds to different sites, and the size of the 

circles represents the number of individuals sharing the haplotype.  

 

 

3.4.5 Demographic expansion in native populations 

The TCS network revealed a star-like pattern for the mtDNA data centered 

on the widely distributed Hap1, providing evidence of rapid demographic 

expansion (Appendix S3.2). The pairwise mismatch distribution was 

unimodal, with a strong peak evident at zero, which steeply declined from 

zero to one base pair. The goodness-of-fit tests were not significant 
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[p(SSD)=0.56 and p(Harpending’s RI)=0.61], and evidence for highly 

significant population expansion was detected in the R2 statistic 

(R2=0.08609, p<0.0001), Tajima’s D (D=-2.296, p<0.0001), and Fu’s Fs 

(Fs=-17.662, p<0.0001).  

 

A similar star-cluster pattern was discovered in native populations from the 

endosymbiont DNA network (Figure 3.3). Analysis of the mismatch 

distribution for the three concatenated endosymbiont genes showed 

observed values fitting well with the expected simulation, and the goodness-

of-fit tests were not significant [p(SSD)=0.737 and p(Harpending’s RI)=0.833]. 

When separately analyzing only the protein-coding gene of the plasmid, 

LeuBC, a clear pattern of radiation from one common haplotype to the others 

was evident indicating rapid demographic expansion (Appendix S3.6). The 

R2 statistic was also highly significant (R2=0.0845, p<0.0001).  

 

3.4.6 Possible invasion routes from native to introduced ranges  

When the endosymbiont network and microsatellite population data are 

considered in tandem, putative pathways of RWA invasion from the native 

range to the introduced areas can be postulated.  Firstly, our microsatellite 

data indicates that Ethiopia represents an extension of this species native 

range and shares its origin with East Asian RWA. Secondly, the microsatellite 

data strongly suggests that South Africa and the Americas were colonized by 

the same RWA clone (MLGAM), most likely originating from the Middle East. 

While the endosymbiont network failed to resolve the order of invasion 

(South Africa to Americas or vice versa), dates of first detection suggest that 

South Africa was colonized first, followed by Mexico two years later.  

Furthermore, although while not conclusive, DIYABC analysis indicated a 

slightly higher posterior probability for the scenario of stepwise expansion 

from the Middle East to South Africa and then the Americas (0.5404, range 

0.4783-0.6027), than from the Middle East to the Americas and then South 

Africa (0.4410, range 0.3791-0.5028) or from simultaneous expansion from 

the Middle East to the Americas and South Africa (0.0000, range 0.0000-

0.0000).  From this we can conclude that only one invasion event from the 

native range resulted in the colonization of South Africa and the new world 
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(Figure 3.4). Thirdly, we postulate that a second invasion took place from 

Syria to Kenya based on both microsatellite and endosymbiont DNA data. 

 

 

 

 

Figure 3.4 Putative global invasion routes of Russian wheat aphid. The red 

indicates countries where the RWA has been reported; the yellow circle 

indicates the native range and arrow to Ethiopia. The yellow star in the 

Middle East points to the source of invasive clones. The green arrows show 

the independent invasion pathways from the Middle East to Africa, and single 

colonization of the Americas. The year of first detection is given for selected 

countries. 
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3.5 Discussion 

Understanding the historical pathways of invasion is critical to understanding 

the biological and ecological factors that determine whether a species will 

become invasive. Genetic approaches are often used to understand invasion 

histories (Dlugosch & Parker 2008), but to be successful both introduced 

populations and potential source populations must be characterized.  

Furthermore, the genetics of introduced populations must be characterized at 

a sufficient depth to be able to discriminate between different invasion events 

(Rollins et al. 2009). Previous studies that have aimed to examine the 

invasion history of the Russian wheat aphid (D. noxia) have failed to identify 

sufficient genetic variation to discriminate among introduced populations 

(Shufran et al. 2007; Shufran & Payton 2009), or have not characterized 

native populations sufficiently to identify source populations with any level of 

confidence (Liu et al. 2010). In this study, we have taken advantage of a 

previously untapped source of genetic variation, that of intracellular symbiotic 

bacteria, to identify independent historical invasion events of the RWA. By 

analyzing these invasive lineages together with populations throughout the 

native range of this species, we have provided valuable insights into the 

recent global invasion of this damaging pest species. 

 

3.5.1 Native population genetic structure  

Our results indicate that populations of RWAs in the Middle East and East 

Asia possess similar levels of mitochondrial and nuclear genetic diversity to 

populations from western China (Zhang et al. 2012).  The low level of 

mitochondrial variation across this species native range supports the 

hypothesis that current RWA populations arose from a host switch to 

cultivated cereals at the debut of wheat domestication (Zhang et al. 2012).  

Novel mitochondrial haplotypes were discovered among the native 

populations examined, but the level of microsatellite variation in populations 

elsewhere in its native range was not as high as that observed in some parts 

of western China. The high genetic diversity in western China samples and 

the central position of Qapqai in the endosymbiont network points to this area 

being ancestral. Qapqai is located in the Yili Valley, a west-facing valley 
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bordered by the Tianshan Mountain range and opening to Kazakhstan. It is 

likely that Qapqai forms part of the center of origin of RWAs, which has been 

reported to include Kazakhstan (Kovalev et al. 1991; Stary 1999). The 

microsatellite data also showed significant partitioning of genetic variation 

among native populations according to geographic region, and the high 

genetic diversity and high number of unique MLGs within and among native 

populations is consistent with RWAs exhibiting predominantly holocyclic 

reproduction within its native range. 

 

Our data suggests that the genetic diversity of RWAs in Syria has reduced 

markedly in the last decade. Structure analysis indicated that the samples 

from 2001 and 2011 shared a common ancestry, but in 2001 ten MLGs were 

identified from a sample of ten individuals compared to seven MLGs from 30 

individuals in 2011. Significant heterozygote excess was detected and the 

number of different MLGs was substantially lower than sample size at this 

site. This is probably a reflection of local climatic conditions (mild winters) 

favouring obligate parthenogensis in Syria. Rapid reductions in population 

genetic diversity are common in aphids (Vorburger 2006; Abbot 2011; 

Harrison & Mondor 2011), and are probably the result of a combination of 

regional selection pressures and asexual reproduction (Simon et al. 1999). It 

may be that sexual reproduction is less common in Syria than in the more 

northern parts of the native range of RWAs.   

 

The level of genetic diversity observed was not associated with the diversity 

of host plants targeted for collections. All samples from China were collected 

from wheat, whereas the samples from Turkey were collected from multiple 

hosts (rye, wheat, barley and oat), and there was no association of MLGs 

with host plant (Dolatti et al. 2005). Furthermore, in South Africa the same 

genotype was collected from rye, wheat, oats, and Bromus grasses. 

 

The strong genetic structuring we observed among Asian populations may 

have resulted from the recent spread of a host-adapted genotype from its 

origin in Western China and Kazakhstan. This should not be the case, as the 

populations would have passed through sufficient generations to achieve a 
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genetic equilibrium (Lacy 1987). We also observe strong isolation by distance 

amongst populations in the native range, with strong evidence of gene flow 

among geographically proximate sites. For example in the Middle East, 

Turkish and Iranian RWAs formed one population cluster, and in China all 

northern sites clustered as a single population (Zhang et al. 2012). 

 

The results of this study suggest that the native range of RWAs may include 

Ethiopia, which contradicts current thinking that the RWA was introduced into 

Ethiopia in 1972 (Zhang et al. 1999b). The high allelic richness and gene 

diversity of microsatellites in Ethiopia indicates a more historical association 

compared with other African countries included in this study (Kenya and 

South Africa), although the mtDNA data was monomorphic. Interestingly, 

Ethiopia is the center of origin of barley diversification worldwide (Badr et al. 

2000), and barley is a favored host plant of RWA (Stary 1999; Zhang et al. 

1999a). Further resolution may have been gained by examining levels and 

patterns of endosymbiont gene diversity in Ethiopia, but unfortunately despite 

exhaustive efforts, none of the three endosymbiont genes could be amplified 

from Ethiopian samples, precluding further conclusions from being drawn. 

 

3.5.2 Global invasion history of RWA 

As has been observed in earlier studies (Shufran & Payton 2009; Liu et al. 

2010), introduced RWA populations were characterized by highly reduced 

genetic variability and a single mitochondrial haplotype. However, in this 

study we were able to distinguish two independent global invasion events 

using endosymbiont and microsatellite data, one invasion into Kenya and a 

second invasion into South Africa and the Americas.  We were also able to 

identify putative source populations for each invasion event. The 

independence of these two invasion events is further supported by their 

separation into two branches of the endosymbiont network. 

 

Despite being geographically close to Ethiopia, Kenyan RWA was not related 

to Ethiopian RWA but instead the one MLG detected in Kenya most closely 

resembled genotypes identified from Syria. We postulate that a single 

accidental introduction of RWA to Kenya occurred and most likely resulted 
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from human-aided transportation of contaminated material (eg. commercial 

wheat or products or germplasm breeding exchange).  

 

The second invasion to South Africa and the Americas was also the likely 

result of a single human-aided accidental introduction. We detected only a 

limited number of MLGs across all populations from South Africa and the 

Americas, all of which could be traced back to a single clone that was shared 

between South Africa and Mexico. Interestingly, the microsatellite structure 

analysis indicated that several individuals from Turkey were identical to 

RWAs from South Africa and the Americas (two of the Turkish samples 

differed by only one repeat at two alleles from MLGAM), and we conclude that 

Turkey or a related Middle Eastern population was the most likely source of 

this invasion.   

 

Our data cannot distinguish with any confidence the order of colonization 

from the Middle East to South Africa and the Americas because of the limited 

clonal diversity found in this study. However, there is some evidence to 

suggest that South Africa was the bridge from the native range to the new 

world. First, the date of detection of RWA in South Africa was two years 

earlier than when they were first detected in Mexico (Bush et al. 1989). 

Secondly, DIYABC scenario testing of our microsatellite data found a slightly 

higher posterior probability for colonization of South Africa before the 

Americas than vice versa.  All South African and Mexican endosymbiont 

haplotypes were internal in the network while haplotypes from elsewhere in 

the Americas were located at the tips. This is consistent with a single 

introduction of RWAs from South Africa to Mexico and the subsequent 

spread north to the USA and Canada, and south to Chile and Argentina 

within ten years. RWAs are more or less continuously spread from Mexico to 

North America, consistent with natural dispersal. However, RWAs are not 

continuously distributed from Mexico to Chile and Argentina and therefore it 

is likely that they were accidently introduced by humans from Mexico to 

South America. 
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Our conclusion of a single introduction of RWAs into the USA supports some 

previous work (Shufran & Payton 2009), but contradicts a recent study of 

RWAs in the USA using AFLP markers (Liu et al. 2010). This may be 

explained by the greater diversity of RWA biotypes examined by Liu et al. 

(2010), but there is no evidence for multiple introductions in the 

endosymbiont sequences from these same clones (Swanevelder et al. 2010). 
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Appendices 

Appendix S3.1. Sampling information of RWA worldwide. 

 

Site (Abbr.) No.  Coordinates Altitude(m) Host 

Turkey (TK) 49 38.57  23.72 70-1151 Durum wheat, rye, oats, 

barley, volunteer wheat 

Iran (IR) 18 37.80  47.47 1638 Grasses 

Syria (SY) 40 36.10  35.60 389-660 Wheat 

Ethiopia (ET) 17 09.80  38.73 3082 Barley 

Kenya (KY) 12 05.69  35.31 2154-3079 Wheat 

South Africa (SA) 33 -34.34  19.89 1577-1717 Wheat, Bromus, oats, rye 

Mexico (MX) 

USA (US) 

Chile (CH) 

Argentina (AR) 

France (FR) 

Hungary (HU) 

Qapqia (QP) 

Yumin (YM) 

Haba (HB) 

Mori (MR) 

Wuqia (WQ) 

Cele (CL) 

Tajikistan (TJ) 

6 

8 

5 

4 

1 

1 

53 

31 

50 

42 

52 

52 

30 

19.53  -98.85 

37.38  -102.5 

-32.83  -70.57 

-38.37  -60.27 

43.57  3.89 

47.50  19.08 

43.59  81.17 

46.11  82.75 

48.15  86.42 

43.77  90.17 

39.71  75.17 

36.29  81.25 

38.57  68.71 

2273 

278-1214 

731-1000 

83-765 

23 

155 

1178 

1070 

601 

1234 

2151 

2300 

803 

Spring wheat, barley 

Wheat, barley 

Barley 

Bromus, wheat, barley 

Barley 

Barley 

Spring wheat 

Spring wheat 

Spring wheat 

Spring wheat 

Spring wheat 

Spring wheat 

Unknown 
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Appendix S3.2 Network of worldwide RWA mtDNA haplotypes. 
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Appendix S3.3 Fst values and significance of pairwise comparisons among worldwide populations. Black values indicate 

significance after Bonferroni correction at 0.05 level. The bold highlight the Fst of non-significance. 

 

F st Qapqia Yumin Mori Haba Cele Wuqia Tajikistan Turkey Iran Syria0 Syria1 Ethiopia Kenya Sth Africa Mexico US Chile Argentina

Qapqia 0

Yumin 0.02681 0

Mori 0.02843 0.00824 0

Haba 0.03477 0.01035 0.01722 0

Cele 0.21294 0.23953 0.23559 0.22124 0

Wuqia 0.09854 0.07834 0.10664 0.07274 0.2542 0

Tajikistan 0.10158 0.10451 0.12058 0.09353 0.29668 0.0953 0

Turkey 0.13419 0.11263 0.11936 0.09118 0.33698 0.1532 0.14393 0

Iran 0.1579 0.14457 0.17385 0.1476 0.38974 0.1318 0.14638 0.13034 0

Syria0 0.13311 0.1329 0.16484 0.13017 0.39488 0.1232 0.13449 0.11171 0.0329 0

Syria1 0.18184 0.16364 0.16075 0.1342 0.42657 0.2027 0.20057 0.10439 0.2001 0.15591 0

Ethiopia 0.06522 0.06993 0.0776 0.05668 0.31432 0.0662 0.09895 0.11614 0.1437 0.12065 0.18562 0

Kenya 0.06004 0.0479 0.0439 0.00868 0.39192 0.1061 0.05027 -0.0474 0.1045 0.08502 0.0469 0.02632 0

Sth Africa 0.06004 0.0479 0.0439 0.00868 0.39192 0.1061 0.05027 -0.0474 0.1045 0.08502 0.0469 0.02632 -1 0

Mexico 0.16026 0.14737 0.14159 0.11601 0.4291 0.192 0.14905 0.07222 0.1969 0.18462 0.16079 0.12811 -0.5743 -0.5743 0

US 0.06004 0.0479 0.0439 0.00868 0.39192 0.1061 0.05027 -0.0474 0.1045 0.08502 0.0469 0.02632 -1 -1 -0.5743 0

Chile 0.19259 0.19226 0.19022 0.16456 0.46548 0.2255 0.18078 0.12515 0.222 0.20244 0.2113 0.16628 -0.3565 -0.3565 -0.1409 -0.3565 0

Argentina 0.06335 0.02855 0.03538 -0.0134 0.40389 0.0769 0.07527 -0.0428 0.0549 -0.009 -0.3009 0.05193 -0.3913 -0.3913 -0.0859 -0.3913 0.03966 0
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Appendix S3.4 AMOVA for RWAs worldwide based on microsatellite loci 

and analyzed in two groups: native and introduced populations.  

 

***: p<0.0001 

 

Source of Variation Df Variance 

components 

Percentage 

of Variation 

Fixation Indices 

Among regions 

 

6 0.5880 15.91 FCT = 0.1591*** 

Among sites within 

regions 

11 0.1771 4.79 FSC = 0.0570*** 

Within sites 

 

986 2.9317 79.31 FST = 0.2070*** 
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Appendix S3.5 Factorial correspondence analysis of worldwide RWAs. The 

circles indicate populations that cluster according to native geography and 

introduced ranges. 
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Appendix S3.6 Network of worldwide RWA endosymbiont LeuBC protein-

coding genes. 
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Chapter 4 

Salivary gland genes in worldwide RWA  

 

 

The worldwide pathway of invasion of RWAs was examined using 

mitochondrial, microsatellite and endosymbiont genetic markers in Chapter 3. 

Chapter 4 builds on this research through an investigation of salivay gland 

gene diversity in worldwide populations of RWAs to determine whether there 

may be a functional genetic basis for RWA invasiveness. Significant selection 

pressure on salivary gland genes was identified in native RWA populations. 
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4.1 Abstract 

Salivary secretions play a critical role in aphid-host interactions and are 

responsible for damage associated with aphid feeding. In this study we 

analyze the salivary gland genes in the Russian wheat aphid (Diuraphis 

noxia), one of the world’s most invasive agricultural pests. Seventeen 

salivary gland transcripts in RWA were cloned in two Chinese RWA 

populations. The variability of transcripts among populations largely 

depended on single base pair mutations found in only one individual. From 

the five gene fragments amplified at the DNA level, peroxidase revealed the 

highest number of SNP sites and gene diversity. Screening of peroxidase 

gene diversity in worldwide RWA populations revealed seven alleles, one 

universal allele found in native and introduced populations, and six alleles 

found only in native populations. Tests for selection indicated that the 

peroxidase gene is not evolving in a neutral manner and comparison with 

microsatellite DNA supported this conclusion. Peroxidase in native 

populations exhibited two types of selection, balancing selection in eastern 

Asia and purifying selection in the Middle East. Together with the differences 

in peroxidase gene diversity, the diversifying selection mechanism for this 

gene may be important in regulating diverse host plant interactions.  
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4.2 Introduction 

Aphids (Hemiptera: Aphididae) are important pests of crops worldwide, 

primarily causing damage to their host plants through feeding. The major 

food source of an aphid is phloem sap, which is sucked by the aphid through 

stylet mouthparts that penetrate intercellular plant tissues and tap into the 

phloem sieve tube (Miles 1999). Aphids inject saliva when feeding and sap-

sucking activities are believed to lead to the suppression of host plant 

defenses, and/or the induction of changes in plant physiology that facilitate 

aphid feeding and improve nutritional quality (Miles 1999; Will et al. 2007; 

Mutti et al. 2008). As aphid feeding involves probing and saliva injection 

followed by ingestion, knowledge of the salivary gland and its secretary 

substances is critical to understanding aphid-host plant interactions.  

 

Components of aphid saliva that are released into the phloem are known to 

have a considerable impact on plant growth and morphology. It has been 

reported that aphids can decrease growth the rate of roots and shoots, cause 

leaf discoloration, as well as decrease the yield of crop products (Miles 1999).  

The concentrations of aphid salivary constituents may be dependent on past 

feeding and varies over time, even within a single individual (Miles 1999).  

The watery saliva contains a large number of free amino acids, pectinase, 

cellulase and possibly other enzymes that may depolymerize complex 

carbohydrates, hydrolyse phenolic glycosides, and oxidase, amylase and 

hydrolyse sucrose (Miles 1989; Miles 1999). Host plant susceptibility to 

attack by aphids is thought to be intrinsically linked to the presence of 

salivary enzymes that complement that somehow condition the plant for 

successful aphid feeding. For example, greenbug (Schizaphis graminum) 

biotypes exhibited variable virulence and fitness responses on a variety of 

cultivars (Kerns et al. 1989; Ryan et al. 1987) and this was attributed to 

differences in pectinase activity (Campbell & Dreyer 1985; Dreyer & 

Campbell 1984). Cellulases of aphid saliva may play a complementary role to 

pectinases by assisting penetration of the cellulose of plant cell walls (Miles 

1989). Though salivary oxidases may help to prevent accumulation of 

phytochemicals through their action of detoxifying or oxidizing a variety of 
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defensive phytochemicals (Madhusudhan & Miles 1998; Miles & Peng 1989; 

Miles & Oertli 1993), they may also be involved in mediating redox reactions 

that mediate plant cellular defences. Although different aphid species secrete 

a variety of components with different functions, salivary enzymes are 

believed to play an important role in facilitating the aphid-plant interaction 

(Miles 1989; Miles 1999).  

 

Some species of aphids cause toxicosis in the host plant. Localized cell 

death at the aphid-feeding site, analogous to the hypersensitive response 

that contributes to many forms of pathogen resistance (Miles 1999), may 

cause necrosis or leaf discoloration and drooping (Du Toit 1987; Miles 1989). 

When aphids feed the injection of watery saliva has been shown to cause a 

wound response in phloem and xylem tissues (Jimoh et al. 2011; Saheed et 

al. 2007). Necrosis may be a normal immune response by the plant in 

defense against exotic substances that evoke a hypersensitive reaction, but 

necrosis may also result from an imbalance caused by the aphid saliva 

secretion, which may affect an essential signal pathway for tissue growth or 

cell differentiation.  

 

A dynamic interplay results from the interaction between the saliva of an 

aphid and the host plant. Aphids affect host plant growth and morphology via 

saliva injection, while the plant has a range of defensive responses. The 

Jones–Dangl zigzag model (Jones & Dangl 2006) has been widely accepted 

as the most appropriate model for phloem-sucking insects (Thompson & 

Goggin 2006; Ma & Guttman 2008). In this model, the virulence-associated 

effector of a pathogen (or salivary elicitor in insects; Kaloshian & Walling 

2005) is the primary weapon required for suppression of plant immunity, 

however plant immune systems can recognize these effectors and alter their 

response to the invader. The development of host plant cultivars resistant to 

aphids is a constant challenge, because the zigzag process of 

plant/pathogen co-evolution results in a dynamic range of virulent and 

intermediate elicitors. Proteins have been discovered in the body and saliva 

of aphids that may act as elicitors that affect plant metabolism (Lapitan et al. 

2007). Therefore, the identification and genetic characterization of these 
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elicitors is critical to our understanding of how they influence aphid-plant 

interactions.   

 

In this study we have examined salivary gland genes in one of world’s most 

notorious grain pests, the Russian wheat aphid (RWA, Diuraphis noxia). 

RWAs are an important pest of grain (barley, Hordeum vulgare, and wheat, 

Triticum aestivum L.) because of their capacity for rapid population growth 

and severe damage (Burd et al. 2006; Jyoti et al. 2006; Morrison & Peairs 

1998; Smith et al. 2004). Since its introduction into the USA in 1986, 

management of this pest has focused on the development of resistant wheat 

cultivars, while chemical control has had less efficient and economic results. 

In the USA during the period 1987 to 1993, estimated losses were reported 

to be in excess of $800 million (Morrison & Peairs 1998). The infested plants 

display white, yellow, or purple longitudinal streaks on the leaves and stems, 

develop rolled leaves and heads develop a hook-shaped bend (Jyoti et al. 

2006). Lapitan et al. (2007) identified a protein fraction isolated from RWA 

that could play a key role in determining plant compatibility. When injected 

into susceptible wheat strains, this protein fraction induced the leaf-rolling 

symptom typical of RWA feeding. Injecting the protein fraction into RWA-

resistant strains did not induce leaf rolling, but increased the expression of 

defensive peroxidases and catalases compared with the RWA-susceptible 

strains. While this study suggests that important proteins exist in the body or 

saliva of an aphid that act as elicitors, their characterization has not been 

completed.  

 

The availability of the pea aphid (Acyrthosiphon pisum) genome has 

facilitated studies of aphid salivary gland genes (Carolan et al. 2009, 2011; 

Mutti et al. 2006, 2008; Ramsey et al. 2008). Based on orthology to salivary 

gland ESTs in the pea aphid, seventeen salivary gland gene transcripts have 

been examined in two USA biotypes of RWA and were found to be quite 

divergent and polymorphic (Cui et al. 2012). RWA biotypes 1 and 2 cause 

distinct symptoms and injury rates on different wheat cultivars (Haley et al. 

2004; Burd et al. 2006). It remains unknown however if these variable 

transcripts affect protein function, plant immunity or host compatibility.  
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A recent study on the population genetics of RWAs has revealed the global 

invasion pathway of this species (see Chapter 3). In this study we examine 

salivay gland gene diversity in worldwide populations of RWAs to determine 

whether there may be a functional genetic basis for RWA invasiveness. This 

involved 1) screening seventeen salivary gland RNA transcripts in RWAs to 

determine the most polymorphic gene at the DNA level; 2) examining 

variation at this polymorphic locus within and among worldwide populations 

of RWA; and 3) analyzing the effect of selection by comparing salivary gland 

and neutral microsatellite genetic diversity and differentiation. This research 

will indicate whether selective pressures associated with an aphid saliva-host 

plant interaction have acted on native and introduced populations of RWA. 
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4.3 Material and Methods 

4.3.1 Sample preparation 

Russian wheat aphids were collected from twenty locations worldwide, 

including eight sites in western China. RWAs were sampled from wheat, rye, 

and barley crops in addition to native grasses (Table 4.1). At each location, 

up to 50 aphids were collected from plants located a minimum of 50 meters 

apart or in different fields. Only one parthenogenetic wingless aphid was 

collected per plant to minimize the chance of sampling aphids from the same 

colony. At two locations, extra aphids were sampled (fifteen aphids from each 

of three colonies) to ensure a sufficient high yield of RNA. Aphids were 

preserved in 100% ethanol at 4°C until DNA extraction and in RNAlater 

(Invitrogen) at -80°C until RNA extraction.  

 

4.3.2 RNA extraction, cDNA synthesis and amplification  

Three colonies from two sample locations (Qitai and Toli) were screened for 

salivary gland transcript variation. Total RNA was extracted from fifteen 

aphids following homogenization using a pestle and the RNAeasy Mini Kit 

(QIAGEN) according to the manufacturer's protocol. The cDNA integrated 

with aminoallyl-dUTP (Sigma) was prepared from total RNA by reverse 

transcription. Up to 3ug of total RNA was reverse-transcribed into cDNA 

following manufacturer’s directions (Invitrogen). The cDNA templates were 

stored at -20°C until salivary gland gene amplification.  

 

Seventeen salivary gland transcripts were amplified using primers and PCR 

conditions reported in Cui et al. (2012). PCR products were resolved in a 1% 

agarose gel and then purified using a QIAquick gel extraction kit (Qiagen). 

The purified products were T-A cloned into pGEMT-Easy vector (Promega) 

and transfected into DH5α cells (Tiangen Biomedical, China). At least three 

clones of each transcript for each site were extracted using a TIANprep mini 

plasmid kit (Tiangen Biomedical, China) and sequenced on an Applied 

Biosystems 3730x1 DNA Analyzer.  

 

4.3.3 DNA extraction and amplification 
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Total genomic DNA was extracted from single adult aphids using a salting-

out method (Sunnucks & Hales 1996). Seventeen genes were amplified in a 

total volume of 50 l containing 10 nmol primers (Sangong Company, China), 

0. 5 U Taq, 1× PCR Buffer, 0.3 mM each dNTP, 2mM MgCl2 (TaKaRaTaq™, 

Takara Biomedical) and 50ng of aphid DNA. PCR cycling conditions followed 

the RT-PCR protocol of Cui et al. (2012), except that different annealing 

elongation times were used (Appendix S4.1). PCR products were purified 

using an ABgene Ultra PCR Clean-Up Kit (Thermo Scientific) kit following 

electrophoresis on a 1% agarose gel and then sequenced on an Applied 

Biosystems 3730x1 DNA Analyzer.  

 

RWAs were screened for ten microsatellite loci, including nine newly 

developed loci (Zhang et al. 2012), and one cross-species locus Sa4  

(Simon et al. 1999). Microsatellite loci were amplified in a total volume of 10 l 

containing 10 nmol of fluorescent-labeled primers (Sangong Company, 

China), 0. 5 U Taq, 1× PCR Buffer, 0.3 mM each dNTP, 2mM MgCl2 

(TaKaRaTaq™, Takara Biomedical) and 20ng of aphid DNA. PCR cycling 

conditions followed Zhang et al. (2012). Electrophoresis of the amplification 

products was conducted on an Applied Biosystems 3730x1 DNA Analyzer, 

with an internal size ladder (500 LIZ). Allele sizes were analyzed using 

GeneMapper (version 3.0, Applied Biosystems) and allele designation was 

confirmed following visual examination.  

 

4.3.4 Data analysis 

Both DNA and cDNA sequences were aligned and edited using BioEdit 

v7.0.0 (Hall 1999) and MEGA v4.1 (Tamura et al. 2007). Degenerate codes 

were used when double peaks were encountered. The phase and frequency 

of alleles were calculated using DnaSP v5 (Librado & Rozas 2009). Genetic 

diversity estimates were calculated using Arlequin v3.5.1.2 (Excoffier et al. 

2005) and included: observed heterozygosity (Ho), number of alleles (Na), 

and gene diversity (Hs). Genetic diversity estimates were compared between 

native and introduced populations using t-tests (http://www.graphpad.com/ 

quickcalcs/ttest1.cfm). 
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Pairwise Fst estimates were calculated from the microsatellite and 

peroxidase sequences using Arlequin v3.5.1.2 (Excoffier et al. 2005). We 

also calculated Tajima’s D (Tajima 1989) and Fu and Li’s F (Fu& Li 1993) 

implemented in DnaSP v5 (Librado & Rozas 2009) to infer deviations from 

neutrality and to detect demographic changes or selection (Fu & Li 1993).  
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Table 4.1 RWA sample information. 

 

Site (Abbr.) Coordinates Altitude(m) Host 

Turkey (TK) 38.57  23.72 70-1151 Durum wheat, rye, oats, barley, volunteer wheat 
Iran (IR) 37.80  47.47 1638 Grasses 
Syria (SY) 36.10  35.60 389-660 Wheat 
Ethiopia (ET) 09.80  38.73 3082 Barley 
Kenya (KY) 05.69  35.31 2154-3079 Wheat 
South Africa (SA) -34.34  19.89 1577-1717 Wheat, Bromus, oats, rye 
Mexico (MX) 
USA (US) 
Chile (CH) 
Argentina (AR) 
Hungary (HU) 
Qapqia (QP) 
Yumin (YM) 
Haba (HB) 
Mori (MR) 
Wuqia (WQ) 
Cele (CL) 
Tajikistan (TJ) 

19.53  -98.85 
37.38  -102.5 
-32.83  -70.57 
-38.37  -60.27 
47.50  19.08 
43.59  81.17 
46.11  82.75 
48.15  86.42 
43.77  90.17 
39.71  75.17 
36.29  81.25 
38.57  68.71 

2273 
278-1214 
731-1000 
83-765 

155 
1178 
1070 
601 
1234 
2151 
2300 
803 

Spring wheat, barley 
Wheat, barley 
Barley 
Bromus, wheat, barley 
Barley 
Spring wheat 
Spring wheat 
Spring wheat 
Spring wheat 
Spring wheat 
Spring wheat 
Unknown 
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4.4 Results 

4.4.1 cDNA transcript sequences 

We screened seventeen salivary gland gene transcripts in three clones from 

each of two sample locations and found no variation within and among 

locations for four transcripts (juvenile hormone binding protein (JHBP), 

peroxidase, and two non-annotatable proteins). The other thirteen transcripts 

were polymorphic, however most of the variable sites were detected only 

once (single base pair mutation). None of the variants were unique to a 

sample location, i.e. none were found exclusively in all three clones.  

 

4.4.2 Salivary gland DNA sequences 

DNA could only be amplified from six salivary gland genes using the same 

primers. It should also be noted that compared with the RNA transcripts, 

these six genes all contained at least one intron. Of the six genes, two 

revealed no variation within and among sites (coated-vesicle membrane 

protein and laccase 1). Glucose dehydrogenase, probable ER retained 

protein, peroxidase and one non-annotatable protein were polymorphic. The 

peroxidase gene had the highest number of single nuclear polymorphic sites 

(SNPs). These twelve SNPs were identified and detected consistently among 

sample locations, however no SNPs were unique to a location (Table 4.2).  

 

4.4.3 Peroxidase gene diversity and differentiation 

We screened 134 RWAs from seventeen worldwide locations. The 468 bp 

fragment contained three exons and two introns, resulting in a total of 104 

coded amino acids. Six polymorphic sites were detected in both the protein 

coding regions and noncoding regions (Figure 4.1). Five sites resulted in 

synonymous changes, while one non-synonymous change was identified in 

the middle exon with valine replaced by the less common isoleucyl amino 

acid. The nucleotide diversity of nonsynonymous and synonymous sites was 

0.0005 and 0.0203, respectively.  
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Table 4.2 Peroxidase gene SNPs among three individuals from each of two 

populations; Toli (TL) and Qitai (QT).  

 

SNP site (bp) 
Population_individual 

TL_1 TL_2 TL_3 QT_1 QT_2 QT_3 

21 A/G A/G A/G G A/G G 

36 T T T T/C T T/C 

39 A/G A/G A/G G A/G G 

54 A/G A/G A/G G A/G G 

71 A/T A/T A/T A A/T A 

96 T/C T/C T/C C T/C C 

121 A/G T/G A/G G A/G G 

127 A/C A/T A/C A/T A/C A/C 

278 G G G/A G G/A G 

307 T/C T/C T/C C A/C C 

329 A/T A/T A/T T A/T T 

386 A/T A/T A/T T A/T T 

 

 

 

 

 

Figure 4.1 Schematic representation of the peroxidase gene sequence, 

showing the fragment length, exon numbers, and SNP sites.  The nucleotides 

in bold indicate the SNP that resulted in an amino acid change.  
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Seven peroxidase alleles were detected and overall allelic diversity was 

0.408. One dominant allele had a frequency of 75% and was shared among 

locations, with the exception of Hungary (Table 4.3). This is likely to 

represent a sampling artifact as only one RWA was sampled from Hungary. 

Three alleles were more commonly detected at seven sample locations in 

East Asia where RWAs are native, while only one allele was dominant in 

Middle Eastern native populations (Table 4.3). Introduced populations were 

monomorphic. Peroxidase alleles clustered into two distinct groups, A and B 

(Table 4.3). The proportion of individuals with alleles representing each 

cluster varied considerably between East Asia and the Middle East. Cluster A 

and B were found in nearly equal proportions in East Asian populations 

(except Cele), while cluster A predominates in Middle Eastern populations. 

 

Nucleotide diversity was high at most locations where RWAs are native. The 

highest nucleotide diversity was detected in Wuqia in eastern Asia (0. 012), 

compared with the lowest (0.004) in Turkey from the Middle East (Table 4.4). 

Throughout the invasive range no nucleotide diversity was found as all 

locations possessed only one dominant allele. RWAs from eastern Asia (four 

sites in China, one site in Tajikistan) exhibited similar allele frequencies and 

the allele containing the non-synonymous mutation was only discovered in 

China and Tajikistan. One site in China (Cele) was monomorphic for the 

dominant allele. In Syria and Iran where RWA is native, only the dominant 

allele was found.  

 

We calculated pairwise estimates of genetic differentiation (Fst) between 

native populations that had more than one peroxidase allele. Significant Fst 

values (p<0.001) were only found between Turkey and Yumin (Fst=0.287), 

Turkey and Mori (Fst=0.413), and Turkey and Tajikistan (Fst=0.402).  

 

4.4.4 Comparison of microsatellite and peroxidase diversity 

A comparison of microsatellite and peroxidase diversity indices revealed that 

native populations had significantly higher numbers of alleles (peroxidase 

p<0.05; microsatellite p<0.001) and significantly lower homozygosity 

(peroxidase p<0.05; microsatellite p<0.001) than invasive populations (Table 
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4.5). There were no significant differences in microsatellite allele number 

(p>0.05) and homozygosity (p>0.05) between East Asian and Middle East 

populations, but both peroxidase allelic number (p<0.05) and homozygosity 

(p<0.05) were significantly different.  

 

4.4.5 Tests for departure from neutrality 

Departures from neutrality were investigated using Tajima’s D, and Fu and 

Li’s F for the seven native sites having variable peroxidase alleles (Table 4.4). 

The Chinese and Tajikistan sites all displayed significant and positive 

Tajima’s D values indicating balancing selection favoring multiple alleles in 

far eastern Asian RWA. In Turkey a negative, but not significant, Tajima’s D 

value indicated positive selection. 

 

Finally, excess homozygosity may be indicative of selection. Limited 

peroxidase diversity was found in Iran and Syria, and a similar pattern was 

also identified in Turkey (Table 4.5). The Turkish samples also exhibited 

higher homozygosity than the eastern Asian sites. These results support our 

conclusion of purifying selection acting in native populations from the Middle 

East.  

 

To determine whether specific peroxidase alleles may play a functional role 

in driving the departure from neutrality, we correlated pairwise Fst values 

calculated from the microsatellite and peroxidase data. No significant 

correlation was detected (R= 0.37, N=21, p>0.05).  
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Table 4.3 Peroxidase allele frequencies for each location among native and invasive ranges. The grey highlights the most common 

allele.  

Cluster Alleles 

NATIVE-Eastern Asia NATIVE-Middle East INVASIVE 

WQ CL ML HB YM QP TJ TK IR SY HU KY SA Ams 

N=10 N=10 N=8 N=10 N=10 N=10 N=10 N=10 N=10 N=10 N=1 N=10 N=10 N=23 

A 
ATAATTACGTAA 0.45 1.00 0.38 0.50 0.55 0.55 0.35 0.90 1.00 1.00 0 1.00 1.00 1.00 

ATAATTAAGTAA 0.05 0  0  0  0  0  0.05 0  0  0  0  0  0  0  

 
 

B 

GTGGACGAGCTT 0.25 0  0.38 0.35 0.25 0.35 0.25 0.10 0  0  1.00 0  0  0  

GTGGACGAACTT 0.25 0  0.00 0.05 0.05 0.05 0.35 0  0  0  0  0  0  0  

GCGGACGCGCTT 0  0  0.24 0.05 0.15 0  0  0  0  0  0  0  0  0  

GTGGACGAATAA 0  0  0  0.05 0  0  0  0  0  0  0  0  0  0  

GTGGACAAGCAA 0  0  0  0  0  0.05 0  0  0  0  0  0  0  0  

 

WQ, Wuqia; CL, Cele; ML, Mori; HB, Haba; YM, Yumin; QP, Qapqia; TJ, Tajikistan; TK, Turkey; IR, Iran; SY, Syria; HU, Hungary; KY, Kenya; SA, South 

Africa; Ams, all American sites including US, Chile, Mexico, and Argentina. N, sample size. 
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Table 4.4 Statistical tests for departure from neutral expectations.  

 

S, segregating sites; k, average number of nucleotide differences; Pi, nucleotide diversity; 

Hd, haplotype diversity. 

 

Table 4.5 Comparison between peroxidase and microsatellite variation 

among native and invasive populations.  

 

Na, mean number of alleles; Ho, observed homozygosity. 

 

Wuqia Mori Haba Yumin Qapqia Tajikistan Turkey 

S 11 11 12 12 11 11 10 

k 5.653 5.400 5.532 5.500 5.263 5.505 1.895 

Hd 0.705 0.700 0.653 0.642 0.600 0.726 0.189 

Pi 0.0121 0.0115 0.0118 0.0118 0.0113 0.0118 0.00405 

Tajima's D 2.919** 2.376* 2.281* 2.247* 2.474* 2.751** -1.146 

Fu & Li's F 2.161** 1.953* 1.631* 1.620* 1.649* 2.105** 0.783 

Area Population 
Peroxidase Microsatellite 

Na Ho Na Ho 

Native Wuqia 3 0 5.60 0.64 

 

Cele 1 1 3.33 0.80 

 

Mori 3 0.13 5.00 0.65 

 

Haba 5 0.30 6.80 0.64 

 

Yumin 4 0.30 6.50 0.70 

 

Qapqia 4 0.30 5.50 0.68 

 

Tajikistan 4 0.10 4.90 0.76 

 

Ave (eastern Asia) 3.43 0.30 5.38 0.70 

 

Turkey 2 0.8 5.67 0.77 

 

Iran 1 1 3.44 0.86 

 

Syria 1 1 2.25 1 

 

Ave (Middle East) 1.33 0.93 3.79 0.88  

Introduced Kenya 1 1 2 1 

 

South Africa 1 1 2.38 1 

 

Mexico 1 1 2 1 

 

US 1 1 2.13 1 

 

Chile 1 1 2 1 

 

Argentina 1 1 2 1 

 

Ave 1 1 2.09  1 
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4.5 Discussion 

We sequenced seventeen RWA genes with strong homology to pea aphid 

salivary gland ESTs and found genetic variation at both the DNA and RNA 

level. Screening of worldwide RWA populations for the most variable salivary 

gland gene, peroxidase, indicated that this gene is under selection.  

 

4.5.1 Salivary gland transcript variation 

Previous studies on RWA saliva have focused on characterizing the 

molecular basis of impact on resistant host cultivars. Salivary gland 

transcripts of RWA biotypes 1 and 2 have been compared and revealed high 

variation within and between biotypes (Cui et al. 2012). As the polymorphism 

of these transcripts was representative of allelic variation, not duplicated 

genes, Cui et al. (2012) concluded that the salivary gland transcripts were 

responding to positive selection pressure. We also found several salivary 

gland transcripts to be variable between the two Chinese sites examined and, 

like Cui et al. (2012), most of these were single base pair mutations found 

only in one individual.  The rapid appearance and disappearance of low-

abundance transcripts suggests that salivary gland genes should not be used 

as a biotype marker because of the inconsistency of low abundance 

transcripts.  However, polymorphism in the mRNA transcripts of protein 

coding salivary gland genes could possibly provide an indication of whether a 

functional improvement takes place as a result of amino acid changes.  

 

In this study we successfully amplified seventeen salivary gland transcripts, 

however using the same primers we could only amplify DNA for six genes.  

We found many introns scattered across these genes and we hypothesize 

that they may be a ubiquitous feature of salivary gland genes. The frequent 

shift in position of the intron and exon probably caused the failure of DNA 

amplification by the exon-priming intron-crossing primers. We also found 

more nucleotide variation at the conjunction part of the exon and intron. Half 

of the SNPs in peroxidase were detected within 15 bp of a conjunction. 

These SNPs may act as a signal mechanism for alternative splicing.  
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4.5.2 Peroxidase gene diversity  

Analysis of peroxidase gene diversity and differentiation among worldwide 

RWA populations revealed that native populations had higher genetic 

diversity than populations sampled from the introduced range. Our study 

showed that the majority of native populations had more than one peroxidase 

allele (excluding Iran, Syria and Cele (from China)), while all locations where 

RWA is an introduced species were monomorphic.  

 

If peroxidase is evolving according to neutral expectations it should exhibit a 

similar pattern of diversity and differentiation as the neutral microsatellite 

markers. However, when we compared peroxidase and microsatellite 

diversity, they exhibited different trends among populations. Native 

populations exhibited equivalent levels of microsatellite diversity, while 

peroxidase gene diversity was significantly different. The only exception in 

the native range was Cele (from China), which showed low genetic diversity 

and high homozygosity for both datasets. Previous research (see chapter 2) 

has identified that Cele presents a genetic signature of either being a recently 

founded population or one that has undergone a bottleneck. Low genetic 

diversity for both microsatellite and peroxidase markers for all introduced 

populations is indicative of these populations having experienced a founder 

effect and supports previous research (see Chapter 2). However it is possible 

that the dominant allele found in all populations provides an allele-dependent 

advantage that has aided the invasion process.  

 

4.5.3 Natural selection in the native range of RWAs  

Given the lack of peroxidase gene variation in introduced populations, the 

impact of natural selection on the peroxidase gene could only be examined in 

RWA from native populations. We detected two different signatures of 

selection in native populations of RWA; balancing selection in East Asia and 

purifying selection in the Middle East. Balancing selection has lead to 

elevated genetic diversity and maintenance of polymorphism linked to 

environmental adaptation in East Asia, while purifying selection in the Middle 

East has resulted in the predominance of one allele that is probably best 

adapted to local conditions. Peroxidase may function in oxidation and 
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detoxification of host defensive phytochemicals (Madhusudhan & Miles 1998; 

Miles & Peng 1989), but may also be involved in regulating the redox 

response associated with plant cellular defences. In plant pathogen effectors 

studies, the peroxidase is involved in reactive oxygen species (e.g., H2O2) 

generation, both locally and systemically. It plays a significant role to activate 

cell death and resistant gene induction during the defense response to 

pathogen invasion (Bindschedler et al. 2006; Choi et al. 2007). Even though 

we have not determined physiologically a peroxidase interaction with wheat, 

our finding that peroxidase gene diversity in native East Asian populations is 

maintained by balancing selection suggests that this gene could play an 

important functional role in mediating host plant interactions.  

 

The fundamental connection between an aphid and its host plant lies in the 

interaction between the injection of aphid saliva and the plant response. 

Peroxidase activity and the response of RWAs to resistant/susceptible host 

plants were evaluated by Ni et al. (2000). RWA feeding elicited a nine-fold 

increase in peroxidase specific activity on susceptible ―Morex‖ barley and a 

three-fold increase on resistant ―Halt‖ wheat when compared with control 

plants. This finding suggests that RWA feeding probably resulted in oxidative 

stress in host plants. However, Cooper et al. (2010) did not detect peroxidase 

in the saliva of RWAs and a more recent proteomic analysis of secreted 

saliva from RWA biotypes also failed to identify peroxidase (Nicholson et al. 

2012).  These findings may indicate that potential phytotoxins, related to 

RWA biotype differentiation and virulence, were absent in the cultivars tested. 

It is possible that the peroxidase test failed to detect peroxidase in RWA 

because of the specific substrate used. For example, in the pea aphid 

glutathione peroxidase no longer uses glutathione as a substrate, but is 

instead active as a lipid peroxidase (Owain Edwards unpublished data). 

 

In conclusion, we examined microsatellite and peroxidase genetic diversity in 

worldwide RWA populations and found that the peroxidase gene is under 

selection and may be linked to the successful establishment of RWAs on 

host plants.   
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Appendices 

Appendix S4.1. Amplification information of 17 salivary gland genes in RWA. 

Genes Abbr.  
Ta 

(℃) 

cDNA DNA 

Length 
(bp) 

Te 
(s) 

Length 
(bp) 

Te 
(s) 

Coated vesicle 
membrane protein 

CVMP 55 465 30 850 60 

AphidB1_C07_t7_050 ABC 58 204 20 - - 

ID0AAH13AH01ZM2 ID0 58 159 20 238 30 

Peroxidase PA 58 384 20 468 30 

Sucrase SA 58 874 60 - - 

Dipeptidyl 
carboxypeptidase 

DCPA 60 965 60 - - 

Cathepsin B CB 58 719 60 - - 

Cathepsin L CL 56 433 30 - - 

Endoprotease FURIN EF 58 273 20 - - 

Glucose 
dehydrogenase 

GDA 60 850 60 790 60 

JHBP JHBP 58 228 20 - - 

Trehalase TRA 60 456 30 - - 

Peptidase M1 PAM1 58 410 30 - - 

Probable ER retained 
protein 

PERP 56 401 30 540 40 

Emp24 EMP24 60 365 20 - - 

C002 C002 53 765 60 - - 

Laccase 1 LA1 55 367 20 410 30 

 

Ta, annealing temperature; Te, elongation time.  
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Chapter 5  

 

Mitochondrial genome of RWA 

 

 

 

 

In this chapter the RWA mitochondrial genome is compared with other aphid 

mitochondrial genomes to investigate the possible causes of low 

mitochondrial DNA polymorphism that renders mitochondrial DNA markers 

relatively ineffective for aphid population genetics studies.  
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5.1 Abstract 

In this study, we sequenced and annotated the complete mitochondrial 

genome (mitogenome) of the Russian wheat aphid, Diuraphis noxia 

(Hemiptera: Aphidoidea). The 15,784 bp circular genome includes all 13 

protein-coding genes, 2 ribosomal RNA genes, 23 transfer RNA (tRNA) 

genes, the control region, and the repeat region. All the genes were arranged 

in the same order as that of the putative ancestor of insects, except that we 

did find one extra transfer RNA gene (trnM). The mitogenome was 

characterised by having a high A+T content (84.76%) and a strong GC skew 

(-0.26), which is consistent with the four other complete aphid mitogenomes 

examined. The 22 tRNAs in the D. noxia mitogenome have a typical clover-

leaf structure, except trnS(AGN), which is consistent with that reported in 

other aphid species. We also discovered tRNA-like pseudogenes in the 

control region of other Aphidoidea species. The repeat region and the control 

region are highly divergent within the superfamily. We found that the repeat 

region consistently varied by two tandem repeats among species in the 

Aphidoidea, however the length and copy number were unique to each 

species. No evidence of any consensus sequences was found to predict the 

origin of the repeat region. Finally, we conclude that mtDNA markers from 

mitogenomes that possess high A+T% and low GC skew are not useful for 

studies of intraspecific divergence. In addition, the evolution of the 

mitogenome should beconsidered in conjunction with endosymbiont evolution 

as both genomes are associated with exogenous bacteria which may affect 

host evolution. 
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5.2 Introduction 

Mitochondria are present in most eukaryotic cells, varying in number from 

hundreds to thousands (Simon et al. 2006). Energy production in the form of 

ATP is the major mitochondrial function, but mitochondria are also involved in 

a range of other chemical processes, such as transference signaling, cellular 

differentiation, cell death, as well as the control of the cell cycle and cell 

growth (McBride et al. 2006). The origin of mitochondria lies in the 

endosymbiotic association of oxidative bacteria and glycolytic proto-

eukaryotic cells (Gray et al. 1999).  

 

Compared with nuclear genomes, animal mitogenomes are characterized by 

several distinct features. Firstly, because the mitogenome experiences a high 

substitution rate, it has become an attractive source of DNA polymorphism to 

study population genetics and evolution (Ingman & Gyllensten 2006). 

Secondly, the lack of mitogenome recombination allows the tracing of a direct 

genetic line, enabling the study of relationships at species or higher 

taxonomic levels. Finally, the relatively stable gene content and multiple 

mitochondrial DNA (mtDNA) copies per cell facilitate mtDNA amplification. 

Thus, mitochondrial sequences have been the main tool in a large number of 

studies on the population genetics and phylogenetics of insects (Sheffield et 

al. 2008; Negrisolo et al. 2011). In addition, insect mitogenomes possess 

several interesting evolutionary features such as atypical stop codons, base 

compositional bias, codon usage bias, and gene rearrangement (Negrisolo et 

al. 2011; Sheffield et al. 2008; Thao et al. 2004). Mitochondrial gene order 

can provide an independent source of information for mitogenome evolution 

and phylogenetic inference (Boore 1999; Rokas & Holland 2000). Various 

mitochondrial gene rearrangements relative to the ancestral gene order have 

been detected in a variety of species (Boore 1999). Some of these gene 

arrangements are shared derived characters of an order, e.g., the 

arrangement of trnM-trnI-trnQ is present in all Lepidoptera mitogenomes 

examined to date. Different rearrangements are also present in Hemiptera 

mitogenomes, and they are confined only to the suborder Sternorrhyncha 

(Thao et al. 2004). Additional mitochondrial sequencing and comparative 

http://en.wikipedia.org/wiki/Cell_signaling
http://en.wikipedia.org/wiki/Cellular_differentiation
http://en.wikipedia.org/wiki/Cellular_differentiation
http://en.wikipedia.org/wiki/Apoptosis
http://en.wikipedia.org/wiki/Cell_cycle
http://en.wikipedia.org/wiki/Cell_growth
http://en.wikipedia.org/wiki/Cell_growth
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analysis will provide new insights into molecular mechanisms underlying 

mitogenome evolution and, in particular, gene rearrangement. 

 

The order Hemiptera, the largest and most diverse group of hemimetabolous 

insects, consists of three suborders: Sternorrhyncha, Auchenorrhyncha, and 

Heteroptera (Lee et al. 2009). Currently, full-length mitogenomes of 

Hemiptera are known for 46 species and are available in GenBank. 

Hemiptera mitogenomes have been studied for a variety of purposes, 

including divergence within suborder (Hua et al. 2009), gene rearrangements 

among families (Thao et al. 2004), and phylogenetic relationships within 

suborders (Li et al. 2011). Most of the available Hemiptera mitogenomes are 

from Heteroptera, while only 9 Sternorrhynchan mitogenomes have been 

studied (Thao et al. 2004). Meanwhile, only two mitogenomes of aphids, 

Acyrthosiphon pisum and Schizaphis graminum, have been determined for 

Sternorrhyncha. These aphid mitogenomes both have a large repeat region 

located between trnE and trnF, and both differ in repeat unit sequence and 

copy number. To our knowledge, this repeat region has never been reported 

in other insect mitogenomes. There has been no attempt to examine the 

diversity of this repeat region among aphid mitogenomes or to determine 

whether this structural feature is common in all aphid species. It is clear that 

mitogenome sequencing of more aphid species is required to address this 

interesting question. Particularly, analysis with a comparative mitogenomic 

and evolutionary perspective will shed light on the origin and diversification of 

the repeat region. 

 

In this paper, we report the description and annotation of the complete 

mitochondrial genome of the Russian wheat aphid, Diuraphis noxia, and 

compare with other members of the Aphidoidea and more broadly within the 

order Hemiptera. We calculated the base composition bias within the order 

Hemiptera, and in particular, described the specific nucleotide features 

among species within the suborder Sternorrhyncha. To provide insight into 

mtDNA evolution, we compared the mitogenomes of representatives of each 

superfamily within this suborder, including Bemisiata baci (Aleyrodoidea), 

Pachypsylla venusta (Psylloidea) and Diuraphis noxia (Aphidoidea). Finally, 
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structural comparisons were made from an analysis of the complete 

mitogenomes of two species of Aphidoidea, Acyrthosiphon pisum and 

Schizaphis graminum. Some analyses were also based on unpublished 

partial genome data from Aphis gossypii and Daktulosphaira vitifoliae. A 

range of shared characteristics and unique features of aphids are presented 

and explain potentially the low variability and relative insensitivity of 

mitochondrial markers that typifies many studies of aphid genetics. We also 

discuss the possible effects of endosymbionts on the evolution of aphid 

mitogenomes, both of which are exogenous bacterial organisms.  
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5.3 Material and Methods 

5.3.1 Sample origin and DNA extraction 

Parthenogenetic female D. noxia were collected from Mori (43.779°N, 

90.177°E, 1234 m elevation), in eastern Xinjiang Province, northwestern 

China. The samples were preserved in 100% ethanol and stored at 4°C until 

used for DNA extraction. Total genomic DNA was extracted from single adult 

aphids using the salting-out method (Sunnucks & Hales 1996). The final DNA 

template elution was 40ng/µl, and stored at -20°C until required. 

 

5.3.2 PCR amplification and sequencing of mtDNA 

PCR amplification of the D. noxia mitogenome was performed using 

universal primers and primers designed based on the Acyrthosiphon pisum 

(GenBank: NC011594) and Schizaphis graminum (GenBank: AY531391) 

mitogenomes (Simon et al. 2006). Fourteen overlapping fragments were 

amplified in total. The complete primer list is supplied in Appendix S6.1. The 

final 50µl PCR volume included 80ng of aphid DNA, 2 U ExTaq, 1×PCR 

Buffer, 0.3mM of each dNTP and 2mM MgCl2 (TaKaRaTaq™, Takara 

Biomedical, Japan). The PCR cycling parameters were as follows: initial 

denaturation 3 min at 94°C; 30 cycles of 30 sec at 94°C, 30 sec at the 

specified annealing temperature (Appendix S6.1), 3min at 72°C; and a final 

elongation of 10 min at 72°C. The PCR products were visualized by 

electrophoresis in a 1.5% agarose gel and purified using anABgene Ultra 

PCR Clean-Up Kit (Thermo Scientific) before being sequenced on a 3730xl 

DNA Analyser (Applied Biosystems). The fragment containing the repeat 

region was inserted into pGEM-T Easy vector (Promega, UK) according to 

manufacturer’s directions and multiple clones were sequenced.  

 

5.3.3 Gene annotation and analysis 

The mtDNA sequences were assembled using Lasergene software (DNAStar, 

Inc.) and BioEdit (Hall 1999). The complete mtDNA genome was analyzed as 

follows. Firstly, protein coding genes (PCGs) and their boundaries were 

investigated using the BLAST program available on the NCBI website. In our 

gene annotation of D. noxia, as well as re-annotations of the other three 
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aphids, gene boundaries were assigned to avoid gene overlaps, which are 

not favorable under natural selective pressures (Sheffield et al. 2010). Gene 

overlap was allowed between adjacent protein coding genes (PCGs), but not 

between PCGs and downstream transfer RNA (tRNA) genes. Specifically, 

when the full stop codon of a protein-coding gene overlapped with a tRNA 

gene, an incomplete stop codon was designated. The common termination 

codons could be generated by the post-transcriptional polyadenylation. 

Secondly, tRNA genes were identified using the tRNAscan-SE program 

(Schattner et al. 2005), and recognized manually, to find the appropriate 

anticodon and the typical cloverleaf secondary structure. Finally, the 

boundaries of the ribosomal RNA (rRNA) genes, rrnL and rrnS, were 

determined by comparison with orthologous genes of two other aphid 

mitogenomes. In addition, BioEdit (Hall 1999) and MEGA5 (Tamura et al. 

2011) were used to explore nucleotide and protein pairwise divergence 

among the four aphid species, including the Daktulosphaira vitifoliae partial 

mitogenome (DQ021446) and the unpublished Aphis gossypii mitogenome. 

 

5.3.4 Genomic analysis 

Nucleotide composition was calculated using BioEdit (Hall 1999). ATskew 

[(A-T)/(A+T)] and GC skew [(G-C)/(G+C)] were used to measure base 

compositional differences. Codon usage was calculated using the Sequence 

Manipulation Suite program (http://www.bioinformatics.org/sms2/). The 

relative synonymous codon usage (RSCU) values were calculated using 

MEGA5 (Tamura et al. 2011). Repeat motifs were identified using the 

Tandem Repeats Finder program (Benson 1999). Consensus repeat 

sequences were recognized as a minimum match of 75% among strings. 

Overall genetic distances of thirteen PCGs were calculated using MEGA5 

under the Kimura-2-Parameter model for nucleotide sequences and p-

distance for amino acid sequences. 
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5.4 Results 

5.4.1 Genome composition 

The complete mitogenome of D. noxia is 15,784bp in size containing 13 

PCGs, 23tRNA genes, 2rRNA genes, a control region, and a large repeat 

region (Figure 5.1, Table 5.1). These genes/regions are arranged in the 

same order as the most wide spread insect ancestral mitogenome (Boore 

1999), except that the D. noxia mitogenome possessed one extra tRNA gene 

and a separate large non-coding repeat region located between trnE and trnF.  

 

 

 

 

 

Figure 5.1 Map of the D. noxia mitogenome. Genes are transcribed in a 

clockwise direction, except for those underlined. The transfer RNAs are 

labeled according to the IUPAC/IUB single-letter amino acid codes. 
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Table 5.1 The organization and annotation of the D. noxia mitogenome. 

 

 

 

 

Feature Strand Position Length (bp) No. of Initiation  Stop Anticodon AT% intergenic 

amino acid codon  codon nucleotide

trnI J 1-64 64 GAT 78.1 -

trnQ N 62-127 66 TTG 83.4 -3

trnM J 133-199 67 CAT 79.1 5

nad2 J 200-1175 976 325 ATT T-- 88.3 0

trnW J 1176-1241 66 TCA 87.9 0

trnC N 1234-1298 65 GCA 86.1 -8

trnY N 1302-1367 66 GTA 81.8 3

cox1 J 1369-2899 1531 510 ATA T-- 76.9 1

trnL(UUR) J 2900-2967 68 TAA 80.8 0

cox2 J 2971-3642 672 223 ATA TAA 81.3 3

trnK J 3645-3717 73 GTC 75.3 2

trnD J 3718-3779 62 CTT 85.5 0

atp8 J 3789-3938 150 49 ATA TAA 92.7 9

atp6 J 3925-4572 648 215 ATA TAA 83.5 -14

cox3 J 4572-5356 785 261 ATG TA- 83.7 -1

trnG J 5357-5420 64 TCC 90.6 0

nad3 J 5421-5774 354 117 ATT TAA 87.6 0

trnA J 5775-5838 64 TGC 89.1 -3

trnR J 5838-5901 63 TCG 85.7 0

trnN J 5902-5967 66 GTT 83.3 0

trnS (AGN) J 5968-6028 61 GCT 83.6 0

trnE J 6032-6097 66 TTC 95.4 3

Repeat region J 6099-6737 639 90.7 1

trnF N 6738-6803 66 GAA 84.8 0

nad5 N 6804-8474 1671 556 ATT TAA 86.3 0

trnH N 8525-8588 64 GTG 89.1 0

nad4 N 8589-9897 1309 436 ATA T-- 85.7 0

nad4L N 9906-10196 291 96 ATA TAA 89.4 8

trnT J 10198-10259 62 TGT 91.9 1

trnP N 10261-10327 67 TGG 86.6 1

nad6 J 10329-10820 492 163 ATT TAA 89.6 1

cob J 10824-11942 1119 372 ATG TAA 81.1 3

trnS (UCN) J 11947-12011 65 TGA 90.8 4

nad1 N 12021-12956 936 311 ATT TAA 84.4 9

trnL (CUN) N 12957-13021 65 TAG 86.2 0

rrnL N 13022-14280 1259 85.1 0

trnV N 14281-14343 63 TAC 87.3 0

rrnS N 14355-15120 766 84.6 11

A+T-rich region J 15121-15784 664 86.6 0

trnM N 15443-15514 72 TAT 90.2 -
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The A+T% and G+C% values as well as the AT and GC skews were 

calculated for all available complete mitogenomes of Hemiptera species and 

are presented graphically in Figure 5.2. The AT content of Hemipteran 

mitogenomes ranged from 68.86% (Neuroctenus parus) to 86.34% 

(Aleurodicus dugesii). Notably, the three suborders of Hemiptera exhibited 

similar nucleotide skews (C skew and A skew) except for six 

Sternorrhynchan species, which had highly re-arranged gene orders, while 

the four other Sternorrhynchans clustered as a group. 

 

 

 

 

Figure 5.2 Graphical summary of nucleotide content across 49 Hemiptera 

mtDNAs. (A) A+T% vs AT skew. (B) G+C% vs GC skew. The yellow: 

Sternorrhyncha; red: Auchenorrhyncha; black: Heteroptera. 1, 2, 3 and 4 

refer to the four aphid mitogenomes, D. noxia, A. pisum, S. graminum, and A. 

gossypii, respectively. 
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The overall nucleotide composition of D. noxia was typically A+T biased 

(84.76%; the second highest amongst Hemiptera species), and was slightly A 

skewed (0.08) and strongly C skewed (-0.26) (Figure 5.2, Table 5.2).Similar 

nucleotide composition patterns were detected in the four aphid species 

(Figure 5.2, Table 5.2). The majority of second codon positions of PCGs 

were T, with an average AT skew of -0.40 in the three aphid species 

examined (Table 5.2). Furthermore, the third codon positions of PCGs were 

predominantly A+T and accounted for approximately 95% of the total A+T 

content in Aphidoidea mitogenomes. Finally, the A+T content as well as the 

A and C bias of the repeat region of the Aphidoidea species examined, 

greatly exceeded the whole genome indices. This was particularly evident in 

D. noxia, with the repeat region having an A+T content of 90.61%, an AT 

skew of 0.23 and a GC skew of -0.67. Similarly, the conventional A+T-rich 

control region in Aphidoidea showed a high A+T% compared with the 

genomic average, but less than that of the repeat region in D. noxia.  

 

Table 5.2 Nucleotide composition of the D. noxia (D.n), A. pisum (A.p) and S. 

graminum (S.g) mitogenomes. 

 

 

 

5.4.2 Protein-coding genes 

The thirteen PCGs of the D. noxia mitogenome were distributed on both 

strands as previously reported in other insects. The gene boundaries and 

annotation are given in Table 1. Most PCGs were initiated with an ATN start 

codon in D. noxia, and terminated by a conventional TAA stop codon (Table 

D.n A.p S.g D.n A.p S.g D.n A.p S.g

Whole genome 84.76 84.72 83.94 0.08 0.10 0.07 -0.26 -0.28 -0.26

Protein-coding genes 84.05 83.63 83.21 -0.15 -0.15 -0.16 -0.03 -0.05 -0.04

1st codon position 80.99 80.11 79.88 0.00 0.02 0.01 0.15 0.14 0.14

2nd codon position 75.78 75.65 75.6 -0.39 -0.39 -0.40 -0.12 -0.13 -0.13

3rd codon position 95.38 95.13 94.15 -0.09 -0.09 -0.11 -0.32 -0.39 -0.26

tRNAs 85.58 86.02 85.56 0.04 0.02 0.03 0.18 0.20 0.18

rRNAs 84.94 84.6 84.89 -0.08 -0.08 -0.06 0.33 0.36 0.34

Repeat region 90.61 88.91 84.91 0.23 0.27 0.16 -0.67 -0.57 -0.52

Control region 86.6 89.17 86.82 0.02 0.04 -0.07 -0.26 -0.38 -0.19

(A+T)% AT skew GC skew
Feature
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5.1 and 5.3). However, the genes including nad2, cox1, cox3 and nad4, 

ended with a single T or TA residues. Incomplete termination codons were 

also observed in the other aphid species (Table 5.3).  

 

Table 5.3. Comparison of aphid protein-coding genes. D.n, D. noxia; A.p, A. 

pisum; S.g, S. graminum; D.v, D. vitifoliae. 

 

 

 

The PCGs exhibited different levels of genetic divergence among the four 

Aphidoidea species. Nucleotide and amino acid sequences showed overall 

congruent profiles. The cox1 gene, followed by cob, had the smallest 

distances at both the nucleotide and amino acid level (Figure 5.5, Table 5.3). 

This result is consistent with the prevailing mitogenome feature that the 

mutation rates of cox1 and cob are slower than other mitochondrial genes in 

most metazoans (Castellana et al. 2011). In contrast, atp8 presented the 

largest distances, indicating a fast mutation rate for this gene.  

 

5.4.3 Codon usage 

A total of 3634 codons, excluding termination codons, were uncovered in D. 

noxia. Approximately equivalent codon numbers were found in A. pisum 

(3635) and S. graminum (3643). The codon families exhibited the same 

pattern in codons per thousand codons in Aphidoidea (Figure 5.3A and 5.4). 

The three most predominant codon families are Leu, Ile, and Phe. Because 

of the inconsistency of codon usage in Aleyrodoidea, the comparison of the 

three superfamilies in Sternorrhyncha was based on the average number of 

codons for each species. The most common amino acid was found to be Leu 

D.n A.p S.g D.v D.n A.p S.g D.v D.n A.p S.g D.v 3 aphids 4 aphids

nad2 ATT ATA ATA ATA T-- T-- T-- T-- 325 325 325 327 0.107 0.15

cox1 ATA ATA ATA ATA T-- T-- T-- TAA 510 510 510 510 0.082 0.095

cox2 ATA ATA ATA ATA TAA TAA TAA TAA 223 223 223 223 0.073 0.105

atp8 ATA ATA ATA ATA TAA TAA TAA TAA 49 49 55 56 0.179 0.223

atp6 ATA ATA ATT ATA TAA TAA TAA TAA 215 215 217 216 0.103 0.148

cox3 ATG ATG ATG ATG TA- TA- TA- - 261 261 261 - 0.104 -

nad3 ATT ATG ATA - TAA TA- TAA - 117 117 117 - 0.102 -

nad5 ATT ATT ATA - TAA TAA TAA - 556 556 556 - 0.069 -

nad4 ATA ATA ATA ATA T-- T-- T-- TAG 436 436 436 436 0.069 0.105

nad4L ATA ATA ATA ATA TAA TAA TAA TAA 96 96 96 96 0.056 0.104

nad6 ATT ATT ATT ATT TAA TAA TAA TAA 163 164 164 163 0.13 0.172

cob ATG ATG ATG ATG TAA TAA T-- TAA 372 371 371 370 0.081 0.097

nad1 ATT ATT ATT ATA TAA TAA TAA TAG 311 311 311 312 0.059 0.095

p-distanceStop codon
Genes

Start codon Protein length
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(Figure 5.3B); however, discrepancies were identified among superfamilies in 

the top four common codons and the abundance of amino acids, such as Ile, 

Asn and Val. 

 

 

 

(A)                                                          (B) 

 

Figure 5.3 Comparison of codon distribution of Sternorrhynchan mtDNAs. (A) 

comparison among three Aphidiformes species; (B) comparison among three 

superfamilies in Sternorrhynchan based on average data. Only one 

Psylliformes species represents this superfamily. CDspT, codons per 

thousand codons. 

 

Relative Synonymous Codon Usage (RSCU) also reflected the nucleotide 

bias in the aphid mitogenomes. The four- and two-fold degenerate codon 

usage in D. noxia was A+T biased in the third codon position (Figure 5.4). 

The largest difference of RSCU among the representative species from the 

three superfamilies was found in the codon usage of Leu. The RSCU of Leu 

in D. noxia was more biased to TTA in Leu2, compared with the 

predominance of CTA/CTT of Leu1 in the other two superfamilies. In D. noxia, 

a noticeable bias from TTG to TTA accounted for 96.9% of codons coding for 

Leu2. The codons of Leu1 in D. noxia were biased to CTA and CTT while 

CTC and CTG codons were lacking. All missing codons were G+C rich. With 

respect to the number of codons lost in Sternorrhynchan, one codon was 

absent in B. tabaci, while eight codons were missing in D. noxia. The largest 

number (13) of missing codons was found in A. pisum. 
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Figure 5.4 Relative Synonymous Codon Usage (RSCU) of three 

representative Sternorrhynchan mtDNAs. Codon Families are provided on 

the X axis. The codons listed on the bar suggest the codons that are absent 

in the mitogenome.  
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Figure 5.5 The overall mean distance of the thirteen protein-coding genes 

among the ten Sternorrhynchan mtDNAs. Black bar: nucleotide distance; 

grey bar: amino acid distance. 

 

 

5.4.4 Transfer RNAs and Ribosomal RNAs  

We found 23 tRNA genes in the D. noxia mitogenome, 22 of which are 

typically found in arthropod mitogenomes. Interestingly, an extra trnM gene 

was found in the control region of D. noxia, while one trnL(UAA) copy existed 

in the control region of S. graminum and one trnM(UAU) in A. pisum. 

Furthermore, two trnK genes were discovered in the repeat region of S. 

graminum. Collectively, the three aphids possessed different numbers of 

tRNA genes. The tRNAs of D. noxia ranged in size from 61 bp (trnS(AGN)) to 

73 bp (trnK). Fourteen of the 22 tRNA genes were from the J-strand. All the 

tRNAs could be folded into a classic clover-leaf secondary structure with the 

exception of trnS(AGN), of which the dihydrouridine (DHU) arm simply 

formed a loop instead of a stem. Similar DHU arm structures of trnS(AGN) 

were also found in A. pisum and S. graminum, as reported in many other 

insect mitogenomes (Negrisolo et al. 2011). 
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tRNA-like pseudogenes were also detected. We identified three trnM-like 

genes and one trnL-like gene from the control regions of A. pisum and S. 

graminum, respectively. The nucleotide sequences of these tRNA-like 

pseudogenes all contained an intron ranging from 18 bp to 31bp.  

 

The large and small rRNA subunits (rrnL and rrnS) in D. noxia were located 

at trnL(CUN) totrnV and trnV to the control region, respectively. Both rrnL and 

rrnS are congruent with secondary structure models. The multiple alignment 

of rrnL from four aphid species contained 1092 conserved sites (86.74%), 

167 variable sites (13.26%) and a p-distance of 0.072. Likewise, the rrnS 

from these four aphid species showed similar differentiation containing 665 

conserved sites (86.81%) and 101 variable sites (13.19%), with a p-distance 

of 0.069.  

 

5.4.5 Non-coding regions 

Two non-coding regions, the control region and the repeat region, both 

presented relatively lower nucleotide identity in sequence alignment amongst 

aphid mitogenomes. In the D. noxia mitogenome, the control region spanned 

664 bp and was located downstream of rrnS. It was also A+T rich (86.6%) 

having a higher A+T content than the whole J-strand. The control region of 

the four aphid species shared 54.37% nucleotide identity. The investigation 

of four control regions revealed distinct structural patterns. Firstly, the length 

of the control region was highly variable, ranging from 662 bp in S. graminum 

to 1,006 bp in A. pisum. Secondly, the repeat motif was different based on 75% 

minimum identity cutoff. For example, the 133-bp consensus motif repeated 

three times in A. pisum, while the 12-bp motif was found two times in D. 

vitifoliae. The AT strings were also not consistent. Finally, D. vitifoliae 

exhibited fewer conserved motifs and elements than the other three aphid 

species. This point provided molecular evidence for a more distant 

relationship between D. vitifoliae and the other three aphid species, 

concordant with the taxonomy that D. vitifoliae belongs to Phylloxeridae, 

while the others are from Aphididae. In addition, a conserved sequence block 

(CSB) was discovered in the four aphid mitogenomes (Figure 5.6B). Indeed, 

they also shared 78.2% nucleotide identity in the common GC rich motif. The 
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control region exhibited considerable gaps and low identity reflecting its fast-

evolution in aphid mitogenomes.  

 

The repeat region was exclusively discovered in the four aphid species 

examined as a separate, large non-coding region located consistently 

between trnE and trnF. The structure of this region consisted of two tandem 

consensus sequences that were repeated several times, followed by a partial 

repeat unit. The repeat region (639 bp) in D. noxia consisted of three two-

tandem repeat units followed by a partial repeat unit (Figure 5.6A). For the 

other three aphid species, the number of repeats varied (between 1 and 7 

times) and was followed by a partial repeat unit. None of these repeat units 

were conserved among aphid species, and they had no similarity to any 

recorded sequences in GenBank. 

 

(A) 

 

 

(B) 

 

  

 

Figure 5.6 The structure organization of the repeat regions flanked by trnE 

(E) and trnF (F) (A) and conserved sequence blocks in the control region of 

aphids (B).  

D. noxia 

A.pisum 

S. graminum 

D. vitifoliae 
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5.5 Discussion 

In this study we sequenced the complete mitogenome of the Russian wheat 

aphid (D. noxia) and compared with the mitogenomes of four other aphid 

species. We report three previously undescribed characteristics that are 

shared among species within the Aphidoidea. The three main findings are: 1) 

high A+T content and highly negative GC skew; 2) the presence of a 

uniquely structured repeat region; and 3) the occurrence of tRNA-like 

pseudogenes. 

 

5.5.1 Extreme nucleotide composition 

High A+T content and highly negative GC skew was found in D. noxia, 84.76% 

and -0.26 and the same pattern was also detected in the other four aphid 

mitogenomes examined. Similarly, very high (A+T) content (over 84%) has 

also been found in some Hymenopteran and Dipteran mitogenomes, some of 

which also exhibited a strong negative GC skew, e.g. lower than -0.25 in Apis 

mellifera, Bombus ignitus, and Melipona bicolour (McMahon et al. 2009; 

Negrisolo et al. 2011). Unlike the aphids, however, it is not a common feature 

at the order or family level for these insects. 

 

In our study, nucleotide composition differences were also accompanied by 

significantly different codon usage patterns. (A+T) rather than (G+C) 

dominated codons predominated, with many GC-rich codons absent in the 

aphid species studied. The prevailing theories of neutral mutation indicate 

that GC content strongly determines codon bias, as well as genome-wide 

mutational pressure and selection (Hershberg & Petrov 2008). In Drosophila 

species it has been reported that G will most likely mutate to A, and has a 

mutation rate seven times higher than the overall mutation rate of the 

mitogenome (Haag-Liautard et al. 2008). The low GC content found in aphids 

may therefore provide a potential explanation for the low mutation rate 

commonly observed in aphid mtDNA studies. Furthermore, the fact that 

divergence estimates among aphid mitogenomes were lower than that found 

in other insects in the same order (e.g. white flies) also indicates that aphid 

mtDNA experiences a relatively lower mutation rate (Thao et al. 2004). 
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Population genetic studies have revealed that aphids generally have low 

mtDNA diversity (Peccoud et al. 2009; Shufran et al. 2007; Zhang et al. 2012) 

and phylogenetic studies based on barcoding sequences have also shown 

limited genetic divergence among Aphidinae species (Lee et al. 2011; Wang 

et al. 2011). Similarly, the mtDNA sequences of several Hymenopteran 

species that have an A+T-rich and G-deficit mitogenome also exhibit 

relatively low variation at the population level (Franck et al. 1998; Franck et al. 

2001; Hufbauer et al. 2004; Shao et al. 2004; Widmer et al. 1998). Therefore, 

we conclude that mtDNA is not the marker of choice for population genetic 

studies in species that have a mitogenome with high A+T content and 

negative GC skew.  

 

5.5.2 tRNA-like pseudogenes 

We identified several tRNA-like pseudogenes in the control region of aphids, 

a phenomenon that has been reported previously in lepidopteran species 

(Kim et al. 2009; Kim et al. 2011).The possible explanation for the presence 

of tRNA-like pseudogenes has been suggested to be the failure to remove 

the tRNA primer sequence from the nascent DNA strand during mtDNA 

replication (Cantatore et al. 1987; Kim et al. 2009; Kim et al. 2011). 

 

5.5.3 The repeat region 

One of the most unusual features of the D. noxia mitogenome is the 

presence of a large non-coding repeat region located between trnE and trnF. 

The location and repeat mode of the repeat region are conserved among all 

available aphid mitogenomes, but the repeat unit sequences and copy 

numbers are different. It has been suggested that the occurrence of tandem 

repeat units results from slipped-strand mispairing during mtDNA replication 

(Moritz & Brown 1987).We found that the repeat unit sequences of all the 

aphid mitogenomes that we studied could be folded into secondary structures, 

which may promote replication slippage by stabilizing the slipped strand or 

blocking the polymerase (Savolainen et al. 2000). Similar large repetitive 

sequences have also been reported in many other insect mitogenomes, but 

they are generally located within the A+T-rich region. Therefore, the 

distinctive repeat region represents an aphid-specific feature, indicating that 
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the repeat region likely originated in the most recent common ancestor of 

aphids because of the consistent position. It is probable that there was only 

one ancestral repeat unit in the aphid ancestor. The ancestral repeat 

sequence could possibly have originated from an extraneous fragment, most 

likely from an endosymbiont or the nuclear genome of the host. Under 

relaxed selective constraints, the ancestral repeat unit sequence would have 

evolved at a fast rate and ultimately would be quite divergent from the 

original sequence. After aphid speciation, the nucleotide mutations may have 

continued independently in different aphid species and slipped-strand 

mispairing may have occurred to different extents among aphids. We 

hypothesize that these processes may have jointly resulted in the various 

repeat regions that we observed in the aphid mitogenomes. 

 

The high levels of sequence identity (over 99%) among repeat units in each 

aphid mitogenome might be a consequence of either recent duplication 

events or concerted evolution. Under the scenario of recent duplication, the 

time for mutation fixation in tandem repeats is not sufficient, leading to the 

observation of high sequence similarity between these repeats. On the other 

hand, a growing body of evidence supports concerted evolution of duplicated 

mtDNA sequences (Sammler et al. 2011; Tatarenkov & Avise 2007). Such 

concerted evolution would result in homogenization of tandem repeats, 

although the underlying mechanism for concerted evolution in mtDNA is not 

fully understood (Sammler et al. 2011; Tatarenkov & Avise 2007). Concerted 

evolution may therefore be an alternative explanation for the high level of 

identity found between repeat sequences within aphid species. Clearly, more 

research is needed in the future if we are to understand the origin and 

evolution of the unique repeat region found in aphids. 

 

Natural selective pressures on mtDNA tend to minimize non-functional gene 

length, eliminate the redundant region and shrink genome size (Schneider & 

Ebert 2004). Mitochondrial evolution has traditionally been viewed as 

favoring genome size reduction (Boore 1999; McKnight & Shaffer 1997; 

Rand 1993). From an evolutionary perspective, it makes sense that the non-

functional repeat region would be eliminated over time in a highly reduced 
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and efficient mitogenome. Nevertheless, the presence of multiple tandem 

units within the repeat region in aphid mitogenomes indicates that the 

selective force has not been as efficient as expected in eliminating these 

sequences. Therefore, we predict that the copy number of repeat unit will 

continue to increase overtime. 

 

5.5.4 Genomic implications 

A tight relationship between the mitochondrion and certain endosymbionts 

has been reported in invertebrates (Werren et al. 2008). Endosymbionts can 

contribute to the biological formation of species and can induce indirect 

selection on insect mtDNA (Gueguen et al. 2010). Wolbachia affect host 

biology in many ways including parthenogenesis (Stouthamer et al. 1999) 

and interestingly, it has been found that the parthenogenesis of at least 40 

species of Hymenoptera is influenced by the presence of Wolbachia 

(Stouthamer et al. 1999). However, no evidence currently exists to suggest 

that aphid parthenogenesis is triggered by endosymbionts. When Wolbachia 

acts as a driving factor influencing Hymenopteran reproduction, it seems to 

also affect other cytoplasmic factors, such as mitochondrial variation 

(Stouthamer et al. 1999; Turelli et al. 1992). Hurst & Jiggins (2005) reported 

that the occurrence of Wolbachia in native fire ants (Solenopsis invicta) 

altered the distribution of mtDNA variation without affecting nuclear DNA. 

 

The endosymbionts in Aphidinae (obligate Buchnera and several other 

facultative symbionts) have been studied extensively (Moran et al. 2008; 

Moran et al. 2009). As mitochondria reside in all types of host cells including 

germ line cells, they could potentially hitchhike along with the vertical 

transmitted endosymbionts to the next generation, under the same selective 

pressures. If endosymbionts do lead to selective sweeps and potentially drive 

species formation, it may explain why aphid mitogenomes have limited 

variation and low levels of intraspecific differentiation. However, little is 

known about the interaction between mitochondria and endosymbionts in 

aphid species. Future studies on aphids that target this association will 

provide us with a better understanding of the mutual evolution of hosts, 

mitochondria and endosymbionts.  
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Chapter 6 

General discussion and conclusions 
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6.1 Research key findings 

This PhD study has examined the population genetics of the Russian wheat 

aphid (RWA, Diuraphis noxia), one of the world’s most invasive agricultural 

pests, throughout its native and introduced global range. 

 

This research has four main outcomes. Firstly, an analysis of the population 

genetic structure revealed that RWAs in China represent a native range 

expansion rather than a recent introduction. Secondly, significant insights 

were gained into the source and pathway of global invasion and the potential 

existence of a wheat-adapted clone that has colonized major wheat growing 

countries worldwide except for Australia. Thirdly, screening of the salivary 

gland gene, peroxidase, indicated that this gene is under selection and may 

be linked to the successful establishment of RWAs on host plants. Finally, 

aphid mitochondrial genomes had similar nucleotide composition with high 

AT content that indicated low variation and a slow mutation rate among 

Aphidoidea. In total, this PhD research has improved our understanding of 

the evolutionary biology and human-assisted movement of Russian wheat 

aphids and more generally, has furthered our knowledge of the scientific 

discipline of invasion genetics. 

 

6.1.1 Characterizing the population genetics of RWA in its native range 

In the current study the highest mtDNA diversity was found in Chinese RWA 

populations compared with other native populations from the Middle East and 

Tajikistan. Rare haplotypes were found that were unique to Chinese RWA, 

and showed recent population expansion in last ten thousand years (Chapter 

2, Figure 2.2). Considering that mtDNA markers have generally revealed low 

variability in aphid population genetic studies (Lozier et al. 2007; Peccoud et 

al. 2009), the number of haplotyes found in this study provides strong 

evidence that western China forms part of the native range of RWAs. This 

was further supported by the microsatellite data that revealed high clonal 

(MLG) diversity in Chinese RWA. In total, these results refute the hypothesis 

that the RWA is an exotic species present in China since 1975 (Zhang et al. 

1999a). 
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The center of origin of RWAs has been proposed to lie in southern Russia 

and central-western Asia (Stary 1999; Smith et al. 2004; Liu et al. 2010). In 

this PhD study, RWAs were collected from Turkey, Iran, Syria and Tajikistan 

and these sites exhibited similar microsatellite diversity to China, but limited 

mtDNA diversity. Only two mtDNA haplotypes were detected from Turkey, 

Iran, Syria and Tajikistan (N=40 combined), while twelve were found in China 

(N=60). The higher nucleotide and haplotype diversity in Chinese RWA 

suggests that this species has had a longer history in the far east of the 

native range in Asia.  

 

Furthermore, the endosymbiont markers also indicated that China is the 

center of RWA origin. Chinese haplotypes were located in the center of the 

native branch of the network (Chapter 3, Figure 3.3), and one haplotype was 

found in 34 individuals from China. It is possible that some locations such as 

Russia, Kazakhstan, or Uzbekistan that were not sampled in this study may 

also have high genetic diversity and be ancestral in the endosymbiont 

network, however, we hypothesize that western China, together with 

Kazakhstan may be the native origin of RWAs. This speculation is based on 

geographic knowledge and genetic data obtained in this study (Chapter 2). 

RWAs from northern Xinjiang in western China had higher genetic diversity 

than southern Xinjiang. No barriers to migration were detected among 

northern China populations located along the thousand kilometer long 

Tianshan Mountain Range, but migration across the Tianshan Mountain 

Range from north to south in western China was limited. However, there is 

no geographic isolation between north-west China and Kazakhstan as Yili 

Valley is a west-facing valley in China bordered by the Tianshan Mountain 

range and opening to Kazakhstan. The earliest date of damage by RWAs in 

Kazakhstan was recorded in 1910 (Zhang et al. 1999b).  

 

Finally, an examination of the peroxidase salivary gland gene, a functional 

protein coding gene critical for aphid survival and feeding, also revealed that 

Chinese RWA have higher genetic diversity than other central Asian native 

populations. Five of the six Chinese populations exhibited unique peroxidase 
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alleles that were only found in East Asia. In summary, all the markers used in 

this study indicate that China forms part of the center of origin of the native 

range of RWAs.  

 

If western China is the center of origin, an interesting question is raised; if 

RWAs spread westward towards Eurasia, why did they fail to spread 

eastward to invade other wheat-growing provinces in eastern China? RWAs 

have not been found in Gansu province (Du 2000), which adjoins eastern 

Xinjiang. The most easterly site in Xinjiang where RWAs have been detected 

(in very low numbers) in the past is Qincheng, located near the border of 

Gansu province (Du 2000; Zhang et al. 1999a).  Despite extensive searching 

during our study, RWA were not detected in Qincheng, or anywhere east of 

Mori in Xinjiang. The Climex model however, predicts with high probability 

that many areas of China provide suitable habitat for RWA, particularly other 

wheat growing districts in north-eastern China (Liang et al. 1999). It is 

possible that a geographic barrier may exist along the eastern boundary of 

Xinjiang region, such as the Gobi desert where cereal crops and alternative 

perennial hosts rarely occur, or that RWAs have a small effective population 

size in the east that limits their potential invasive capacity. It is also possible 

that the natural dispersal capacity of RWA is not very strong. 

 

6.1.2 Comparing genetic diversity within and among native and introduced 

populations of RWA  

This study identified strong genetic structure in native and introduced 

populations worldwide. High genetic diversity was found in the native range 

indicating long-term historical evolution compared with negligible genetic 

diversity in introduced populations as a consequence of founder effects. 

 

Results suggest that RWAs have existed in northern China for a long period 

of time, while in southern China (Cele) low genetic diversity was found 

indicating more recent range expansion/introduction. All genetic markers 

including microsatellite, endosymbiont and peroxidase genes, consistently 

presented low genetic diversity and high homozygosity in southern China. 

These results suggest that the population in Cele was probably founded 
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recently by very few RWAs – probably colonizing from the neighboring site, 

Pishan (Figure 2.3B). Wheat seeds planted in Cele originated from a wheat 

distribution center located in northern Xinjiang, however no genetic signature 

of northern populations was detected in Cele (Figure 2.3B). Therefore it is 

unlikely that RWA eggs/adults were transported to Cele on seed stock or by 

humans. The most likely hypothesis is that Cele represents a natural range 

expansion by RWAs to south east Xinjiang, where RWA populations occur in 

small patches (or oases) discontinuously located along the edge of the 

Taklamakam Desert. Strong geographical isolation is likely to mean that 

limited dispersal occurs, resulting in strong founder effects in newly colonized 

populations in the south.  

 

The expansion of RWAs in western China appears to have been facilitated 

by agricultural activities associated with the human domestication of wheat.  

Furthermore, it can be hypothesized that the widespread planting of 

domesticated wheat may have changed the population structure of RWAs 

across their entire native range by selecting for wheat-adapted genotypes. 

Exclusively parthenogenetic reproduction during the wheat growing season 

would facilitate the fixation of a single wheat-adapted maternal lineage (a 

―superclone‖), as has been observed in other aphid species (Abbot 2011; 

Harrison & Mondor 2011; Vorburger 2006). Under this hypothesis, all existing 

RWAs in Xinjiang and elsewhere in its native range would be descendents 

from this original wheat-adapted genotype – the dominant mtDNA haplotype 

1 found in this study. Additional samples from throughout the native 

distribution of RWA should be analyzed to further test this hypothesis. 

 

6.1.3 Determining the pathway of global invasion of RWAs  

Examination of the historical pathways of invasion of a species can provide 

critical information relating to the biological, ecological and anthropogenic 

factors that enable a species to successfully invade a new environment 

(Ghabooli et al. 2011; Pyšek et al. 2011). With increasing commercial global 

transportation, there is increased potential for plants and animals to be 

introduced into new ecosystems (Conn 2012; Foucaud et al. 2010). The 

introduction of RWAs into new areas is likely to have resulted from both 
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human-aided (contaminated materials) and natural (windborne) means. 

Introduction of RWAs to South Africa, Chile and Argentina probably resulted 

from human movement, potentially through the transportation of 

contaminated wheat material. The precise method of introduction is unknown, 

although the possibility exists that overwintering eggs may have been 

accidently transported, as eggs are difficult to detect and could survive 

extended journeys (Plant Health Australia, Pest Review Fact Sheet, 2010). 

However, the dispersal of RWAs from Mexico to the USA was most likely by 

wind current (Stoetzel 1987) and results from this PhD study also show that 

RWAs have dispersed naturally, probably via wind from south-west to south-

east China.  

 

The current study has revealed that two independent invasion pathways from 

the Middle East to Africa have occurred and has also identified that a single 

invasion event led to the colonization of the New World. All invasive 

populations could be traced back to several clones from the Middle East 

(from Turkey and Syria). Major grain research centers are located in Turkey 

and Syria and it is possible that human movement and/or the distribution of 

seedling material and cultivars from these centers led to the spread of RWA 

from the Middle East to the New World. Although there is no evidence to 

suggest that grain research centers were responsible directly for the two 

invasions identified in this PhD study (from Syria to Kenya and from Turkey 

to South Africa and the Americas), it is important to highlight that the frequent 

transportation of wheat seeds and seedlings among regional institutions 

poses a significant risk potentially facilitating the spread of this damaging 

pest.  

 

6.1.4 Examining the role of natural selection in global RWA invasion 

The current study examined microsatellite and peroxidase genetic diversity in 

worldwide RWA populations and found that the peroxidase gene is under 

selection and may be linked to the successful establishment of RWAs on 

host plants. Balancing selection acting on peroxidase in native East Asian 

populations may have affected the invasion and establishment potential of 

RWAs in this region. The existence of a dominant peroxidase allele present 
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in Middle Eastern populations indicates that strong purifying selection has 

acted on standing molecular variation resulting in the selection of one well-

adapted allele. Introduced populations were also monomorphic, however it is 

impossible to conclude whether this is the result of demographic founder 

effects or directional selection providing an allele-dependent advantage. 

Further studies investigating peroxidase enzyme activity for specific alleles 

and injury rates on wheat are required. 

 

6.1.5 Investigating the low mitogenome variation of RWAs  

Comparative results suggest that divergence estimates among aphid 

mitogenomes were lower than that found in other insects in the same order 

(e.g. white flies), indicating that aphid mtDNA experiences a relatively lower 

mutation rate (Thao et al. 2004). Aphid mitogenomes were found to share 

common features of high A+T content and negative GC skew. These 

features may provide a potential explanation for the low mutation rate 

commonly observed in aphid mtDNA studies.  

 

6.2 Research implications for biosecurity 

Significant insights have been gained into the source and pathway of global 

RWA invasion and the potential existence of a wheat-adapted genotype that 

has colonized major wheat growing countries worldwide except for Australia. 

This research has major biosecurity implications for Australia’s grain industry. 

 

The RWA is a major pest of grain producing countries worldwide, except 

Australia, where it has been given the highest biosecurity risk rating and pre-

emptive management strategies have been developed.  This PhD research 

has shown that despite human movement, grain transportation and economic 

trade, RWAs have not successfully invaded or established in other areas of 

China.  Natural (flight and wind assisted) dispersal appears to be the main 

mechanism responsible for the expansion of RWA throughout China. Given 

the geographic isolation of Australia from other wheat producing nations, 

natural dispersal via wind currents seems unlikely, however air surveillance 

may be a useful precaution. Provided strict quarantine measures are in place, 



 

195 
 

there is a low probability that RWAs will invade new areas through grain 

importation channels.  Historically however, insufficient attention has been 

given to ensuring effective quarantine examination of grain imports and the 

transfer of plant cultivars from wheat breeding centers, and contaminated 

material has been the likely source of most of the invasions of RWAs 

throughout the New World.  

 

Finally, global management of RWA relies on strategies that provide 

immediate control or damage relief (eg. pesticide use) and long-term 

solutions based on wheat breeding programs to identify resistant cultivars. 

Wheat varieties grown in China appear to be tolerant to RWA, and the 

damage inflicted by RWAs to grain yield is relatively low (0 to 10.56% yield 

loss; Zhang et al. 1999a). To date, no work on resistance genes in these 

tolerant cultivars has been undertaken and this is an important avenue for 

future research. 

 

6.3 Research gaps 

While this PhD study is the most comprehensive population genetics study 

undertaken on RWA to date, some questions still remain unanswered.  Firstly, 

this study revealed the unexpected result that RWA populations in Ethiopia 

had very high microsatellite genetic diversity and most likely form part of the 

native range. However, both the endosymbiont and salivary gland genes 

failed to amplify despite exhaustive efforts. This was the only sample 

worldwide for which this problem was encountered. Why? Mitochondrial DNA 

was easily amplified and revealed that the samples were correctly identified 

as RWA. It is presumed that strong isolation and independent diversification 

in Ethiopia may have resulted in such a level of divergence that primers no 

longer matched or that the lineages underwent replacement by rapidly 

evolving genes (i.e. pseudogenes of endosymbiont). Such isolation might 

also explain why Ethiopian RWAs have not (apparently) expanded into 

neighboring countries.    
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Secondly, little insight into the genetic structure of European RWA has been 

gained. Unfortunately, only one French and one Hungarian RWA (individual) 

was obtained from Europe. Some populations in Europe such as Ukraine are 

believed to be part of the native range of RWAs (Stary 1999; Zhang et al. 

1999b), however it is unclear in other countries such as Hungary and Czech 

whether they are introduced or native (Stary 1999; Zhang et al. 1999b). What 

is the border of the native range in Europe? In this PhD study, the only 

sample from Hungary suggested that it had a similar genetic structure to 

native populations, while the French sample presented a signature of being 

an introduced population (Chapter 3, Figures 3.1, 3.2 and 3.3). However, no 

conclusions can be formed on the pattern of RWA distribution in Europe 

based on two individuals, nor can the boundary between native and 

introduced populations be discerned. If neighboring native and introduced 

populations can be identified, it would be interesting to study the admixture 

between populations and where they are sympatric, compare relative 

competitive ability and performance on different hosts.  

 

6.4 Research contribution to the field of invasion genetics 

6.4.1 Evolutionary mechanisms of invasion 

Successful biological invasion can be achieved by two mutually exclusive 

strategies, by having a general purpose genotype or through rapid adaptation 

(Parker et al. 2003). Invasive species with a general purpose genotype can 

colonize a wide range of environments because of phenotypic or 

developmental plasticity (Baker 1974). Several factors point to this second 

strategy as contributing to RWA invasion success. RWA, like all aphids, have 

a propensity for both phenotypic and developmental plasticity.  We have also 

shown that invasive populations of RWA are characterized by a single 

mitochondrial haplotype, a similar nuclear multilocus genotype, as well as a 

shared endosymbiont haplotype. Although we did not examine the 

physiological tolerance and plasticity of RWA in invasive populations, this 

limited genetic variation amongst invasive populations is consistent with the 

idea of a general purpose invasive RWA genotype. Asexual reproduction is 

also thought to facilitate successful invasion, proliferation and spread by 
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eliminating the need to find mates at low densities. Indeed, invasive 

populations of RWA have all been asexual.   

 

In less plastic species, rapid local adaptation is often essential for the 

establishment and spread of invasive species in novel habitats, often leading 

to the formation of regional ecotypes (Clements & Ditommaso 2011; Sakai et 

al. 2001; Sexton et al. 2002). Rapid adaptation during invasions most often 

occurs in an outcrossing breeding species with high genetic diversity, 

multiple independent introductions, and frequent gene flow among 

populations (Parker et al. 2003). Many adaptations have been reported in 

invasion genetics studies, such as the evolutionary changes of flight 

morphology in Pararge argeria (Hill et al. 1999), the selection of flowering 

time at different latitudes in Solidago altissima (Weber & Schmid 1998), and 

alternative modes of reproduction in introduced aquatic Butomus umbellatus 

in North America (Eckert et al. 2003). However, incipient adaptations in 

response to invasions are difficult to detect in terms of underlying selection 

on dispersal capacity and physiological tolerance to immediate environmental 

stress (Lee 2002). 

 

In Chapter 4, evidence has been provided that rapid adaptation has occurred 

in both native and invasive RWA populations by directional selection of a 

salivary peroxidase gene in native populations. Rapid evolution in salivary 

gland genes has also been reported in the pea aphid by gene duplication and 

diversifying selection (Carolan et al. 2010).  Despite limited genetic variability 

in invasive RWA populations, resistance-breaking biotypes have evolved in 

both South Africa and the USA (Haley et al. 2004; Tolmay et al. 2007).  Aphid 

salivary gland proteins are thought to be essential in regulating host plant 

interactions, including resistance responses (Walling 2008). Hence, rapid 

adaptation in salivary gland genes may be responsible for these instances of 

biotype evolution. 

 

Studies of aphid invasion genetics provide an opportunity to examine the two 

mechanisms of invasion (―general purpose genotype‖ vs ―rapid adaptation‖) 

and to reconcile the potential occurrence of both mechanisms acting at the 
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same time because aphids reproduce asexually and undergo rapid local 

adaptation in response to environmental change. 

 

6.4.2 Evolution and local adaptation 

The evolution of locally adapted genotypes requires that sufficient genetic 

diversity and a large candidate gene pool exists (Sakai et al. 2001). In the 

current study, native populations of RWA were found to possess high levels 

of genetic variation as a consequence of having a holycyclic life cycle and 

high levels of gene flow within each local area. This is expected to result in 

RWAs having a high capacity for range expansion in native areas. However 

high rates of gene flow could also constrain adaptation to local conditions as 

gene flow may limit invasive species range expansion (Holt & Keitt 2005; 

Sakai et al. 2001). RWAs in northern Xinjiang (China) had the highest genetic 

diversity in the far eastern Asian range and a high rate of gene flow was 

found among populations (see Chapter 2). However, limited long distance 

migration was detected. These results suggest that gene flow from the center 

of the distribution range may prevent adaptation of the peripheral population, 

and then prevent more distant range expansion (as has been proposed by 

Sexton et al. 2009). Thus, gene flow not only enhances the homogenizing 

effect that stabilizes effective population size (Motro & Thomson 1982), but 

also may prevent the potential spread of this species from its initial range to 

new areas. Comparative invasion biology studies examining the level of 

genetic exchange among populations are required if we want to predict 

possible future expansions of invasive species. 

 

Significant local adaptation in native RWA populations arises as a 

consequence of a host plant-aphid interaction and selection acting on 

salivary gland genes (Chapter 4). Strong evidence for natural selection acting 

on the peroxidase salivary gland gene in native populations in the Middle 

East and East Asia was found and peroxidase gene diversity was highly 

structured in these two different regions. As introduced populations were 

monomorphic for peroxidase, no local adaptation was detected and it was 

impossible to disentangle demographic founder effects from possible 
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directional selection effects.  Definitive conclusions cannot be formed as to 

whether peroxidase plays a functional role in enhancing RWA invasiveness. 

 

Invasive species may expand their distributional ranges via local adaptation, 

and the rapid response to natural selection resulting from high levels of 

genetic variance within populations could help to increase the rate of 

outcrossing as well as the number of founders that newly colonize an area. 

The capacity for asexual reproduction paradoxically influences the invasion 

genetics of aphids. Predominantly anholycyclic parthenogenesis in invasive 

ranges decreases genetic diversity but increases rapid population expansion 

and enables rapid local adaptation to environmental stress (Simon et al. 

1999). Furthermore, population bottleneck events occur during colonization 

and genetic drift will have an especially strong effect in less genetically 

diverse introduced populations compared with native populations.  

 

Two important evolutionary findings have arisen from this study on the global 

invasion of RWAs. Firstly, strong evidence of local adaptation in both native 

and invasive populations was found i.e., directional selection acting on 

salivary gland peroxidase in native populations and new biotypes emerging in 

invasive populations. Secondly, human aided dispersal has spread RWA into 

a range of new exotic environments, potentially accelerating the evolution of 

new local adaptations. In the current study, very little genetic variation was 

found among invasive populations, however only three decades have passed 

since this pest has invaded the New World. Evolutionary changes will 

become apparent as RWA populations respond and adapt to new and 

dynamic environments (Lee 2002; Sakai et al. 2001). Understanding the 

evolutionary processes that influence biological invasions is critical to 

predicting the long-term ecological success of an invasive species and the 

long-term risks of broad scale establishment of an invasive species (Parker 

et al. 2003). 

 

6.4.3 Genetic diversity and invasion success 

Populations of invasive species generally exhibit low genetic diversity and the 

genetic consequences of this can be broadly categorized into two groups; 



 

200 
 

low genetic diversity does not limit population growth and persistence and 

does not lower the probability of invasion success or conversely, low genetic 

diversity erodes as a result of inbreeding, slowing evolutionary responses to 

selection and constraining a species ability to adapt to the new environment. 

The fact that new virulent biotypes of RWAs have emerged in introduced 

populations in the USA and South Africa in the last decade provides 

evidence that RWAs are capable of rapid evolution and local adaptation 

(Basky et al. 2002). Results from this PhD study indicate that both USA and 

South African RWA populations possess very little genetic diversity, and in 

South Africa it appears that genetic variation may have eroded over the last 

decade. Three multilocus genotypes were found in 2000, while the 2011 

sample was monomorphic. Therefore, limited genetic diversity does not 

appear to constrain RWA invasion success. Similar results have been 

reported for other invasive species (Sakai et al. 2001; Suarez et al. 2008). 

 

6.4.4 Genetic markers for studying recent invasions 

Finally, molecular genetic markers have been used widely in invasive species 

studies to provide information on temporal and spatial genetic patterns. 

Neutral markers are generally targeted and in most cases, they have 

provided an adequate level of resolution and have enabled the advancement 

of our understanding of invasion genetics. However, for some taxonomic 

groups (such as aphids) and in the case of very recent invasion events 

traditional markers have proven to be inadequate. In particular, previous 

studies that have examined the invasion history of RWA have failed to 

identify sufficient genetic variation to discriminate among introduced 

populations (Shufran et al. 2007; Shufran & Payton 2009). In this PhD study, 

fast evolving Buchnera genes were used to examine RWA global invasion 

during the last thirty years, that is, population genetic changes over an 

extremely short time frame.  Microsatellite markers failed to provide such a 

level of resolution. The fast mutation rate of evolution of RWA endosymbionts 

(Moran et al. 2009) enabled a high level of sensitivity for analysis of recent 

global invasion by this damaging pest species. Results confirm that a tight 

relationship between the bacterial symbiont and insect host exists, and rapid 

evolution of the endosymbiont at the population level of the species. The use 
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of endosymbiont markers in aphid invasion genetics has proven to be a novel 

and valuable approach. Furthermore, it is becoming clear that endosymbionts 

are much more common in insects than previously thought (Kitushi 2009; 

Oliver & Moran 2009). As such, endosymbiont sequence analysis should be 

applied to population genetic studies in insects more broadly. 
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