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Abstract 

Many software applications extend their functionality by dynamically loading 

executable components into their allocated address space.  Such components, 

exemplified by browser plugins and other software add-ons, not only enable 

reusability, but also promote programming simplicity, as they reside in the same 

address space as their host application, supporting easy sharing of complex data 

structures and pointers. 

However, such components are also often of unknown provenance and quality and 

may be riddled with accidental bugs or, in some cases, deliberately malicious code. 

Statistics show that such component failures account for a high percentage of 

software crashes and vulnerabilities.  Enabling isolation of such fine-grained 

components is therefore necessary to increase the stability, security and resilience of 

computer programs. 

This thesis addresses this issue by showing how host applications can create isolation 

domains for individual components, while preserving the benefits of a single address 

space, via a new architecture for software isolation called LibVM.  Towards this end, 

we define a specification which outlines the functional requirements for LibVM, 

identify the conditions under which these functional requirements can be met, define 

an abstract Application Programming Interface (API) that encompasses the general 

problem of isolating shared libraries, thus separating policy from mechanism, and 

prove its practicality with two concrete implementations based on hardware 

virtualization and system call interpositioning, respectively.  The results demonstrate 

that hardware isolation minimises the difficulties encountered with software based 

approaches, while also reducing the size of the trusted computing base, thus 

increasing confidence in the solution’s correctness.  

This thesis concludes that, not only is it feasible to create such isolation domains for 

individual components, but that it should also be a fundamental operating system 

supported abstraction, which would lead to more stable and secure applications. 
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Chapter 1: Introduction 

1.1 MOTIVATION 

A “process” is the key software abstraction supported by modern operating systems 

for protecting and managing separate applications.  However, with the rapid spread 

of component based software, a contemporary application typically extends its 

functionality by loading components dynamically into its process address space.  For 

example, operating system kernels load device drivers, web browsers load browser 

plug-ins, and many applications support some form of extension components to 

provide or augment their basic functionality.  Although operating system processes 

have well-defined isolation boundaries and inter-process communications 

mechanisms [130], current operating systems provide insufficient mechanisms for 

isolating or protecting components of a particular application from each other [93].  

This is clearly demonstrated by the fact that component based software extensions 

often decrease the reliability of the hosting application; a badly-written or 

misbehaving component can damage the containing host, and other components, 

either accidentally or deliberately. 

The statistics are revealing: over 85% of Windows XP crashes are due to faulty 

device drivers [125], and Linux drivers have 3 to 7 times the bug count of the 

kernel  itself [20].  Such failures are not limited to kernel drivers; software 

applications also suffer similar problems.  Zeigler [145] indicates that over 70% of 

crashes in the popular browser Internet Explorer are due to 3rd party add-ons.  In 

addition, over 50% of CERT-reported security threats are due to buffer overflow 

vulnerabilities [77].  The Java Virtual Machine (JVM) has similar vulnerabilities, 

because any misbehaving Java Native Interface (JNI) component has the potential to 

overwrite critical memory regions of the JVM, bringing down the entire virtual 

machine [16].  Clearly, as many researchers have emphasised, a critical need is better 

component isolation so that hosts are isolated from any extension components they 

incorporate [57, 59, 82, 126]. 

Modern trends in browser architectures also emphasise the gravity of this issue; both 

Microsoft’s Internet Explorer [145] and Google’s Chrome [8] browsers have 
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changed to multi-process architectures in which program components are isolated 

into several, disparate operating system processes.  The Mozilla Firefox web browser 

too, has introduced limited support for isolating plugins into disparate processes, in 

order to reduce the possibility of vulnerabilities in the plugins leading to the whole 

system being compromised [98]. 

This thesis addresses this issue, and revisits the component isolation problem, with a 

view to preserving the key benefits of component based programming while 

preventing errant or misbehaving components from compromising their host. 

1.1.1 Definition of a Component 

Before discussing component isolation further, the term ‘component’ must be 

defined in a suitable way, as a general consensus on what constitutes a software 

component remains somewhat vague.  We provide an extensive discussion of these 

definitions in Chapter 2, but for the purposes of this thesis, we limit a component to 

be any executable binary unit which is loaded by an application into its own private 

address space, with communication taking place between the component and its host 

application via a well-defined interface.  Primarily, this will be in the form of 

dynamic link libraries (DLL)/shared object (SO) libraries, which form the primary 

means of composability in modern operating systems and applications.  Therefore, 

this thesis focuses on component isolation at the DLL/SO level, with the expectation 

that isolation at this lower level will enable higher level constructs to be build upon 

it.  Future references to the term “component” therefore, will specifically refer to this 

narrower definition. 

1.1.2 Benefits of Components in Shared Address Spaces 

While the benefits of components as units of composition are well understood [93], a 

key benefit in DLL/SO components is that they share the same address space as their 

host, which is a critical function for enabling easy data exchange between a 

component and its host container, or between several different components.  These 

advantages are best contrasted by comparing the benefits of private address spaces 

against shared address spaces. 
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Chase et al. [15] identify three main advantages to private address spaces. 

1. They increase the amount of address space available to all programs. 

2. They provide hard protection boundaries. 

3. They permit easy cleanup when a program exits. 

However, private address spaces come with the following disadvantages. 

1. It becomes increasingly difficult to share data between address spaces. 

2. There are significant performance costs in crossing address space 

boundaries. 

3. Synchronization between processes is usually required when address 

spaces are switched. 

With regard to the first disadvantage, the main issue is that pointers have no meaning 

beyond the address space in which they were originally created, requiring that they 

be specially manipulated or readjusted before use.  Consider a simple data structure 

with a pointer to another data structure, such as a linked list.  Any attempt to pass this 

data structure unmodified between private address space boundaries would render 

the data structure invalid as the memory address to which the structure is copied 

cannot be guaranteed to be the same.  All pointers within the structure would have to 

be readjusted so that they remain valid in their new location.  Therefore, some 

additional technique is needed to share data structures between address spaces, such 

as marshalling or pointer “swizzling” [140], adding overhead and complexity to the 

process and making data sharing between address spaces awkward. 

Secondly, address space switching has traditionally come at significant cost.  While 

address space switching with schemes like hardware supported memory 

segmentation do not have such costs, they have fallen out of favour due to the 

increase in complexity mentioned above.  The currently available schemes, such as 

operating system supported context switches, incur significant overhead, and 

synchronization is required when crossing address spaces [19]. 

Therefore, the benefits of address space sharing have given rise to research into 

single address space operating systems, particularly in 64 bit environments, where 

address space is abundant [15, 53, 75]. 
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Many of the approaches to component isolation do not address the problem of shared 

address spaces satisfactorily, falling back to traditional RPC mechanisms and shared 

memory pages in order to pass data between a component and its host [8, 32, 144, 

145].  This, of course, incurs a performance and complexity penalty in terms of 

parameter marshalling across process boundaries, or reduced functionality (the 

inability to use pointers) when using shared pages.  

Thus, the very benefits of fine-grained components are lost in the process, as simple 

and efficient sharing of data structures is hampered.  Therefore, this issue too was a 

key motivating factor in this thesis. 

1.2 RESEARCH PROBLEM 

1.2.1 Problem Statement 

Current component based software may decrease the reliability of the hosting 

application, as a badly written or misbehaving component can damage the containing 

host and other components.  Part of the problem is that the Operating System (OS) 

provides insufficient mechanisms for isolating program components from each 

other [93], a different situation from OS processes, which have well-defined isolation 

boundaries and inter-process communications mechanisms between them [130].  

This research fills this gap as follows. 

1. By creating protection domains for individual components, so that the 

interaction between components can be better controlled.  

2. By preventing an errant or untrusted component from corrupting critical 

memory regions or having adverse effects on the hosting process. 

3. By preserving the benefits of shared address spaces for components. 

These mechanisms together serve to reduce the chances that a failure of a single 

component translates into an application-wide failure, increasing the reliability of the 

containing application.  It should be noted that this research develops mechanisms 

for isolation, and not a policy. Additionally, it does not guard against vulnerabilities 

in the components themselves, but provides a mechanism by which the effects of 

such vulnerabilities can be confined to the protection domain/sandbox within which 

the component executes. 
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1.2.2 Research Questions 

The research problem outlined above leads to several research questions. 

1. Can protection domains for individual components be created with 

acceptable overheads? 

2. What functionality should an isolation container provide? 

3. What conditions must be satisfied in order to have confidence that an 

implementation of an isolation container provides the desired 

functionality? 

4. Can a generic API be designed for this purpose, in such a way that it 

separates isolation policy from isolation mechanism? 

5. Can the benefits of shared address spaces be preserved during its 

implementation? 

1.2.3 Research Aims and Contributions 

The main aim of the research described in this thesis is to isolate untrusted 

application components from their host, so as to increase the reliability and security 

of the host application, while preserving the benefits of shared address spaces.  

Untrusted components include components which: 

a. are not intentionally malicious, but may adversely impact the host due to a 

failure, such as a mistaken buffer overrun which overwrites and corrupts 

the host application’s state; 

b. contain exploitable vulnerabilities, such as buffer overflow 

vulnerabilities [23], which can be exploited by a malicious attacker to 

compromise the host application; or 

c. potentially malicious components dynamically loaded from unknown 

sources, which may present a security risk to the host. 

This thesis analyses and describes solutions to the issue of dealing with such 

untrusted components, by providing mechanisms to create isolation domains and to 

constrain the execution of components executing within them, thus protecting the 

host from such components. 
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Towards this end, the thesis analyses the causes and symptoms of failure in a 

component, as shielding against component failure necessitates determining the 

causes of component failure.  This task however, is made complicated due to the fact 

that a host and its components may interact in very complex ways. 

The main mechanism for a host to invoke functionality in a component is via an 

agreed upon interface which is in essence, a local procedure call.  Such a procedure 

call could fail due to any number of reasons, from a bug in the component itself, to a 

rarely triggered edge condition or a transient reason such as a lack of host system 

resources.  The thesis therefore makes a distinction between the classes of failure that 

an isolation framework can realistically deal with and classes of failure that cannot 

be handled.  For example, a logical bug in the component cannot be protected 

against, but an illegal attempt by the component to access memory outside of its 

allotted region could be intercepted and appropriate measures taken to abort the 

offending component, thereby preventing the failure of the host application. 

The thesis also determines the protection mechanisms which are applicable and 

practical for protecting components.  Current research has identified a variety of 

methods which can be used to isolate program components from each other, such as 

hardware enforced protection mechanisms and software-based protection schemes.  

Suitable mechanisms are identified for implementing protection, while guarding 

against the causes of component failure which have been identified.  The available 

mechanisms are critically evaluated and the most suitable mechanisms chosen to 

implement protection. 

The thesis defines an abstract component isolation API that allows a hosting process 

to create and manipulate component isolation domains, independent of protection 

mechanism, thus separating policy from mechanism. 

Two concrete implementations of the above API are described, and its performance 

and effectiveness evaluated. 

1.3 RESEARCH METHODOLOGY 

The main research question involves devising methods for protecting a host 

application from components loaded into its address space.  Hence, the main 

hypothesis is that host applications can be supported to create protection domains for 
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individual components and thereby prevent a faulty component from adversely 

affecting its host process.  The “scientific method” was employed in answering this 

question [12, 81], and the individual research questions in Section 1.2.2 were 

empirically tested through objective quantitative inquiries, aided by the traditional 

method of developing a prototype implementation of the protection mechanisms. The 

methods used are in line with empirical research approaches detailed elsewhere [71, 

72]. 

The overall process was sub-divided into several smaller tasks, all of which 

incrementally met the research aims.  While the process as a whole was iterative in 

nature, the initial step was a review of the background literature, which consisted of 

the identification of the causes and symptoms of failure, followed by a review of 

existing mechanisms for dealing with such failure as well as the drawbacks in 

existing protection systems which utilised those mechanisms.  The overall 

architecture of the system was defined, including the functional capabilities and 

guarantees that had to be provided by an isolation container, and the conditions under 

which those guarantees could be made. Subsequently, protection mechanisms had to 

be implemented which met the stated functional specification, and the abstract API 

was implemented.  The development of the two prototype implementations followed 

standard software engineering practice and adopted an iterative approach to 

development.  Finally, in order to determine the validity of the resultant software, the 

solution was evaluated against its stated goals. 
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The overall methodology employed in this research is depicted in Figure 1.1. 

The next sections discuss these overall steps in greater detail, and point to the 

relevant sections in which more detailed procedures can be found. 

1. Background Review 

(Identification of 

causes/symptoms of failure 

and identification of 

protection mechanisms) 

2. Development of functional 

specification and conditions 

for correctness 

3. Definition of architecture 

and abstract API 

4. Implementation of 

component isolation 

framework 

5. Evaluation against stated 

goals 

Figure 1.1: Overall research methodology 
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1.3.1 Background Review 

1.3.1.1 Goal definition 

This stage seeks to identify the causes and symptoms of failure as well as the 

protection mechanisms available for isolating components, leading to a shortlist of 

the most suitable mechanisms for the purpose. 

1.3.1.2 Motivation 

This stage will lay the groundwork for answering all major research questions 

identified in Section 1.2.2. Identifying the causes and symptoms of failure is 

necessary in devising methods for isolating those failures. Identification and 

classification of available protection mechanisms is necessary to determine the most 

relevant isolation mechanisms for implementing isolation domains. Finally, these 

mechanisms must be critically evaluated and the most suitable mechanisms must be 

chosen. 

1.3.1.3 Goals 

• Identification of causes and symptoms of failure 

• Identification and classification of available protection mechanisms 

• Identification of suitable mechanisms for implementing isolation domains 

1.3.1.4 Design 

The stage will be mainly an exploratory study aimed at laying the groundwork for 

understanding the available mechanisms, and will be in the form of a literature 

review. The process is detailed in Chapter 2. 

1.3.2 Development of Functional Specification 

1.3.2.1 Goal definition 

This goal defines the isolation properties as well as the conditions that must be 

satisfied in order to have confidence that these properties remain present. 

1.3.2.2 Motivation 

In order to isolate components, the specific definition of what isolation means must 

be developed. The functions that must be provided to implement this isolation must 
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also be identified. Finally, the conditions which must hold in order to have 

confidence that the isolation can function properly, must be identified. 

1.3.2.3 Goals 

• Identify threat model 

• Identify the functionality that an isolation framework must provide 

• Develop a specification and the conditions under which the specification 

holds 

1.3.2.4 Design 

The isolation properties and relevant conditions are developed mainly through 

rigorous argument. The details, including the methodology for developing the 

conditions, are presented in Section 3.4. 

1.3.3 Definition of Architecture and Abstract API 

1.3.3.1 Goal definition 

This stage defines the architecture and API which can be used to realize the 

functional specification previously developed in Stage 2. 

1.3.3.2 Motivation 

This stage will use the outcomes of the previous stages to define an architecture for 

the isolation container and subsequently develop and implementation agnostic API. 

The architecture will also need to take into account practical development concerns 

and the API will have to be developed accordingly. 

1.3.3.3 Goals 

• Identify development concerns 

• Define overall architecture 

• Define abstract API to implement architecture 

• Highlight implementation concerns 
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1.3.3.4 Design 

This stage will mainly be carried out through a rigorous analysis of the outcomes of 

Stages 1 and 2. This is detailed in Chapter 3. 

1.3.4 Implementation of Component Isolation Framework 

1.3.4.1 Goal definition 

This stage is an empirical evaluation of whether the hypothesised framework can be 

implemented in practice. 

1.3.4.2 Motivation 

The purpose of this stage is to determine whether the architecture and design of the 

previous stage can be realized in practice, via a working prototype. In addition, it 

must demonstrate that the design is indeed abstract enough for multiple 

implementations to be possible. 

1.3.4.3 Goals 

• Provide proof that architecture is viable 

• Provide evidence that API is implementation agnostic by creating at least 

two implementations 

• Provide sufficient detail for recreating/duplicating this system 

1.3.4.4 Design 

This stage will be an empirical test of whether the architecture and design of 

previous stages can be implemented in practice. The development process will 

follow an iterative process, using standard software engineering practices. Relevant 

design patterns will be applied where appropriate. Premature optimization will be 

avoided, in favour of clarity of implementation. Testing will be done at the API level, 

as this represents the most important functionality in the system (black box testing as 

opposed to white box testing). By providing two separate implementations 

employing different isolation mechanisms, it will be possible to provide objective 

evidence that the API is implementation agnostic. 

The detailed steps for recreating these implementations are provided in Chapter 4 

and Chapter 5. 
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1.3.5 Evaluation 

1.3.5.1 Goal definition 

This stage analyses whether the implementations meet the security and performance 

expectations set for it. 

1.3.5.2 Motivation 

The goal of this stage is to analyse whether the prototype implementations are viable 

in practice, in terms of providing the security guarantees identified previously, as 

well as being able to provide the required isolation with reasonable overheads. 

1.3.5.3 Goals 

• Testing whether performance overheads are acceptable 

• Analysis of whether implementation meets functional goals 

1.3.5.4 Design 

The performance overheads will be measured through a combination of micro and 

macro benchmarks. All benchmarks will follow the basic procedure below. 

1. Running workload without isolation for a suitable number of iterations 

2. Running workload within isolation container for the same number of 

iterations 

3. Running workload against similar solutions for the same number of 

iterations 

4. Repeating this process three times and averaging the values for 

comparison purposes 

The micro benchmarks will measure performance characteristics testing specific 

aspects of functionality. The macro benchmarks will measure performance 

characteristics under general workloads. The industry standard SPEC benchmark 

[55] is particularly suited for measuring compute and IO heavy applications, and will 

be one standardised measure of performance. In addition, other relevant tests will be 

run an equal number of iterations, and the average execution times will be compared. 

These measurements, as well as results, are detailed in Chapter 5: 
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The analysis of whether the implementation meets its functional goals will be 

accomplished through the following methods. 

1. Controlled tests which test specific aspects of the isolation mechanism 

(Detailed in Section 5.3.3) 

2. Rigorous argument that analyses whether the conditions under which the 

security specification holds, is maintained. (Detailed in Chapter 6 ) 

3. Using the Common Criteria [67] as a guiding framework (Detailed in 

Chapter 6) 

1.4 THESIS STRUCTURE 

Chapter 1 introduces the research problem, aims, methods and structure of the thesis.  

It gives a working definition of the term “component”, some background to the 

importance of the problem, and the key contributions that this thesis aims to make. 

Chapter 2 provides a detailed review of the literature.  It provides an analysis of the 

causes and symptoms of failure as well as the mechanisms available to isolate 

components.  The mechanisms as well as the work done by others in this area, are 

critically reviewed.  Based on this review, the chapter describes a classification of 

isolation mechanisms, which resulted in a publication [46]. 

Chapter 3 provides an overview of the design and rationale behind the isolation API, 

termed LibVM, and lays the groundwork for all concrete implementations of the 

API.  It provides an architectural overview as well as an analysis of implementation 

concerns, which are useful to those building a conformant implementation.  The 

concepts and implementation described subsequently has resulted in an accepted 

publication [45]. 

Chapter 4 describes the first concrete implementation of the LibVM API, based on 

process tracing facilities [70] provided by the operating system.  It is an in-depth 

discussion of the technicalities in realizing the API, the tradeoffs between various 

design decisions, and the implications on isolation. 

Chapter 5 describes the second concrete implementation of the LibVM API, based on 

hardware virtualization support available in modern processors.  It describes the 

architecture of the system, and provides an in-depth comparison against some 
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competing solutions, including an analysis of functional and performance tradeoffs.  

The process-tracing based implementation of LibVM is also compared against the 

hardware solution.  The implementation described here has resulted in a publication 

which is in submission [44]. 

Chapter 6 provides a detailed functional evaluation of both LibVM implementations 

against a rigorous specification of its function.  It identifies the strengths and 

weaknesses in each implementation.  The ISO standard Common Criteria for 

Information Technology Security Evaluation was also used as a guiding framework 

in this evaluation. 

Chapter 7 describes the final conclusions of this thesis, and describes future 

enhancements as well as directions for further research. 

1.5 CONCLUSION 

This chapter has provided an overview of the key research problem: that of isolating 

an untrusted component from its host application, such that the host application can 

shield itself from any harmful effects of such components.  It has provided the 

background and motivation to this thesis, the general aims of the research, as well as 

the unique contributions made by this thesis, including the definition of an abstract 

API for isolating components, the realization of two concrete implementations of that 

API, and the preservation of address space transparency to preserve the benefits of 

single address space programming.  The research methodology followed in the thesis 

has been outlined and the chapter has also described the structure of this thesis. 

The next chapter provides a more detailed exploration of the problem and its 

background, as well as existing solutions, their drawbacks and lays the theoretical 

foundation for the rest of the thesis. 
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Chapter 2: Background and Literature 

Review 

2.1 INTRODUCTION 

This chapter puts the research problem into perspective by providing some working 

definitions, examining prior research in this area and highlighting the technology 

gap.  It starts by providing a working definition of a “software component” that will 

be used for the rest of this thesis, as the term itself is somewhat vague and 

amorphous in general usage.  This is followed by highlighting the importance of 

isolating software components, reviewing the key literature addressing the issue, and 

the various techniques available for the task.  The existing techniques are divided 

into five main mechanisms, as published elsewhere [46] as a part of this research.  

Finally, a comparative analysis of these techniques is made, in order to highlight the 

gap that is being addressed by this research. 

2.2 SOFTWARE COMPONENTS 

2.2.1 What are Software Components? 

The idea of reusable components was first proposed as far back as 1968 by 

McIlroy [91].  The idea was to create a library of reusable software units as a 

solution to the “software crisis”, i.e., as a solution to the problem of unreliable, 

poorly performing software systems which practitioners were increasingly grappling 

with at the time [28], and for which no “silver bullet” exists to this day [35]. 

While components are an essential means of how any piece of software is 

constructed today, the definition of what constitutes a software component has 

evolved over time.  Mendelsohn [93] provides an overview of this evolution, from 

the earliest form of reuse in the form of subroutines, to statically linked libraries, 

followed by dynamically linked libraries and culminating in component technologies 

such as Microsoft ActiveX/COM, and cross-platform portable components such as 

JavaBeans.  
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As a result, the definition of what constitutes a software component remains vague 

and amorphous. Szyperski [128] defines it as 

“a unit of composition with contractually specified interfaces and explicit context 

dependencies only.  A software component can be deployed independently and is 

subject to composition by third parties”.  

Szyperski [128] also states that the need for independent deployment requires the 

component to be in binary form and therefore, any composable unit in binary form is 

a component, which includes a wide range from DLLs, Microsoft ActiveX/COM, 

XPCOM, CORBA components to Java classes and .NET assemblies or even entire 

applications. 

Law and McCann [79] define a component as an “object encapsulating state and 

behaviour in order to achieve some specific task”.  Typical characteristics of a 

software component [79, 93] are: 

1. Well defined interfaces defining the operations available on the 

component. 

2. Use of object-orientated techniques by which components can be extended 

or specialized. 

3. A binary calling standard for mapping between different implementations. 

4. A means of instantiating and destroying components dynamically, and the 

ability to recursively nest or assemble multiple components in order to 

create richer components. 

5. Machine readable meta-class descriptions to support tools. 

6. Persistence mechanisms. 

7. Standard packaging and registration mechanisms. 

Despite the above identified features, much of current component based reuse 

continues to be in the form of code libraries.  For example, Microsoft Windows 

utilises dynamic link libraries and Unix based operating systems utilise Shared 

Objects libraries [93].  These do not meet some of the typical characteristics 

highlighted by Law and McCann, such as the use of object-oriented techniques for 



 

Chapter 2: Background and Literature Review 17 

enabling extension, machine readable meta-class descriptions for tool support or 

even binary calling standards for mapping between different implementations. 

Therefore, we limit a component to be any executable binary unit which is loaded by 

an application into its own address space, with communication taking place between 

the component and its host application via a well-defined interface, since both of the 

definitions given above are too expansive in their scope.  Primarily, this will be in the 

form of dynamic link libraries (DLL)/shared object (SO) libraries, which form the 

primary means of composability in modern operating systems and applications.  

Furthermore, most other binary component standards such as COM and the Mozilla 

Foundation’s XPCOM [99] are typically built on top of basic DLLs.  Therefore, 

enforcing protection at a DLL/SO level would allow these higher level component 

models to utilise such protection mechanisms with relative ease. 

2.2.2 The Need for Components 

Traditionally, the basic abstraction offered by an operating system for protecting 

applications from each other is that of a process [130].  A process can be thought of 

as having its own virtual CPU and can be considered a container for grouping 

together related resources such as address spaces, threads, permissions, etc [130].  

Processes can communicate with each other via an Inter-Process Communication 

(IPC)  mechanism.  

However, Mendelsohn [93] argues that as component based software is now the 

dominant means of assembling applications, the process as the main abstraction is 

incomplete and that future operating systems should support components as a 

fundamental abstraction. 

The argument is bolstered by two major trends in software development as noted by 

Xu et al. [143].  The first is that of dynamic extensibility.  This would typically 

involve a trusted host loading an untrusted extension dynamically into its address 

space.  The second major trend is component based software development, where 

off-the-shelf components from multiple vendors are used to assemble a complete 

application. 

Examples of such extensions are prevalent: OS kernels load device drivers from any 

number of disparate vendors, a web browser may load browser extensions and many 

applications support some form of extension components to provide or augment their 
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basic functionality [121].  Few operating systems provide any support for managing 

such components and better support for such extensions is a pressing need, 

particularly where trust in the component is a critical concern. 

2.2.3 Problems with Components 

Despite the need for component technology, the currently available mechanisms for 

providing any form of trust in those entities are often fraught with problems.  In 

general, components are not protected from each other, and the failure of a single 

component can adversely affect the entire host application.  This makes the process 

of creating dependable systems difficult, where dependability is defined by the 

“ability to deliver service that can be justifiably trusted” [5]. 

The statistics are quite revealing: over 85% of Windows XP crashes are due to faulty 

device drivers [125], and Linux drivers have 3 to 7 times the bug count of the 

kernel  [20].  In Windows 2000, an analysis of support calls revealed that 27% of 

crashes were due to device driver failures, compared to 2% due to the kernel 

itself [127].  This indicates that the situation seems to have worsened since Windows 

XP suffers from an even greater percentage of device driver based issues.  

Such failures are not limited to kernel drivers and user-level applications suffer from 

similar problems.  Over 50% of CERT-reported security threats are due to buffer 

overflow vulnerabilities [77].  Zeigler [145] indicates that over 70% of crashes in the 

popular browser Internet Explorer are due to third party add-ons.  One of the primary 

attack vectors used to compromise computers with internet access include 

applications such as Adobe PDF Reader, QuickTime and Adobe Flash [111], which 

typically run as embedded components within a browser.  The Java Virtual Machine 

(JVM) has similar vulnerabilities, because any misbehaving Java Native Interface 

(JNI) component has the potential to overwrite critical memory regions of the JVM, 

bringing down the entire virtual machine [16]. 

As highlighted above, both accidental/unwitting errors and malicious exploitation of 

vulnerabilities can be at the heart of a component failure.  However, the causes that 

give rise to such vulnerabilities are best understood through analysis of field failure 

studies which have been extensively published in previous research [21, 124, 142].  

However, not all failure scenarios occur with equal prevalence, and a critical part 
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was determining the most relevant and common failure scenarios which needed to be 

addressed. 

Failures have a cause and exhibit certain symptoms.  Figure 2.1 shows this 

relationship. 

 

Figure 2.1: Failures, causes and symptoms 

As identified by these previous studies [21, 124, 142], causes can be broadly 

categorised into overlay errors and regular errors [124].  Some typical overlay errors 

identified by various studies [20, 21, 30, 80, 124, 142] are given in Table 2.1. 

Error Description 

Allocation 

management 

A module deallocates a region of memory before it is 

completely finished with it.  After the region is allocated, 

the original module continues to use it in its original 

capacity. 

Copying overrun The program copies bytes past the end of a buffer.  Quite 

commonly, this is caused by off-by-one errors or an 

incorrect calculation on the required length of the buffer.  

Chieuh [17] points to techniques for preventing these 

errors by the use of machine debug registers. 

Pointer management A variable containing the address of data was corrupted.  

Failure

Causes (Failures can be triggered 

manually if causes are known)

Symptoms (The failure will need 

to be detected by its symptoms. 

This allows a recovery procedure 

to be initiated)
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Code using this corrupted address caused the overlay. 

Register reused In assembly language code, a register is reused without 

saving and restoring its original contents. 

Type mismatch A field is added to a message format or a structure, but not 

all code using the structure is modified to reflect the 

change.  Type mismatch errors also occur when the 

meaning of a bit in a bit field is redefined. 

Uninitialised pointer A variable containing the address of the data is not 

initialised. 

Table 2.1: Common memory overlay errors 

 

Error Description 

Data Error An arithmetic miscalculation, use of incorrect constant or 

variable or other error in the code produces wrong data. 

Statement logic Statements were executed in the wrong order or omitted. 

Synchronization An error in locking code or synchronization between 

threads of control. 

Unexpected situation Unexpected parameter call from a process, or unexpected 

machine state or operation scenario. 

Other Difficult to classify. 

Table 2.2: Common non-overlay/regular errors 

As can be seen from these tables, the causes of errors are wide and varied, from 

rarely triggered edge conditions to complete failures in logic.  A key observation is 

that memory overlay related errors form a significant portion of reported problems 

and thus is deserving of special consideration [124].  Approximately 34% of errors 
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were deemed to be related to such overlay errors [30].  However, the causes of such 

failure can be traced to bugs in the program code itself.  Therefore, causes of failure, 

while important towards gaining contextual understanding, cannot directly be 

addressed by a component isolation framework. 

A more useful way for a protection framework to deal with such problems is via the 

symptoms of the problem.  By detecting the effects/symptoms of failure, appropriate 

action for recovery can be taken.  For example, a wild pointer store could be detected 

and attempts to erroneously access a protected memory area could result in the 

component being terminated.  Similarly, a deadlocked component should be 

terminated after the expiration of a timeout.  Sullivan and Chillarege [124] identify 

the main symptoms characteristic of failure.  In the context of a component, the 

symptoms could be explained as shown in Table 2.3. 

Symptom Description 

Abnormal termination The component attempts to execute an illegal 

instruction which results in a trap into the operating 

system. This may occur as a result of division by zero, 

for example. Typically, a signal will be raised notifying 

the application. 

Addressing error The component makes an attempt to address an illegal 

memory address. The memory may simply be corrupted 

if it is a valid address or result in a trap for an 

unmapped or invalid address. 

Endless wait/infinite loop The component enters an infinite loop or deadlocks, 

waiting for an event which never occurs. 

Incorrect output The component returns an invalid result to the parent. 

Table 2.3: Symptoms of failure 

If a component is properly constrained within an isolation domain, any of the 

symptoms in Table 2.3 would enable an isolation container to detect a failure in the 

component.  Abnormal termination could be handled relatively easily by handling 
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the signal raised by the operating system.  Similarly, attempts to access memory 

outside of the isolation domain can be detected and an appropriate notification made 

to the hosting application of the failure, allowing the host to unload the component.  

This is under the assumption that the isolation domain enforces memory protection 

and that the component cannot access memory beyond its allowed ranges.  Finally, 

infinite loops can be dealt with through the use of a timer, after which the hosting 

component can be notified of failure, allowing the host to decide whether to continue 

execution or terminate the component.  Since the upper bound on execution time 

may be better known to the host application, the host can implement a user-

defined/application-specific policy which determines whether a component has hung 

(this can also include user intervention, such as displaying a dialog box which allows 

the user to terminate the offending component, or continue waiting). However, there 

may be cases where it is not possible to use any heuristics to determine whether the 

component has hung. Nevertheless, since the host component has a chance to execute 

and intervene, it can, in principle, terminate the component, which is a marked 

improvement over a situation where the component may not relinquish control at all, 

and the host never receives a chance to arbitrate. 

The only situation that cannot be handled by an isolation container is that of incorrect 

output.  The hosting application must take appropriate care to not use invalid output 

returned by the component, as there is no way for an isolation domain to know what 

the legal values are.  Therefore, it is of critical importance that the hosting process is 

made fail-safe through the use of defensive programming techniques [47].  This 

means that all inputs, intermediate results, outputs and data structures should be 

checked as a matter of course.  Any detected problem can be used to initiate recovery 

procedures. 

Following from this, isolating a component in such a container is of critical 

importance, as emphasised by others [57, 59, 82, 126].  Indeed, microkernel-based 

operating systems take this concept to its ultimate manifestation [132].  Modern 

trends in browser architecture also emphasise the gravity of this issue, as both 

Microsoft’s Internet Explorer [145] and Google’s Chrome [8] browser have changed 

to multi-process architectures in which program components are isolated into several, 

disparate operating system processes. 
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In contrast to components, processes are typically protected from each other so that a 

buggy or malicious application has a hard time bringing down the entire system.  

Typically, protection is afforded by the following means in an OS process, as 

mentioned by Law and McCann [79]. 

a. Preventing applications from executing privileged instructions (i.e., 

disabling interrupts). 

b. Preventing an application from accessing illegal memory locations (i.e., 

another application’s memory) 

Most operating systems today enable this isolation through use of processor modes 

and memory paging [130], while earlier computer designs such as memory 

segmentation and typing structures have been largely ignored.  However, the more 

recent notion of an application-oriented, software component does not have the 

ability to take advantage of similar isolation schemes.  Typically, an application will 

load a component into its existing address space, enabling the component to access 

any part of the host application’s memory, thus leaving the host vulnerable to bad or 

misbehaving applications.  Small and Seltzer [121] argue that if a component 

consistently crashes its host, the extra functionality is hardly worthwhile.  Despite 

this, they note that few component extensions address the reliability issue. 

Xu et al. [143] note that dynamically loaded extensions need to be verified as the 

hosting process needs to be assured that the untrusted component is safe and does not 

compromise the host’s integrity.  Similarly, components coming from different 

vendors and sources must ensure that they can survive without interfering with each 

other.  Due to the low reliability of system components, there has been a renewal of 

interest in isolating components, justifying the need for this research [139]. 

Based on these requirements, the next section analyses current research on protection 

mechanisms for software components, and highlights the relative strengths and 

drawbacks of the various approaches. 
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2.3 PROTECTION MECHANISMS 

2.3.1 Types of Protection 

This section provides an overview of more current mechanisms available for 

component isolation.  Three basic mechanisms for isolation are identified and 

categorised by Small and Seltzer [121].  As a part of this research, this was expanded 

to a more fine-grained categorization, to reflect the variety of isolation mechanisms 

available and has been published elsewhere [46].  The categorization, shown in Table 

2.4, is based on the mechanism’s level within the computer’s architecture.  It will be 

the basis for discussing those various isolation mechanisms.  It should be noted 

however, that some mechanisms do not fit cleanly into a category and may be a mix 

of many techniques.  
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Isolation 

Mechanism 

Description Examples 

Hardware 

isolation 

This category deals with 

mechanisms that utilise some 

hardware support in enforcing 

isolation.  The main drawback is 

that, due to reliance on specific 

hardware features, these 

techniques may not be portable 

across all computer 

architectures. 

Privilege level change including 

protection ring hardware structures, 

Isolation using memory 

segmentation and/or typing support, 

Isolation using paging hardware, 

Isolation into separate processors, 

e.g. peripheral I/O processors, 

Hardware virtualization support. 

Binary code 

level 

isolation 

Protection afforded by 

modifying binary code. 

Software Fault Isolation, 

Binary translation, 

Virtual Machine Monitors. 

Integration 

into OS 

kernel 

isolation 

facilities 

OS kernel protection 

mechanisms for isolating 

components. 

Kernel Wrapping, 

Process containers. 

Language 

support 

Isolation provided through 

language level/compiler level 

support. 

Type safe languages, 

Static analysis, 

Compilers. 

Application 

level 

isolation 

Isolation facilities implemented 

entirely in user space. 

Interpreters, 

JIT Compilers, 

Application Virtualization 

Table 2.4 - Categorization of isolation mechanisms and examples 
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2.3.2 Hardware Isolation 

A variety of hardware-based techniques have been utilised for process/component 

isolation for almost 50 years, dating from the earliest second generation computer 

systems providing multiprogramming facilities, e.g., English Electric KDF-9 [50].  

Some techniques, such as simple, dual-state privilege level change, based on OS-user 

separation, are available in most modern system architectures.  Some other 

techniques, such as memory segmentation support, are now only widely available in 

certain architectures like the Intel “x86” line of processors.  This section examines 

each of these mechanisms in turn, highlighting their usage and specific advantages 

and disadvantages. 

2.3.2.1 Privilege level change 

The idea of protection rings and segmentation was pioneered in the Multics system 

and implemented by the GE-645 machine architecture [10, 113], which utilised 8 

rings of protection [115].  Earlier second and third generation mainframe computer 

architectures did, however, provide separate hardware mechanisms to assist with a 

form of isolation.  These varied greatly from complete isolation into distinct and 

separate processor units, as in the peripheral processor concepts in the Control Data 

6000, 7000, Cyber-70/170 computer systems and memory “tagging” used in the IBM 

System/360 series.  Amdahl et al. [4] clearly pointed out in 1964 that program 

isolation was essential in the System/360 in terms of “tamper-proof storage 

protection” and a “protected supervisor program”.  The Burroughs B5000, 

introduced in 1961 was also an early system which featured segmentation and tagged 

memory [89], while the later VAX system included similar features, as well as 

support for virtualization of the operating system (OS) [74]. 

Most modern operating systems utilise at least a two level protection mechanism, 

which separates the operating system itself from application level programs [130].  

The OS executes at a higher privilege level (ring), allowing it to execute any 

instruction.  Applications have a lower privilege level and the hardware ensures that 

any attempt to execute a high privilege instruction causes a “trap” [131].  When a 

trap occurs, the operating system has the chance to intervene and arbitrate whether or 

not the process has sufficient privileges to execute the said instruction. 



 

Chapter 2: Background and Literature Review 27 

 

Figure 2.2: Protection rings 

The details of this ring structure, as illustrated in Figure 2.2, may vary. For example, 

the x86 line actually defines 4 rings of protection, with the kernel running in 

ring 0 [130].  The VMX (Virtual Machine eXtensions) root mode introduced in some 

modern Intel processors, created an additional level of privileged execution [65], 

colloquially referred to as ring “−1”.  VMX root operation is described in greater 

detail in Section 2.3.2.4.  The SMM (System Management Mode) mode [62], which 

operates at an even lower privilege level, is informally referred to as ring “−2”, and is 

used typically by firmware. 

Regardless of these differences, the basic kernel/user mode separation is the 

important mechanism in implementing protection.  The kernel can pre-empt any 

application that does not respond in a timely fashion.  Normally however, paging or 

segmentation hardware is also utilised on top in order to implement memory 

protection. 

Windows XP and Linux execute most of the operating system in kernel mode, with 

applications executing in user mode.  In combination with paging hardware, it is 

possible to protect Operating System level processes from interfering with each 

other.  In a similar vein, Banerji et al. [6] utilise the kernel user mode separation 

along with paging and segmentation hardware, as discussed later, to protect shared 
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libraries.  Effectively, the OS kernel is used as a “trampoline” to make sure that 

libraries can only be accessed at predefined entry points.  By placing each library in a 

separate segment, libraries are prevented from directly accessing or corrupting each 

other’s memory. 

Czajkowski and Dayn’s work [24] uses privilege level based protection for isolating 

Java Virtual Machine (JVM) components from Java Native Interface (JNI) 

extensions.  Each JNI extension is isolated in a separate process and normal process 

protection applies in separating the JNI component from the rest of the JVM. 

A more specific version of privilege level based protection is utilised in micro-kernel 

based operating systems [130].  In such operating systems, the kernel is extremely 

minimal, consisting of mechanisms for simply transferring control between 

applications [130].  This minimalist approach is an attempt to enforce the general 

security principle of having the least common mechanism and the principle of 

employing economy of mechanism [114].  At its extremes, even paging and 

scheduling may run as user mode applications [37, 132], which allows for a more 

modular approach with a greater degree of robustness and isolation of faults [29].  

For example, in the Minix kernel [132], the kernel remains extremely minimal with 

most components running in user space.  In the event of a failure in a user-space 

component, a  “reincarnation server” is responsible for the automatic restart of  the 

failed processes [56].  The reincarnation server periodically polls each process to see 

whether or not it is healthy.  If the process is found to be defective, it is 

“reincarnated”, by sending it a “kill” signal and restarting the process shortly 

thereafter [56].  A similar mechanism would be viable for restarting failed 

components. 

The major drawback of the privilege level approach is the high cost of switching 

protection domains [69].  Estimates for the switching overhead over traditional 

monolithic kernels run as high as two orders of magnitude [106].  However, Leslie et 

al. [82] demonstrate that it is possible to drive a high speed gigabit Ethernet driver 

entirely in user space without significant performance loss, while work on the L4 

microkernel also demonstrates that proper optimization can lead to very low 

overheads [86]. 

Overall, the level of protection afforded by this mechanism is mostly at the level of 

process level granularity.  For components which are at much finer levels of 
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granularity, the protection domain switching overhead may be too prohibitive, 

depending mainly on the granularity of the component.  This is sharply highlighted 

by the fact that many traditional monolithic kernels still continue to minimise 

privilege level changes specifically because of such perceived overheads [137].  This 

issue is explored further in this thesis when discussing the implementation issues of 

LibVM’s p-trace based isolation mechanism in Chapter 3, which is reliant on process 

switching via privilege-level change. 

2.3.2.2 Paging protection 

“Paging protection” is a memory protection feature offered by most modern CPU 

hardware and works by dividing the address space typically into fixed-length pages, 

with the ability to set permissions per page [54].  Most modern operating systems 

utilise paging protection for enabling process isolation [130].  Mehnert et al. [92] 

point out that separate address spaces are beneficial even in real-time kernels,  due to 

the higher level of protection afforded  between subsystems.  Attempts have been 

made to utilise paging protection for component level isolation as well. 

One such attempt is the protection of the JVM heap through the use of paging 

support [16].  Unlike the more general approach adopted by Chiueh et al. [19], this 

approach focuses on protecting the various heap spaces only, under the assertion that 

many instabilities in the JVM are caused by heap corruption.  While the approach 

itself is limited to heap protection, their technique, described below, has some 

interesting attributes.  The basic idea behind their technique is to allow only certain 

threads to access different heap areas.  The “HotSpot” JVM has two heap areas, one 

for Java data structures and another for dynamically compiled code.  Each of these 

two heaps is placed in two separate “protection domains”.  A protection domain is, 

very simply, a separate memory page with read/write access permissions set.  

Whenever a thread switch occurs, the JVM changes the protection domains such that 

the thread may only access pages it is granted access to.  For example, the compiler 

thread may access all heaps, but other threads cannot access the compiler heap.  The 

technique relies on switching these protection domains at each thread switch.  One 

major advantage of their method is that it does not rely on hardware segmentation 

support, unlike Chiueh et al.’s approach [18, 19], making the technique portable to 

most modern hardware. 
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2.3.2.3 Segmentation protection 

The use of memory segmentation was also pioneered in the Multics system and 

implemented in the GE-645 architecture [10, 113].  Segmentation provides a 

hardware supported mechanism for neatly separating software components from each 

other.  The basic idea is that system memory can be divided into variable sized 

regions (segments), and each segment can have four possible segment privilege 

levels (SPL), and two possible page privilege levels (PPL).  The hardware ensures 

that lower privilege segments cannot access higher privilege segments, thus isolating 

memory segments from each other.  The advantages of such hardware support for 

preserving high performance are stressed by Chiueh et al. [18].  They introduce an 

intra-address space component isolation scheme by using the paging and 

segmentation support in the Intel x86 hardware architecture, which is the most 

prevalent architecture for desktop machines.  SPL support is utilised in isolating 

kernel extensions from the kernel itself, by placing all extensions in a separate 

segment of lower privilege than the kernel.  A slightly different approach is utilised 

for user space components, due to problems with dynamic link libraries.  Here PPLs 

are utilised for protection, to avoid the complexity of calculating relocation tables, as 

segment addresses start at zero.  The result is a relatively low overhead approach for 

isolating regions of memory from each other. 

An attempt to avoid the ring transition overhead by using segmentation support is 

reported by Vasudevan et al. [136], indicating that the technique has a wide degree of 

flexibility and is a viable alternative to privilege level changes.  

However, a significant problem in using segmentation is the gradual dwindling of 

support for this hardware feature in the x86 hardware, as a flat memory model was 

conceptually simpler to program for and thus became the dominant paradigm.  

Current programming models on the x86 are based on the flat memory model where, 

in effect, segmentation support is completely disabled [60, 66].  In fact, the newer 

Intel 64 bit architectures do not support segmentation at all and is only available in 

backwards compatible modes [64].  
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2.3.2.4 Virtualization 

Hardware virtualization is also an isolation mechanism which has been around for 

decades.  The concept of virtual machines goes back to the 1950s and 60s, e.g., in 

early computer systems from the United Kingdom, as well as in the likes of the IBM 

System/360 Model 67 and System/370 series [49, 117].  The formal requirements for 

such fully virtualizable machines were later laid down by Popek and Goldberg [104], 

who established the essential characteristics for a system to be considered a Virtual 

Machine Monitor (VMM).  System/370 featured hardware support for interpretive 

execution, making the development of VMM software much simpler [49]. 

Despite this, however, the popularity of VM technology waned somewhat over the 

years, but has gained a resurgence of interest with the invention and popularity of 

systems such as VMWare [1, 123]. VMWare provides a VMM for the original, 

popular Intel x86 architecture, despite the fact that the Intel x86 architecture itself 

had several non-virtualizable instructions [110], which did not meet Popek and 

Goldberg’s virtualization requirements [104].  Many novel techniques have since 

been used to overcome such limitations, such as binary translation [1, 123] and para-

virtualization [7, 13, 33, 138].  As a result, a variety of types of VMs exist, with 

Figure 2.3 providing an overview based on a taxonomy by Robin and Irvine [110]. 
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Figure 2.3: Graphical depiction based on Robin and Irvine’s taxonomy [110] 

In 2005, Intel and AMD introduced additional machine instructions  to their 

respective architectures to improve virtualization support [3, 62, 64].  The machine 

instructions were similar in nature to the old System/370 and enabled the interpretive 

execution of code and additional hardware managed control blocks.  The Intel and 

AMD extensions are extremely similar [1], which makes it easier to support either 

instruction set.  Uhlig et al. [134] provide an overview of the architecture, with 

additional details being available elsewhere [62, 64].  Figure 2.4 depicts the basic 

operation of the Intel VT instruction set. 
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Figure 2.4: Intel VMX operation 

As shown in Figure 2.4, processor support for virtualization is provided by a special 

form of processor operation named VMX operation [62, 64].  A Virtual Machine 

Monitor (VMM) is intended to run in a special processor mode known as VMX root, 

which is considered a higher privilege level, and colloquially referred to as “ring −1”.  

The virtual machine monitor (VMM) may enable VM operation by executing the 

VMXON instruction, which changes the processor mode into VMX non-root 

operation.  A VMM may then launch multiple guests by executing the VMEntry 

instruction. As the guest executes, any attempt to execute a privileged instruction 

will result in a trap, and the VMM will regain control The VMM can then safely 

emulate the privileged instruction and resume execution of the guest code. The 

VMM itself may exit via the VMXOFF instruction.  Each logical processor in a 

virtual machine has an associated VMCS (Virtual Machine Control Structure) which 

maintains its state.  By using these basic structures, it is possible for a VMM to 

execute a guest operating system with far fewer traps than traditional techniques such 

as binary translation [1]. 

However, as also noted by Adams and Agesen  [1], early versions of Intel’s and 

AMD’s hardware virtualization did not necessarily result in better performance, due 

to the lack of support for Memory Management Unit (MMU) virtualization.  To 

remedy this, AMD introduced Nested Page Tables (NPT) [3] and Intel has followed 

suit by adding support for Extended Page Tables (EPT) in their new “Nehalem” 

processor architecture, both of which add support for MMU virtualization [65]. 

While VMMs have achieved widespread use today [1, 7, 107] for emulation of 

complete machines, variations are seen of this, such as the work done by Rutkowska 

and Wojtczuk on the Qubes Operating System [68].  While Qubes builds an 
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Operating System on top of the Xen Hypervisor, it provides several child domains, 

called “AppVMs”, which can be used to create a task-based separation of 

applications.  For example, “banking”, “work” and “personal” might be three 

separate tasks into which relevant applications can be isolated, with differing levels 

of security.  It should be noted however, that these AppVMs do run full versions of 

the Operating System, in contrast to other schemes discussed later, in Section 2.3.3.2.  

The trade-off is between greater confidence in isolation versus greater performance. 

This virtualization support has proven pivotal in implementing one of LibVMs own 

isolation mechanisms. 

2.3.2.5 Non-standard protection schemes 

This section reviews proposed protection schemes which are not provided as yet in 

readily available hardware.  Foremost amongst these, Mondrian Memory Protection 

(MPP) [141] introduces a hardware architecture for protecting memory segments up 

to word level granularity, so that extremely fine grained control over individual 

memory segments is possible.  MPP works by maintaining a permissions table, and 

works in a similar fashion to current page table architectures.  MPP has a concept of 

a Protection Look-aside Buffer, which is analogous to a Translation Look-aside 

Buffer in conventional memory management units.  The processor is responsible for 

scanning the permission table for each memory access.  However, while the 

mechanisms suggested in MPP are extremely interesting, such hardware does not 

exist as yet [132]. 

A similar hardware based proposal for enforcing fine-grained memory protection and 

protected procedure calls was made by Wiggins et al. [139], but it suffers from the 

same problem as MPP.  In addition, Chiueh [17] proposes a novel technique, which 

is the use of hardware debug registers to detect buffer overflow attempts.  However, 

the solution deals exclusively with buffer overflow detection only, and can be 

considered a building block for higher level mechanisms. 

  



 

Chapter 2: Background and Literature Review 35 

2.3.3 Integration into OS Kernel Isolation Facilities 

Attempts have been made to enforce isolation through integrating separate 

application level components with the OS kernel Application Programming Interface 

(API) layer. 

2.3.3.1 Wrapping 

One such example is the use of “wrapping” techniques.  Wrapping involves the 

verification of all parameters passed between a containing host and its 

extensions [127].  In the Nooks architecture [127], an amalgamation of techniques 

such as hardware memory protection, software fault isolation and privilege lowering 

along with kernel wrapping are used to prevent device driver failures.  Each device 

driver is carefully wrapped by a proxy which is responsible for fault isolation and 

recovery [127].  The wrapping process involves hand-crafting a software strait-jacket 

which proxies all calls made to the driver.  The system has been further enhanced by 

Swift et al. [125] to also enable recovery of failed device drivers, by carefully 

playing back logged requests.  However, Tanenbaum et al. [132] points out that 

attempting to write a wrapper around each device driver is an error-prone and painful 

process, hampering the adoption of the technique.  Further, Erlingsson et al. [31] 

point out that the protection offered by Nooks can be easily circumvented by 

malicious code. 

Peterson et al. [102] describe a generic operating system API for creating sandboxed 

programs, where each sandboxed process runs in a separate address space.  Their 

work lends support to the need for making components an integral concept within the 

operating system, as argued by Mendelsohn [93].  An interesting implementation is 

also made in the “Go!” Operating system [79].  Instead of weaving in and out of 

kernel mode and user mode, the Go! component-based OS works entirely in kernel 

mode.  Analogous to a traditional kernel, Go! has an Object Request Broker (ORB), 

which arbitrates communication between components [79].  To protect components 

from interfering with each other, and to prevent them from executing privileged 

instructions, the entire program is scanned for privileged instructions before being 

executed.  The ORB is responsible for doing this and delegates the task to a helper 

component.  Once the component is deemed to be safe, the ORB will allow its 

instantiation.  Certain trusted components, such as interrupt service routines, are 
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exempt from this verification process.  By eliminating protection domain switching, 

the Go! OS manages to achieve extremely high performance [79]. 

2.3.3.2 Process containers 

Process Containers provide a means of executing a program in a sandbox, typically 

by building an isolation container on top of the Operating System’s process isolation 

facilities.  Such process containers provide restricted access to resources for the 

sandboxed application, for example, by providing a limited view of the file system. 

Examples include such systems as chroot() [36], which provides a limited view of 

the file system to an untrusted application, FreeBSD Jails [73] and Solaris Zones 

[105], which provide an operating system level virtualization environment for 

applications. Linux Security Modules such as AppArmour [9] and SELinux [87] also 

enforce administrator defined security policies in applying fine-grained restrictions to 

the capabilities of processes. 

A common approach to creating such a container is via system interpositioning [39, 

40, 42, 101], which typically relies on a kernel level trace mechanism (e.g., 

ptrace [70]) to intercept the system calls executed by a process. It is based on the 

observation that an isolated process has no way to influence the system at large, other 

than through system calls [42].  Therefore, by restricting the execution of system 

calls, or modifying them before execution, an application can be made secure. 

Some of these mechanisms required kernel level modifications [34, 39, 87, 102], 

with the advantage of being able to add all facilities as required but having the 

drawback of making widespread deployment difficult. Others were built on top of 

existing facilities such as ptrace and /proc [70, 85], with the drawback of having to 

retrofit functionality onto available mechanisms.  These systems sometimes resulted 

in timing and race related bugs such as TOCTOU (Time of Check To Time Of 

Use) [39], but workarounds have been implemented [101]. 

One of the chief drawbacks is high overhead due to the repeated context switches 

that are required [39].  While Kernel based mechanisms can reduce this overhead, 

they must also run an additional risk in doing so, as any exploitable bugs in the 

mechanism would result in a total compromise of the operating system.  User space 

interception on the other hand, can attract even heavier overheads. In addition, user 

space mechanisms such as ptrace provide limited ways with which to manipulate the 
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confined application, making the technique more complicated to employ in library 

level isolation (as discussed in Chapter 3). 

2.3.4 Binary Code Level Isolation 

Binary code level isolation relies on modifying the application binary at load-time or 

run-time, in order to insert additional checks and guards for ensuring isolation. 

2.3.4.1 Software Fault Isolation 

This method was first described by Wahbe et al. [137] and the basic technique has 

been utilised in many forms.  The authors make a strong case against placing 

software modules in their own private address space, as this would require a Remote 

Procedure Call (RPC) between them for communication, resulting in unacceptable 

context-switch overhead.  Context-switching overhead is one of the chief reasons 

that such RPCs have unacceptable performance overheads [137].  For example, a 

single RPC from one process to another requires four context switches, two on 

making the call and two on return.  However, considering the way in which operating 

systems are structured, the only way to protect two components from each other is to 

place them in two separate processes and to make an RPC call between them. 

Wahbe et al. [137] describe an alternate approach.  It enables you to place untrusted 

code within the same process and avoid the overhead of making an RPC.  To ensure 

protection, the system uses software-based verification to ensure that no illegal 

memory accesses are made.  The main technique used is to verify the object code of 

the distrusted module through static analysis, and inject code for double checking 

any potentially harmful instructions.  A “sandboxed” code version is created so that 

memory references always fall within the sandboxed region, thus preventing a 

component from accessing memory outside of its bounds [137]. 

Software Fault Isolation (SFI), originally demonstrated by Wahbe et al. on a 

Reduced Instruction Set Computer (RISC) architecture, has also been demonstrated 

on Complex Instruction Set Computer (CISC) architectures [90].  Techniques such as 

binary translation [1] are offshoots of the ideas in SFI. 

The ideas in SFI are directly utilised in the Google Native Client (NaCl) software 

system, which provides a software framework for safe execution of untrusted binary 

components [144].  NaCl aims to provide browser-based applications access to 
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increased computational performance through native binary components which have 

access to performance-oriented features such as Streaming SIMD Extensions (SSE) 

instructions, compiler intrinsics, hand-coded assembler, etc., without compromising 

on safety [144].   

SFI techniques have also been used in Nooks in combination with hardware support, 

in order to create an architecture for device driver fault isolation and recovery [127].  

Fraser et al. [34] describe similar protection mechanisms for “Commercial Off-the-

Shelf (COTS)” systems.  Kumar et al. [76] describe the use of SFI in embedded 

systems, where hardware support for protection domains is often absent.  In addition, 

Small and Seltzer [121] have estimated the performance characteristics of various 

techniques, and conclude that SFI-based techniques offer good overall performance. 

A strong example of such software-based techniques providing better performance 

than corresponding hardware protection comes from Adams and Agesen [1].  

Through their experience in implementing the popular VMware virtual machine 

monitor, they provide performance measurements which indicate that hardware 

assisted techniques can be overshadowed by Binary Translation techniques. 

Swift et al. [127] point out that it may be difficult to implement SFI when the range 

of addresses are not contiguous.  Further, although it is relatively cheap to call into 

SFI code as opposed to a protection domain switch, the SFI code itself executes more 

slowly due to the additional checks. 

2.3.4.2 Static analysis of binaries 

While SFI and “Static Analysis” of binary code are closely related, we differentiate 

techniques which rely on a preventive approach, where the code is statically analysed 

to determine whether a program violates its safety contract, and not allowed to 

execute at all if it is found to do so.  Typically, a verifier is used to perform a static 

analysis of the untrusted machine code program.  The machine code itself can be 

directly passed to the verifier, requiring no modifications to current development 

methodologies. 

The main advantages of this method, as identified by Xu et al. [143], are as follows. 

1. It operates directly on binary code, allowing the freedom to choose any 

source language for program development 
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2. It provides the ability to extend the facilities offered by a host program at 

a very fine-grained level, in that the “foreign” code is allowed to 

manipulate the internal data structures of the host directly 

3. It enforces a default collection of safety condition enforcement schemes 

to prevent array out-of-bounds violations, address-alignment violations, 

use of uninitialised variables, null-pointer dereferences and stack 

manipulation violations. 

Xu et al. [143] utilise this technique to verify untrusted machine code.  However, the 

program calling the extension is now required to send in type-state information and 

linear constraints in order for the verifier to work.  The type-state information 

specifies the expected pre and post conditions of the calling program.  The verifier 

uses this information in order to determine whether the machine code satisfies the 

given constraints, thus ensuring its safety. 

In addition to passing in the type-state information, the caller may impose a custom 

security policy, which makes the method very flexible [143].  However, the 

requirement that the caller supply such type-state conditions requires a radical 

change in invocation semantics.  Further, the verifier performs a rather complex 

static analysis of the program, which requires a significant amount of time per 

extension.  In addition, compiler level modifications are required for the technique to 

work.  However, Erlingsson et al. [31] have attempted to address this problem by 

using control flow analysis and a binary rewriter which ensures that all expected 

properties and guards continue to hold. 

Overall, static analysis could be deemed a preventive measure and mainly be used in 

determining whether a given component obeys certain constraints before its 

execution.  Thus, it could be used to prevent a faulty component from being loaded 

in the first place, but not to prevent failure during the execution of the component.  In 

addition, static analysis is also prone to false positives. 
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2.3.5 Language Support 

Language-based protection relies on the safety of a language’s type system, where 

the operations that a program performs can only be operations that are deemed 

sensible for that type [52].  Typically, this will involve both a dynamic and a static 

access control mechanism to be available.  Static checks can be made at compile time 

to verify that illegal operations on a type are not permitted and dynamic checks may 

be needed at runtime, for example to perform an array bounds check [52]. 

2.3.5.1 Type-safe code 

The SPIN operating system utilises “Modula-3” as a type-safe programming 

language along with a trusted compiler to create type-safe extensions [11].  A more 

modern example of the use of type safe code for component protection is the 

“Singularity” operating system, a prototype operating system created by Microsoft 

Research [2].  The key philosophy behind Singularity is the concept of a Software 

Isolated Process (SIP), which, unlike traditional hardware-based process isolation, 

relies on static type checking and language safety rules to ensure protection between 

processes.  The results indicate that compared to the 25-33% overheads that 

hardware-based isolation incurs, SIP only incurs as little as 5% overhead in the 

benchmark tests [2]. 

However, the major drawback in Singularity is that all software components would 

have to be rewritten in a type safe language (in this case a Microsoft “.NET” 

compatible language) in order for the scheme to work, making it unsuitable for the 

large base of existing applications [2].  

In addition, Swift et al. [127] point out several difficulties in the adoption of type-

safe languages.  The major issue is the problem of rewriting all drivers in that type 

safe language and the significant overheads in copying data in and out of a driver.  

Further, they also mention that an elegant mechanism for accessing device drivers in 

a type-safe fashion is not available.  Further, Dean [26] points out that building 

“bullet-proof” implementations remains a difficult problem. 
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2.3.5.2 Static analysis at language level 

Static analysis of code allows the analysis and verification of a program prior to 

execution.  The emphasis here is similar to the case of static binary analysis – 

ensuring that the program conforms to safety properties prior to execution. 

For example, in order to deal with common buffer overrun situations, a combination 

of static analysis techniques and SFI can be used.  Cowan et al. [23] provide an 

overview of common techniques used to combat buffer overflows.  Apart from 

defensive programming techniques, of interest are tools like purify [51], which use 

object code insertion to instrument all memory accesses and StackGuard [22], which 

uses a canary value to detect whether a stack smashing attack has been attempted, for 

which a hardware based mechanism has also been mentioned previously [17]. 

Another approach is that of the Proof Carrying Code (PCC) technique, whereby an 

automated proof generator is used to analyse each program and attach a proof that 

the program will execute within its defined boundaries [100].  In essence, PCC 

involves statically checking program code and the automated generation of a proof 

that the program obeys a given safety policy.  At runtime, the proof can be verified 

by the operating system.  One major advantage of this technique is that no run-time 

checking is required, since a program passing the verification process is guaranteed 

to be safe. 

However, writing a comprehensive proof generator which can deal with the 

complexities of optimised code remains a problem in this suggested solution and so 

far, the technique has not been demonstrated with non-trivial examples [132].  An 

additional difficulty is that the policy needs to cover any implied rules of the 

execution environment.  Guaranteeing the completeness of the policy itself is also 

difficult [38]. 
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2.3.6 Application Level Isolation 

“Application Level Isolation” is a technique that involves isolation being enforced 

entirely in user address space and being managed by the application itself. 

2.3.6.1 Interpretation and intermediate language compilation 

Interpretation based isolation of application and like programs has been categorised 

under application level support, as it is usually performed entirely in user-space.  

Interpretation techniques have been used in a variety of scenarios.  These include 

complete virtual machines such as the “Java Virtual Machine (JVM)”, the earlier 

UCSD “p-System” [14], etc. or scripting languages such as AWK, Tcl, etc.  

Interpreted languages have shown excellent safety properties and can be made 

extremely secure [132].  For example, the JVM contains a built-in verifier that 

provides several safety checks to ensure that no forged pointers or pointer 

manipulations can be performed, effectively preventing code from accessing 

unauthorised memory locations [16, 132].  A security management policy can 

perform fine-grained control over each running thread. 

The major drawback of interpretation techniques is speed.  Although a great deal of 

optimization work has been performed, such as “Just-In-Time Compilation (JIT)”, to 

dramatically boost the speed over simple interpretation, the overheads imposed by 

the use of constant checks continue to be very significant, and loss of performance 

still continues to be a concern over use of pure binary code [132]. 

A further problem is that not all programs can be written in an interpreted language.  

At some point, especially when high performance or low level device access is 

needed, it is necessary to fall back into lower level languages for software 

development.  For example, the JVM uses the “Java Native Interface (JNI)” in order 

to access hardware specific features.  Once the JNI barrier is crossed, the JVM is 

entirely at the mercy of the loaded C-language library [16] in the called component.  

A JNI environment pointer is passed into the JNI library in order for it to 

communicate.  A badly written extension Dynamically Linked Library (DLL) 

element can easily crash the entire JVM, as they all reside within the same address 

space.  To address this issue, Czajkowski and Dayn [24] propose isolating JNI 

components in separate address spaces.  This however, incurs the usual context 
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switching and parameter marshalling overheads for inter-process communications 

(IPC) calls, incurring a significant penalty on the additional robustness provided. 

Lastly, there is a large existing base of code that is in binary format.  It is not feasible 

to rewrite all of these programs in an interpreted language [132], and as mentioned 

above, certain actions require low-level hardware access, posing a security risk to the 

integrity of the virtual machine (VM).  However, since a large class of applications 

can be solved using this approach, there continues to be a massive surge in its 

popularity, particularly in the commercial and business areas. 

Further, Small and Seltzer [121] argue that interpreted technologies are not suitable 

for building kernel extensions, since the timing granularity in systems events are 

extremely fine and the performance requirements more exact. 

Another component isolation model and technique scheme is known as the “multi-

process application architecture”.  This model is becoming increasingly popular in 

web browsers [8, 109].  The basic idea is to isolate individual components into 

private address spaces through disparate OS processes and use the operating system’s 

IPC mechanisms to communicate between them.  In Google’s Chrome browser, a 

single browser coordinating process spawns additional processes to perform sub 

tasks [133].  These additional processes run at a lower privilege level and access is 

tightly arbitrated by the coordinating browser process.  In effect, different 

components are loaded into different processes and communication takes place using 

OS supplied IPC mechanisms.  This isolation into separate processes allows the 

browser to survive component crashes.  Microsoft’s Internet Explorer 8 follows a 

similar model [145].  There is however, an increase in complexity as coordination 

between several processes is required.  Also, Wahbe et al. [137] make a strong case 

against placing software modules in their own address space, as this requires IPC 

between them for communication, resulting in unacceptable context-switch 

overheads [137], so a trade-off is made between performance and reliability [133]. 

2.4 CONCLUSION 

This literature review in this chapter provides a working definition for the term 

“component”, as suited to the purposes of this thesis, as a dynamically loaded shared 

object library (DLL or SO).  The pressing need for such library level isolation was 
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also highlighted, especially in view of the failures caused by third-party plugins.  

Common causes of failures as well as a taxonomy for isolation mechanisms were 

introduced.  These were – hardware isolation, binary code level isolation, OS kernel 

level isolation, language level isolation and application level isolation.  The currently 

available isolation mechanisms, and their strengths and drawbacks, were also 

discussed. In addition, existing efforts to isolating components from each other have 

also been analysed, and some common drawbacks are as follows. 

• They do not maintain address space transparency. 

• Require rewriting libraries as well as host applications. 

• Require custom tool chains. 

• Not general purpose. 

• SFI based techniques require code verification and patching – large TCB. 

• Restrictions on allowed machine instructions. 

• False positives. 

• Performance issues. 

• Limited to certain hardware architectures. 

 The remainder of this thesis builds on this discussion and the next chapter introduces 

the isolation architecture utilised by our LibVM system. 
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Chapter 3: Isolation Architecture Design 

and Rationale 

3.1 INTRODUCTION 

Following from our analysis of the scientific, technological and engineering 

literature, and associated research outcomes and system offerings, in Chapter 2, this 

chapter provides an overview of the system architecture we developed to address the 

main research questions covered in this thesis.  We begin by arguing for a generic 

Application Programming Interface, named LibVM, which encapsulates the 

functionality necessary for library isolation when used in an application program, 

and provides a specification for such an API.  We then describe the design decisions 

that motivated the various architectural choices, and relate them to the overall 

problem of the need to isolate shared libraries, for improved robustness and security. 

3.2 AIMS OF THE ARCHITECTURE 

A key research aim in this thesis is to isolate untrusted shared libraries from their 

host program, so that, in particular, a badly written or misbehaving component will 

have minimal impact on its host, thus improving overall system robustness and 

resilience as well as guarding the host against potential security issues.  However, 

untrusted libraries may include genuinely malicious code, masquerading as a useful 

library entry.  For example, malicious web browser “plugins” would fall into such a 

category.  Isolating libraries into sandboxed environments would thus minimise the 

threat posed by such a plugin, increasing safety.  In addition to such malicious 

libraries, non-malicious yet potentially “buggy” libraries are also suitable candidates 

for secure isolation, since any unwitting programming errors in a non-critical 

component should not cause a wholesale crash of the entire application.  For 

example, a buffer overflow vulnerability, which could enable a stack smashing 

attack, can be rendered ineffective because the component is confined to its sandbox. 

Ideally, failures in non-critical components should be recoverable, perhaps through a 

simple reload/replacement or reset of the faulty component, thus increasing overall 

system resilience. 
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Therefore, any isolation architecture should aim to: 

1. Create protection domains for individual components, so that the 

interaction between the component and its environment can be tightly 

controlled.  

2. Prevent an errant component from corrupting critical memory regions or 

having adverse effects on the hosting process. 

3.3 THREAT MODEL 

As explained above, isolation can be analysed from both resilience and 

safety/security perspectives.  While resilience is the key reason for isolation in a 

trusted environment, safety becomes paramount in an untrusted one.  This is best 

exemplified by Internet browsers which extend their functionality through plug-in 

components.  In such an environment, both these factors are very important, as the 

extension code may be of unknown provenance and quality. 

Our system, LibVM, is designed to deal with arbitrary binary components, from 

untrusted sources, which need to be executed in a constrained environment.  Once a 

component is accepted for execution, it must have controlled access to resources, as 

determined by the host.  Access to memory must be restricted to areas allowed by the 

host application and attempts to exceed these limits must be caught.  The host must 

be able to constrain the component by preventing arbitrary access to the full 

operating system call interface.  Such access must be mediated and the host must be 

allowed to set resource limits on memory usage or disk / storage access. 

3.4 LIBVM – A FUNCTIONAL SPECIFICATION 

In order to demonstrate that an implementation of LibVM is correct in achieving its 

functional intent, we must first establish the following. 

a. A clear specification of its functional requirements. 

b. A methodology for extracting the conditions under which an implementation 

can be considered correct with respect to that specification 

We discuss each of these in turn. 
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3.4.1 Overview of Functional Specification 

The stated goal of LibVM is to isolate a library from its host application, so as to 

ensure that the host’s (and the underlying system’s) security and integrity cannot be 

violated.  However, since security and integrity are broad terms, we narrow them 

down to a very specific meaning.  We require isolation such that a library component 

cannot affect its host (including the host’s underlying environment), without the 

host’s explicit knowledge.  More specifically, by “affect”, what is meant is that the 

library component cannot change the data or control flow in the host, nor its 

environment, without the host being explicitly party to the fact, and thus in a position 

to permit or reject that effect (This is analogous to a “non-interference” security 

policy model [122] or other multi-level security policies such as the Bell-LaPadula 

model [25], although we do not use the related nomenclature as  we do not such strict 

information flow policies. However, stronger policies could be implemented by 

restricting the conditions that are identified even further, such that they are 

conformant with such multi-level security policies). 

If the library can have no effect on its host, without the host’s knowledge, we 

contend that it is sufficiently isolated.  Since the host is aware of any effect that can 

potentially alter its control/data flow or environment, it can determine its own 

security policy.  This is the desired improvement over the prevailing norm for 

libraries, which is that library components are free to execute unfettered within the 

host’s address space. 

Therefore, what LibVM provides is a security mechanism, not a security policy.  The 

LibVM isolation container cannot guard against incorrectly implemented security 

policies in the host.  Nor can it guard against bugs in the host application.  For 

example, if the host application allows a system call made by a library component in 

order to access the network, and the host does not adequately check whether the 

library component should be performing network communications in the first place, 

it is a failure in the host’s policy.  Similarly, if the host suffers from a bug where it 

unwittingly performs a jump into a location within the isolation container’s 

boundaries, LibVM has no ability to guard against that situation.  It is only the host’s 

own correctness that must guard against this.  However, in Chapter 7, we discuss 

techniques for reducing the burden placed on the host, so that it can enforce its 

security policies with greater ease. 
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In addition, it is also possible for the component to starve the host of resources.  For 

example, it could sit in a tight loop eating up CPU cycles, or, if so allowed by the 

host, allocate memory or disk space without bound.  However, we assume that the 

Operating System enforces resource limits to guard against such possibilities, in 

addition to the host itself being prudent in allocating resources to the component.  

Furthermore, covert channels for leaking information may exist [78]. However, we 

contend that these issues are orthogonal to our main goal of preventing an errant 

component from compromising the host’s integrity. 

3.4.2 Methodology for developing correctness conditions 

The methodology we use for extracting the conditions under which a LibVM 

implementation can be valid, is as follows.  The strategy is to treat the security 

specification as an invariant that must be preserved by each feature of the 

implementation. 

a. Start with a minimal, totally isolated container which does nothing, and 

therefore can have no effect on its host, which conforms to our security 

specification by definition. 

b. Progressively add new features which are necessary, using key security 

principles as guidelines. 

c. Ensure that each added feature continues to conform to our specification (the 

invariant). 

d. If it does not, add a new "security requirement/condition" which will 

guarantee that the invariant will be preserved. 

e. Repeat till all essential features have been added. 

During this process, since the identified conditions ensure that the specification is 

met at each step, we know that the final set of conditions will meet the specification 

in aggregate.  Therefore, we present these final set of conditions as those that must 

explicitly be met in order to be conformant to the specification. 

While the method outlined above works well for conceptual features, it becomes far 

more difficult to follow as features become embroiled in the complexity of actual 

implementation details, rendering the process itself very tedious and time consuming.  
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As a remedy to this issue, we utilise principles from the Common Criteria as a 

guiding framework by which confidence can be gained in a concrete implementation.  

3.4.3 Requirements for Correctness of LibVM 

In order to provide the assurances of correctness that the specification above defines, 

we show that five propositions must hold.  We establish these five propositions by 

following the methodology outlined above.  It should be noted that some of these 

propositions are reliant on conditions outside of the control of a LibVM 

implementation. We flag these external conditions as appropriate, but include them 

in our overall list of conditions, as all of these must be satisfied for the specification 

to hold. In the process of doing this, we always enforce the well-known principle of 

“granting least privilege” [114], giving the isolation container only the minimal 

privileges it needs to accomplish its tasks. 

We start with a hypothetical isolation container “C”, which is totally devoid of a 

CPU or memory.  In other words, C can do nothing, as it can perform no 

computation.  Such an isolation container is the epitome of total isolation, and 

implements the principle of least privilege best, since it cannot affect the host or even 

itself in anyway.  Therefore, it conforms to our specification, by definition.  

However, such an isolation container is also of no utility whatsoever. 

3.4.3.1 Deriving Condition C1  

In order to remedy the uselessness of the container described above, we introduce a 

Central Processing Unit (CPU) to this container. This CPU may contain some 

internal, volatile registers, but no other memory apart from this.  When we introduce 

this CPU, we must ensure that it remains separate from the host’s CPU in order to 

arrive once again at total isolation.  If it is totally isolated, it once again meets our 

specification by definition.  For this total separation to occur, two conditions must 

clearly hold. 

Lemma A: The CPU (including registers) must be fully virtualised, so that C will 

continue to be unable to affect its host H. 

Lemma B: Conversely, the host H cannot access the registers of the isolation 

container’s CPU. 
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If either of the two conditions is not met, information leakage clearly occurs between 

the host and the isolation container. 

In order to clarify the importance of the above two conditions further, let us assume 

the inverse of these conditions, such that a thread of execution T within a LibVM 

container is not virtualised so that it can affect the CPU state S in a host process H.  

It is possible that T could then succeed in either of the following. 

a. Affecting a segment register and thereby causing the host H to access an 

erroneous memory location. (For example, by changing the CS (Code 

Segment) register, the thread T could offset the host’s instruction pointer by a 

desired amount, thus causing it to execute arbitrary code.) 

b. If T leaves a residual value in a register S, and if the host unknowingly uses 

this value, it is possible for T to affect the execution of the host 

These are contradictions to our specification that our host H cannot be adversely 

affected by T.  While it is not the case that allowing access from T to host CPU state 

S will always result in a vulnerability, we nevertheless adopt the more restrictive 

condition of completely disallowing access to the host CPU’s state, erring on the side 

of caution and safety.  This is in keeping with the principle of “using the least 

common mechanism” [114], which aims to minimise shared information paths.  

Thus far, we have defined an isolation container C which is far more restricted than 

the one defined by LibVM.  Clearly therefore, this isolation container is also 

inherently more secure than LibVM, due to the reduction in the size of the “attack 

surface” [58, 88].  We therefore utilise this intermediate result of Lemma A, as a 

suitable invariant that must hold from now onwards till we get to the functionality 

level of LibVM, while Lemma B will be relaxed (while preserving our desired 

properties) for reasons explained later. 

Therefore, we promote Lemma A to our first condition: 

The CPU utilised by the LibVM container must be virtualised such that it is 

isolated from the host application. 

3.4.3.2 Deriving Condition C2 

Although the isolation container described above is marginally more useful than one 

that achieves nothing at all, as it can perform some limited computations, any useful 



 

Chapter 3: Isolation Architecture Design and Rationale 51 

result is still inaccessible to the host, due to Lemma B.  Furthermore, the host is also 

unable to pass parameters to this CPU to invoke a desired computation, since the 

registers are inaccessible.  Therefore, we are required to relax this restriction, while 

ensuring that our specification continues to be met. 

Therefore, we allow the host access to the isolation container’s CPU registers, and 

observe that there are only two possibilities that emerge. 

a. The host writes data to the registers 

b. The host reads and subsequently uses data from these registers 

In order to deal with these two possibilities in a way that does not affect our 

invariant, we qualify that access with two more conditions. 

Lemma C: Any information placed in the CPU’s registers must be guaranteed to be 

non-sensitive data, so as to prevent data leakage. 

Lemma D: Any information retrieved from these registers must be treated with the 

utmost suspicion, and always checked for validity before use. 

By stipulating the above two conditions, we make access to the CPU registers 

possible, while preserving our desired safety properties, although it should be noted 

that data flow safety is entirely in the hands of the host.  This is in keeping with our 

originally stated specification. 

However, we argue that Lemma C is not essential to our purpose, since placing data 

into the CPU registers of the isolation container is a deliberate decision, and while 

such data can affect the execution flow within the container, they cannot affect 

execution flow, data flow or resources external to the container.  Therefore, Lemma 

C is outside the scope of our specification, although it would be important if even 

more secure data flow semantics are desired.  

On the other hand, the absence of Lemma D can affect the conditions outside of the 

container and we provide a practical example of how the integrity of the host could 

be potentially affected.  Suppose that we utilise a value obtained from one of these 

registers without adequate circumspection.  For example, a value returned by a 

thread of execution within the isolation container is used to index into a memory 

array.  Should that return value be illegal, it would be possible to overwrite or corrupt 

host memory, including triggering a segmentation fault which could crash the host.  
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Or consider an even more careless situation in which this value is used to index into 

a jump target.  In such a scenario, the execution flow of the host could be altered 

through this illegal value, forcing for example, a return-to-libc attack [23]. 

Therefore, Lemma D gives rise to a more general condition, C2: 

A host must never utilise a value obtained from within the isolation container 

without ensuring that it is adequately validated. 

However, it must be explicitly noted that validating these values is a responsibility 

which is delegated to the host application itself, and cannot be implemented by a 

LibVM implementation, as the legal range of values are meaningful in the context of 

the host application only. However, this can also be considered a separation of policy 

and mechanism, as the security policy must be enforced in a meaningful way by the 

host application, and LibVM only provides the mechanisms with which to do so. 

Therefore, as with any security mechanism, an incorrect security policy could result 

in exploitable vulnerabilities. 

It should also be noted that this places a considerable burden on the host application 

as careful validation of values is required, especially when dealing with potentially 

malicious components. We discuss ways of mitigating this burden through 

techniques such as compiler support and predefined security templates, in Section 

7.3.  

We also observe that this expansion of rights to include host access to CPU registers, 

was done in full accordance with the principle of granting least privilege [114], and 

that the additional privileges proffered to the isolation container are indeed minimal.  

We also continue to preserve our invariant, in concordance with our specification. 

3.4.3.3 Deriving Condition C3 

The isolation container discussed thus far can perform rudimentary computations, but 

is still unable to perform extensive ones, due to the absence of any sizeable volatile 

memory, apart from the CPU registers.  We now introduce this memory.  Once 

again, to preserve total isolation, we would have to ensure that this memory is 

entirely separate from the host’s memory with the following conditions. 

Lemma E: The CPU within the isolation container cannot access memory outside of 

its allocated regions, in accordance with condition C1. 
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Lemma F: The Host cannot access memory within the isolation container. 

The above two conditions would continue to keep all our conditions intact, since the 

introduction of the above disallows interaction between host and container. 

Once again, it is possible to show concrete examples of how the absence of the above 

conditions could affect the host.  If a thread of execution T within a LibVM 

container, can access a memory location M outside of its boundary, it trivially 

follows that it can compromise the host’s integrity, since it could potentially write to 

memory locations used or accessed by the host.  In the most innocuous scenario, it 

can result in data leakage, or perhaps an attempt to access the host’s memory could 

result in accessing an unmapped region of memory, causing a page fault and causing 

thread T to crash with no significant effect on the host.  However, if it is a mapped 

page, it could cause data corruption in the host’s memory.  In the most dangerous 

scenario, it could trigger a buffer overflow [23] or otherwise induce the host to 

execute arbitrary code. 

Lemma F could be similarly demonstrated in practice by the same logic used in 

demonstrating Lemma B previously. 

We can therefore readily promote Lemma E to a required condition, since allowing 

the isolation container to access data outside of its regions is far too dangerous, as 

shown above.  Consequently, our next condition C3 is: 

A thread of execution within a LibVM container cannot access memory regions 

outside of its allocated regions. 

However, Lemma F is too restrictive for the same reasons that Lemma B was too 

restrictive, which is that the host cannot access useful results of computations made 

by the container.  Being able to access and share this memory with the host is 

therefore a desired characteristic of LibVM.  However, allowing access to this 

memory results in the same weaknesses as those caused by allowing access to 

registers, since registers are also a form of memory.  Therefore, it trivially follows 

that lemmas C and D apply in this situation, and by the same process of 

argumentation, gives rise to the same condition C2. Condition C2 has already been 

sufficiently generalised to apply to both memory and registers.  In other words, 

Lemma F can be discarded in favour of Condition C2, which gives us greater 

flexibility while preserving our desired properties. 
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3.4.3.4 Deriving Conditions C4 and C5 

Finally, we add one more necessary capability to our hypothetical isolation container 

- the ability for the isolation container to trigger a domain transition in order to 

request additional required (and allowed) resources from its host.  We refer to this 

transition as a “host call”, analogous to a system call made by the host process itself. 

Several steps are involved in this process 

a. The isolation container must trigger a domain transition indicating that it 

wishes to avail itself of a particular host call. 

b. The host must resume execution from a predefined, safe call gate (the 

isolation container cannot be allowed to make the host resume from an 

arbitrary location). 

c. The host must obtain the parameters required for the requested host call from 

the isolation container’s memory (or registers). 

d. The host must execute this request, once it has determined that the requested 

action is “safe”. 

e. The host must place the results in the isolation container’s memory or 

registers. 

f. The host must return control to the isolation container so that it can resume 

execution by triggering a domain transition. 

Step a above does not affect our isolation objectives. It is merely a step in the 

mechanism of a host call.  In contrast, step b has implications for our isolation 

objectives, as the host must resume from a safe location, and not an arbitrary one 

triggered by a thread of execution within the Isolation Container.  However, we 

assume that this too is an integral part of the transition mechanism. 

Step c accesses the isolation container’s memory.  Such accesses are already covered 

under Condition C3, which states that all such accesses must be thoroughly 

validated. 

Step d involves determining whether an action is “safe” before execution.  At this 

point however, complexity erupts. Of the resources discussed so far (CPU and 

memory), the isolation container has always been provided private “copies”, thus 

maintaining isolation.  However, any new resources requested at this point may well 
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be shared resources.  For example, a library executing within the isolation container 

may request to write to a file.  This file may potentially be accessed by the host itself 

or some other process in the system.  The library execution within LibVM may 

proceed to corrupt this file, affecting the host or the rest of the system. 

Therefore, our isolation guarantees are most subject to vulnerablity during the 

execution of this step, due to the sheer number of possible actions.  LibVM itself 

cannot determine a priori what actions are safe, since it is the host that determines 

what the host call interface is.  As a result, this decision must necessarily be deferred 

to the host. Therefore, the same caveats which applied to condition C2 apply here. 

However, we observe that “an application can do little damage if its access to the 

underlying operating system is restricted”, which is the core assumption behind 

system call interpositioning based isolation mechanisms [42].  Since a component is 

a subset of an application, it follows that if the components access to both the host 

and the underlying operating system can be restricted, the damage it can cause will 

be minimal.  Therefore, at the minimum, LibVM provides defence in depth, by 

adding an extra layer in which the principle of complete mediation can be 

exercised [114]. 

By looking at the above requirements, we formulate two more conditions, which are 

C4: The domain transition mechanism provided by LibVM must not 

compromise the host’s integrity. 

C5: An action executed by the host on behalf of a library isolated within LibVM 

must not compromise the host’s own integrity. 

These two conditions encompass all the steps above. 

We consider both these lemmas to be full requirements in order to maintain our 

invariant that the host’s integrity cannot be compromised by a library executing 

within a LibVM container. 

3.4.3.5 Final Conditions 

Through a process of incrementally expanding the abilities of a LibVM container, as 

outlined in our methodology, we have carefully derived the conditions under which a 

library executing within that container can be guaranteed to be unable to compromise 

its host.  This incremental process relied on many security principles, including the 
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principle of least privilege [27, 114], where at each step, we provided the minimal 

abilities necessary to accomplish the actions executing within that step and added 

conditions which ensured that our target invariant would be preserved.  All of these 

conditions taken together therefore, present the necessary and sufficient conditions to 

guarantee that a library executing within a LibVM container cannot compromise the 

integrity of its host.  

The five propositions that were derived are. 

Condition 1 (C1): The CPU utilised by the LibVM container must be virtualised 

such that it is isolated from the host application. 

Condition 2 (C2): A host can never utilise a value obtained from within the isolation 

container without ensuring that it is adequately validated. 

Condition 3 (C3): A thread of execution within a LibVM container cannot access 

memory regions outside of its allocated regions. 

Condition 4 (C4): The domain transition mechanism provided by LibVM must not 

compromise the host’s integrity. 

Condition 5 (C5): An action executed by the host on behalf of a library isolated 

within LibVM must not compromise the host’s own integrity. 

It should be noted that conditions C2 and C5 are outside of the control of the security 

mechanisms provided by LibVM, and must be guaranteed by correct implementation 

of security policies by the host, as discussed in Section 3.4.3.2. Nevertheless, both of 

these conditions must be fulfilled for assurance of correctness. 

Next, we discuss the architecture which can be used to realise this .functional 

specification. 
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3.5 LIBVM ARCHITECTURE 

The basic architecture of LibVM consists of shared library isolation domains, each of 

which can contain multiple shared libraries, as depicted in Figure 3.1. 

This model enables individual domains to have different isolation policies, 

depending on the level of trust awarded to the shared library.  Domains can also 

contain multiple shared libraries, allowing an isolation policy to be shared. 

From an application developer’s perspective, LibVM is a sandboxing library that can 

be used to define such an isolation domain and to load additional shared libraries into 

it.  One significant assumption in LibVM is that it provides address space 

transparency, in that pointer values can be freely passed from the containing host to 

the isolation domain and vice versa.  (The rationale for this design decision is laid 

down in Section 3.6.3.)  Therefore, the developer must specify the size of the 

reserved address space range in advance.  Although this specified address space is 

initially only reserved and not actually used yet, it does have the restriction that it 

cannot subsequently be relocated, since all pointers within this address space would 

need to be adjusted. 

 Once a shared library is loaded, the methods in the library can be invoked in a 

manner analogous to the POSIX-based mechanism used in most UNIX systems.  

When a method is invoked, a controlled transition must be made into the isolation 

container, and the code then executed within it, with any return values returned to the 

host.  The shared library is in turn free to make additional system calls, all of which 

can be intercepted by the host and proxied as desired by the programmer. 

Importantly, LibVM’s isolation domain separates “policy” from “mechanism” by 

defining an interface which abstracts away the details of the specific implementation.  

In order to test this, we have created two separate implementations, one based on 

hardware virtualization support and another based on shared memory and ptrace-

based system call interpositioning.  However, this chapter focuses on laying out the 

details of the interface in the abstract, with concrete implementations being discussed 

in chapters 4 and 5. 
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3.6 KEY ISSUES WITH A LIBRARY ISOLATION ARCHITECTURE 

In this section we outline some of the rationale underlying the design of our LibVM 

architecture. 

3.6.1 Changes to Existing Development Practice 

In order for a library isolation architecture to be useful in practice, it is also necessary 

for it to be similar to existing shared library manipulation mechanisms, so that 

isolating shared libraries in separate domains does not require a significant re-

engineering effort.  Having to rewrite shared libraries in their entirety would be 

detrimental to the practicality of isolating libraries and could easily be rejected on 

economic and business grounds.  Therefore, the library code should remain largely 

Shared library text/data 

Shared library text/data 

Figure 3.1: Process memory layout in a program which utilises LibVM 
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“as is” and ignorant of the fact that its components are executing within an isolated 

domain. 

The hosts too should require minimal change, and in keeping with this requirement, 

the API is designed to closely mimic the POSIX API for shared library manipulation, 

so that host applications can be ported to use the isolation API with less effort.  In 

this way, the additional software effort is limited to the host program. 

3.6.2 Implementation Agnosticism 

The isolation API separates policy from mechanism by defining an interface which 

abstracts away the details of the specific implementation.  In order to test this, we 

have created two separate implementations, one based on CPU hardware 

virtualization support and another based on shared memory and ptrace-based system 

call interpositioning (Other mechanisms are possible, such as an RPC-based 

mechanism which isolates components into different operating system processes).  

This frees the application developer from being tied to a specific implementation, 

allowing variation in the mechanism chosen, based upon security requirements. 

3.6.3 Shared Address Space 

Given that support for shared libraries is generally provided at an operating system 

level, it stands to reason that isolation of those libraries is also most easily 

implemented at an operating system level.  Mendelsohn [93] argues that 

“components” should be a “first class” concept in operating system development and 

deployment.  Unfortunately, this has not come to pass, for two key reasons. 

a. Software components in shared libraries are usually designed to share the 

address space of their hosts, in order to make data sharing between the 

host and the library component simpler.  However, due largely to the 

unavailability of a hardware mechanism to simultaneously share address 

space and constrain instruction execution within an isolation boundary, 

few attempts have been made to isolate libraries from the hosting 

application (Exceptions to this, such as Google’s Native Client, Vx32 etc. 

have been reviewed in Chapter 2). 

b. There are significant performance costs in switching between address 

spaces [86]. 
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With regard to the first disadvantage, the main issue is that pointers have no meaning 

beyond the address space in which they were originally created, requiring that they 

be specially manipulated or readjusted before use.  Consider a simple data structure 

with a pointer to another data structure, such as a linked list.  Any attempt to pass this 

data structure unmodified between private address space boundaries would render 

the data structure invalid, as the memory address to which the structure is copied 

cannot be guaranteed to be the same.  All pointers within the structure would have to 

be readjusted so that they remain valid in their new location.  Therefore, some 

additional technique is needed to share data structures between address spaces, such 

as marshalling or pointer “swizzling” [140], adding overhead and complexity to the 

process and making data sharing between address spaces awkward.  While this can 

be avoided in a classic segmented memory architecture, as all addressing is done 

relative to the base of the segment, it complicates inter-segment addressing, which 

led to it dwindling out of use in favour of a flat address space. 

Secondly, address space switching has traditionally come at significant cost.  While 

address space switching with schemes like hardware supported memory 

segmentation can reduce such costs, they have fallen out of favour due to the 

increase in overall software development complexity, as mentioned above.  The 

currently available schemes, such as operating system supported context switches, 

incur significant overhead, and synchronization is required when crossing address 

spaces [19]. 

Therefore, the benefits of address space sharing have given rise to research into 

single address space operating systems, particularly in 64 bit environments, where 

address space is abundant [15, 53, 75]. 

Such address space sharing becomes even more important for fine-grained 

components, where it becomes prohibitive to bear the cost of complete context 

switches or to suffer the complexity of programming for different address spaces.  

Unfortunately, few viable mechanisms exist for isolating components within the 

same address space, as contemporary hardware isolation mechanisms were designed 

to isolate processes into different address spaces.  While there have been attempts to 

commandeer existing paging and segmentation hardware for this purpose, they do so 

at the cost of reduced isolation guarantees [19]. 
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Many other approaches to component isolation simply do not address this dimension 

at all, falling back to traditional RPC mechanisms and shared memory pages in order 

to pass data between a component and its host [8, 32, 144, 145].  This, of course, 

incurs a performance and complexity penalty in terms of parameter marshalling 

across process boundaries, or reduced functionality (the inability to use pointers) 

when using shared pages.  

Thus, the very benefits of fine-grained components are lost in the process, as simple 

and efficient sharing of data structures is hampered.  While shared memory pages 

can be conceivably made to emulate this functionality by mapping the same memory 

pages into different processes at the same virtual address, this must be done with 

great care to avoid potential conflicts, as synchronization between two processes is 

required.  Reaching an agreement becomes proportionately more difficult when 

multiple components are involved [53]. 

Thus, this problem remains largely unsolved or altogether neglected in practice, 

mainly due to the lack of feasible alternatives.  Now however, hardware 

virtualization [134] offers a greater degree of flexibility that can be utilised in 

enabling secure address space sharing, and this forms the basis of one approach 

presented in Chapter 5, for isolating components with strong guarantees while 

preserving the benefits of a single address space. 

 1 void    *handle; 

 2 typedef void (*hello_func)(char * str); 

 3  

 4 /* open the needed object */ 

 5 handle = dlopen("/usr/home/me/libfoo.so", RTLD_LOCAL |   
   RTLD_LAZY); 

 6  

 7 /* find the address of function and data objects */ 

 8 hello_func fptr = (hello_func)dlsym(handle, "my_function"); 

 9  

10 /* invoke function, passing value of string as a parameter */ 

11 (*fptr)("hello world"); 

Figure 3.2: POSIX example of shared library call 
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Nevertheless, in designing a general purpose isolation architecture, no assumption 

can be made that the shared library must necessarily reside in the same address space 

as its host, in keeping with the previously stated goal of implementation agnosticism. 

3.7 LIBVM - API SPECIFICATION 

To solve these problems, we have designed an Application Programming Interface 

specification sufficient to achieve component isolation with minimal changes to 

existing coding practices.  In this section, we present the API specification in a 

generic form.  Specific implementations of this interface are presented in Chapters 4 

and 5. 

3.7.1 Overview of API Specification 

As mentioned previously, the interfaces are largely implementation independent, 

with the only assumption being that the library executes within the same address 

space as the hosting container, although strictly speaking, even this assumption is 

only necessary for certain parts of the functionality requirements.  The basic interface 

strives to emulate the standard POSIX interfaces, which we describe below. 

3.7.2 Existing POSIX Interface 

The POSIX standard [61] defines three basic calls for loading a component into its 

host address space.  These are as follows. 

1. dlopen – Loads the library 

2. dlsym – Extracts contents 

3. dlclose – Unloads the library 

The above three system calls are utilised in most UNIX-based operating systems 

(Microsoft Windows utilises similar system calls – LoadLibrary [96], 

GetProcAddress [95] and FreeLibrary [94]). 

The code snippet in Figure 3.2 highlights the basic process of loading a shared 

library and invoking a function call within that library.  As line 5 shows, the 

dlopen function is responsible for opening the shared library, giving its location, 

and returning a handle for future references to the library.  This handle can be 

subsequently used to obtain a pointer to a symbol within the library (line 8).  The 
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symbol may be a function or data pointer.  If it is a function pointer, it can then be 

utilised to directly invoke the function (line 11). 

Several observations can be made at this point. 

1. It is trivial to obtain a pointer to a function and invoke it directly as in line 

8, without the necessity for parameter marshalling, demonstrating 

programming simplicity within a single address space memory 

environment.  

2. Preserving this same model is advantageous, as a lot of previously written 

code can be transferred to this model with minor changes. 

3. The interface is suitably simple and easy to understand for something as 

important as dynamic shared libraries. 

3.7.3 LibVM Interface 

The LibVM interface was designed to closely mimic the functionality of the POSIX 

interface.  This is in keeping with the idea of making it easier to port applications to 

be able to use LibVM isolation, yet general enough to support multiple 

implementations.  Therefore, the POSIX interface can also be implemented as a 

“subset” of the LibVM interface, which however, would be equal to having no 

isolation at all. 

The most important methods provided by LibVM’s interface are outlined below. 

1. libvm_initialise – Initialises the isolation subsystem 

2. libvm_open – Loads a library 

3. libvm_sym – Extracts contents 

4. libvm_close – Unloads the library 

5. libvm_guest_malloc – Allocates memory within the guest component’s 

address space 

6. libvm_guest_free – Frees memory allocated by a guest component 

7. libvm_destroy – Frees resources used by the isolation sub-system 

Predictably, the libvm_open function maps closely to dlopen, libvm_sym to dlsym 

and libvm_close to dlclose. 
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In order to demonstrate the functionality of this approach, the code snippet in Figure 

3.3 can be contrasted with the POSIX implementation. 

As demonstrated in Figure 3.3, the basic interface to the host is almost identical to 

the POSIX case.  The differences are the addition of an extra initialisation function in 

line 5, which must be done once to initialise the isolation subsystem, followed by the 

subsequent destruction of it (not shown).  It should be noted that no changes are 

required to the target shared library.  The calling semantics of the function also 

remain identical as in lines 8, 11 and 14, meaning that, in simple scenarios, the 

application can be trivially ported to execute the library within an isolated 

environment. 

In addition, this interface specification avoids being bound to a specific 

implementation of LibVM, in line with previously stated goals. 

3.7.4 Interface Details 

This section discusses each of the methods in the interface in greater detail, and 

describes their rationale and function. The section also tabulates the functions in a 

summarised form, and serves a point of reference throughout this thesis. 

 1 void    *handle; 

 2 typedef void (*hello_func)(char * str); 

 3  

 4 /* Initialise the isolation sub-system */ 

 5 struct libvm * libvm_ptr = libvm_initialise(argv); 

 6 

 7 /* open the needed object */ 

 8 handle = libvm_load(libvm_ptr, "/usr/home/me/libfoo.so"); 

 9  

10 /* find the address of function and data objects */ 

11 hello_func fptr = (hello_func)libvm_sym(handle, "my_function"); 

12  

13 /* invoke function, passing value of integer as a parameter */ 

14 (*fptr)("hello world"); 

Figure 3.3: LibVM example of shared library call 
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3.7.4.1 libvm_initialise 

The purpose of this function is to initialise a LibVM isolation domain. It is provided 

so that an implementation has an opportunity to perform state initialisation, such as 

the allocation of initial resources required for the domain. It should be noted that 

multiple invocations of the method are possible, and therefore, multiple isolation 

domains can be created. 

The method accepts a single argument in the form of an array of environmental 

values. This array can be used to provide various implementation specific properties 

so that the isolation domain can be fine-tuned if necessary. An array of arbitrary 

length can be supplied, with the end of the array indicated through a NULL 

terminator. The implementation specific parameters must be supplied as a character 

array with a name=value format, where name is the parameter name and value is the 

parameter’s value. 

The function returns a handle to the newly created isolation domain, which can be 

used to refer to and manipulate the newly created domain. All subsequent calls to a 

LibVM method must necessarily pass in the libvm_context, either directly or in 

an encapsulated form.  Each invocation of the initialise method should return a 

unique libvm_context, each pointing to a unique isolation domain.  All 

subsequent methods in the LibVM interface necessarily require this handle in order 

to identify, retrieve state from  and modify the isolation domain. In the event of an 

error, a non-NULL context must nevertheless be returned, so that an implementation 

can determine the cause of the failure, through a call to 

libvm_get_last_error (see Table 3.8). 

The libvm_initialise function is summarised in Table 3.1. 

3.7.4.2 libvm_open 

This method is analogous to the dlopen command in a POSIX implementation. It is 

provided so that shared libraries can be loaded into an isolation domain initialised 

previously. 

Multiple shared libraries may be loaded into a single isolation domain. Each 

invocation therefore, returns a unique, opaque, implementation specific handle that 

can be subsequently used by the implementation to identify a library. Therefore, the 
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handle must not be interpreted by the caller in anyway. In addition, the 

implementation must ensure that the handle encapsulates the libvm_context returned 

by the initialise method as well, so that the parent isolation domain can be obtained 

from a library handle. 

The filename of the library to be loaded must be passed into the method. Each 

implementation may have its own security policy and search paths for locating the 

library. Additional implementation specific parameters can also be passed through a 

flags parameter, although this parameter would ideally remain unused, to avoid such 

implementation specific dependencies. 

This libvm_open function is summarised in Table 3.2. 

3.7.4.3 libvm_sym 

This method provides a means for resolving symbols within libraries loaded into a 

LibVM sandbox. It is analogous to the dlsym method provided in a POSIX 

implementation. Its primary use is in providing the caller with a reference to a 

function within the library, which can then be used to invoke that function. 

Therefore, in the simplest possible implementation, it would return a direct function 

pointer to the library method, which is exactly what the dlsym method in a POSIX 

implementation does. However, such a function pointer would provide no isolation, 

since calling the function would cause it to be executed within the host’s domain, 

effectively providing the untrusted function with the same privileges as the host. 

Therefore, a more advanced implementation of LibVM should return a proxy 

function in place of the actual library function, which will also perform an isolation 

domain switch into the LibVM sandbox, before executing the actual library function, 

thus properly isolating the shared library. The proxy function would be responsible 

for copying parameter values safely from the caller’s address space into the 

sandbox’s address space. 

This creates complications when passing values by reference, or when passing values 

which are pointers to values residing in the host’s address space. The values would 

need to be serialised and copied over to the sandbox’s shared address space, so that 

the library executing within the sandbox can access these values. Alternatively, the 
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values should be pre-allocated within the shared address space, so that the untrusted 

code can reference them without affecting the host. 

This libvm_sym function is summarised in Table 3.3. 

3.7.4.4 libvm_close 

This method is provided in order to unload a shared library from within a LibVM 

sandbox, thus freeing up the memory and resourced used by that library. It is 

analogous to the dlclose method in a POSIX implementation. Once the dlclose 

method is called, previous handles issues through the libvm_open method should be 

invalidated. However, the isolation domain should not be destroyed, and it should be 

possible to reload the library afresh by calling the libvm_open method. 

This libvm_close function is summarised in Table 3.6. 

3.7.4.5 libvm_guest_malloc 

This method’s purpose is to provide a means through which to allocate memory 

within a guest’s address space. While address space transparency is assumed 

between the guest and host, it is also essential that the guest code executing within 

the sandbox cannot access memory outside of the bounds of the sandbox. Therefore, 

this method provides a means by which a host application can negotiate a shared 

chunk of memory within the sandbox’s allowed memory regions, which can then be 

addressed by both the untrusted guest code and by the host application itself. 

While this memory region can be freely accessed by the guest, the host must take 

precautions when utilising a value obtained from this shared address space and treat 

is as untrusted, since untrusted code executing within the sandbox may 

asynchronously manipulate that memory. Therefore, validation must be performed 

before using such values, and TOCTOU [39] bugs should be avoided. 

This libvm_guest_malloc function is summarised in Table 3.4. 

3.7.4.6 libvm_guest_free 

This method is the counterpart of the libvm_guest_malloc method and provides a 

means by which to release memory previously allocated with libvm_guest_malloc. It 

should be noted that the memory must be released from the guest’s address space.  

Thus, an invalid free or a double free invocation would not result in an error in 
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the memory tables of the host’s address space.  An invalid free may corrupt the 

guest’s address space, but this must be limited to the pre-defined address space of the 

guest, thus having no effect on the host. 

This libvm_guest_free function is summarised in Table 3.5. 

3.7.4.7 libvm_destroy 

This method provides means by which an isolation domain can be completely 

destroyed and all resources used by it, released. Therefore, an implementation should 

suspend the execution of code within the sandbox, unload all libraries and release all 

resources used by it. 

This libvm_destroy function is summarised in Table 3.7. 

Method name: libvm_initialise 

Method description: Initialises the isolation subsystem.  Any state initialisation, 

global to an isolation domain, can be performed here. 

Method signature: struct libvm_context * 

libvm_initialise(const char *const 

*argv) 

Parameter description: 

 

argv – An array of strings containing environmental 

values, with the last element being equivalent to a NULL 

value.  This can be used to pass in an array of arbitrary 

length, containing implementation specific parameters in 

name=value format.  

returns – A pointer to a libvm_context.  A 

libvm_context is a handle that can be used to retrieve 

isolation domain state by the LibVM implementation.  All 

subsequent calls to a LibVM method must necessarily pass 

in the libvm_context, either directly or in an 

encapsulated form.  Each invocation of the initialise 

method should return a unique libvm_context, each 
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pointing to a unique isolation domain.  In the event of an 

initialisation error, a non-NULL libvm_context must 

nevertheless be returned.  Callers can retrieve a detailed 

error code by passing in this invalid libvm_context to 

libvm_get_last_error. 

Notes: In the simplest implementation (POSIX case, with no 

isolation), this method would nevertheless return a basic 

libvm_context with the error_code field set to 1 

(SUCCESS).  In more advanced uses, the 

libvm_context’s impl_data field can be used to 

store additional implementation specific details. 

Table 3.1: Initialising the isolation subsystem – libvm_initialise 

Method name: libvm_open 

Method description: Opens a shared library, given its path, and loads it into a 

previously defined isolation domain. 

Method signature: void * libvm_load(struct libvm_context 

*libvm_ptr, char * filename, int flags) 

Parameter description: 

 

libvm_context – A pointer to a specific instance of an 

isolation domain, obtained by calling 

libvm_initialise. 

filename – The filename/path of the library to be 

loaded. 

flags – Additional implementation specific parameters.  

Implementations must supply intelligent defaults if a NULL 

value is passed as the flags parameter. 

returns – A pointer to a handle which can be used by the 

implementation to identify the library in future.  This 
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handle must not be interpreted by the caller in anyway, and 

must be treated as opaque.  In a typical implementation, 

the handle will also encapsulate the libvm_context.  If 

an error occurs during libvm_open, the returned 

libvm_context can be used with the 

get_last_error function to obtain detailed error 

information. 

Notes: In the simplest implementation (POSIX case, with no 

isolation), this method would be equivalent to the dlopen 

command, with the flags parameter functioning 

identically.  In a more advanced implementation, the 

flags parameter can be used to pass implementation 

specific details, but ideally, it would remain unused, 

shielding the caller from any implementation specific 

details. 

Table 3.2: Loading a library - libvm_open 

 

Method name: libvm_sym 

Method description: Accepts a handle of a previous opened library and a 

symbol name, and returns an address via which the value 

of the symbol can be accessed. 

Method signature: void * libvm_sym(void * handle, char * 

name) 

Parameter description: 

 

handle – A handle to a library returned by a previous 

call to libvm_open. 

name – The name of the symbol that should be located. 

returns – An address via which the symbol can be 
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accessed.  If the address is a function, then it must be 

possible to invoke the function as any other.  The function 

may be a proxy function that takes care of switching 

isolation domains before invoking the actual library 

function.  If an error occurs during libvm_sym, a NULL 

value may be returned, after which the current 

libvm_context may be used with the 

get_last_error function to obtain detailed error 

information. 

Notes: In the simplest implementation (POSIX case, with no 

isolation), this method would be equivalent to the dlsym 

command.  If the returned symbol is a function pointer, it 

should be possible to directly invoke the function as with 

invoking a function via any other function pointer.  

Advanced implementations may return a proxy function in 

place of the actual library function, with the proxy function 

being responsible for switching to and back from the 

isolation container, and copying parameters and return 

values back to appropriate locations so that the caller and 

callee can both access these values. 

Table 3.3: Extracting contents - libvm_sym 

 

Method name: libvm_guest_malloc 

Method description: Allocates memory in the isolation container’s address 

space, which should be accessible to both the host and the 

guest.  Address transparency between guest and host is 

assumed. 

Method signature: void * libvm_guest_malloc(void * 

handle, size_t size) 
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Parameter description: 

 

handle – A handle to a library returned by a previous 

call to libvm_open. 

size – The amount of memory to be allocated in bytes. 

returns – The address of the allocated memory region or 

NULL in the event of an error. 

Notes: This method has no equivalent in the POSIX case, but has 

been provided in order to enable the host and guest to 

negotiate a shared address space.  The guest cannot access 

the host’s memory, in order to maintain a strict isolation 

boundary, and any shared memory must be established 

within the guest’s address space.  The host should copy 

values back upon completion and double check the values 

in order to guard against timing attacks. 

Table 3.4: Allocating memory within the guest component’s address space - libvm_guest_malloc 

 

Method name: libvm_guest_free 

Method description: Frees memory previously allocated by 

libvm_guest_malloc. 

Method signature: void libvm_guest_free(void * handle, 

void * ptr) 

Parameter description: 

 

handle – A handle to a library returned by a previous 

call to libvm_open. 

ptr – The address of the memory in the guest’s address 

space, to be freed. 

returns – n/a 

Notes: This method has no equivalent in the POSIX case, but has 
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been provided in order to enable the host and guest to 

negotiate a shared address space.  The free method must 

only be performed within the guest’s address space.  Thus, 

an invalid free or a double free invocation would not 

result in an error in the memory tables of the host’s address 

space.  An invalid free may corrupt the guest’s address 

space, but this must be limited to the pre-defined address 

space of the guest. 

Table 3.5: Freeing memory within the guest component’s address space - libvm_guest_free 

 

Method name: libvm_close 

Method description: Unloads a library previously loaded by libvm_open. 

Method signature: void libvm_close(void * handle) 

Parameter description: 

 

handle – A handle to a library returned by a previous 

call to libvm_open. 

returns – n/a 

Notes: In the simplest implementation (POSIX case, with no 

isolation), this method would be analogous to the 

dlclose command.  The implementation can unload the 

library from the isolation domain and free any memory 

utilised by it.  However, the isolation domain must not be 

destroyed unless a close to libvm_destroy is made. 

Table 3.6: Unloading a library - libvm_close 
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Method name: libvm_destroy 

Method description: Unloads the entire isolation container and frees up any 

resources used by it. 

Method signature: int libvm_destroy(struct libvm_context 

* libvm_ptr) 

Parameter description: 

 

libvm_context – A handle to an isolation domain 

returned by a previous call to libvm_initialise. 

returns – 1 on success, 0 otherwise. Error codes can be 

obtained via a call to libvm_get_last_error. 

Notes: This method does not have an analogous POSIX 

command.  The implementation should unload the entire 

isolation domain and free all memory utilised by it.  Any 

libraries within the domain must also be unloaded. 

Table 3.7: Freeing resources used by an isolation domain - libvm_destroy 

 

Method name: libvm_get_last_error 

Method description: Returns an error code by which the last error code returned 

by the API can be accessed. 
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Method signature: char * libvm_get_last_error (struct 

libvm_context * libvm_ptr) 

Parameter description: 

 

libvm_context – A handle to an isolation domain 

returned by a previous call to libvm_initialise. 

returns – NULL if there are no errors, or a human readable 

string with a description of the error that occurred. 

Notes: This method is analogous to the dlerror command, and 

in a POSIX implementation, would be identical. 

Table 3.8: Getting last error code - libvm_get_last_error 

3.8 IMPLEMENTATION NOTES 

While our LibVM interface strives to be implementation agnostic, and the basic 

methods required for its functionality do not expose many implementation specific 

details, thus enabling a variety of conforming implementations, all implementations 

do rely on a few assumptions, which are outlined below. 

3.8.1 Requirements 

The ideal implementation of LibVM relies on the availability of a CPU implemented 

virtual machine environment wherein the execution of arbitrary code is possible in a 

controlled fashion.  The VM environment must match the architecture and 

implementation of the hosting application.  Strictly speaking, LibVM requires a 

virtual machine library with the following specific features.  

1. It must support full virtualization of the CPU features and memory. 

2. It must be compatible with the host environment’s architecture (e.g., 32-bit 

Intel x86). 

3. Memory regions must be supported, with access attempts to unmapped 

regions resulting in trappable page faults. 

4. It must provide full control over its address space layout (e.g., in a 32 bit 

system, it must provide access to all 4 GB of available address space). 
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5. Privileged instructions (e.g., interrupt invocations, syscall instructions) 

must be trappable. 

6. The host operating system must have a clearly defined system call 

interface, so that system-call interpositioning is possible (currently 

unavailable on Microsoft’s Windows operating system). 

Therefore, the  primary version of LibVM is built on LibKVM [107], which provides 

an abstraction layer over the hardware virtualization support built into newer Intel 

and AMD x86 processors, and is presented in Chapter 5.  The combination of 

LibKVM and hardware virtualization support provides an extremely light-weight 

virtual machine facility which fulfils basic CPU and memory virtualization 

requirements well, without incurring the overhead of a full-blown virtual machine 

implementation.  Performance measurements confirm that the overhead is low 

enough to offer competitive performance in comparison to other techniques, as 

shown in Chapter 5. However, a software-based implementation which relies on 

existing operating system isolation facilities, has also been implemented, and is 

presented in Chapter 4. 

3.9 CONCLUSION 

This chapter has defined the architecture and functional specification for LibVM, 

identifying the key conditions under which LibVM can be guaranteed to be correct 

with respect to isolating libraries from their host, such that the host is fully able to 

control the execution of the libraries.  Five conditions were identified under which 

this guarantee could be provided, two of which are reliant on the correct 

implementation of security policies by the host.  Each condition was analysed in 

depth.  However, these five conditions are not designed to guarantee a non-

interference policy [122] as LibVM was not build with the aim of enforcing a secure 

information flow policy.  Nevertheless, these conditions can be expanded upon to 

provide such guarantees, if required. The section has also provided an overview of 

the functions underpinning our design of an isolation container, as well as the 

rationale behind each method in the Application Programming Interface.  The API 

specification strives to be implementation independent, and as a result, there are 

three implementations — one degenerate case which is equivalent to the plain 
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POSIX API’s structure with no isolation, and two other implementations which are 

described in Chapters 4 and 5. 
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Chapter 4: Software Solution – Process 

Tracing Based 

4.1 INTRODUCTION 

This chapter describes a reference implementation of the LibVM Application 

Programming Interface (API) as defined in Chapter 3. It is based on existing 

software facilities, and serves to highlight the general techniques that can be used to 

realise LibVM’s API.  It relies on existing Operating System isolation features, in 

contrast to the hardware virtualization supported implementation described in the 

next chapter.  The purpose of this implementation is to assess the possibility of 

appropriating existing Operating System functionality for the purpose of intra-

address space isolation, its effectiveness, as well as performance implications.  This 

chapter delves into these aspects, and provides an in-depth discussion of the 

implementation details. 

4.2 APPROACH 

In selecting an appropriate software-based implementation for library component 

isolation, we evaluated several of the techniques discussed in Chapter 2.  While 

Software Fault Isolation (SFI) has been successfully utilised to “sandbox” libraries, it 

places many restrictions on the origin and source of the shared libraries themselves, 

as well as the subset of machine instructions such libraries are allowed to execute.  In 

order to enforce these restrictions, existing approaches require that the libraries be 

recompiled through custom tool chains [32, 144] and existing libraries in binary form 

be altogether rejected [144].  Our goal was to avoid these restrictions, allowing a 

binary component to take advantage of any new or existing machine instruction, as 

long as it was not a privileged one, as well as to avoid the burden of requiring that 

binary components obtained from various sources be recompiled according to the 

restrictions imposed by an SFI implementation.  Given these constraints, we rejected 

SFI as a suitable approach to this problem. 
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A well-known technique used to execute untrusted programs in a sandboxed 

environment, thus restricting them from accessing system resources, is System Call 

Interpositioning [39, 40, 42, 70, 101].  It is based on the idea that “an application can 

do little harm if its access to the underlying operating system is appropriately 

restricted” [42] and therefore, denying or modifying a system call before the 

Operating System executes it, is an effective way to jail the application.  Operating 

system provided tracing mechanisms such as ptrace, or kernel level drivers, can be 

used to intercept all system calls made by a jailed application, and to modify these 

system calls as needed, effectively confining the application to a restricted subset of 

resources. 

We decided to investigate the possibility of utilising a similar mechanism, although 

most existing implementations were meant to confine entire processes, not libraries 

within a process.  Nevertheless, the approach itself presented several advantages, 

such as the ability to utilise existing OS facilities such as ptrace, /proc etc.  To our 

knowledge, ours is the first attempt to utilise this method for jailing individual 

libraries used by a process. 

There were several potential ways to set about this.  One approach was to use a 

kernel module to intercept system calls.  However, errors or faults in kernel drivers 

are likely to be more disastrous than at a user level.  Therefore, we decided to reject 

this approach in favour of user level tracing mechanisms.  

 Of the user level tracing mechanisms, the most well-known are ptrace and 

/proc [70], the latter of which provides tracing facilities on SUN’s Solaris operating 

systems.  We decided to utilise the ptrace interface since it is available in our chosen 

operating system - Linux.  

Ptrace provides a fairly simple interface by which one process can trace the 

execution of another.  As the traced process executes, the ptrace interface provides a 

callback on the execution of each system call, allowing the tracing process to observe 

and manipulate the system call as desired.  In addition, a rudimentary interface is 

provided to write to the traced process’s memory. 

This interface was originally introduced to support debuggers and as a result, ptrace 

has several limitations.  One of the main limitations is that it is an “all or nothing” 

interface – in that either all system calls need to be traced, or none can be.  There is 
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no possibility of being selective in choosing which calls to trace, incurring the 

overhead of a callback on each system call.  In contrast, the /proc interface allows for 

more fine grained control.  One of the biggest shortcomings in ptrace however, is 

that it does not provide a way to abort or ignore a system call.  However, 

workarounds for these issues have been demonstrated [40, 101] and do not pose a 

significant impediment to its use. 

4.3 IMPLEMENTATION OVERVIEW 

Figure 4.1 depicts the basic idea behind enabling library isolation using process 

tracing.  The host application is the parent, and the library executes in a different 

Figure 4.1: Relationship between parent and child processes 
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process, as a child of the host process.  This enforces a strict separation between the 

parent and the child, using existing process isolation facilities. 

The next task is to make sure that the child cannot execute any system calls without 

arbitration by the parent, which is achieved by the parent process tracing the child 

process.  As explained previously, this enables the parent process to intercept all 

system calls made by the child, effectively controlling the worldview provided to it 

and constraining the child’s execution with an isolation container. 

The final task is to enable address space transparency between parent and child.  This 

is achieved by establishing a shared memory segment between the two, and carefully 

ensuring that the child is limited to accessing memory only within that shared 

memory segment, in full view of the parent process.  This enables the desired address 

transparency. 

An important decision with regard to the implementation of this isolation mechanism 

was the portability factor.  Since this was primarily a proof of concept to evaluate 

reference transparency in shared libraries, we decided to allow for platform specific 

assumptions to reduce the implementation burden.  While the mechanics are specific 

to Linux, we show that the general ideas are applicable to any operating system, 

although they would need to be re-implemented to suit those systems. 

Another trap we wanted to avoid was to place a new burden on those using LibVM, 

namely that they adapt existing libraries according to the constraints imposed by 

LibVM.  This is in contrast to the method utilised in Google’s Native Client [144] 

and Vx32 [32], as well as other SFI based isolation systems, which rely on the 

libraries being recompiled using a custom tool chain.  This requirement is specified 

by SFI systems mainly because of the complexity in guaranteeing that arbitrary 

machine code is secure.  By placing some restrictions on these machine instructions, 

such as disallowing unaligned jumps, this complexity is greatly reduced.  However, 

we argue that this places an undue burden on developers, as it is not always feasible 

to expect that a third party library can be recompiled using a custom tool chain.  

Instead, our focus was on utilising existing libraries unaltered, and have the burden 

of adapting and isolating them placed on the host program only.  We believe this is a 

more practical approach, as there is no escaping the fact that a host application which 

wishes to utilise LibVM’s isolation facilities must be modified, whereas modifying 

shared libraries obtained from third parties is optional. This is also more desirable; as 
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such third-party libraries may not always come in an adaptable or recompilable form 

and would introduce a maintenance burden in addition. 

The easiest method of achieving this end is to “fool” the library into thinking that it 

is executing as normal, within an OS process, as part of an application, and with full 

access to the usual machine instructions and system calls.  However, by placing the 

application in a separate isolation container (in this case, a separate process), and 

restricting the library at a system call level, we effectively restrict the world view 

available to the library as well as its effect outside of the isolation container.  This 

basic idea is portable across operating systems. 

In the case of Linux, the simplest way to achieve this is to let the libraries be loaded 

by the existing dynamic linker/loader provided by the operating system.  This 

removes a significant number of burdens and limitations imposed by other systems.  

For example, early versions of Google’s Native Client system required that the 

libraries be statically linked [118, 144], with dynamic loading support introduced 

later, albeit in limited ways.  Vx32 also imposes similar restrictions [32].  By 

allowing the system’s standard runtime linker to perform all symbol resolution, we 

avoid all such restrictions, while simultaneously enabling the use of existing libraries 

with no modification. 

Therefore, we opted to utilise the standard Linux dynamic linker to perform these 

tasks.  However, we also wanted to avoid the complexity of adapting, recompiling or 

otherwise modifying the linker, which would create an unnecessary maintenance 

burden.  Therefore, our aim was to use the linker unmodified as well, while 

constraining its worldview in a similar fashion, through interception of system calls. 

The process of linking and loading is discussed in great detail by Levine [84].  The 

ELF (Executable and Linkable Format) interpreter utilised by Linux is basically a 

linker/loader which is executed by the operating system in response to a request to 

execute an actual program, typically through an exec system call.  The operating 

system loads the ELF interpreter into a high address in memory, and populates the 

“AUXV” data structure, which points to where the actual executable lies.  In 

addition, environmental variables are also placed just after the AUXV vector.  The 

operating system will then switch to the process and jump to the interpreter’s entry 

point. 
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The ELF interpreter is position independent and therefore, fully relocatable, which 

means that it can be placed anywhere within an address space and executed, in 

contrast to executables with fixed load addresses.  When the ELF interpreter starts 

executing, it will read in the AUXV vector and environmental variables, in order to 

initialise itself.  While this overall process is involved and described by Levine [84], 

the basic idea is that the interpreter will follow the AUXV vector to find the base 

address of the actual executable, read its ELF header, and start performing the 

dynamic linking routine.  If it is a static executable, little else needs to be done, and 

the linker can transfer control over to the executable.  However, if it is a dynamic 

executable, the linker must first load all dependent libraries, such as the C runtime 

library and all other dependencies recursively.  This symbol resolution process is also 

quite involved.  Once complete, execution can be transferred to the executable.  

However, the interpreter must remain in memory to perform any dynamic 

linking/symbol resolution needed by the running program. 

As described above, rather than rewriting the ELF interpreter from scratch, we utilise 

it as it is for library loading and symbol resolution.  By emulating the behavior of the 

operating system, we can effectively use the existing ELF interpreter with no 

modifications.  Therefore, we utilise a “bootstrapper” executable, written to support 

LibVM’s functionality, which we ask the ELF interpreter to execute.  The ELF 

interpreter dutifully executes the executable program, within our isolated and fully 

traced and controlled process. 

The bootstrapper executable is an executable which acts as a proxy for LibVM 

within the memory space of the child process.  The idea is that we make the 

interpreter execute the bootstrapper executable, which in turn provides a set of 

services that we can use to control the child process, such as loading additional 

shared libraries.  We consider the child process a sort of virtual machine for shared 

libraries, and hence, the bootstrapper is responsible for “booting” that VM, in 

collaboration with the ELF interpreter.  This is also where the name “LibVM” comes 

from. 

This bootstrapper executable must also be relocatable, since we wish to constrain all 

interaction with the shared memory region which is shared by the child with its 

parent.  This is done by compiling the bootstrapper executable as a Position 

Independent Executable (PIE), via the –PIE flag in GCC.  Normally, executables are 
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not position independent and are loaded at a fixed base address, whereas shared 

libraries are position independent, since they are loaded dynamically and it is 

difficult to predict in advance where in memory a space for it will be available.  

However, it is possible to compile standalone executables as being position 

independent, which is also how the ELF interpreter itself is compiled.  This is also 

important in enabling Address Space Layout Randomization (ASLR), which is used 

by modern operating systems to reduce, or minimise return-to-libc attacks [119]. 

Next we discuss how the actual process of creating the isolation container in the 

software solution works. 

4.3.1 Initialising the Library – libvm_initialise 

As outlined in Chapter 3, the basic process of initialising a new isolation container is 

triggered through the libvm_initialise call.  This creates a cascade of actions, which is 

presented in outline form below as a point of reference, but elaborated upon in detail 

subsequently. 

1. A shared memory region is allocated; 

struct libvm_mem_region { 
    void * base; 
    size_t size; 
}; 
 
struct libvm_mem_region * create_shared_region() 
{ 
    void * mapped_address; 
 
    struct libvm_mem_region * region_ptr = malloc(sizeof (struct  
       libvm_mem_region)); 
    if (region_ptr == NULL) 
        return NULL; 
 
    if ((mapped_address = mmap(LIBVM_SHARED_BASE, LIBVM_SHARED_SIZE, 

PROT_READ | PROT_WRITE | PROT_EXEC, 
MAP_SHARED | MAP_ANONYMOUS, -1, 0)) == 

 (void*) -1) 
    { 
        free(region_ptr); 
        return NULL; 
    } 
 
    region_ptr ->base = mapped_address; 
    region_ptr ->size = size; 
    return region_ptr; 
} 

Figure 4.2: Allocation of shared memory region 
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2. The ELF interpreter and a “bootstrapper” are loaded into this shared 

memory region; 

3. A child process is forked; 

4. The parent immediately attaches itself to the child; 

5. The child process then proceeds to clean up its address space; 

6. The child jumps to the interpreter’s start address.  The interpreter executes, 

and in turn, executes the bootstrapper, with the parent carefully ensuring 

that the child’s access is constrained within the shared memory region; 

7. The bootstrapper heralds completion by invoking a special syscall; 

8. The dlsym function in the child’s C runtime is resolved; and 

9. The host returns from the libvm_initialise call, with the child process 

suspended. 

4.3.1.1 Setting up a shared address space between parent and child 

When the libvm_initialise method is invoked, the first thing that LibVM does is to 

allocate a region of memory that will be shared between the host (parent process) and 

the library (child process).  This is done by way of operating system provided shared 

memory facilities, in this case, POSIX shared memory [61]. 

The C code in Figure 4.2 highlights the process.  The creation of the shared memory 

is done through the mmap operating system call.  Function mmap is a POSIX-

compliant UNIX system call that provides a mechanism to establish a mapping 

between a process’s address space and a file or shared memory object.  The key to 

ensuring that this memory is shared between parent and child, as per our 

requirement, is to create an anonymous region (MAP_ANONYMOUS) which is also 

shared (MAP_SHARED).  An anonymous mapping simply means that the mapped 

memory region is not backed by a file.  When combined with the MAP_SHARED 

flag, the POSIX standard guarantees that when a child process is forked, it too will 

inherit and share this memory region with its parent.  Since the POSIX standard is 

supported by most UNIX based operating systems, this method is also portable 

across these systems. 
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An alternative design choice that was available was to establish this shared memory 

region via the shmat system call, another POSIX compliant system call which 

provides a mechanism for attaching a named segment to a process’s memory, which 

could subsequently be shared.  However, shmat was unsuitable for several reasons.  

One reason was that we wanted to ensure that the parent and child would be able to 

attach themselves to identical virtual memory addresses, so as to meet our goal of 

maintaining pointer transparency between host and shared library.  This meant that 

even in a multi-threaded host, which could have other memory mapping operations 

ongoing, we needed to make sure the host and child were kept in lock step.  The 

easiest way to ensure this is to establish the memory region prior to forking the child 

process, thus ensuring that the child process will inherit the same memory segment.  

Using shmat would have caused additional complications, since the child would have 

had to negotiate a shared region with its parent after having launched itself, which 

may or may not be possible in a host which has many threads contending for 

memory, as has been mentioned by others [53].  Therefore, by opting for the former 

method, we avoided this possible race condition.  

4.3.1.2 Loading the ELF interpreter and bootstrapper into the shared region 

Once the shared memory region is established as shown in Figure 4.2, we then 

proceed to read in and parse the ELF files that represent the ELF interpreter and 

bootstrapper respectively.  They are laid out in memory in the manner shown in 

Figure 4.1.  We do not perform extensive validation in our ELF parser, as both the 

interpreter and bootstrapper come from trusted sources, and will execute prior to the 

execution of any potentially malicious code.  It should be noted however, that neither 

of these are part of the system’s TCB (Trusted Computing Base), since they too are 

executed within the isolation container. 

Once the two executables are loaded into memory, the AUXV vector which was 

described earlier, is laid out in the format required by the ELF interpreter.  We also 

ensure that the AUXV vector contains a pointer to the bootstrapper’s entry point, so 

that the interpreter may find and execute it.  

4.3.1.3 Forking the child process 

After the executables are correctly set up within the shared memory, the next step in 

the initialisation process is to perform the actual fork.  A fork basically splits a 
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running process into two separate processes, with an identical state of execution, 

with the original process being marked the parent and the forked process being 

marked as the child.  Typically, a fork is followed by an exec, in order to launch 

another process.  However, we utilise fork as the mechanism for establishing the 

parent child relationship while retaining an anonymous shared memory mapping 

between parent and child, as described in Section 4.3.1.1. 

4.3.1.4 Attaching the parent process to the child 

At this point, we make the parent immediately attach itself to the child process, via 

ptrace, using the code shown in Figure 4.3.  The parent then goes into a loop 

(ptracevm_loop), in which it traces the child process till bootstrap completion is 

signaled. 

4.3.1.5 Cleaning up the child’s address space 

However, since we forked from a parent process, the child now also inherits all 

memory mappings from the parent, and the runtime state is also identical, including 

the state of the C runtime libraries.  This is unacceptable, for two main reasons.  The 

first is that the child process can now see the state of the parent, albeit a stale state 

since the memory mappings are inherited as Copy on Write (COW) However, from 

an isolation perspective, this needs to be avoided, as it presents an information leak 

from parent to child.  Secondly, the C runtime itself maintains state, such as all 

memory allocations made by malloc, thread state information etc., all of which are 

now invalid, since the child is not expected to be able to inspect or modify the 

parent’s state.  Therefore, our next step should be to cleanup this inherited address 

    child = fork(); 
    if (child == 0) 
    { 
        // child’s code omitted for brevity 
    } 
    else 
    { 
        ptrace(PTRACE_ATTACH, child, NULL, NULL); 
        libvm_ptr->child = child; 
        if (ptracevm_loop(libvm_ptr) == 0) 
            return libvm_ptr; 
    } 
 

Figure 4.3: Point at which parent and child fork off 
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space (apart from the shared segment itself) as well as reset/unload the C runtime 

code.  

This is achieved by unmapping the memory segments used, apart from the shared 

memory segment itself, based on a technique detailed elsewhere [48].  The existing 

mapped segments are obtained through reference to /proc/self/maps.  An additional 

complication here is that care must be taken not to unmap the LibVM code itself, as 

it is the code which is executing to perform the unmapping in the first place.  

Unmapping the running code would result in an immediate segmentation fault, 

terminating the child application. 

Similarly, all other resources used by the parent, such as open files, must be released, 

in order to prevent them being inadvertently shared with the child process.  However, 

as we describe later, this is not a major concern, as we perform a check at the system 

call layer to ensure that the child is only capable of accessing files and sockets it has 

opened itself. 

4.3.1.6 Transferring control to the ELF interpreter 

Once this process is complete, the thread local storage register is cleared, the stack is 

set to our custom stack as depicted in Figure 4.1, and a jump is performed to the 

entry point of the interpreter.  

The interpreter in turn executes the bootstrapper executable, and proceeds to resolve 

its dependencies, such as the C runtime library.  Since the C runtime library was 

unmapped, this ensures that it will be reloaded afresh, and the bootstrapper starts 

with that fresh environment. 

However, since the parent is tracing the child executable, all system calls made by 

the child are intercepted by the parent.  The interpreter will typically perform actions 

like checking ld.so.conf (the library preload locations), find the dependent libraries 

such as the C runtime library (libc.so), and map these libraries into memory.  

However, since these are all trusted libraries, and no untrusted code has begun 

execution, the parent process does not have to impose any restrictions, other than 

making sure that any mapped files are made within memory regions endorsed by the 

parent, so as to keep the parent’s and child’s memory maps in lock step. 
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4.3.1.7 Bootstrap completion 

Once the bootstrapper finishes executing, it heralds completion to the parent, as 

shown in Figure 4.4.  This snippet performs four main tasks.  It sets a “magic” value 

in the eax register (a magic value is a unique value of significance to the recipient), 

the receipt of which will confirm to the parent process, which is tracing these events, 

that the bootstrapper has completed execution.  It also stores the address of dlsym, 

the symbol resolution routine provided by the C runtime, within the ebx register.  

Finally, it invokes interrupt 0x80, which is the traditional system call interrupt. 

Since a system call has been made, the operating system promptly suspends 

execution of the child and notifies the tracing process of the fact.  The tracing 

process (LibVM), then reads in this value and ensures that it is indeed the magic 

value agreed upon previously.  It also saves the instruction pointer for future use, as 

well as the dlsym address sent in via the ebx register, within local variables.  Finally 

LibVM’s state is marked as initialised, and LibVM goes into lockdown mode as 

explained below. 

 

Figure 4.5: LibVM-ptrace - State transition diagram 
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Figure 4.4: Bootstrapper completion 
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Lock-down mode refers to a state transition in LibVM as depicted in Figure 4.5.  It is 

triggered on completion of the boot process.  This state is utilised to track the fact 

that, from this point onwards, potentially untrusted code can be loaded into the 

isolation container, and therefore, all system calls must be strictly fielded. 

LibVM then saves the child’s register state (recalling that the child’s execution was 

suspended at the point of lockdown) within the LibVM context data structure.  This 

saved register state is used to resume the child process at a later point.  Essentially, 

what remains now is a full controllable execution container in the form of a child 

process.  This child process can be used to load additional libraries or perform 

arbitrary actions under the supervision of the parent process.  This is precisely the 

characteristic that is needed in loading and isolating libraries. 

4.3.1.8 Resolving symbols in the child’s address space 

The main reason that the C runtime and bootstrapper was loaded into the child 

process’s address space was so that these could in turn load additional shared 

libraries on behalf of the parent process. However, since they are running within a 

different, fully isolated and restricted process, the parent process is effectively 

isolated from the shared libraries loaded into the child process’s address spaces 

As discussed previously, the best way to load these libraries is to use the existing C 

runtime to do this, since writing a specialised “bespoke” dynamic linker is a time 

consuming process.  We also gain the advantage of being able to utilise existing 

libraries as is.  Libraries are typically loaded by invoking the dlopen function, as 

described in Chapter 3, and symbol resolution is performed by using dlsym. 
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The key to using the C runtime code executing within the child process is then, the 

dlsym function, since it can be used to obtain a pointer to any function or symbol 

within the child process.  This is the reason that the function address of dlsym is 

passed onto LibVM on completion of the child’s bootstrap process.  By restarting the 

child process with the instruction pointer set to dlsym’s address, and with the 

appropriate parameters passed through the stack, we can resolve any symbol in the 

child’s C runtime, including the dlopen symbol. 

Figure 4.6 shows this basic idea in action.  Recall from the previous section that the 

child process was suspended, and its registers saved upon completion of the 

bootstrap process.  This function effectively manipulates the child process, by 

pushing the values needed to invoke the dlsym function into the child processes’s 

stack.  These are basically the name of the symbol to be resolved, the handle to a dll 

if available (NULL in this case, since we are resolving a global symbol) and the 

return address upon completion of the function, as shown in lines 4, 5 and 6. 

In normal function execution, the function epilogue would pop the return-address off 

the stack and jump to that return address, effectively returning control to the calling 

function (assuming cdecl calling conventions, which is the default calling convention 

used).  However, we carefully change this return address to point to a location within 

our bootstrapper code, known as the spring board, a shown in line 6.  The spring 

 1. int libvm_dlsym_wrapper(struct libvm_context * libvm_ptr, 
        long dll_handle, char * name) 
 2. { 
 3.     void * temp_str = libvm_stack_push_string(libvm_ptr, 
          name); 
 4.     libvm_stack_push_word(libvm_ptr, (uintptr_t)test_str); 
 5.     libvm_stack_push_word(libvm_ptr, dll_handle); 
 6.     libvm_stack_push_word(libvm_ptr, 
  libvm_ptr->springboard_adress); // force return 
     address to springboard instruction 
 7.     libvm_ptr->regs.eip = libvm_ptr->dlsym_address; 
 8.     libvm_run(libvm_ptr); 
 
 9.     libvm_stack_pop_word(libvm_ptr); 
10.     libvm_stack_pop_word(libvm_ptr); 
11.     libvm_stack_pop_bytes(libvm_ptr, strlen(name) + 1); 
 
13.     return libvm_ptr->regs.eax; 
14. } 

 
Figure 4.6: Symbol resolution by wrapping dlsym 
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board effectively performs a domain transition, suspending the execution of the child 

and returning control to the parent, in the exact same manner depicted in Figure 4.4. 

In line 7, we force the child process’s instruction pointer (eip) to dlsym’s address, 

and then line 8 performs the actual task of resuming the execution of the child, in the 

exact same manner shown in Figure 4.3.  Since the instruction pointer has been 

changed to point to dlsym, the child will resume execution at that instruction, execute 

the dlsym function, resolve our desired symbol, and return to our spring board 

address. 

The spring board will notify LibVM that the child has completed its function, and 

once again, the child’s execution will be suspended, registers saved and control will 

return to line 8 above. 

Subsequently, we perform a cleanup of the child’s stack, since the parameters must 

be popped off the stack upon completion of the function call, an action that was 

deliberately left incomplete by our spring board.  At the end of this process, the eax 

register contains the return value from dlsym, which is the address of the symbol that 

was resolved. 

Thereafter, the LibVM runtime proceeds to invoke dlsym again, caching frequently 

used symbols such as dlopen, malloc and free in the child’s runtime.  These can now 

be invoked to load libraries into the child process, allocate additional memory in the 

child and free any allocated memory, respectively.  In short, the parent process can 

completely control the runtime of the child process as desired. 

Finally, control is returned from the libvm_initialise method, with the caller receiving 

a pointer to the LibVM context data structure. 

This completes the initialisation process. 

4.3.2 Loading a Library – libvm_open 

Once a LibVM context has been obtained, it is possible to load libraries into the 

guest’s address space.  This is accomplished by invoking the libvm_open function, as 

elaborated in Chapter 3.  The desired functionality at this point is to simply have the 

child’s C runtime load the library on our behalf, into its address space.  Since the 

library is loaded into a different process, it is completely isolated within its confines, 

and is unable to access or modify the host application in anyway.  This is the exact 
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characteristic which we desire, in order to prevent a faulty library from otherwise 

accidentally trampling over the memory of the parent. 

With some detail omitted for brevity, Figure 4.7 helps to highlight the essence of 

how this procedure works.  Recall from the previous section that the address of the 

dlopen function in the guest’s C runtime was cached within LibVM context.  We 

utilise this cached copy to forge a request to the guest, in a manner analogous to that 

described in prior sections. 

What should be noted is that the method that is being invoked, guest_dlopen, has the 

exact same signature as that in the actual dlopen method in the C runtime (described 

in Chapter 3).  In a traditional IPC setting, this would require that the parameters be 

marshaled across process boundaries, and copied back on completion.  However, we 

achieve this same effect without these marshalling overheads, by taking advantage of 

our shared address space. 

By allowing the host application to access and manipulate memory in the guest in a 

transparent fashion, it makes the process of manipulating the guest’s stack, allocating 

memory in the guest’s address space etc., far easier than the alternative of having to 

readjust pointers to match the guest’s address space.  This is where the true 

advantage of the transparent address space comes into play. 

Secondly, in contrast to heavyweight approaches such as Remote Procedure Calls, 

which are designed to abstract away the actual address space and even the machine 

itself which is executing the function, we dispense with that complexity by making 

simplifying assumptions.  Specifically, by assuming that the child is executing on an 

identical architecture with a fully transparent memory, which is a practical 

void * libvm_dlopen_wrapper(struct libvm_context * libvm_ptr, 
        char * filename) 
{ 
   void * guest_handle =  
 (void*)libvm_stack_push_string(libvm_ptr, filename);  
   void * dll_handle =  
 libvm_ptr->guest_cache.guest_dlopen(guest_handle,  
      RTLD_LAZY | RTLD_GLOBAL); 
  
   libvm_stack_pop_bytes(libvm_ptr, strlen(filename) + 1); 
  
   return dll_handle; 
} 

Figure 4.7: Library open implementation 
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assumption to make given that we are dealing with program libraries, unnecessary 

overheads are avoided.  Through the demonstration above of the simplicity of 

transferring data between guest and host, we validate our hypothesis on the 

advantages of having a shared and transparent address space. 

4.3.3 Resolving a Symbol in the Isolated Library – libvm_sym 

The sequence of events, which transpire when a host application calls libvm_sym in 

order to obtain a pointer to a function within an isolated library, is depicted in Figure 

4.8.  The host must pass in a handle to the shared library itself, as described in 

Chapter 3, as well as the name of the function/symbol to be resolved.  Since the 

library resides in the child process, we utilise libvm_dlsym_wrapper as shown in line 

5.  As explained in Section 4.3.1.8, libvm_dlsym_wrapper is used to resolve the 

symbol in the guest’s address space and obtain a pointer to that function, which is 

still referring to the guest’s address space. 

However, simply invoking this obtained function would be disastrous, since the 

function would be executed in the host’s address space, and not the guest’s, which is 

counter to our purpose of isolating the library.  What needs to happen then, is that a 

transition must be made to the child process, the function executed in the child 

process, and the result returned back to the host.  In order to do this, we dynamically 

generate a proxy function, by calling the libvm_install_trampoline method, as shown 

in line 6. 

This method, very simply, generates some binary code “on the fly”  to perform the 

domain transition from the host to the child, so that the “guest_symbol” can be 

executed within the child’s domain, as well as return the obtained result back to the 

1. void * libvm_sym(void * handle, char * name) 
2. { 
3.    struct libvm_handle * lib_ptr =  
    (struct libvm_handle *) handle; 
4.    struct libvm_context * libvm_ptr = lib_ptr->libvm_ptr; 
 
5.    int guest_symbol =  
  libvm_dlsym_wrapper(libvm_ptr, lib_ptr->guest_handle, 
            name); 
 
6.    return libvm_install_trampoline(libvm_ptr, guest_symbol); 
7. } 

Figure 4.8: Dynamic proxy generation 
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host.  The binary code is generated and placed in a special page in the host’s address 

space, and one trampoline is installed for each function resolved with dlsym.  

The snippet in Figure 4.9 shows the code which constitutes each trampoline.  As 

shown in lines 4, 5 and 6, the values 0xDEADBEEF and 0xCAFE indicate 

placeholders which are binary patched to their correct values at runtime.  Line 4 is 

patched with the value of the symbol in the child’s address space, denoted by 

“guest_symbol”  in Figure 4.8.  Line 5 is patched to implicitly pass the LibVM 

context that is associated with the library that the symbol belongs to.  Finally, line 6 

is patched to point to the libvm_switch_domain function, which is responsible for the 

actual domain switch from parent to child. 

A simplified version of libvm_switch_domain is shown in Figure 4.10.  When control 

is received by libvm_switch_domain, note that the guest’s target function pointer, 

which is essentially the instruction pointer at which the guest must be executed, as 

well as the current stack pointer and base pointer, are passed in by libvm_tramp. 

1. IDENTIFIER(libvm_tramp): 
2.   pushl   %esp // Argument 4 to cvm transfer is current esp 
3.   pushl   %ebp // Argument 3 to cvm transfer is current ebp 
4.   pushl   $0xDEADBEEF // Argument 2 to libvm_switch_domain is 
        guest ip 
5.   pushl   $0xDEADBEEF  // Argument 1 to libvm_switch_domain is 
 the LibVM pointer - patched at runtime to the correct value 
6.   ljmp $0xCAFE, $0xDEADBEEF 
7. IDENTIFIER(libvm_tramp_end): 

Figure 4.9: Trampoline for transitioning from host to guest 
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Therefore, as shown in line 3, these same values are copied verbatim to the child’s 

stack, with the calling conventions assumed to match.  However, since the copied 

values will contain a return address in the host’s address space, which the child 

cannot access, it must be popped and replaced with the “springboard_address”, as 

shown in lines 4 and 5.  The springboard_address is a helper function which was a 

part of the original bootstrapper coder, which helps the child to transition back from 

the child to the parent.  By forcing the return address to the springboard_address, we 

trigger an automatic transition back to the parent at the end of function execution. 

Line 6 shows how the guest’s instruction pointer is forced to be the function we wish 

to invoke within the guest.  In line 7, we execute the familiar libvm_run to resume 

execution of the suspended child, except that execution will now resume from the 

guest_eip which it was forced into. 

Upon completion of the function, the springboard will trigger the transition back to 

the host, which in turn will return from the libvm_run function at line 7.  Afterwards, 

line 8 shows how the guest’s stack is restored to its original state and in line 9, the 

return value of the function, which is stored in the eax register is returned to the 

original function caller, which is oblivious to the machinations that occurred during 

invocation of the function. 

Omitted from this description, is the process by which the caller’s stack values are 

overwritten with the guest values, in order to support passing arguments by 

reference.  However, the guest is not able to manipulate the return address in any 

 1. int libvm_switch_domain(struct libvm_context * libvm_ptr, 
  const long guest_eip, const long ebp, const long esp) 
 2. { 
 3.    libvm_stack_push_bytes(libvm_ptr, esp, ebp - esp); 
 4.    libvm_stack_pop_word(libvm_ptr); // pop current return 
        address 
 5.    libvm_stack_push_word(libvm_ptr, 
  libvm_ptr->springboard_adress); // force return 
     address to springboard instruction 
 6.    libvm_ptr->regs.eip = guest_eip; 
 7.    libvm_run(libvm_ptr); 
 
 8.    libvm_stack_pop_bytes(libvm_ptr, ebp - esp – 
    sizeof (long)); // restore original stack    
     
 9.    return libvm_ptr->regs.eax; 
10. } 

Figure 4.10: Switching domains 
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way, since it is always overwritten to ensure that no stack smashing attacks can 

occur.  At this point, a few caveats are necessary, since some information leakage is 

occurring when copying values from the guest to host.  However, this is not a critical 

issue, as it is an entirely optional process, and can be bypassed if more secure 

semantics are desired.  This can be achieved by omitting the proxy generation 

altogether, and creating manual wrappers around the desired function, an example of 

which is the original dlsym function shown in Figure 4.6.  However, the convenience 

of being able to bypass such manual proxy generation, thus improving transparency 

and usability to the user of LibVM, is a strong motivation for enabling this 

functionality.  It is further mitigated by the low security risk. 

A second caveat is with regard to passing values into the child’s address space.  Any 

pointer values passed into the child which are outside of its bounds, cannot be 

accessed by the child, thus ensuring the security of the host application.  However, 

any values returned by the child, which contain pointer values, must be treated as 

suspect, since they may be forged to point to locations in the host’s address space.  

This issue has been discussed previously under section 3.4, and was stated as Lemma 

D.  If the host application blindly dereferences such a return value from the guest, 

and/or writes values to such locations, there is every possibility for the child to 

launch an attack on the host application.  As such, these values must be treated as 

suspect. 

However, how strict a stance should be taken depends entirely on the nature of the 

library which is being isolated.  If the library is being isolated in order to localise 

errors, and the library is not expected to be actively hostile, there is relatively little 

security risk in accessing these values, only a risk in terms of errors propagating out 

of the isolation container.  Nevertheless, advantages are still gained because the 

library’s execution is isolated. 

On the other hand, if the library is expected to be actively hostile, there is significant 

risk in using pointer values returned by the untrusted library.  As such, great care 

must be taken by clients to validate that all values fall within the boundaries of the 

isolated container, before they are accessed.  In later chapters, we show how future 

work could lessen the burden on clients through language level support for LibVM in 

the compiler.  However, in the absence of such support, it is necessary that the client 
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treat all values received from the untrusted library, as well as all other actions taken, 

as highly suspect in the interests of security. 

4.3.4 Execution of System Calls 

Due to the nature of ptrace, each system call is intercepted twice, 

a. before it is executed by the OS; and 

b. immediately after it is executed but before returning to the calling process. 

This provides the ability to modify both the actual call executed by the OS as well as 

the return value sent back to the child process. This process is illustrated in Figure 

4.11. 

 

Figure 4.11: LibVM-ptrace – system call execution sequence 

As shown in Figure 4.11, the number of context switches required is one of the main 

reasons for performance penalties in this architecture.  The domain transitions occur 

in the following order: child → OS → host → OS → host → OS → child, a total of 6 

transitions per system call, instead of the two transitions that occur in a typical, 
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untraced system call (process → OS → process), which is a threefold increase in 

overhead.  However, as our performance measurements show, these costs are 

ameliorated over the lifetime of the program, as other factors like waiting for IO or 

the CPU tend to dominate the transition costs, leading to far more acceptable 

performance overheads.  We discuss performance characteristics in detail in the next 

chapter. 

In addition, due to the very nature of this mechanism, there are several potential 

security vulnerabilities that emerge, which are discussed extensively by 

Garfinkel [39].  However, solutions have also been proposed to many of these 

deficiencies [40, 101].  We discuss our own approach to these problems extensively 

in Chapter 6.  

We default to a delegating approach wherever a security risk is possible, by 

executing the system call in the host, on behalf of the child.  This helps to eliminate 

race conditions and timing attacks caused by TOCTOU (Time of Check To Time Of 

Use) bugs [40]. However, more innocuous system calls are simply passed through 

for the Operating System to execute.  The decision on which system calls are 

innocuous must be made on a case by case basis, and is determined by whether the 

system call is read-only (such as getting the system time), or whether it can affect the 

execution state of the host.  Allowing read-only system calls is safe, as discussed in 

Section 3.4, since information flow security is not amongst our security objectives.  

However, if a more secure implementation is desired, even read-only system calls 

may have to be vetted based on a user-defined policy. 

The greatest difficulty lies however, in ensuring that the child’s actions are confined 

to its shared memory areas, as well as ensuring that the host and the child continue to 

share state.  Some of the most problematic calls are the memory mapping related 

calls, as well as file handling calls. 

Memory mapping related calls, such as mmap, mprotect and munmap, are handled by 

carefully modifying the parameters in such a way that a file being mapped into 

memory is mapped into both the parent and the child at the exact same memory 

locations, thus keeping the two processes’ memory maps in synchronization. 

File descriptors are handled by the technique of passing them to the child via domain 

sockets, as described by Noordende et al. [101]. 
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4.3.5 Handling of Unsafe Instructions 

It should be noted at this point that the loaded library can execute any machine 

instruction it desires.  In contrast to techniques that explicitly rely on filtering out 

potentially dangerous instructions through static analysis, we focus on a runtime 

approach.  This helps to: 

a. Prevent falsely flagging valid executables as malicious; 

b. Provide maximum flexibility for compiler optimizations as well as 

developers to hand tune their libraries as desired; and 

c. Make the technique immune to processor architectural changes, allowing 

the latest and greatest features to be used, such as newer SSE instructions, 

with no changes to our isolation container.  

These represent a tremendous advantage and simplicity over other approaches. 

The reason that this is possible is because we rely on the natural split between 

privileged and unprivileged instructions provided by hardware protection rings, and 

focus on the transitions between these rings.  Therefore, any instruction that executes 

in the child’s privilege ring is contained within its address space.  It is at the border 

that malicious code must be caught, since this is the only point at which it can affect 

the outside world.  We achieve this through the system call filtering mechanisms that 

have been described thus far. 

4.3.6 Threading 

This implementation of LibVM currently does not support threads executing within 

the library due to time constraints, although our hardware supported implementation, 

described in Chapter 5, does.  However, since we rely on system call interpositioning 

mechanisms, it is possible to add on threading support, in a manner analogous to that 

followed by others [101]. 

4.4 PERFORMANCE OF THE ISOLATION ARCHITECTURE 

We provide a comparative performance analysis of this implementation in the next 

chapter, along with our hardware virtualization based implementation. 
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4.5 CONCLUSION 

This chapter has described the implementation details of the system call 

interpositioning-based implementation of LibVM.  It has shown how a practical 

library isolation mechanism can be built based on our defined interface, proving the 

validity of the design.  It has also shown how such an interface can be implemented 

by simply relying on existing process isolation facilities provided by the operating 

system, in concert with hardware mechanisms.  To our knowledge, this is the first 

approach that uses these mechanisms for the purpose of isolating individual shared 

libraries.  Although the described implementation has been limited to Linux, the 

general techniques and ideas can be easily transferred to other operating systems. 

The main drawbacks of this system are the performance penalties induced due to the 

inherent overheads of the ptrace mechanism, as well as the nature of the ptrace 

mechanism itself being prone to introducing race conditions.  However, we have 

pointed out various techniques available to mitigate these drawbacks and have shown 

that overall, this is a viable mechanism for isolating libraries.  We propose 

enhancements to this mechanism in Chapter 7. 
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Chapter 5: Hardware Solution – 

Virtualization Based 

5.1 INTRODUCTION 

As described in the previous chapter, the process tracing based implementation of 

LibVM had several drawbacks, including performance penalties, which were 

difficult to mitigate through available mechanisms.  This motivated us to explore 

other options that could provide a mechanism for intra-address space isolation.  As 

elaborated in the literature review (Chapter 2), a relatively newer mechanism is the 

hardware virtualization support provided by modern Intel and AMD processors 

(although the original idea dates back to the 1960s and was implemented in the likes 

of the IBM System/360 Model 67 and later in the System/370 [49, 117]).  Based on 

our literature review, we considered this the most promising unexplored candidate 

for the task.  In order to test this hypothesis, we followed a staggered approach, by 

first testing the solution on an existing platform, and then migrating it to a standalone 

solution implementing the LibVM interface.  This chapter describes the approach in 

detail. 

5.2 APPROACH 

The hardware virtualization based solution comprised of design, development and 

testing carried out in two separate stages.  The first stage consisted of testing the 

viability and performance characteristics of the overall concept by integrating 

hardware virtualization support into an existing system of a similar nature.  A key 

motivator for this stage was the potential overhead in the approach described by 

Adams and Agesen [1].  Once we had validated that the performance characteristics 

were indeed satisfactory, we went ahead with creating a standalone solution, based 

on the LibVM interface. 
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5.3 STAGE 1 - GOOGLE NATIVE CLIENT BASED IMPLEMENTATION 

This section provides an in-depth discussion of the implementation, the performance 

figures of the implementation compared to software based solutions and analyses its 

overall suitability to LibVM’s purposes. 

5.3.1 Implementation Overview 

In order to test the hypothesis that virtualised technology would be a suitable 

mechanism for isolating applications, we chose an existing solution as a base on 

which to add on this hardware-assisted mechanism.  We chose Google’s Native 

Client (NaCl) [144] sandbox as the basis, given its support by a large software 

enterprise, its open source nature and the fact that it is actively maintained.  In order 

to differentiate our hardware virtualization based isolation container from the 

Software Fault Isolation (SFI) based Native Client sandbox structure, we will refer to 

our container as the “VT Sandbox”. 

The VT Sandbox was added onto NaCl in such a way that it supported both standard 

ELF (Executable and Linkable Format) executables as well as the modified native 

executables supported by Google Native Client.  An additional advantage of this is 

that we can directly execute standard GCC [41] compiled ELF executables, whereas 

NaCl requires a custom tool chain, which is a modified version of GCC generating 

non-standard executables [144].  We utilise the ELF loader provided in the NaCl 

implementation to create the in-memory layout of the ELF executable.  In this 

section, we describe the loading and execution process of a typical component that 

may be integrated into a full application. 
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Figure 5.1: Implementation of the VT sandbox 

Figure 5.1 shows the VT Sandbox’s components at an implementation level.  We 

read and parse an Executable and Linkable Format (ELF) executable program.  We 

then load the executable into our VT Sandbox, which is where the bulk of our 

implementation lies.  The VT Sandbox is responsible for the safe execution of the 

component and the mediation of any potentially dangerous instructions or activity.  

The VT Sandbox is built on top of KVM (Kernel Virtual Machine), which provides a 

layer of abstraction over the lower level hardware virtualization instructions, in the 

form of a device driver [107]. 

If a component makes a system call, the VT Sandbox carries it out on behalf of that 

component.  Here too, our prototype saved a significant amount of work by building 

on top of NaCl’s system call layer.  The NaCl implementation provides a highly 

restricted system-call layer which we have modified to suit our needs. 

The typical process, as per the sequence numbers in Figure 5.1, is as follows: 

1. An ELF executable is loaded into the VT Sandbox. 

2. The VT Sandbox uses the KVM device driver to execute the component. 

3. The KVM module interfaces with the virtualization hardware and shields 

the layers above from the specific processor in use (Intel or AMD). 

4. System calls by a component are intercepted and passed on to the modified 

system call layer. 
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5. The system call layer may invoke the operating system to carry out the 

actual system call and return results to the component. 

The following sections give a detailed, step by step description of the tasks carried 

out by the VT Sandbox, during various stages of execution. 

5.3.1.1 Initialisation of a component 

This section describes the step-wise process for initialising the VT Sandbox and 

loading an executable into it for execution. 

1. When an ELF executable is launched, the module is initially read in and the 

ELF header parsed.  Our implementation supports standard ELF files as well 

as Google’s customised ELF format. 

2. The ELF executable is mapped into a contiguous block of memory, which is 

256MB in size by default.  This 256MB block serves as the initial physical 

memory for the virtual machine.  Thus, there is a 1:1 correspondence between 

this memory block and the physical memory map seen by the virtual 

machine.  If the ELF executable is in NaCl format, the first 64KB of this 

memory is padded with nulls, similar to NaCl’s default implementation, 

which helps in the detection of null pointer exceptions.  We also use the 

“trampoline” code used in NaCl.  This trampoline code is used to exit the VT 

Sandbox in NaCl executables and carry out system calls and is described in 

detail below.  The executable’s text and data sections come afterwards.  The 

rest of the memory is uninitialised. 

3. Once the executable is mapped in and the memory area initialised, we 

initialise the Virtual Machine Control Block (VMCB) needed by the 

processor, specifying the aforementioned memory area as the physical 

memory block used by the virtual machine.  We use KVM’s abstraction layer 

to initialise the VMCB. 

4. Once the virtual machine’s processor control block is defined, we then 

initialise the processor registers and switch the machine directly into 32 bit 

mode.  In this way, we avoid having to write a bootstrap loader which would 

switch the processor from 16-bit real mode to 32-bit protected mode.  
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Protected mode is set by setting the Protection Enable (PE) bit in the CR0 

register [63]. 

5. Before protected mode can be properly used, the machine’s Global Descriptor 

Table (GDT) [63] must be initialised.  In order to simplify our 

implementation, we disable paging hardware altogether and use segmentation 

hardware only.  We use a flat memory model, and the GDT is initialised with 

a code segment which is the size of the text portion of the memory map. 

Therefore, the total amount of addressable memory on a 32-bit system is 

4GB, while the actual memory is constrained by the memory available to the 

Operating System process within which the sandbox executes. 

6. We make the data segment span the entire virtual memory and the stack 

segment and other segment registers such as FS, GS and ES are also set to 

use a flat memory model, by spanning the machine’s allocated physical RAM 

(ES is an extra segment used by certain machine operations such as for far 

pointer addressing and FS and GS are general purpose segment registers 

which, while having no processor defined purpose, can be used for 

implementation specific purposes).  We do not use Local Descriptor Tables 

and therefore do not need to initialise the relevant structures. 

7. Thus, we directly bootstrap a minimal virtual machine with the processor 

already in 32-bit mode and assigned a flat memory model, greatly simplifying 

the programming model for a component.  The memory map is shown in 

Figure 5.2. 

5.3.1.2 Execution within a VT Sandbox 

Execution of a component within our VT Sandbox begins as follows. 

1. After initialisation of the virtual machine, we set the VM’s Instruction 

Pointer to the component’s entry point.  In keeping with Native Client’s 

implementation, only ELF executables which are statically linked and the 

relative locations zero based are supported, so that there is no need to 

perform any relocation. 
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2. An initial stack is set up for the program and the base pointer and frame 

pointer are initialised to point to the top of the stack.  Any command line 

arguments used are pushed onto the stack area and the memory is adjusted 

as required. 

3. The virtual machine is then launched via KVM, and execution begins from 

the program’s entry point. 

 

Figure 5.2: Component memory layout 

5.3.1.3 Initialisation of the C runtime environment 

The first task performed by the running program is to initialise the C programming 

language runtime environment, which is needed for basic input/output and for 

accessing system services.  NaCl executables use a modified version of the newlib C 

runtime library [108], which is statically linked with the component.  We support this 

same version of newlib so that direct binary compatibility with NaCl components can 

be enabled. 

The newlib runtime initialises itself by allocating memory for the “Thread Control 

Block”, which is a structure used by the runtime to maintain thread related 

information.  Subsequently, it makes a system call to initialise the corresponding 

operating system thread.  NaCl’s default implementation additionally stores a pointer 

to the Thread Control Block in the GS segment register.  In our implementation, we 

modify the virtual machine’s GS segment register instead.  This is an example of the 

kind of modification needed at the system call layer in order to make NaCl 

compatible with our implementation. Figure 5.3 shows the typical sequence of 

actions which take place in our VT sandbox during a system call. 

1. A normal ELF executable will initiate a system call by invoking INT 0x80 

or by using the fast system call instructions.  In the case of Google’s 

Native Client executables, it does this by jumping to the NaCl trampoline 

mechanism where each system call goes through a trusted code routine. 
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2. We modify this routine to suspend execution of the virtual machine by 

executing a sequence that triggers a VMEXIT event, which was described 

in Chapter 2. When this occurs, libkvm performs a call back to our VT 

Sandbox, allowing us to intercept the system call. 

3. Upon interception of the system call, we use a modified version of the 

Native Client’s dispatcher routine to figure out which system call was 

requested.  We carry out the actual system call after verifying the 

parameters (e.g. checking whether the parameter values are in range, of the 

expected format, whether referenced handles are valid etc.).  The 

component can only execute a subset of the available system calls and 

these are completely controllable, making the execution of arbitrary code 

secure.  

4. Before the system call is executed, the parameters are validated to ensure 

that the values are within range and that only permitted system resources 

are accessed. 

5. Once the system call is complete, the results are set in the virtual 

machine’s registers and the stack and frame pointers adjusted to store the 

necessary return values. 

6. Finally, execution resumes by changing the virtual machine’s instruction 

pointer to resume execution from the return address stored on the stack. 

7. The untrusted code resumes execution. 
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Figure 5.3: Execution sequence for a system call 

5.3.1.4 Handling of unsafe instructions 

Potentially unsafe machine instructions are handled by trapping the execution of 

sensitive instruction types.  The process is described below. 

1. The execution of instructions defined as sensitive causes the virtualization 

hardware to trigger an exit into the VT Sandbox.  By default, all privileged 

ring 0 instructions are trapped.  All other instructions are allowed to 

execute with no constraints within the virtual machine.  The VMCB is 

configured to trap these sensitive instructions through the KVM layer. 

2. If an attempt to execute a sensitive instruction is detected, our trap 

handlers are invoked.  The trap handler then takes steps to terminate the 

offending component. 

We also use this trapping functionality for our implementation of system call 
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5.3.1.5 Threading 

We provide an extremely simplified implementation of threads, with one virtual 

processor per thread. 

1. When a component requests the creation of a new thread, we create a new 

virtual machine, but map in the same memory belonging to the creator’s 

thread.  In other words, both virtual machines share the same physical 

memory. 

2. Once the virtual machine is initialised, the virtual processor’s instruction 

pointer is set to the thread’s entry point. 

3. The GS register must also be set to point to the Thread Control Block of 

the new thread. 

4. The virtual machine execution is then started, thereby having two virtual 

processors executing the two different threads. 

5.3.2 Comparative Analysis 

This section directly compares our solution to the Google Native Client, which 

focuses on using static analysis, as well as Vx32 [32], which emphasises runtime 

binary translation. 

Table 5.1 provides an overview of steps needed to load and execute a component.  

As can be seen, our approach saves significantly on load-time complexity by 

removing the code verification and patching steps altogether.  Our approach thus 

eliminates an entire class of problems related to static analysis and code verification, 

as discussed below. 
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VT Sandbox Google Native Client Vx32 

Load component 

Switch to sandbox 

Execute code 

Trap on exception or 

execute till end 

Load component 

Verify component 

Patch unsafe instructions 

Switch to sandbox 

Execute code 

Trap on exception or 

execute till end 

Load component 

Create sandbox  

Translate code fragment 

Execute code fragment 

Repeat Steps 3 and 4 till 

execution ends or an 

exception occurs 

Table 5.1: Comparison of steps to load and execute a component 

Our implementation saves significantly on execution overheads since no additional 

instructions need to be inserted.  Our initial measurements show that code bloat for 

Google Native Client is significantly high, because it requires that jumps be aligned 

to 32-byte boundaries.  Neither our implementation nor Vx32 have such an 

alignment requirement, so they can significantly lower the size of the executable 

code.  In addition, while we suffer a heavier penalty for sensitive instructions since 

the trap handler may need to perform a context switch back to user space in order to 

handle the instruction, the complexity of our implementation is greatly reduced as no 

binary code patching needs to be done. 

As shown in Table 5.2 our technique also differs fundamentally at a conceptual level.  

Google’s NaCl relies on pre-execution checking, using static analysis, and rejects a 

component if it does not meet its defined criteria.  It also inserts run-time checks into 

the code.  Our technique simply starts executing the component and aborts if unsafe 

instructions are encountered.  Therefore, our focus is on run-time checking as 

opposed to both load-time and run-time checking.  We argue that our technique is 

faster, less complicated and more robust.  In particular, our approach will execute 

components which contain potentially unsafe instructions only in dead code, whereas 

NaCl will not execute such components at all. 

Notably, our implementation is immune to problems that may occur in static analysis 

and associated verification bugs.  In contrast, a security contest conducted by Google 

to test for loopholes in NaCl revealed several bugs in the code verifier and patching 
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system, which allowed for arbitrary code execution vulnerabilities, enabling a 

malicious component to escape component isolation [43].  Our implementation is not 

vulnerable to such errors, since execution is entirely constrained to the virtual 

machine, making for a more secure implementation.  We have tested this by 

executing similar classes of bugs reported in the Native Client security contest, and 

showed that the code is unable to break free from the confines of our container.  A 

detailed example is discussed in Section 5.3.3.4. 

Our technique also offers the advantage of being easily adaptable to 64-bit code, 

something that introduces much greater complexity to NaCl and Vx32. 64-bit 

support was added onto NaCl through a paging based mechanisms at a later 

stage [118], while the 32bit version uses segmentation hardware, which is no longer 

available on Intel’s 64-bit architecture [144]. 64-bit support is altogether absent in 

Vx32 as it too relies on segmentation hardware. 

However, we do share similar vulnerabilities as NaCl and Vx32 at the system call 

layer, since any loopholes at this level can be exploited in an identical way.  (In both 

systems the problem can potentially be avoided by validating parameters before 

execution of system calls.) 
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 LibVM-VT LibVM-ptrace Google Native 

Client 

Vx32 

Approach Hardware 

Virtualization 

Process tracing SFI SFI 

Technique Minimal virtual 

machine 

container 

OS provided ptrace 

mechanism 

Static Analysis Runtime binary 

translation 

ISA 32bit 

(currently) 

32bit (currently) 32bit/64bit 32bit (currently) 

Specific 

Hardware 

features used 

Intel VT/AMD 

SVM 

None (standard OS 

facilities) 

Segmentation Segmentation 

Compile time 

requirements 

None None Customised tool 

chain with code 

alignment 

requirements 

None 

Advantages/ 

Disadvantages 
• Smaller TCB  

• Simpler model  

• Hard isolation 

boundaries 

• No restrictions 

on allowed 

instructions 

• Compatible 

with 32/64-bit 

• Hardware 

dependent 

• Maintains 

address space 

transparency 

• Smaller TCB 

• Simpler model 

• Hard isolation 

boundaries 

• Drawbacks in 

ptrace interface 

• High context 

switching 

overheads 

• Maintains address 

space transparency 

• Large TCB  

• Complicated model 

• Restrictions on 

allowed 

instructions 

• More restrictions 

and overheads in 

64-bit mode 

• No address space 

transparency as 

segments are 0 

based. 

• Requires custom 

tool chains 

• Requires rewriting 

libraries as well as 

host application 

• Requires code 

verification and 

patching 

• Possible false 

positives 

• Large TCB  

• Complicated 

model  

• 32-bit only 

• No address 

space 

transparency as 

segments are 0 

based. 

• Requires 

custom tool 

chains 

• Requires 

rewriting 

libraries as 

well as host 

application 

• Requires code 

verification 

and patching 

Table 5.2: Comparison of approaches 
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5.3.3 Effectiveness of the Isolation Architecture 

In this section we evaluate the effectiveness of our method by demonstrating its use 

through examples, while comparing and contrasting the results with Google’s Native 

Client and Vx32.  These examples were incorporated into test routines and applied 

against both systems.  We show that our solution provides stronger security 

guarantees than NaCl and Vx32, while eliminating the complexity of the code 

analysis and verification process and the need for runtime binary translation. 

5.3.3.1 Example 1 – Handling illegal instructions 

Figure 5.4 shows a C code fragment containing an illegal assembler instruction.  It 

illustrates an attempt to directly access an I/O port through the out instruction. 

Typically, user level programs are disallowed from accessing I/O ports directly.  This 

kind of problem could arise both from malicious code or a programming error such 

as an attempt to divide by zero. 

 

Figure 5.4: Example code containing an unsafe instruction 

We can selectively forbid sensitive instructions that should not be executed, and our 

VT Sandbox adopts the policy of disabling such instructions by default.  This is done 

by configuring the VMCB to intercept the specified instruction, in this case, the out 

instruction.  The virtualization hardware will then automatically trigger a trap when 

an attempt is made to execute the instruction.  We can then mediate and terminate the 

module gracefully or allow it to continue if the instruction is deemed innocuous. 

#include <stdio.h> 
 
void run_test() { 
asm ("movl $32, %%eax; \ 
      out  %%eax, $0xf1" 
      : 
      : 
      :"%eax" 
    ); 
} 
 
int main(int argc, char* argv[]) { 
  run_test(); 
  return 0; 
} 
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When compared to NaCl, the protection offered is similar.  NaCl would refuse to 

allow execution of the above component since the verification process would detect 

the presence of the disallowed instruction statically.  Vx32 allows execution of the 

component but, because it dynamically translates the next ‘fragment’ of code to be 

executed, it may abort during runtime if it encounters the illegal instruction during its 

binary translation process, even when the instruction itself is only executed 

conditionally.  We, however, trap only when an illegal instruction is actually 

reached, if ever.  The advantage of this is better illustrated by the example below. 

5.3.3.2 Example 2 – Reducing false positives 

In this example we modify the previous program slightly to conditionally execute the 

illegal instruction by only calling the run_test method if condition ‘argc < 0’ 

is true.  In practice, argc will never be less than 0, which means that this will be 

dead code in the running program and the potentially harmful instruction can never 

be executed.  NaCl however, would nevertheless generate a false positive and refuse 

to allow execution of the program and Vx32 would fail at runtime when it encounters 

that fragment of code.  Our method entirely eliminates this class of false positive 

altogether. 

Although the above example is somewhat contrived, it serves to illustrate that NaCl 

is always forced to err on the safe side, and disallow a range of instructions which are 

generally innocuous but potentially unsafe, such as all instructions that modify the 

x86 segment state, including lds, far calls, etc.  Vx32 also suffers from similar 

constraints.  Our method does not require such caution, as execution is entirely 

constrained to the virtual machine, and loading segment registers for example, only 

affects the virtual processor.  Therefore, it highlights a strong advantage that our VT 

Sandbox has over NaCl. 

5.3.3.3 Example 3 – Addressing errors 

The program in Figure 5.5 highlights an extremely common programming mistake.  

It makes use of an uninitialised pointer which performs a ‘wild store’ into memory.  

When an attempt is made to access memory outside of the boundaries defined by the 

VMCS, the VT hardware can be configured to trap into our specific error handler. 
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Figure 5.5: Example code with an uninitialised pointer 

In comparison to NaCl and Vx32, the protection performance is identical, since both 

NaCl and Vx32 use x86 segmentation hardware to enforce similar constraints. 

5.3.3.4 Example 4 – Addressing exploits 

This example demonstrates a situation where our technique is safer than NaCl.  This 

example is an actual bug detected and submitted during the Native Client security 

competition, where several flaws in the verifier were identified [43].  Although the 

bug has been subsequently patched, it serves to illustrate the potential danger of 

instructions missed during the verification process, and that eliminating the 

verification process provides far greater security guarantees as well as flexibility. 

The exploit took advantage of a miss in the verifier, where opcode prefixes for 2 byte 

instructions were not constrained.  The code fragment in Figure 5.6 illustrates the key 

instructions used in the exploit.  It works by pushing the value 0x10001 onto the 

stack, which points to the middle of the first mov instruction, which now represents 

the restricted instruction int 3. 

Figure 5.6: Example code with an illegal jump 

#include <stdio.h> 
 
void run_test() { 
  int *test, offset = 1024*1024*10; 
  test[offset] = 10; 
} 
 
int main(int argc, char* argv[]) { 
  run_test(); 
  return 0; 
} 
 

cs:0x10000: mov eax, 0xCCCCCCCC 
… 

… 

cs:0x10080: mov    $0x10001,%ebx 

cs:0x10085: push   %ebx 

cs:0x10086: xor    %eax,%eax 

cs:0x10088: test   %eax,%eax 

cs:0x1008a: data16 je 0x7f4f 

cs:0x1008f: add    %al,(%eax) 
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Normally, such an unaligned jump would be disallowed and detected by the verifier.  

However, the bug exploits the 16-bit data prefix to truncate the jump target, which 

the verifier miscomputed.  As a result, the code jumps into a ret instruction in the 

trampoline code region, which results in a return to the address pushed onto the 

stack, in this case, the illegal int 3 instruction.  In our approach the illegal 

instruction is detected when it attempts to execute. 

While this problem was patched in NaCl soon afterwards, it serves to illustrate the 

difficulty in writing a fool-proof static verifier.  As a result, even legal instructions 

need to be severely restricted in order to prevent potentially harmful exploits.  This 

same class of problems applies to Vx32, as the binary translation process is 

vulnerable to similar circumvention.  In our method, since all execution occurs 

within the confines of a virtual machine, code execution can be allowed in an 

unrestrained fashion, as long as proper checking is done when switching between 

borders.  This border crossing happens only during system calls, making our method 

far simpler and easier to verify as correct.  Therefore, the above example executes 

but is unable to bypass the confines of the virtual machine (barring, of course, any 

actual errors in the hardware implementation). 

5.3.3.5 Example 5 – General-purpose applications 

In order to evaluate the technique in a more real-world situation, we create a 

modified version of the “bzip2” compression program with various bugs inserted to 

test isolation effectiveness.  This included illegal instructions within dead code, 

accidental array bounds violations and other suspicious but harmless code.  We ran 

this modified version under the Native Client, Vx32 and the VT Sandbox.  We found 

that, while all three effectively prevented malicious code from executing, the pre-

emptive approach of the Native Client resulted in increased false positives, even 

though the actual code did nothing harmful.  Vx32’s binary translation process 

triggered false positives only when the code fragment was encountered, although it 

would abort even if the instruction itself was never executed.  Our solution delays 

this process to the last possible moment, when the instruction is actually executed, 

and therefore, does not result in false positives. 
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5.3.4 Performance of the Isolation Architecture 

To ensure that our solution does not introduce unacceptable overheads, we executed 

some micro-benchmarks of illustrative cases as well as some large scale benchmarks, 

keeping in mind that our current VT Sandbox implementation is merely a proof-of-

concept prototype.  In all cases our VT Sandbox solution was compared with 

Google’s Native Client, and certain benchmarks were also run against Vx32.  

Performance was tested in three cases—native execution as a linux executable, 

execution within Google’s NaCl Sandbox and execution within our VT Sandbox. 

5.3.4.1 Micro-benchmarks 

The micro-benchmarks were chosen to test performance under highly specific 

circumstances. These help to establish the upper and lower bounds that can be 

expected in best and worst case scenarios respectively. 

We performed empirical performance measurements on four main workloads: 

1. Execution of a simple loop based calculation. 

2. Execution of a “null” system call. 

3. Execution of I/O instructions (which require an operating system call and 

therefore, at least one context switch). 

The measurements were repeated thrice, and an average value was obtained.  The 

results show that the overheads of our approach in compute-bound scenarios are 

comparable to those of NaCl with no significant differences in performance (keeping 

in mind that our prototype implementation utilises the NaCl system call layer for 

NaCl compatible executables). 

In the second experiment, a simple transition in and out of the VM was performed in 

a tight loop, and added about 20% overhead in comparison to NaCl’s performance. 

In the third experiment, the system call execution overhead varied, with 10% being 

typical with an outlier case of 400%.  The difference between the typical case and the 

outlier demonstrates that attendant circumstances of the environment, such as 

competition with other system processes, internal kernel buffering etc. can be 

dominating factors in determining overall overheads. 
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5.3.4.2 Large-scale benchmarks 

In order to empirically measure how these approaches perform under more realistic 

workloads, we have tested their performance in several scenarios. 

1. Execution of three compute-bound graphics performance tests provided 

with Native Client’s test suite; 

2. Earth: a ray-tracing workload, projecting a flat image of the earth onto a 

spinning globe; 

3. Voronoi: a brute force Voronoi tessellation; 

4. Life:  a cellular automata simulation of Conway’s Game of Life; 

5. Quake; and 

6. The SPEC2006 benchmark suite. 

In all of the above cases, we disabled VSYNC (Vertical Synchronization) so that the 

rendering thread would not be put on hold until the display’s vertical refresh had 

completed.  

5.3.4.3 Graphics performance tests 

The samples were built with nacl-g++ version 4.2.2 with compiler parameters –O3 

–mfpmath=sse –msse –fomit-frame-pointer.  The Linux time 

command was used to measure the execution time in all 3 cases. 

Both Earth and Voronoi were executed with four worker threads for 1000 frames, 

averaged over three runs.  Life was run as a single thread for 5000 frames.  The 

results are summarised in Table 5.3. 

Sample Linux 

Executable 

Native Client VT Sandbox 

Execution 

Time 

Overhead Execution Time Overhead 

Voronoi 34.13 19.18 −43.8% 19.12 −43.98% 

Earth 11.38 11.64 2.28% 12.48 9.66% 

Life 14.88 17.47 17% 17.88 20.16% 

Table 5.3: Compute/graphics performance tests.  Times are elapsed time in seconds.  Lower is better. 
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Somewhat surprisingly, we found that both the Native Client and the VT Sandbox 

significantly out-performed the native executable in the Voronoi test.  However, the 

results are consistent with those reported by Yee et al. [144]. 

In the other two instances, the results were as expected, with the native Linux 

executable having the best performance.  The Native Client and the VT Sandbox had 

fairly similar performance in all 3 cases, with the VT Sandbox having a slight edge 

on the Voronoi example and a slight loss in the other two tests. 

5.3.4.4 Quake 

Quake was executed on Suse Linux 11.3, with kernel mode-setting switched off, at 

1024x768 graphics resolution.  Quake was built using –O3 optimization.  The 

version used was sdlquake-1.0.9 from www.libsdl.org.  The results are shown in 

Table 5.4. 

Run # Linux Executable Native Client VT Sandbox 

1 

2 

3 

137.1 

136.9 

136.0 

123.0 

124.0 

124.1 

122.1 

121.5 

121.3 

Average 136.67 123.7 121.63 

Table 5.4: Quake performance comparison.  Numbers are in frames per second.  Higher is better. 

While performance differences between nulls were minimal and almost negligible, 

we found that the native Linux executable performed best overall.  The difference 

between the Native Client and the VT Sandbox were extremely small, with the VT 

Sandbox incurring a slight overhead of about 1.7%. 

5.3.4.5 SPEC2006 results 

The performance of our approach was tested primarily by executing the SPEC2006 

benchmark suite.  We compared our approach against 

a. Native execution of the binary executable with no modifications; 

b. Google’s NaCl implementation; and 

c. Vx32. 
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It should be noted that only the C integer benchmarks are supported by the Vx32 

runtime at the time of writing [32]. 

The tests were run on two machine configurations.  Figure 5.7 shows the results on a 

Core-i5 540M processor dual core CPU with 4GB of RAM, running on OpenSuse 

11.3 with kernel version 2.6.34.07.  The executables were compiled with the –O3 

gcc flag in all three cases.  The vertical axis is the ratio of each tests’ execution time 

against a reference execution time provided by SPEC.  Higher values are better. 

As expected, in all cases, native execution of the unmodified binary provided the best 

results.  In all except one case, the NaCl execution time was slightly better than the 

VT Sandbox execution.  This was not unanticipated, since the context switch 

overhead takes a toll on execution times.  However, in all cases, the performance of 

the VT Sandbox was extremely competitive, with the overhead being less than 1% in 

all cases, except for the mcf benchmark, which peaked at 4%.  In contrast, Vx32’s 

results were  slower, with overheads increased up to 4%. 

The tests were rerun on a Core-i7 920 quad core processor with 4GB Ram as shown 

in Figure 5.8.  The configuration was identical to the previous machine, with both 

kernel versions and executable compilation flags matching. 
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Figure 5.7: SPEC2006 on Core i5-540M processor 
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Figure 5.8: SPEC2006 on Core i7-920 processor 

The results were similar, although the differences were more pronounced this time.  

The overheads ran as high as 10%, although the mcf overheads were far more 

pronounced at 34%.  The difference is mainly attributable to cache locality and 

context switching overheads.  However, since this was the only anomolous case, we 

do not consider it to be representative of average case performance. 

Overall, we found that the performance of the NaCl production code, current Vx32 

implementation and our initial VT Sandbox prototype were competitive with each 

other.  This is despite the fact that our prototype currently suffers from excessive 

context switching due to its reliance on the KVM driver.  
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5.4 STAGE 2 – STANDALONE LIBVM IMPLEMENTATION 

Once we had ascertained that the performance of the hardware virtualization based 

solution was satisfactory, the second stage involved creating a standalone 

implementation based on the LibVM interface. We refer to this particular 

implementation as LibVM-VT, in order to distinguish it from the software based 

implementation, which was referred to as LibVM-ptrace. 

Figure 5.9 depicts the basic address space layout of a LibVM-VT isolated shared 

library. 

 

Figure 5.9: LibVM-VT address space structure of guest and host 

LibVM-VT works by partitioning the host address space into several sandboxed 

regions. Each sandboxed region is a lightweight virtual machine. The virtual machine 
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and its host container share their address spaces as shown in Figure 5.9. Therefore, 

there is complete parity between a guest address and a host address, which is the key 

to enabling transparent sharing of data between the shared library and its host. 

Each virtual machine is a simple execution container, in which arbitrary code can be 

executed safely. Code executing within the virtual machine cannot exceed its defined 

boundaries and it cannot affect the rest of the system other than through system calls. 

The LibVM-VT runtime intercepts all system calls, thus ensuring that code executing 

within the container cannot bypass security measures. 

In order to load an existing shared object unmodified into this execution container, 

we must use a dynamic linker, which loads the shared object and its dependencies, as 

well as carrying out relocation of the executable image. To avoid the complexity of 

writing our own dynamic linker, we utilise the system’s existing ELF interpreter [84] 

for the purpose. The basic process we follow is to emulate the operating system’s 

process initialisation routine, by first loading the system’s ELF interpreter into the 

address space, and then executing the interpreter, which in turn is requested to load a 

small bootstrap executable which we provide. The interpreter dutifully performs 

these tasks, unaware that it is executing within a virtualised container. We intercept 

all system calls made by the interpreter, and provide appropriate emulations which 

confine all operations to the isolation container’s address space. Once the interpreter 

executes our bootstrap code, we have a fully initialised “mini-process”, along with a 

C runtime and dynamic linker, all of which reside within the execution container. We 

then utilise the dynamic linker to load additional shared libraries in turn, exactly as 

would occur within a standard process. 

5.4.1 Initialisation 

The virtual machine bootstrap process is triggered when libvm_initialise() is invoked 

for the first time as shown in Figure 3.3. The process is as follows. 

1. The LibVM-VT runtime first creates an instance of a light-weight virtual 

machine. 
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We utilise the KVM library [107] to create a simple virtual machine. The 

virtual machine consists of a single CPU and is set to the same architecture as 

the hosting process, in this case, a 32bit Intel x86 machine. We emulate the 

CPUID instruction to match the host, create a flat memory model, enable all 

instructions including SSE and create a basic virtual machine which serves as 

our isolation container. It should be noted that this is not as expensive a 

process as it may sound at first, as KVM simply creates the processor data 

structures used by Intel VT/AMD SVM as well as page tables used by the 

virtual machine, and there is no need for the emulation of complex devices. 

Furthermore, this virtual machine/isolation container can be used to load 

multiple libraries and is therefore a one-off cost that is amortized over the 

lifetime of the program. 

2. The virtual machine memory layout is then created and a shared memory 

region between the host application and the virtual machine is defined (as 

shown in Figure 5.9). 

This involves allocating a region of memory which is shared between the 

guest virtual machine and its host process. The memory within the guest 

virtual machine is defined at the exact same addresses as the host, thus 

achieving parity in the memory layouts, which serves our goal of 

transparently passing memory references between guest and host. 

At the very top of the VM’s address space, we map-in the Linux VDSO 

(Virtual Dynamic Shared Object) [103]. The Linux VDSO is a springboard 

that is used by the Gnu C library to make system calls and therefore must be 

mapped into a fixed location in memory. 

3. LibVM-VT uses a simple ELF loader which loads the Linux ELF 

interpreter [84] and our bootstrapper into memory at the top of LibVM-VT’s 

allocated address space. 
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Our ELF loader performs a few basic integrity checks, such as ensuring that 

the ELF program segments fall into valid memory regions. However, 

extensive security checks are not necessary as the ELF loader is not a part of 

the attack surface. This is because the loader is only used to load the system’s 

ELF interpreter and our own bootstrapper, and not untrusted libraries. The 

ELF loader also maps our bootstrapper executable into memory, and places it 

immediately after the ELF interpreter. 

4. LibVM-VT sets up the VM’s stack and begins executing the VM. 

We create the data structures necessary for the ELF interpreter, such as the 

AUXV vector specifying system parameters and copy all system environment 

variables onto the VM’s stack. The AUXV vectors instruct the ELF 

interpreter, where in memory our bootstrapper executable can be found, and 

the ELF interpreter will load and execute the bootstrapper as well as its 

dependencies, such as the C runtime library. 

Our bootstrapper executable is compiled as a position independent 

executable, with the -PIE flag, so that it can be placed anywhere in memory. 

This is in contrast to standard executables which have a fixed load address. 

This again helps us to ensure that there are no memory overlaps between the 

virtual machine and the host machine. 

We also copy environment variables and command line arguments onto the 

stack. Following this, we set the VM’s program counter to the ELF 

interpreter’s entry point and launch the VM. 

5. The ELF interpreter initialises our bootstrapper. 

The ELF interpreter starts its boot up process, unaware that it is executing 

within a virtual machine, and carries out the same sequence of actions which 

it normally would during the execution of a process. This includes mapping 

our executable into memory, loading its dependencies, such as the C runtime 

library, and jumping to the entry point of our bootstrapper executable. 

We intercept all system calls made by the ELF interpreter during this process, 

and proxy all the operating system functionality, forcing the memory 

mappings for example, to fall within the allocated boundaries of the 

execution container. 
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6. Bootstrap completion. 

Once the bootstrapper’s main() function executes, we make a standard system 

call with an unused system call number, which our interception layer 

recognizes as special. As parameters to our custom/special system call, the 

bootstrapper passes the address of the dynamic linker’s symbol resolution 

routine – dlsym. This value is cached by LibVM-VT for all future symbol 

resolution within the execution container. This special system call also 

heralds the completion of the bootstrap process, and LibVM-VT suspends 

execution of the virtual machine and returns from its main initialisation 

routine. 

5.4.2 Library Function Calling Sequence 

We now describe the sequence that transpires when a function call is made from the 

host to a shared library. Whereas a direct function call can be made in standard 

POSIX, LibVM-VT must maintain the illusion that the same process is occurring, 

while in reality, ensuring that the library executes within an isolated environment. 

Figure 5.10 highlights the actual process that takes place when a function call occurs. 

 

 

Figure 5.10: Invocation sequence of shared library call 
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Since the guest and component address space layouts are identical, a pointer in the 

host and a pointer in the VM refer to the same memory location. Therefore, 

everything is completely transparent to caller and “callee”. However, the component 

can only access the solidly shaded memory areas in Figure 5.10, whereas the host 

can access any area. This way, passing pointers back and forth can be done without 

any pointer swizzling [140] or manipulation. 

However, it should be noted that while addresses in the component address space can 

be freely accessed by the host, any additional memory areas must be specifically 

granted to the component. This means that only memory at page level granularity can 

be granted, since a page in the host address space must map into a page in the virtual 

machine’s address space. 

A host utilises the following steps in executing a function within a loaded 

component. The process is largely transparent to the host. 

1. Host calls a function within the component. 

The function should have been obtained via libvm_sym, which returns a 

proxy function that shields the host from the details of the emulation layer. 

The proxy function is generated “on the fly” inside a specially allocated 

memory region. This function is binary patched to implicitly pass the 

libvm_context as well as the guest function pointer. 

2. Proxy intercepts call and switches to VM. 

The LibVM proxy function copies the call parameters from the caller to the 

private stack of the VM. It then sets the instruction pointer in the VM to point 

to the actual function in the guest, and also sets the return address to our 

trampoline function. It then activates virtualised execution. 

3. Original function executes within VM. 

As the function call executes within the VM, any system calls it makes are 

intercepted by LibVM through detection of privilege level changes, and 

channeled to the user-defined interceptor functions. 

4. Call returns value to proxy. 
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Once the function has finished executing, it returns, but to the address of the 

proxy trampoline function that was originally passed to it by the LibVM-VT 

runtime. The trampoline function triggers an exit from the virtual machine. 

The stack values are then copied back to the caller’s stack. Although, strictly 

speaking, there is information leakage at this point, this is entirely an optional 

process, and can be disabled if more secure semantics are desired. It is 

provided only to aid passing arguments by reference. 

5.4.3 Effectiveness & Performance of the Isolation Architecture 

We evaluated the functionality and performance of our LibVM system by carrying 

out several micro and macro benchmarks.  The micro benchmarks were designed to 

measure several edge cases which can be used to glean the performance 

characteristics of LibVM, whereas the macro benchmarks provide a more holistic 

gauge.  Both the hardware-based and software-based implementations of LibVM 

were evaluated. 

5.4.3.1 Micro benchmarks 

We carried out four main benchmarks. 

1. Execution of a ‘null’ call which simply measures the overhead for 

transitioning in and out of the isolation container. 

This gives us a measure of pure isolation overhead, although such rapid 

switching would be unnatural in an actual program. Nevertheless, it is a 

useful measure of the most pathological case. 

2. A highly-inefficient Fibonacci calculation in order to measure a compute-

intensive workload. 

This provides a more realistic measurement through a compute intensive 

process, focusing on making execution within the container trump the number 

of transitions outside of the container. 

3. A get-pid system call to measure raw system call performance. 

This scenario provides an estimate of the overhead incurred in a “plain 

vanilla” system call. 

4. A file copy routine to measure raw I/O performance. 
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This scenario provides a measurement of situations where much of the time is 

spent waiting for I/O. 

 

Sample Linux 

Executable 

LibVM – 

Hardware 

Virtualization 

LibVM – 

ptrace 

Jail 

Linux 

RPC 

Execution 

Time 

Execution 

Time 

Execution 

Time 

Null call 1 926 4989 4962 

Fibonacci 1 1.04 1.08 1.04 

Get-PID 1 88.12 516 278.2 

File copy 1 1 1 1 

Table 5.5: Micro-benchmark results – Core i5 

Sample Linux 

Executable 

LibVM – 

Hardware 

Virtualization 

LibVM – 

ptrace 

Jail 

Linux 

RPC 

Execution 

Time 

Execution 

Time 

Execution 

Time 

Null call 1 1296 5518 5304 

Fibonacci 1 1.07 1.07 1.1 

Get-PID 1 91.28 397.37 320.26 

File copy 1 1.02 1.04 1.02 

Table 5.6: Micro-benchmark results – Core i7 
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Table 5.5 and Table 5.6 summarise the execution speeds on two different processors, 

a Core i5 and Core i7 respectively, both running identical SUSE Linux 11.3 

installations. The figures are displayed as a proportion of the execution time of a 

basic Linux executable performing a local procedure call in a tight loop. 

In the null call measurement, which simply measures the overhead of transitioning in 

and out of the isolation container, an RPC is 3 orders of magnitude slower than a 

local procedure call (no isolation), and is consistent with figures reported in 

literature [86]. However, LibVM is about 5 times faster than an RPC, demonstrating 

a significant, but expected, boost in performance. The main reason for increased 

performance is the reduction in context switching, as transitions are made only 

between the kernel and the process for each call. In the case of an RPC, a process 

switch is required, doubling the number of context switches, as well as reducing 

cache locality, thus incurring a commensurate performance penalty. The ptrace jail 

predictably has the highest performance penalty in such an extreme scenario, as it 

must perform an additional context switch due to the interpositioning layer. 

The get-pid system call test measurements produced similar results. This time 

however, the native case also incurs a performance overhead due to a context switch, 

reducing the dramatic differences displayed in the null call case, where there were no 

context switches at all. The relative performance between LibVM, ptrace and RPC 

remain proportionate in both cases, as expected. 

However, when the benchmark becomes IO or compute bound, the differences 

immediately vanish, as demonstrated by the Fibonacci and File copy benchmarks, 

since context switching overhead pales into insignificance. 

While these measurements are unlikely to be found in real world applications, they 

serve to demonstrate that: 

1. LibVM can perform, at best, up to 5 times faster than an RPC, when using 

hardware virtualization. 

2. LibVM’s ptrace-based isolation can be, at worst, 2 times slower than an 

RPC. 

Real world performance differences however, are likely to be less dramatic, 

depending mainly on context switching and parameter marshalling overheads. 
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5.4.3.2 Macro benchmarks 

The macro benchmarks are designed to measure both performance characteristics as 

well as porting effort needed to utilise LibVM. We execute the following 

benchmarks for this purpose. 

1. Using the LibVorbis library to decode a Vorbis encoded audio file. 

2. Using the BZip2 library to measure a compression algorithm. 

This example measures the passing of a large buffer to be decompressed in a 

compute-intensive run, followed by the return of the decompressed buffer to 

the caller. 

3. Using LibJPG library to measure image compression/decompression 

performance. 

The benchmarks are compared against their raw execution times. 

Sample Linux 

Executable 

LibVM – Hardware 

Virtualization 

LibVM – ptrace Jail 

Execution 

Time 

Overhead Execution 

Time 

Overhead 

LibVorbis 46.8 49.5 5.77% 53.7 14.7% 

LibBZ2 38.8 39.1 0.74% 39.2 1.1% 

LibZip 70.3 80.2 14% 83.3 18.5% 

Table 5.7: Macro-benchmark results 
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Figure 5.11: Comparison of native, software-based and hardware-based implementations – Core i5 

Our results in Table 5.7 and Figure 5.11 show that the hardware virtualization based 

implementation of LibVM adds modest overheads ranging from 6% to 14%, 

depending largely on the number of domain transitions. This is entirely within 

expectation, as the VT hardware adds almost no overheads for normal execution of 

instructions. However, each domain transition/system call is intercepted by LibVM-

VT, which proxies it on the callers behalf, including making additional security 

checks. This is the main source of overheads during execution. 

Ptrace-based execution predictably suffers even worse overheads, as each system call 

results in at least 3 additional system calls – one to retrieve the processes’s registers 

from the system, one to make the actual system call, and one to resume execution. In 

addition, security checks may end up causing additional system calls, worsening the 

performance as expected. However, when the total number of system calls are lower, 

for example in the BZ2 test, the performance differences become neglible. However, 

the LibZip benchmark, which contains a high volume of system calls, suffers fairly 

high overheads at around 20%. 
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Sample Linux 

Executable 

LibVM – Hardware 

Virtualization 

LibVM – ptrace Jail 

Execution 

Time 

Overhead Execution 

Time 

Overhead 

LibVorbis 39.6 41.8 5.55% 44.9 13.4% 

LibBZ2 36.5 36.8 0.82% 36.9 1.09% 

LibZip 64.1 73.2 14% 75.1 17.1% 

Table 5.8: Macro-benchmark results – Core i7 

 

Figure 5.12: Comparison of native, software-based and hardware-based implementations – Core i7 

The results when executed on a Core i7 machine are largely similar, with differences 

being accounted for by processor and disk speed differences. 

5.5 CONCLUSION 

This chapter provided an overview of the hardware based implementation of our 

isolation structure, as well as how the implementation evolved from initial prototypes 

to validate performance characteristics. The discussion was split into two parts, 

describing the initial validation of performance by adding hardware virtualization 

support to an existing solution, followed by the LibVM-based implementation. 

Performance measurements demonstrated that the hardware based solution was 

competitive with software only solutions, while improving confidence in the 
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robustness of the solution through clearly demarcated isolation boundaries, as well as 

by eliminating the need for machine code verification. These results validate one of 

the major hypotheses in this thesis, which is that hardware virtualization can be used 

to provide an effective mechanism for isolation of components in a simplified and 

more easily understood and verified manner. 
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Chapter 6: Evaluation of Implementations 

against Functional Specification 

6.1 INTRODUCTION 

This thesis has demonstrated, through the LibVM interface design and its software 

and hardware implementations, that component isolation is achievable with 

reasonable overheads, while preserving binary compatibility with existing libraries, 

in a manner comparable to or better than current practice.  A performance evaluation 

has been detailed in Section 5.3.4.  However, it is also necessary to provide 

assurance that the functions and mechanisms involved are effective in providing this 

isolation, and that they meet the functional specification defined in Section 3.4.  This 

chapter provides an evaluation of the two LibVM implementations against that 

specification, identifying their key strengths and weaknesses.  We evaluate LibVM 

through two methods.  Firstly, by providing a rigorous argument that the isolation 

container encapsulated by the LibVM interface is sound in meeting its functional 

specification.  Secondly, by using the Common Criteria for Information Technology 

Security Evaluation (CC), an international standard for trusted system 

evaluation [67], as a guiding framework for evaluating possible implementations. 

While a full CC evaluation is outside of the scope of this research, because it is a 

large-scale process intended for independent evaluation of commercial products with 

distinct roles for “developers”, “evaluators” and “sponsors”, the following sections 

are based on the processes and procedures outlined for security evaluation under the 

Common Criteria version 3.0. The main aim of such an evaluation is to gauge the 

effectiveness of our approach as well as to define security evaluation guidelines for 

the overall problem addressed in this thesis, namely that of isolating application 

libraries or components, from their host. 

6.2 EVALUATING THE PROCESS TRACING BASED 

IMPLEMENTATION OF LIBVM 

In this section, we evaluate the process tracing based implementation of LibVM, 

LibVM-ptrace, by analysing how well it conforms to LibVM’s specification, as 

defined in Section 3.4.  Since five conditions were identified under which an 
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implementation can be analysed for conformance, we take each of these conditions in 

turn and evaluate the process tracing based implementation against it, identifying its 

strengths and weaknesses. 

6.2.1 Conformance to Condition C1 

Condition C1 states that “The CPU utilised by the LibVM container must be 

virtualised such that it is isolated from the host application”.  As described in Chapter 

3, LibVM-ptrace is implemented on top of existing operating system provided 

process isolation facilities.  OS processes are isolated in typical operating systems by 

providing them with their own “virtual” CPU and registers, which are kept 

completely separate from the registers and state used by other processes, although the 

actual physical CPU is often shared, as has been discussed at greater length in 

Chapter 2.  Furthermore, through the use of hardware protection rings, all sensitive 

instructions executed by a process (in which “sensitive” refers to those instructions 

which are liable to have an effect on state outside of the process itself) can be trapped 

and intercepted by the operating system.  In addition, the ptrace mechanism also 

provides the ability to relay relevant traps to the host process.  Overall, we contend 

that process isolation facilities are well understood facilities which provide entirely 

satisfactory guarantees that each process’s CPU is adequately virtualised with respect 

to other processes running in the system. 

Since the LibVM sandbox runs as a completely separate and dedicated OS process, it 

follows that it is completely isolated from the host process, and is unable to influence 

its CPU state or execution flow.  This allows us to claim full conformance to 

Condition C1 for LibVM-ptrace. 

6.2.2 Conformance to Condition C2 

Condition C2 states that “A host can never utilise a value obtained from within the 

isolation container without ensuring that it is adequately validated”.  It should be 

noted here that this condition is one that is imposed largely on the host application, 

and not upon LibVM itself, as it is impracticable for LibVM to determine which use 

of data is valid or invalid. Therefore, that decision must be made in accordance to the 

host’s security policy. 
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However, it is possible to highlight the points at which validation could be most 

easily implemented, at times by LibVM itself, so that the burden of implementing the 

host’s security policy is greatly reduced.  Towards this end, it is necessary to identify 

the key gateways through which information can flow between host and guest in 

LibVM-ptrace. 

By going back to the LibVM interface, discussed in Chapter 3, it is possible to 

identify the key methods through which interaction with LibVM is made possible.  

Since these methods represent the only ways through which to instantiate a LibVM 

sandbox, all potential interaction paths also flow through these methods 

subsequently.  The key methods are: 

6.2.2.1 libvm_initialise 

Since this method is responsible for initialisation of the libvm container, and no 

untrusted library has been loaded yet, it presents no security threat. 

6.2.2.2 libvm_open 

The method itself does not provide any untrusted data, since it returns an opaque, 

implementation specific handle, which will not be directly manipulated by the host.  

However, the method will cause an untrusted library to be loaded into the LibVM 

sandbox, and any initialisation routines in the library to be executed.  At this point, 

the untrusted library may trigger additional host calls, at which point data will be 

passed from the sandbox out to the host.  This is a critical point at which the 

parameters and information provided in these calls must be carefully vetted.  We 

discuss the host call interface in greater detail under condition C4. 

6.2.2.3 libvm_sym 

This method provides a direct access point by which a function within a library 

residing in the LibVM sandbox, can be obtained.  Once such a function pointer is 

obtained, it can be invoked as described in Chapter 4.  While the mechanism 

provided for invocation is safe, as also explained in Chapter 4, the return values of 

the function are entirely suspect, since the library is untrusted. 

For example, the invoked function could return a data structure, which contains a 

pointer referring to an illegal memory location outside of the sandbox address space.  
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If such a pointer were to be used, it can be potentially used to overwrite data in 

arbitrary locations of the host, potentially allowing an attacker to gain control.  

Therefore, it is up to the host application to perform adequate checks before using 

any such value. 

However, we recognize that this procedure is likely to be error prone.  While this 

may be less significant for libraries which are not malicious and are simply 

erroneous, it presents a far more significant threat when dealing with potentially 

malicious libraries. 

In Chapter 7, we propose some methods to mitigate this issue, such as adding 

compiler support to natively recognize LibVM isolation containers, and to utilise 

type information available to the compiler to automatically insert validity checks, 

such as range checks on pointers, or to flag potential errors, before allowing the use 

of untrusted data.  More advanced methods could include those such as taint 

analysis [116], which could perform more sophisticated forms of information flow 

analysis [112],  both into and out of the isolation container, again flagging potentially 

dangerous use of untrusted data.  These possibilities are also discussed in detail in 

Chapter 7. 

6.2.2.4 libvm_guest_malloc 

This method allocates a region of memory within the sandbox’s address space.  Since 

address space transparency is assumed, the host application can refer to this memory 

as if it were in its own address space.  While LibVM-ptrace itself performs a range 

check to ensure that the return address falls within the sandbox’s address space, once 

again, the onus falls on the host to use this memory region with caution, as it can 

potentially be altered by a library executing within the sandbox.  The scenario 

becomes even more dangerous in a multi-threaded environment, which can give rise 

to TOCTOU (Time Of Check To Time Of Use) bugs [39].  Therefore, the same 

concerns as well as solutions discussed under the dlsym method, apply here. 

6.2.2.5 libvm_guest_free 

This method does not constitute a security threat because it is executed within the 

context of the sandbox, and no outbound information exchange occurs.  However, it 

does call the free method in the C runtime within the sandbox to release memory.  
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Since this method can potentially be hijacked, and therefore, the library could invoke 

host calls, security being tight at the host call layer is essential as always. 

6.2.2.6 libvm_close 

This method unloads an existing library within the sandbox.  While this method too 

is largely safe, the same caveats that applied to libvm_guest_free apply, since 

LibVM-ptrace invokes the dlclose method on the library executing within the 

sandbox, and that too could be hijacked to perform system calls. 

6.2.2.7 libvm_destroy 

This method is safe, as LibVM-ptrace simply terminates the child process, and any 

malicious code executing within the sandbox has no further opportunity to execute. 

6.2.2.8 libvm_get_last_error 

This method is used to return internal error codes in LibVM-ptrace, and therefore, 

has no interaction with untrusted code executing within the sandbox. 

6.2.3 Conformance to Condition C3 

Condition C3 states that “a thread of execution within a LibVM container cannot 

access memory regions outside of its allocated regions”.  There are two broad ways 

in which LibVM-ptrace ensures that this is satisfied.  The first is by pre-allocating a 

shared memory area before forking the child process.  Since the child process now 

runs in a completely separate address space, it is isolated from the host through the 

operating system’s isolation facilities, which we assume can be relied upon.  The 

only contact with the host is through the shared memory area, which the operating 

system guarantees is confined to the agreed upon region.  Therefore, the shared 

memory area fully satisfies condition C3. 

However, matters are complicated when additional pages are mapped into the 

sandbox’s memory. The main method by which this is achieved is through the mmap 

(and related) system calls, which are POSIX compliant system calls [61].  These calls 

allow a process to map files or devices into memory, so that memory mapped I/O can 

be performed on them.  Since these calls are vital to the function of many libraries, 

we provide a default implementation in LibVM-ptrace, although there can be 

libraries which do not require it, in which case it should be explicitly disabled. 
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The default implementation ensures that the parameters to these calls are validated, 

and that the memory regions are mapped into both the guest and the host. These 

memory regions are mapped such that they fall into unallocated memory regions 

available to both the host and the guest. (As described in Chapter 4, we ensure that 

the host and guest memory maps are kept in lock step)  These newly mapped regions 

are also considered a part of the sandbox’s address space, and therefore, must be 

checked by the host before use.  It should also be noted therefore, that the sandbox 

address space is non-contiguous in the default LibVM-ptrace provided 

implementation, although this implementation should be overridden by the host if 

necessary. 

6.2.4 Conformance to Condition C4 

Condition C4 states that “the domain transition mechanism provided by LibVM must 

not compromise the host’s integrity”. 

The domain transition mechanism used by LibVM-ptrace is the operating system 

provided ptrace facility, in conjuction with the operating system’s own process 

switching facilities.  Therefore, there is a reasonable expectation of correctness in the 

functions ability to inform LibVM of domain transitions, such as system calls.  In 

addition, the Operating System utilises hardware protection rings to intercept the 

execution of privileged instructions by a sandboxed library.  Once the ptrace 

mechanism informs LibVM-ptrace of the domain transition, it examines the reason 

for the domain transition, and terminates the library if an invalid action has been 

executed. If a host call has been requested, as described in Chapter 4, LibVM-

ptrace’s default implementation processes it, or delegates to the host if required.  

Therefore, we assert that this overall mechanism is tamper proof and reliant on the 

trustworthiness of the operating system itself, and that the real potential for 

vulnerabilities lies in the actual execution of the host calls, described below. 

6.2.5 Conformance to Condition C5 

Condition C5 states that “an action executed by the host on behalf of a library 

isolated within LibVM must not compromise the host’s own integrity”. 

Recall from Chapter 4 that LibVM-ptrace enters lockdown mode soon after its initial 

bootstrapping process.  Therefore, it screens all host calls which are deemed 
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dangerous before passing them onto the host.  For example, if the untrusted library 

executes an exit system call, this system call should not be executed in the host’s 

context at all, as it would cause the host to exit abruptly.  Instead, we make the 

assumption that a library which executes this system call is either erroneous or 

malicious, and take steps to shutdown the isolation container immediately, as well as 

inform the host of the attempted transgression.  Similarly, we have discussed under 

Condition C2, how memory mapping related calls are filtered. 

Therefore, of the system calls for which default implementations are provided, the 

chief means by which confidence can be held in their safety is through the use of 

judicious programming techniques, which we have attempted to follow.  These 

include careful checking of parameters and return values (while avoiding TOCTOU 

bugs), assertion of program invariants, and following the principle of least privilege.  

However, as noted in Chapter 4, LibVM-ptrace is more prone to TOCTOU bugs, as 

well as other implementation complexities, caused by the very nature of the ptrace 

mechanism. 

In addition, given the plethora of system calls available, as well as the highly 

context-specific nature of host security policies, it is impracticable for LibVM to 

filter all system calls by itself.  Therefore, in the current implementation, the host is 

responsible for implementing its own security policies, and it is therefore, prudent to 

revisit well known principles of security.  As discussed above, minimising the size of 

the attack surface by disabling unneeded system calls, failing securely in the face of 

errors, and generally following the principle of granting least privilege at all times, 

are important principles by which the host’s security policies should be guided. 

In Chapter 7, we propose means by which the burden placed on the host can be 

eased, such as providing ready-made “security profiles”, which are applicable to 

individual libraries.  For example, a “compute-only” profile would allow an 

untrusted library the ability to execute a computation within the sandbox, but would 

disallow system calls altogether, whereas a “network” profile would allow an 

untrusted library to make network-related system calls. 
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6.3 EVALUATING THE HARDWARE BASED IMPLEMENTATION OF 

LIBVM 

This section follows in the footsteps of the evaluation made for LibVM-ptrace, by 

considering each of the identified conformance criteria and evaluating our hardware 

based implementation, LibVM-VT, against it.  Since there are many commonalities 

between the two implementations, we will compare and contrast whenever possible, 

as well as refer to the previous discussion for additional context. 

6.3.1 Conformance to Condition C1 

To restate condition C1, “the CPU utilised by the LibVM container must be 

virtualised such that it is isolated from the host application”.  As described in Chapter 

4, LibVM-VT implementation follows a virtualization based approach for isolation.  

Popek and Goldberg [104] defined the main criteria that needed to be met for full 

virtualization of hardware, which the original Intel x86 architecture did not fully 

meet [110].  However, in 2005, both Intel and AMD introduced additional machine 

instructions to remedy this issue [3, 62, 64], and LibVM-VT is built on top of those 

machine instructions. 

While we discovered that directly building on top of those hardware instructions is 

tedious, by utilising an abstraction layer provided by the Linux operating system, 

The Kernel-based Virtual Machine (KVM) [107], the drudgery was greatly 

simplified.  It should be noted that LibVM-VT does not utilise the full KVM, which 

is a full-blown Virtual Machine Monitor (VMM), but instead, uses a minimal subset 

of it known as LibKVM, which is the portion that provides a layer of abstraction 

over the hardware instructions themselves.  As a result, LibKVM is extremely 

lightweight, as it provides little more than virtualization of CPU and memory. 

The hardware instructions themselves fully virtualise the CPU, including all 

registers, by running the CPU in an interpretive mode of execution.  Each logical 

processor in the virtual machine has an associated VMCS (Virtual Machine Control 

Structure), which maintains its actual state. LibKVM therefore, provides a high-level 

wrapper over this functionality.  In addition, LibKVM also virtualises memory page 

tables by using hardware support when available, and falls back to shadow page table 

based software techniques, in the absence of hardware support [135]. 
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Therefore, the correctness of the LibVM-VT implementation is dependent on the 

correctness of LibKVM.  However, since LibKVM is provided as a part of the 

operating system itself, and is a relatively thin layer of abstraction over the actual 

hardware virtualization support, there is a reasonable basis for high confidence in its 

implementation.  Virtualization technology is fairly well-understood and mature, and 

therefore, we believe that there is a sound basis to have confidence that the CPU 

virtualization works effectively, making LibVM-VT conformant to condition C1. 

6.3.2 Conformance to Condition C2 

Condition C2 states that “a host can never utilise a value obtained from within the 

isolation container without ensuring that it is adequately validated”.  We note that 

most of the discussion carried out for LibVM-ptrace is applicable to LibVM-VT for 

this particular condition, and therefore, refer to Section 6.2.2 for a more in-depth 

discussion.  Some of the minor differences are in the fact that the LibVM-VT 

implementation is less prone to TOCTOU bugs, since the system calls are carried out 

synchronously on the host, in contrast to the asynchronous nature of system call 

handling in LibVM-ptrace, as dictated by the ptrace system call.  In addition, due to 

the absence of the two-stage interception of system calls brought on by the nature of 

ptrace (discussed in detail in Chapter 3), implementation complexity is also greatly 

reduced, increasing confidence in the LibVM-VT bases solution’s conformance to 

Condition C2, due to the greater economy of mechanism [114]. 

6.3.3 Conformance to Condition C3 

Condition C3 states that “a thread of execution within a LibVM container cannot 

access memory regions outside of its allocated regions”.  In order to assess this, it is 

necessary to delve briefly into how LibVM-VT handles memory allocated to the 

sandbox.  As mentioned in the previous section, LibVM-VT relies on the layer of 

abstraction over memory and CPU provided by LibKVM. LibKVM will either use 

hardware NPT/EPT [3, 65] structures where available, or fallback to shadow page 

tables in their absence [135].  In either case, the end result is that the virtual machine 

can only access these assigned pages, and LibKVM ensures that pages outside of the 

assigned regions cannot be accessed.  We, therefore, remap a region of memory 

within the host’s address space, which is dedicated for use by the Virtual Machine 

used for the LibVM-VT sandbox.  This region of memory is also shared with the 
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host however, which then becomes identical to the shared memory segment 

described in the LibVM-ptrace implementation.  As discussed above, we believe that 

LibKVM is a relatively mature implementation, and distributed as a part of the Linux 

Kernel, and therefore, can be relied upon to ensure that a thread of execution within 

the sandbox cannot access regions outside of it. 

In addition to this, any mmap calls made by the host are also easier to handle than in 

the case of LibVM-ptrace.  This is because it is a simple matter of mapping the page 

in the host’s address space, and reassigning that space to the guest virtual machine at 

the desired location.  The asynchronous nature of the ptrace mechanism makes this 

far more difficult, once again increasing confidence in the correctness of the LibVM-

VT implementation. 

6.3.4 Conformance to Condition C4 

Condition C4 states that “the domain transition mechanism provided by LibVM must 

not compromise the host’s integrity”.  The domain transition mechanism for LibVM-

VT is based on the virtualization hardware, which suspends interpretive execution 

and prompts a VMEXIT (described in Chapter 2), whenever a sensitive instruction is 

encountered [64], such as an interrupt invocation.  Whenever such an exit based on a 

sensitive instruction occurs, LibKVM performs a callback to our userspace listener, 

which takes over in filtering the actual host calls.  As discussed earlier, this 

mechanism is quite robust, and cannot be bypassed by a malicious executable. 

6.3.5 Conformance to Condition C5 

Condition C5 states that “an action executed by the host on behalf of a library 

isolated within LibVM must not compromise the host’s own integrity”.  Once again, 

much of the discussion which applied to the ptrace implementation applies to this 

implementation, since both are largely identical except for the lesser complexity in 

the VT based implementation.  Additionally, since the onus of managing system calls 

is largely placed on the host, the discussion in Chapter 7 on reducing that burden is 

also applicable to LibVM-VT.  Therefore, full conformance to this condition is 

deferred to the host application itself, although future implementations of LibVM can 

potentially claim full conformance by adopting the strategies mentioned previously 

and discussed in detail in Chapter 7. 
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6.4 PART 5 – EVALUATING THROUGH THE COMMON CRITERIA 

This section is based upon the processes and procedures outlined for security 

evaluation in the Common Criteria for Information Technology Security Evaluation 

version 3.0 [67]. The Common Criteria was chosen as a guiding framework as it is an 

international standard. While a full CC evaluation is not performed, we utilise 

relevant sections to ensure greater confidence in the processes and practices used in 

developing LibVM. Our basic approach has been to describe the security target 

aimed for, and to evaluate it against security functional requirements defined in the 

Common Criteria. The cross references below, of the form ASE_, are taken from the 

CC standard. 

6.4.1 Related Security Targets and Experience 

While there is no existing Protection Profile which matches our needs, we have 

relied on available security targets for operating systems as a basis on which to 

model our own CC-like Security Target, i.e. the object being evaluated, which in our 

case, is a LibVM implementation. 

6.4.2 Introduction to the Security Target 

6.4.2.1 ASE_INT.1.3C - TOE reference 

The Target of Evaluation (TOE) is LibVM, a reference monitor/isolation container 

for dynamic shared libraries. 

6.4.2.2 TOE description 

ASE_INT.1.4C - The Target of Evaluation is a component isolation sub system, 

which is a container designed to protect its host from components of unknown 

provenance and quality. The TOE comes in the form of a sandboxing library that can 

be used to define such isolation domains and to load shared libraries into these 

domains. The TOE will be able to constrain faulty or malicious components through 

the following. 

a. Preventing access to unauthorised host container memory regions 

b. Disallowing access to privileged system resources 

c. Allowing arbitration of all system calls 
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d. Preventing a component from causing a denial of service 

e. Acting as a reference monitor for an untrusted component 

The TOE will detect and flag attempts to bypass security constraints. 

6.4.2.3 ASE_INT.1.8C - Logical scope 

Our system is designed to deal with such arbitrary binary components, from 

untrusted sources, which need to be executed in a constrained environment.  Once a 

component is accepted for execution, it must have controlled access to resources, as 

determined by the host.  Access to memory must be restricted to areas allowed by the 

host application and attempts to exceed these limits must be caught.  The host must 

be allowed to constrain the component by preventing arbitrary access to the 

operating system call interface.  Such access must be mediated and the host must be 

allowed to set resource limits on memory usage or disk access.  On the other hand, 

the component must be able to freely avail itself of all safe machine instructions. 

Therefore, our system is based on the observations that a process cannot perform any 

actions harmful to the system as long as its system call interface, which is its window 

to the outside world, is strictly controlled. We utilise this principle for isolating 

components within a restricted address space, and provide strict arbitration over all 

system calls. 

6.4.2.4 Definitions 

A component is any binary unit which is loaded by an application into its own 

address space with communication taking place between the component and its host 

application via a well-defined interface. Primarily, this will be in the form of 

dynamic link libraries (DLL)/shared object (SO) libraries, which form the primary 

means of composability in modern operating systems (OS) and applications. 

A malicious component is a component which intentionally attempts to subvert the 

hosting container and gain access to disallowed resources, including privilege 

elevation, information corruption or denial of service. 

A faulty component is a component which unintentionally corrupts the host 

containers state or accidentally attempts to access memory or resources denied to it, 

causing failure or corruption of the containing host. 
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6.4.2.5 Conformance claims 

6.4.3 Operating Environment 

ASE_INT.1.6C -The TOE depends on 

a. The Suse Linux 11.3 operating system 

b. The LibKVM virtualization library provided with above operating system 

c. The Gnu C Compiler 

6.4.4 Objectives 

The purpose of environmental objectives is to explicitly state the requirements which 

are expected of the operating environment. When these environmental objectives are 

met by the operating environment, the TOE itself meets its own security objectives 

satisfactorily. 

The security objectives for the operations environment are as follows: 

a. It must support full virtualization of CPU and memory. 

b. Access attempts to unmapped memory regions must result in trappable page 

faults. 

c. Privileged instructions (i.e. interrupt invocations, syscall instructions) must be 

trappable. 

d. The host operating system must have a clearly defined system call interface, 

so that system-call interpositioning is possible. 

e. The underlying Operating Environment is assumed to be free of exploitable 

vulnerabilities which reside outside of its system call interface. 

f. It is assumed that the operating systems own security policies are sufficient to 

constrain a host application such that no component residing with that 

application can gain elevated privileges which are greater than the host 

application itself. 

g. The host application must ensure that the conditions specified in Section 

3.4.3.5 are met. 

The security objectives for the TOE are as follows: 
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a. The TOE will detect and mitigate the effects of untrustworthy components. 

b. The TOE will ensure that the subjects are only able to access resources 

according to a user-mediated policy object. 

c. The TOE’s reference monitor will operate in a separate domain from that of 

the untrusted library and allow full mediation over resources accessed and 

allocated by the untrusted library. 

d. The reference monitor’s mechanisms are tamper proof. 

6.4.5 Special Requirements 

None. 

6.4.6 TOE Security Assurance 

6.4.6.1 Assurance 

Development 

Sound software engineering practices were adopted, and key security principles 

adhered to, such as the principle of granting the least privilege, the principle of using 

the least common mechanism, and the principle of complete mediation. These 

practices have been outlined over the course of this document. In addition, automated 

testing has been performed through limited use of unit tests. These tests were 

designed to stress specific edge conditions, such as attempts to access memory 

outside of the bounds assigned to the TOE.  In addition, defensive programming 

techniques have been utilised through the development of this software, and are 

detailed in Chapters 4 and 5. 

Documentation 

This thesis serves as the documentation for the TOE, and provides a complete 

description of its implementation aspects as well as a systematic basis for evaluation. 

6.4.6.2 Platform assurance 

Vulnerability assessment 

We have conducted a systematic search for vulnerabilities by identifying all possible 

attack surfaces on the TOE as described in Sections 6.2 and 6.3. In addition to this 

systematic analysis of attack surface, we have conducted several targeted tests which 
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evaluated the robustness of the TOE to different kinds of attack, such as attempts to 

escape sandbox limits. These have been discussed at length in Chapter 4. 

6.4.6.3 Summary 

This section has provided a further evaluation of LibVM against the security 

guidelines defined in the internationally standardised Common Criteria for 

Information Security Evaluation. The Target of Evaluation, LibVM, was defined and 

its security objectives outlined. Secondly, the objectives were evaluated according to 

relevant assurance requirements in the Common Criteria (exluding those parts of the 

CC that are relevant only to mass-produced commercial products). References have 

been made to previous evaluations where relevant. 

6.5 CONCLUSION 

 

This chapter has provided an evaluation of both LibVM implementations, discussing 

the conditions under which LibVM can be guaranteed to be correct with respect to 

isolating libraries from their host, such that the host is fully able to control the 

execution of the libraries, as per the functional specification defined in Section 3.4. 

The five conditions under which this guarantee can be provided, have been analysed 

in depth, identifying the strengths and weaknesses of both implementations. Due to 

economy of mechanism, the hardware based implementation is deemed to be more 

secure than the software based implementation. Finally, the objectives and processes 

used in LibVM has been evaluated by using the Common Criteria as a guideline. 

While there is good confidence in the robustness of the mechanisms, potential pitfalls 

have been highlighted, and improvements outlined. 
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Chapter 7: Conclusions 

7.1 INTRODUCTION 

This chapter summarises the contributions and outcomes of this thesis. The chapter 

also outlines future enhancements as well as further research that can be undertaken 

in this area. Finally, it concludes the thesis with an analysis of the implications of this 

research. 

7.2 SUMMARY OF RESEARCH AND ITS CONTRIBUTIONS 

This thesis has addressed the problem of untrusted components potentially 

decreasing the reliability of host applications. The evidence for this position has been 

presented and discussed, including the prevalence of application crashes caused by 

component failures, as well as the security threats posed by insecure components. To 

solve this problem, we have investigated methods for creating protection domains for 

individual components, thus preventing an errant or untrusted component from 

adversely affecting the host. We also aimed to preserve the benefits of shared address 

spaces, a key advantage in library components, while doing so. 

Therefore, the causes and symptoms of component failure were investigated, and the 

errors that are relevant to isolation domains were identified, which contribute to the 

literature on this subject. Subsequently, we have evaluated the methods available to 

create such isolation domains and have published our findings [46]. In addition, we 

have also identified some of the major shortcomings in present research in this area. 

Some of the key shortcomings include the inability to preserve the benefits of shared 

address spaces, as well as the requirement that components be recompiled through 

custom tool-chains, or that they adhere to a highly restricted subset of available 

machine instructions, in order to be safely executed. 

To remedy these shortcomings, we have introduced an abstract API that defines the 

broad semantics of such isolation containers and described a hardware virtualization-

based implementation for speed, and a less efficient ptrace-based software 

implementation for use in the absence of such hardware support. 
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Our solution retains the advantage of not requiring custom tool chains, and operates 

against standard linux binaries, providing an advantage over previous efforts in this 

area [32, 144]. The shared libraries themselves require no modifications before use. 

We found that the porting effort itself is proportional to the complexity of the host. 

While our hardware virtualization-based implementation provides simpler 

mechanisms for data sharing, the ptrace jail-based mechanism offers more limited 

options. However, such limitations could be remedied with kernel modifications. 

This approach provides an attractive alternative to existing solutions because it 

requires less porting effort due to its similarity to existing POSIX interfaces, and 

provides a more natural programming metaphor due to pointer transparency, while 

maintaining comparable performance when hardware virtualization support is 

available, and good isolation guarantees even in its absence. 

In addition, neither of these techniques had previously been explored for the purpose 

of isolating library components. Therefore, to our knowledge, this is the first 

documented research effort to do so. 

We have also carried out extensive performance evaluations against competing 

solutions, using industry standard benchmarks, and show that our solutions offer 

competitive performance, while reducing the size of the required Trusted Computing 

Base, and eliminating entire classes of problems related to code verification and 

static analysis. 

The two implementations have also been evaluated in-depth, and this thesis has 

identified five conditions that are necessary and sufficient to guarantee that a 

component can be isolated from its host. These conditions are: 

1. The CPU utilised by the LibVM container must be virtualised such that it is 

isolated from the host application. 

2. A host can never utilise a value obtained from within the isolation container 

without ensuring that it is adequately validated. 

3. A thread of execution within a LibVM container cannot access memory 

regions outside of its allocated regions. 

4. The domain transition mechanism provided by LibVM must not compromise 

the host’s integrity. 
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5. An action executed by the host on behalf of a library isolated within LibVM 

must not compromise the host’s own integrity. 

As has been discussed, these conditions can be conformed to in various degrees, in 

accordance to the isolation needs of a particular application, while still being 

implemented through the LibVM API. For example, an application that supports 

components of unknown provenance could utilise a strictly conformant API with 

extremely strong isolation guarantees, whereas an application which simply wishes 

to guard itself against component failures, could utilise a less conformant API which 

nevertheless provides satisfactory fault isolation. 

In summary, the contributions of this research are 

1. A classification of isolation mechanisms. 

2. An abstract API which encapsulates component isolation domains. 

3. A set of conditions under which an isolation sandbox can correctly isolate a 

component. 

4. A process-tracing based implementation of the LibVM API. 

5. A hardware-virtualization based implementation of the LibVM API. 

6. A comparative evaluation of the implementations. 

Ultimately, we believe that the ideas presented in this thesis serve to validate our 

initial hypothesis that it is indeed possible to create lightweight isolation domains for 

libraries while maintaining heavyweight security guarantees. In the following 

sections, we note further work that can be undertaken to improve and build upon 

these ideas. 

7.3 FUTURE WORK 

The work presented in this thesis demonstrates how lightweight isolation domains for 

libraries can be created, while abstracting away the implementation details. The 

resultant LibVM sandbox has provided a base on which further work can be 

undertaken. This section includes not only enhancements which can be made to 

LibVM, but also to the general problem of component isolation, which, as we have 
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argued throughout this thesis, is a problem of critical importance when developing 

more dependable systems. 

7.3.1 Support for Multiple Operating Systems 

The current implementation of LibVM is built on the Linux operating system. While 

the general concepts and ideas presented in this thesis are not operating system 

dependent, the two implementations makes several operating system specific 

assumptions. An example would be the use of POSIX shared memory primitives in 

LibVM-ptrace. Some operating systems, such as Microsoft Windows, are not fully 

POSIX compliant [97] and therefore, LibVM would need to be ported to use the 

corresponding OS calls in Microsoft Windows. In addition, both LibVM-ptrace and 

LibVM-VT directly use the GNU/Linux loader/linker for loading additional libraries 

into the sandbox. Such issues too can be solved by utilising the operating system 

specific linking/loading mechanism. 

In all cases, since the LibVM API itself is abstract, it is possible to implement these 

mechanisms in a highly operating system dependent manner, yet leave the host 

program itself largely unaware of those underlying mechanisms (although 

recompilation for each operating system is required). However, a more difficult issue 

lies with the operating system call interface itself, as the current version of LibVM 

requires that this interface be intercepted and mediated by the host application. Since 

this call interface is highly operating system dependent, the host application too will 

be tied down to that particular operating system interface. 

Several solutions to this problem are possible. One possibility is to absorb the 

operating system dependent portions into LibVM itself, and to expose a more high-

level security policy abstraction to the host application, based on pre-defined 

templates. For example, if a component is known to require only CPU and internet 

access, the host application could simply inform LibVM to activate a “CPU only” 

and “Internet only” security policy. This would then allow system calls related to 

those policies only, with all other system calls being barred. Such functionality-based 

confinement policies have already been suggested and implemented in application-

oriented access control mechanisms [120], and can be readily adapted to LibVM. 

Yet another approach is to define an operating system independent system call 

interface, which require that components use only these system calls. This approach 
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is utilised in Google’s Native Client [144]. However, such a policy forces all 

components to be recompiled to support the new interface, which is disadvantageous 

when using pre-existing library components. 

A third approach is for LibVM to abstract away the operating system interface, yet 

provide the host with an OS independent mechanism for making policy decisions. 

Combined with the first approach of policy templates, this method could be used on 

existing library components while allowing the host application to remain 

independent of operating system details. 

7.3.2 64-bit Support 

The current implementation of LibVM has been developed on a 32-bit architecture, 

and therefore, a port to a 64-bit architecture would be useful. It should be noted 

however, that neither implementation of LibVM has any specific dependency on a 

32-bit architecture, and consequently, can be easily ported to 64-bit systems. For 

example, LibVM-ptrace is built on existing process isolation facilities and ptrace, 

both of which are supported in 64-bit Linux systems. LibVM-VT is reliant on 

hardware virtualization, and this too is easily ported to support 64-bit instruction sets 

by simply setting the virtual processor to 64-bit mode. 

This should be contrasted with Vx32, which relies on hardware segmentation [32], 

and therefore is dependent on 32-bit systems, as well as Google’s Native Client, 

which uses segmentation on 32-bit systems and has a paging-based mechanism to 

support 64-bit systems [118]. 

7.3.3 Improved Debugging Support 

Debugging support for components executing within a LibVM sandbox is also an 

important consideration. We have implemented rudimentary debugging capabilities 

in our current version of LibVM-VT, such as the ability to set breakpoints as well as 

step-through instructions individually. However, better debugging support, such as 

the ability to inspect variable values, utilise debugging information embedded in 

binaries etc., is a clear necessity. Adding such support would be a tremendous 

improvement in supporting application development using LibVM. 

The LibVM-ptrace implementation also has similarly rudimentary debugging 

capabilities, but would need to be enhanced to provide better external debugging 
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support. One particularly problematic issue is that, the ptrace interface supports 

attaching only one parent process to each child-process being traced. Since LibVM is 

already tracing the sandboxed process, an external debugger process cannot 

therefore, attach to this sandboxed process. Such limitations could be avoided by 

providing direct operating system support for LibVM sandboxes, which we discuss 

next. 

7.3.4 Operating System Support for Component Sandboxes 

In this thesis, we have argued that support for isolating components should be a 

fundamental abstraction in operating systems, and would lead to more robust 

applications. In the course of implementing this support, we have not directly 

modified the operating system Kernel, so as to maximise the portability of the 

solution. Based on our experience with LibVM-ptrace, we have shown that, while it 

is possible to implement component sandboxing independent of such operating 

system modifications, the mechanisms themselves would become more efficient as 

well as more economical, if the operating system recognizes components as a 

fundamental abstraction. 

For example, in our current implementation of LibVM-ptrace, we have used the 

ptrace mechanism, which is a mechanism provided by the operating system mainly 

to support debuggers. While we have commandeered this mechanism for the purpose 

of component isolation, the ptrace mechanism has much inefficiency, as it was 

originally intended for a different purpose. Such inefficiencies include an excess of 

up-calls to the tracing process, which could have been avoided with direct operating 

system support, as well as limited support for manipulating the child process. This 

fact has also been demonstrated in application confinement [42]. 

Therefore, we believe that adding direct support in the operating system kernel, for 

component sandboxing, would be a useful area of further research. 

7.3.5 Compiler Support for LibVM Sandboxes 

In addition to the idea that component sandboxing should be an integral part of the 

operating system, we have also shown (in Chapter 6) that compiler supported 

sandboxed components could increase confidence in the security of the solution, as 
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well as make the process of using sandboxed components more transparent (Chapters 

4 and 5). 

For example, pointers obtained from a call to a sandboxed component, could be 

automatically validated by the compiler to ensure that they fall within the sandboxed 

region. This would provide a more natural programming metaphor for host programs, 

as they could be largely insulated from the details of validating information obtained 

from within the sandbox, a process which the host must do manually in the current 

implementation of LibVM. 

This task would require data and control flow analysis to determine which 

data/methods in a sandboxed components are being accessed by the host, and 

additional instructions could be emitted to validate such accesses. If the validation 

cannot be automatically done, issuing a compilation warning would be sufficient to 

alert the user to potential security vulnerabilities. 

This support could be built on top of the core infrastructure provided by LibVM, and 

provides an important avenue for further research. 

7.3.6 Use of Hardware Virtualization for Driver Isolation 

This thesis has focused on the isolation of user-level libraries, and we have utilised 

hardware virtualization support towards this end, in the LibVM-VT implementation. 

However, we have not explored the issue of isolating device drivers and other kernel 

modules, which constitute a frequent source of system failure too. For example, over 

85% of Windows XP crashes are due to faulty device drivers [125], and Linux 

drivers have 3 to 7 times the bug count of the kernel  itself [20]. Therefore, isolation 

of kernel modules is also a pressing requirement. 

While others have explored the isolation of driver isolation using full virtual 

machines [83], lightweight driver isolation using hardware virtualization support has 

been described by Tan et al. [129], by using Intel’s VT-x extensions. However, their 

research predated the introduction of Intel EPT and AMD Nested Paging support 

(described in Chapter 2), and therefore, this also presents opportunities for further 

performance and isolation improvement, as well as more general purpose abstraction. 
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7.4 CONCLUSION 

This chapter has provided a summary of the research undertaken and contributions of 

this thesis, as well as future work required in this area. We have shown, through 

LibVM, that isolating library components with strong security guarantees, while 

preserving their key benefits such as shared address spaces, is possible. This has been 

validated through the development and evaluation of two concrete implementations 

of the LibVM API. The first implementation is based on operating system provided 

process tracing facilities. The second implementation is based on hardware 

virtualization support present in more recent processors. We have shown the relative 

merits and demerits of each approach, and conclude that the hardware virtualization 

based approach currently provides greater flexibility and performance in providing 

intra-address space isolation, while maintaining a relatively smaller TCB. However, 

we have also shown that, if components were to become a fundamental abstraction 

offered by the operating system, these isolation facilities could also be built on top of 

existing process isolation facilities while minimising the shortcomings in our 

process-tracing based approach. We have shown that our approach has the following 

key advantages. 

1. Elimination of an entire class of problems related to code verification and 

patching. 

2. A significantly smaller Trusted Computing Base and therefore, increased 

confidence in the safety of the system. 

3. Our prototype implementation already provides competitive performance in 

comparison to NaCl and better performance than Vx32, with the promise of 

even better performance in an optimised implementation. 

4. Since we perform checks at runtime, we minimise false positives which 

would prevent the execution of valid components. 

5. The approach is easily extendable to support 64-bit code. 

6. Our approach does not require the use of custom tool chains, and can isolate 

standard Linux binaries. 

In addition, this thesis has also identified five conditions that are necessary and 

sufficient to guarantee that a component can be isolated from its host. This provides a 
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basis on which future isolation containers can be developed, with varying levels of 

assurance/conformance claims against those conditions. 

Finally, the thesis concludes by presenting the argument that the ability to isolate 

untrusted components should be a fundamental abstraction supported by the 

operating environment, leading to more robust and fault-tolerant applications, which 

are also more resilient to security threats. By combining such an abstraction with 

compiler support at the programming language level, we believe it is possible to 

tremendously increase the ease of use of such isolation sandboxes, while having 

increased confidence in its security provisions. 
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Appendix A: Detailed SPEC Results 

This section provides the detailed SPEC benchmark reports for the results 

summarised in Chapter 5.  These reports provide more detailed information in 

comparing the individual performance of the solutions, as well as the flags and 

parameters used in their execution.  The pages that follow include the SPEC reports 

in the following order. 

1. Core i5 processor 

a. Native run (Pages 166-168) 

b. LibVM –VT (Pages 169-171) 

c. Google Native Client (Pages 172-174) 

2. Core i7 processor 

a. Native run (Pages 175-177) 

b. LibVM-VT (Pages 178-180) 

c. Google Native Client (Pages 181-183) 
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Appendix B: Source Code Outline 

This section provides an overview of the program code structure in the LibVM user 

space library, which can be used by clients to create library sandboxes via the 

LibVM interface.  Additional files, such as testing code, examples and performance 

benchmarks have been omitted.  Full source code can be obtained by e-mailing the 

author at nuwan.goonasekera@student.qut.edu.au or nuwan.ag@gmail.com. 

LIBVM MODULE STRUCTURE 

Figure B.1 depicts a simplified block diagram of the LibVM module structure.  A 

description of each module follows. 

Figure B.1: LibVM module overview 
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1. LibVM Interface - The LibVM interface is the external façade of the 

LibVM user space library.  The interface exposes the methods defined in 

Section 3.7.3.  In addition, it exposes a libvm_context data structure, 

which is an opaque pointer supplied to clients, and is used to maintain 

LibVM state. 

2. LibVM Abstract Implementation – This module provides an abstract 

implementation of the LibVM interface, based on the simplified virtual 

machine defined in Section 3.8.  Concrete implementation details are 

deferred to the two implementations of LibVM, although other 

implementations conformant to the afore mentioned stack based virtual 

machine can also be plugged in. 

3. PIE ELF Loader – The Position Independent Executable (PIE) ELF 

Loader module is responsible for loading and parsing position independent 

ELF modules.  It is used by the LibVM implementation to load the LibVM 

bootstrapper code as well as the system ELF interpreter, which handle 

domain transitions and symbol resolution respectively, both of which are 

discussed in Section 4.3. 

4. Bootstrapper – The Bootstrapper module is a PIE elf executable which 

provides domain transition support functions and executes within LibVM, 

and is discussed extensively in Section 4.3. 

5. Memory Manager – The Manager Module handles basic memory 

allocation/de-allocation in the LibVM virtual machine, setting up the 

required memory regions and tracking memory regions which are in use 

by the LibVM virtual machine.  This modules assists in determining 

whether memory references are valid, since all references obtained from 

untrusted code running within the virtual machine must fall within a region 

recognized and allowed by the memory manager. 

6. Dynamic Proxy Generator – This module assists the libvm_sym 

function in the dynamic generation of proxy functions which are 

responsible for transparently switching execution from the executed 

function into the LibVM isolation domain for safe execution.  This process 

is described in Section 4.3.3. 
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7. LibVM-VT – The module provides a concrete implementation of LibVM 

based on hardware virtualization support, and is described extensively in 

Section 5.4. It relies on libKVM [107] for the abstraction of lower level 

virtualization hardware.  Some support modules have been omitted from 

the diagram for clarity, such as debugging support and CPUID emulation. 

8. LibVM-ptrace – The module provides a process-tracing based 

implementation of LibVM, and is described in Section 4.3.  

9. LibVM-VT Syscall Implementation – This module implements system 

calls for the LibVM-VT module.  The implementation is discussed in 

Section 5.4.  It shares code where possible with the LibVM-ptrace based 

implementation of system calls, but due to the two-stage nature of the 

ptrace mechanism is necessarily different from LibVM-VT. 

10. LibVM-ptrace Syscall Implementation – This module implements 

system calls for the LibVM-ptrace module.  Since ptrace is a two-stage 

process, the system calls are handled by a pre and post process.  Where 

possible however, code is shared with the LibVM-VT based 

implementation.  The implementation is discussed in Section 4.3.4. 

LIBVM FOLDER STRUCTURE 

The LibVM source code folder consists of a root folder which contains code 

common to both LibVM-ptrace and LibVM-VT. Implementation specific source 

code is contained in two subfolders.  

LibVM root folder 

• auxv.h – Header file for creating in-memory auxiliary vector. 

• auxv.c – Implementation file for creating in-memory auxiliary vector. 

• bootstrapper.c – LibVM bootstrapper executable. 

• libvm.h – Main header file for LibVM interface. 

• libvm.c – Abstract implementation of LibVM interface. 

• libvm_tramp.h – Header file for LibVM domain transition proxy. 
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• libvm_tramp.S – Assembler routines for LibVM domain transition proxy, patched 

at runtime. 

• memory_region.h – Header file for LibVM memory region management. 

• memory_region.c – Implementation of LibVM memory region management. 

• pie_elf_loader.h – Header file for Position Independent ELF executable loader. 

• pie_elf_loader.c – Position Independent ELF loader, used to load LibVM 

bootstraper and ELF interpreter. 

• syscall.h – Header file for LibVM recognized POSIX system calls. 

• syscall.c – Abstract implementation of system calls. 

• trampoline.c – Implementation of LibVM runtime trampoline patching for 

dynamically generated proxies. 

 

LibVM-VT folder 

• cpuid.h – Header file for LibVM CPUID emulation. 

• cpuid.c – Implementation of LibVM CPUID emulation. 

• debugger.h – Header file for debugging support in LibVM components. 

• debugger.c – Implementation of debugging support for LibVM components such as 

breakpoints and step-through. 

• kvm-impl.h – Header file for libKVM/VT based implementation of LibVM. 

• kvm-impl.c – Implementation of VT based LibVM. 

• libkvm.h – Header file for libKVM (from KVM source). 

• syscall_proxy.h – Header file for LibVM-VT system calls. 

• syscall_proxy.c – Implementation of LibVM-VT system calls. 
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LibVM-ptrace folder 

• mem_clean.h – Header file for process memory cleanup routines. 

• mem_clean.c – Implementation of process memory cleanup after fork, for LibVM-

ptrace. 

• ptrace_impl.h – Header file for ptrace based implementation of LibVM. 

• trace_impl.c – Implementation of ptrace based LibVM. 

• shared_mem.h – Header file for shared memory region management. 

• shared_mem.c – Implementation file for shared memory region management. 

• syscall_proxy.h – Header file for LibVM-ptrace system calls. 

• syscall_proxy.c – Implementation of LibVM-ptrace system calls. 
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