
PROGRAM-LEVEL SUPPORT FOR

PROTECTING AN APPLICATION FROM

UNTRUSTWORTHY COMPONENTS

Nuwan Abhayawardena Goonasekera

B.Sc. (Hons) Information Systems

Submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

Information Security Institute

Faculty of Science & Engineering

Queensland University of Technology

November 2012

Program-level Support For Protecting an Application from Untrustworthy Components i

Keywords

Component Isolation, System Call Interpositioning, Hardware Virtualization,

Application Isolation

Program-level Support For Protecting an Application from Untrustworthy Components iii

Abstract

Many software applications extend their functionality by dynamically loading

executable components into their allocated address space. Such components,

exemplified by browser plugins and other software add-ons, not only enable

reusability, but also promote programming simplicity, as they reside in the same

address space as their host application, supporting easy sharing of complex data

structures and pointers.

However, such components are also often of unknown provenance and quality and

may be riddled with accidental bugs or, in some cases, deliberately malicious code.

Statistics show that such component failures account for a high percentage of

software crashes and vulnerabilities. Enabling isolation of such fine-grained

components is therefore necessary to increase the stability, security and resilience of

computer programs.

This thesis addresses this issue by showing how host applications can create isolation

domains for individual components, while preserving the benefits of a single address

space, via a new architecture for software isolation called LibVM. Towards this end,

we define a specification which outlines the functional requirements for LibVM,

identify the conditions under which these functional requirements can be met, define

an abstract Application Programming Interface (API) that encompasses the general

problem of isolating shared libraries, thus separating policy from mechanism, and

prove its practicality with two concrete implementations based on hardware

virtualization and system call interpositioning, respectively. The results demonstrate

that hardware isolation minimises the difficulties encountered with software based

approaches, while also reducing the size of the trusted computing base, thus

increasing confidence in the solution’s correctness.

This thesis concludes that, not only is it feasible to create such isolation domains for

individual components, but that it should also be a fundamental operating system

supported abstraction, which would lead to more stable and secure applications.

Program-level Support For Protecting an Application from Untrustworthy Components v

Table of Contents

Keywords ...i

Abstract ... iii

Table of Contents .. v

List of Figures ... viii

List of Tables ...ix

Acknowledgements ... x

Statement of Original Authorship ..xi

List of Abbreviations .. xii

Publications and Conference Presentations .. xiv

CHAPTER 1: INTRODUCTION ... 1

1.1 Motivation .. 1
1.1.1 Definition of a Component ... 2
1.1.2 Benefits of Components in Shared Address Spaces ... 2

1.2 Research Problem .. 4
1.2.1 Problem Statement .. 4
1.2.2 Research Questions ... 5
1.2.3 Research Aims and Contributions .. 5

1.3 Research Methodology .. 6
1.3.1 Background Review.. 9
1.3.2 Development of Functional Specification .. 9
1.3.3 Definition of Architecture and Abstract API .. 10
1.3.4 Implementation of Component Isolation Framework ... 11
1.3.5 Evaluation ... 12

1.4 Thesis Structure ... 13

1.5 Conclusion ... 14

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW .. 15

2.1 Introduction .. 15

2.2 Software Components .. 15
2.2.1 What are Software Components? ... 15
2.2.2 The Need for Components .. 17
2.2.3 Problems with Components .. 18

2.3 Protection Mechanisms .. 24
2.3.1 Types of Protection ... 24
2.3.2 Hardware Isolation.. 26
2.3.3 Integration into OS Kernel Isolation Facilities ... 35
2.3.4 Binary Code Level Isolation ... 37
2.3.5 Language Support ... 40
2.3.6 Application Level Isolation .. 42

2.4 Conclusion ... 43

CHAPTER 3: ISOLATION ARCHITECTURE DESIGN AND RATIONALE 45

3.1 Introduction .. 45

3.2 Aims of the Architecture .. 45

3.3 Threat Model .. 46

Program-level Support For Protecting an Application from Untrustworthy Components vi

3.4 LibVM – A Functional Specification .. 46
3.4.1 Overview of Functional Specification .. 47
3.4.2 Methodology for developing correctness conditions .. 48
3.4.3 Requirements for Correctness of LibVM ... 49

3.5 LibVM Architecture .. 57

3.6 Key Issues with a Library Isolation Architecture .. 58
3.6.1 Changes to Existing Development Practice .. 58
3.6.2 Implementation Agnosticism .. 59
3.6.3 Shared Address Space .. 59

3.7 LibVM - API Specification .. 62
3.7.1 Overview of API Specification ... 62
3.7.2 Existing POSIX Interface ... 62
3.7.3 LibVM Interface ... 63
3.7.4 Interface Details .. 64

3.8 Implementation Notes .. 75
3.8.1 Requirements .. 75

3.9 Conclusion ... 76

CHAPTER 4: SOFTWARE SOLUTION – PROCESS TRACING BASED 78

4.1 Introduction.. 78

4.2 Approach ... 78

4.3 Implementation Overview ... 80
4.3.1 Initialising the Library – libvm_initialise ... 84
4.3.2 Loading a Library – libvm_open .. 92
4.3.3 Resolving a Symbol in the Isolated Library – libvm_sym.. 94
4.3.4 Execution of System Calls .. 98
4.3.5 Handling of Unsafe Instructions ... 100
4.3.6 Threading .. 100

4.4 Performance of the Isolation Architecture ... 100

4.5 Conclusion ... 101

CHAPTER 5: HARDWARE SOLUTION – VIRTUALIZATION BASED 103

5.1 Introduction.. 103

5.2 Approach ... 103

5.3 Stage 1 - Google Native Client Based Implementation ... 104
5.3.1 Implementation Overview .. 104
5.3.2 Comparative Analysis... 111
5.3.3 Effectiveness of the Isolation Architecture ... 115
5.3.4 Performance of the Isolation Architecture .. 119

5.4 Stage 2 – Standalone LibVM Implementation ... 125
5.4.1 Initialisation .. 126
5.4.2 Library Function Calling Sequence .. 129
5.4.3 Effectiveness & Performance of the Isolation Architecture ... 131

5.5 Conclusion ... 136

CHAPTER 6: EVALUATION OF IMPLEMENTATIONS AGAINST FUNCTIONAL

SPECIFICATION ... 139

6.1 Introduction.. 139

6.2 Evaluating the Process Tracing Based Implementation of LibVM .. 139
6.2.1 Conformance to Condition C1 .. 140
6.2.2 Conformance to Condition C2 .. 140
6.2.3 Conformance to Condition C3 .. 143
6.2.4 Conformance to Condition C4 .. 144

Program-level Support For Protecting an Application from Untrustworthy Components vii

6.2.5 Conformance to Condition C5 .. 144

6.3 Evaluating the Hardware Based Implementation of LibVM .. 146
6.3.1 Conformance to Condition C1 .. 146
6.3.2 Conformance to Condition C2 .. 147
6.3.3 Conformance to Condition C3 .. 147
6.3.4 Conformance to Condition C4 .. 148
6.3.5 Conformance to Condition C5 .. 148

6.4 Part 5 – Evaluating Through the Common Criteria ... 149
6.4.1 Related Security Targets and Experience ... 149
6.4.2 Introduction to the Security Target ... 149
6.4.3 Operating Environment .. 151
6.4.4 Objectives ... 151
6.4.5 Special Requirements ... 152
6.4.6 TOE Security Assurance ... 152

6.5 Conclusion ... 153

CHAPTER 7: CONCLUSIONS .. 155

7.1 Introduction .. 155

7.2 Summary of Research and its Contributions .. 155

7.3 Future Work ... 157
7.3.1 Support for Multiple Operating Systems .. 158
7.3.2 64-bit Support ... 159
7.3.3 Improved Debugging Support .. 159
7.3.4 Operating System Support for Component Sandboxes ... 160
7.3.5 Compiler Support for LibVM Sandboxes ... 160
7.3.6 Use of Hardware Virtualization for Driver Isolation .. 161

7.4 Conclusion ... 162

APPENDIX A: DETAILED SPEC RESULTS ... 165

APPENDIX B: SOURCE CODE OUTLINE .. 185

LibVM Module Structure .. 185

LibVM Folder Structure .. 187

REFERENCES .. 191

Program-level Support For Protecting an Application from Untrustworthy Components viii

List of Figures

Figure 1.1: Overall research methodology .. 8

Figure 2.1: Failures, causes and symptoms ... 19

Figure 2.2: Protection rings ... 27

Figure 2.3: Graphical depiction based on Robin and Irvine’s taxonomy [110] 32

Figure 2.4: Intel VMX operation .. 33

Figure 3.1: Process memory layout in a program which utilises LibVM .. 58

Figure 3.2: POSIX example of shared library call .. 61

Figure 3.3: LibVM example of shared library call .. 64

Figure 4.1: Relationship between parent and child processes ... 80

Figure 4.2: Allocation of shared memory region .. 84

Figure 4.3: Point at which parent and child fork off ... 87

Figure 4.4: Bootstrapper completion ... 89

Figure 4.5: LibVM-ptrace - State transition diagram .. 89

Figure 4.6: Symbol resolution by wrapping dlsym ... 91

Figure 4.7: Library open implementation ... 93

Figure 4.8: Dynamic proxy generation ... 94

Figure 4.9: Trampoline for transitioning from host to guest ... 95

Figure 4.10: Switching domains ... 96

Figure 4.11: LibVM-ptrace – system call execution sequence ... 98

Figure 5.1: Implementation of the VT sandbox .. 105

Figure 5.2: Component memory layout .. 108

Figure 5.3: Execution sequence for a system call ... 110

Figure 5.4: Example code containing an unsafe instruction .. 115

Figure 5.5: Example code with an uninitialised pointer .. 117

Figure 5.6: Example code with an illegal jump ... 117

Figure 5.7: SPEC2006 on Core i5-540M processor .. 123

Figure 5.8: SPEC2006 on Core i7-920 processor ... 124

Figure 5.9: LibVM-VT address space structure of guest and host .. 125

Figure 5.10: Invocation sequence of shared library call .. 129

Figure 5.11: Comparison of native, software-based and hardware-based implementations –

Core i5 .. 135

Figure 5.12: Comparison of native, software-based and hardware-based implementations –

Core i7 .. 136

Program-level Support For Protecting an Application from Untrustworthy Components ix

List of Tables

Table 2.1: Common memory overlay errors ... 20

Table 2.2: Common non-overlay/regular errors .. 20

Table 2.3: Symptoms of failure ... 21

Table 2.4 - Categorization of isolation mechanisms and examples ... 25

Table 3.1: Initialising the isolation subsystem – libvm_initialise ... 69

Table 3.2: Loading a library - libvm_open .. 70

Table 3.3: Extracting contents - libvm_sym .. 71

Table 3.4: Allocating memory within the guest component’s address space -

libvm_guest_malloc ... 72

Table 3.5: Freeing memory within the guest component’s address space - libvm_guest_free 73

Table 3.6: Unloading a library - libvm_close .. 73

Table 3.7: Freeing resources used by an isolation domain - libvm_destroy .. 74

Table 3.8: Getting last error code - libvm_get_last_error ... 75

Table 5.1: Comparison of steps to load and execute a component .. 112

Table 5.2: Comparison of approaches ... 114

Table 5.3: Compute/graphics performance tests. Times are elapsed time in seconds. Lower is

better. .. 120

Table 5.4: Quake performance comparison. Numbers are in frames per second. Higher is

better. .. 121

Table 5.5: Micro-benchmark results – Core i5 .. 132

Table 5.6: Micro-benchmark results – Core i7 .. 132

Table 5.7: Macro-benchmark results ... 134

Table 5.8: Macro-benchmark results – Core i7 ... 136

Program-level Support For Protecting an Application from Untrustworthy Components x

Acknowledgements

I am very grateful to my doctoral supervisors, Professor Bill Caelli and Professor

Colin Fidge, who have supported and guided me throughout the course of this

research project. This has included, amongst many things, long and frequent

meetings to discuss and hone the direction of this project, patiently reading through

many documents, helping me to overcome difficult patches in the project, and

cheering and guiding me throughout the whole process. Above all, they have been

mentors, both intellectually and personally. Even when my personal circumstances

required that I shift to Melbourne in the last few months of my candidature, they

provided me with all the support that I needed. I cannot thank them enough for their

efforts.

I would also like to thank my wife Santushi, for bearing with the unusual hours I had

to keep, for patiently staying up all night proof-reading various documents and for

allowing me to act precious under the perennial excuse of “I’m working on my

thesis”.

My sincere thanks also go to Dr. Tony Sahama, who has helped and guided me in

numerous ways at many points in my candidature, including its inception.

Finally, I would like to thank the rest of my family, who have seen or heard very

little of me during the last stretch of this research project. I dedicate this thesis to

them.

Program-level Support For Protecting an Application from Untrustworthy Components xi

Statement of Original Authorship

The work contained in this thesis has not been previously submitted to meet

requirements for an award at this or any other higher education institution. To the

best of my knowledge and belief, the thesis contains no material previously

published or written by another person except where due reference is made.

Signature: _________________________

Date: _________________________

Program-level Support For Protecting an Application from Untrustworthy Components xii

List of Abbreviations

API Application Programming Interface

ASLR Address Space Layout Randomization

AUXV Auxiliary Vector

CC Common Criteria for Information Security Evaluation

CERT Computer Emergency Response Team

COM Component Object Model

CORBA Common Object Request Broker Architecture

COTS Commercial Off-the-shelf

COW Copy On Write

CS Code Segment

DLL Dynamic Link Library

ELF Executable and Linkable Format

EPT Extended Page Table

GB Giga Byte

GCC Gnu C Compiler

GDT Global Descriptor Table

GE-645 General Electric 645

I/O Input Output

IPC Inter-process Communication

JIT Just-in-time

JNI Java Native Interface

JVM Java Virtual Machine

KVM Kernel Virtual Machine

Multics Multiplexed Information and Computing Service

NaCl Google Native Client

NPT Nested Page Table

ORB Object Request Broker

OS Operating System

PCC Proof Carrying Code

PDF Portable Document Format

PIE Position Independent Code

POSIX Portable Operating System Interface

PPL Page Privilege Level

PPL Protection Profile

RAM Random Access Memory

RISC Reduced Instruction Set Computing

RPC Remote Procedure Call

SFI Software Fault Isolation

SIP Software Isolated Process

SMM System Management Mode

Program-level Support For Protecting an Application from Untrustworthy Components xiii

SO Shared Object

SPL Segment Privilege Level

SSE Streaming SIMD Extensions

SYSCALL System Call

TOCTOU Time Of Check To Time Of Use

TOE Target Of Evaluation

VDSO Virtual Dynamic Shared Object

VM Virtual Machine

VMCS Virtual Machine Control Structure

VMM Virtual Machine Monitor

VMX Virtual Machine Extensions

VMXOFF Virtual Machine Extensions Off

VMXON Virtual Machine Extensions On

VSYNC Vertical Synchronization

XPCOM Cross Platform Component Object Model

Program-level Support For Protecting an Application from Untrustworthy Components xiv

Publications and Conference Presentations

Publications

The following peer-reviewed papers have been published (or are in submission) as a

result of this programme of research.

Goonasekera N, Caelli W.J, Sahama T., "50 Years of Isolation," in Proceedings of

the 2009 Symposia and Workshops on Ubiquitous, Autonomic and Trusted

Computing, Brisbane, Australia, 2009, pp. 54-60.

Goonasekera N, Caelli W.J, Fidge C, "A Hardware Virtualization Based Component

Sandboxing Architecture," Journal of Software, vol. 7, pp. 2107-2118, 2012.

Goonasekera N, Caelli W.J, Fidge C, "LibVM: An Architecture for Shared Library

Sandboxing," In Submission.

Conference Presentations

This research has been presented at the following conferences.

Goonasekera N, Caelli W.J, Sahama T., "50 Years of Isolation," Presented at the

Symposia and Workshops on Ubiquitous Autonomic and Trusted Computing in

Conjunction with the UIC09 and ATC09 Conferences (2009), University of

Queensland, St. Lucia, Brisbane, Australia, 7-9
th

 July, 2009.

Chapter 1: Introduction 1

Chapter 1: Introduction

1.1 MOTIVATION

A “process” is the key software abstraction supported by modern operating systems

for protecting and managing separate applications. However, with the rapid spread

of component based software, a contemporary application typically extends its

functionality by loading components dynamically into its process address space. For

example, operating system kernels load device drivers, web browsers load browser

plug-ins, and many applications support some form of extension components to

provide or augment their basic functionality. Although operating system processes

have well-defined isolation boundaries and inter-process communications

mechanisms [130], current operating systems provide insufficient mechanisms for

isolating or protecting components of a particular application from each other [93].

This is clearly demonstrated by the fact that component based software extensions

often decrease the reliability of the hosting application; a badly-written or

misbehaving component can damage the containing host, and other components,

either accidentally or deliberately.

The statistics are revealing: over 85% of Windows XP crashes are due to faulty

device drivers [125], and Linux drivers have 3 to 7 times the bug count of the

kernel itself [20]. Such failures are not limited to kernel drivers; software

applications also suffer similar problems. Zeigler [145] indicates that over 70% of

crashes in the popular browser Internet Explorer are due to 3rd party add-ons. In

addition, over 50% of CERT-reported security threats are due to buffer overflow

vulnerabilities [77]. The Java Virtual Machine (JVM) has similar vulnerabilities,

because any misbehaving Java Native Interface (JNI) component has the potential to

overwrite critical memory regions of the JVM, bringing down the entire virtual

machine [16]. Clearly, as many researchers have emphasised, a critical need is better

component isolation so that hosts are isolated from any extension components they

incorporate [57, 59, 82, 126].

Modern trends in browser architectures also emphasise the gravity of this issue; both

Microsoft’s Internet Explorer [145] and Google’s Chrome [8] browsers have

Chapter 1: Introduction 2

changed to multi-process architectures in which program components are isolated

into several, disparate operating system processes. The Mozilla Firefox web browser

too, has introduced limited support for isolating plugins into disparate processes, in

order to reduce the possibility of vulnerabilities in the plugins leading to the whole

system being compromised [98].

This thesis addresses this issue, and revisits the component isolation problem, with a

view to preserving the key benefits of component based programming while

preventing errant or misbehaving components from compromising their host.

1.1.1 Definition of a Component

Before discussing component isolation further, the term ‘component’ must be

defined in a suitable way, as a general consensus on what constitutes a software

component remains somewhat vague. We provide an extensive discussion of these

definitions in Chapter 2, but for the purposes of this thesis, we limit a component to

be any executable binary unit which is loaded by an application into its own private

address space, with communication taking place between the component and its host

application via a well-defined interface. Primarily, this will be in the form of

dynamic link libraries (DLL)/shared object (SO) libraries, which form the primary

means of composability in modern operating systems and applications. Therefore,

this thesis focuses on component isolation at the DLL/SO level, with the expectation

that isolation at this lower level will enable higher level constructs to be build upon

it. Future references to the term “component” therefore, will specifically refer to this

narrower definition.

1.1.2 Benefits of Components in Shared Address Spaces

While the benefits of components as units of composition are well understood [93], a

key benefit in DLL/SO components is that they share the same address space as their

host, which is a critical function for enabling easy data exchange between a

component and its host container, or between several different components. These

advantages are best contrasted by comparing the benefits of private address spaces

against shared address spaces.

Chapter 1: Introduction 3

Chase et al. [15] identify three main advantages to private address spaces.

1. They increase the amount of address space available to all programs.

2. They provide hard protection boundaries.

3. They permit easy cleanup when a program exits.

However, private address spaces come with the following disadvantages.

1. It becomes increasingly difficult to share data between address spaces.

2. There are significant performance costs in crossing address space

boundaries.

3. Synchronization between processes is usually required when address

spaces are switched.

With regard to the first disadvantage, the main issue is that pointers have no meaning

beyond the address space in which they were originally created, requiring that they

be specially manipulated or readjusted before use. Consider a simple data structure

with a pointer to another data structure, such as a linked list. Any attempt to pass this

data structure unmodified between private address space boundaries would render

the data structure invalid as the memory address to which the structure is copied

cannot be guaranteed to be the same. All pointers within the structure would have to

be readjusted so that they remain valid in their new location. Therefore, some

additional technique is needed to share data structures between address spaces, such

as marshalling or pointer “swizzling” [140], adding overhead and complexity to the

process and making data sharing between address spaces awkward.

Secondly, address space switching has traditionally come at significant cost. While

address space switching with schemes like hardware supported memory

segmentation do not have such costs, they have fallen out of favour due to the

increase in complexity mentioned above. The currently available schemes, such as

operating system supported context switches, incur significant overhead, and

synchronization is required when crossing address spaces [19].

Therefore, the benefits of address space sharing have given rise to research into

single address space operating systems, particularly in 64 bit environments, where

address space is abundant [15, 53, 75].

Chapter 1: Introduction 4

Many of the approaches to component isolation do not address the problem of shared

address spaces satisfactorily, falling back to traditional RPC mechanisms and shared

memory pages in order to pass data between a component and its host [8, 32, 144,

145]. This, of course, incurs a performance and complexity penalty in terms of

parameter marshalling across process boundaries, or reduced functionality (the

inability to use pointers) when using shared pages.

Thus, the very benefits of fine-grained components are lost in the process, as simple

and efficient sharing of data structures is hampered. Therefore, this issue too was a

key motivating factor in this thesis.

1.2 RESEARCH PROBLEM

1.2.1 Problem Statement

Current component based software may decrease the reliability of the hosting

application, as a badly written or misbehaving component can damage the containing

host and other components. Part of the problem is that the Operating System (OS)

provides insufficient mechanisms for isolating program components from each

other [93], a different situation from OS processes, which have well-defined isolation

boundaries and inter-process communications mechanisms between them [130].

This research fills this gap as follows.

1. By creating protection domains for individual components, so that the

interaction between components can be better controlled.

2. By preventing an errant or untrusted component from corrupting critical

memory regions or having adverse effects on the hosting process.

3. By preserving the benefits of shared address spaces for components.

These mechanisms together serve to reduce the chances that a failure of a single

component translates into an application-wide failure, increasing the reliability of the

containing application. It should be noted that this research develops mechanisms

for isolation, and not a policy. Additionally, it does not guard against vulnerabilities

in the components themselves, but provides a mechanism by which the effects of

such vulnerabilities can be confined to the protection domain/sandbox within which

the component executes.

Chapter 1: Introduction 5

1.2.2 Research Questions

The research problem outlined above leads to several research questions.

1. Can protection domains for individual components be created with

acceptable overheads?

2. What functionality should an isolation container provide?

3. What conditions must be satisfied in order to have confidence that an

implementation of an isolation container provides the desired

functionality?

4. Can a generic API be designed for this purpose, in such a way that it

separates isolation policy from isolation mechanism?

5. Can the benefits of shared address spaces be preserved during its

implementation?

1.2.3 Research Aims and Contributions

The main aim of the research described in this thesis is to isolate untrusted

application components from their host, so as to increase the reliability and security

of the host application, while preserving the benefits of shared address spaces.

Untrusted components include components which:

a. are not intentionally malicious, but may adversely impact the host due to a

failure, such as a mistaken buffer overrun which overwrites and corrupts

the host application’s state;

b. contain exploitable vulnerabilities, such as buffer overflow

vulnerabilities [23], which can be exploited by a malicious attacker to

compromise the host application; or

c. potentially malicious components dynamically loaded from unknown

sources, which may present a security risk to the host.

This thesis analyses and describes solutions to the issue of dealing with such

untrusted components, by providing mechanisms to create isolation domains and to

constrain the execution of components executing within them, thus protecting the

host from such components.

Chapter 1: Introduction 6

Towards this end, the thesis analyses the causes and symptoms of failure in a

component, as shielding against component failure necessitates determining the

causes of component failure. This task however, is made complicated due to the fact

that a host and its components may interact in very complex ways.

The main mechanism for a host to invoke functionality in a component is via an

agreed upon interface which is in essence, a local procedure call. Such a procedure

call could fail due to any number of reasons, from a bug in the component itself, to a

rarely triggered edge condition or a transient reason such as a lack of host system

resources. The thesis therefore makes a distinction between the classes of failure that

an isolation framework can realistically deal with and classes of failure that cannot

be handled. For example, a logical bug in the component cannot be protected

against, but an illegal attempt by the component to access memory outside of its

allotted region could be intercepted and appropriate measures taken to abort the

offending component, thereby preventing the failure of the host application.

The thesis also determines the protection mechanisms which are applicable and

practical for protecting components. Current research has identified a variety of

methods which can be used to isolate program components from each other, such as

hardware enforced protection mechanisms and software-based protection schemes.

Suitable mechanisms are identified for implementing protection, while guarding

against the causes of component failure which have been identified. The available

mechanisms are critically evaluated and the most suitable mechanisms chosen to

implement protection.

The thesis defines an abstract component isolation API that allows a hosting process

to create and manipulate component isolation domains, independent of protection

mechanism, thus separating policy from mechanism.

Two concrete implementations of the above API are described, and its performance

and effectiveness evaluated.

1.3 RESEARCH METHODOLOGY

The main research question involves devising methods for protecting a host

application from components loaded into its address space. Hence, the main

hypothesis is that host applications can be supported to create protection domains for

Chapter 1: Introduction 7

individual components and thereby prevent a faulty component from adversely

affecting its host process. The “scientific method” was employed in answering this

question [12, 81], and the individual research questions in Section 1.2.2 were

empirically tested through objective quantitative inquiries, aided by the traditional

method of developing a prototype implementation of the protection mechanisms. The

methods used are in line with empirical research approaches detailed elsewhere [71,

72].

The overall process was sub-divided into several smaller tasks, all of which

incrementally met the research aims. While the process as a whole was iterative in

nature, the initial step was a review of the background literature, which consisted of

the identification of the causes and symptoms of failure, followed by a review of

existing mechanisms for dealing with such failure as well as the drawbacks in

existing protection systems which utilised those mechanisms. The overall

architecture of the system was defined, including the functional capabilities and

guarantees that had to be provided by an isolation container, and the conditions under

which those guarantees could be made. Subsequently, protection mechanisms had to

be implemented which met the stated functional specification, and the abstract API

was implemented. The development of the two prototype implementations followed

standard software engineering practice and adopted an iterative approach to

development. Finally, in order to determine the validity of the resultant software, the

solution was evaluated against its stated goals.

Chapter 1: Introduction 8

The overall methodology employed in this research is depicted in Figure 1.1.

The next sections discuss these overall steps in greater detail, and point to the

relevant sections in which more detailed procedures can be found.

1. Background Review

(Identification of

causes/symptoms of failure

and identification of

protection mechanisms)

2. Development of functional

specification and conditions

for correctness

3. Definition of architecture

and abstract API

4. Implementation of

component isolation

framework

5. Evaluation against stated

goals

Figure 1.1: Overall research methodology

Chapter 1: Introduction 9

1.3.1 Background Review

1.3.1.1 Goal definition

This stage seeks to identify the causes and symptoms of failure as well as the

protection mechanisms available for isolating components, leading to a shortlist of

the most suitable mechanisms for the purpose.

1.3.1.2 Motivation

This stage will lay the groundwork for answering all major research questions

identified in Section 1.2.2. Identifying the causes and symptoms of failure is

necessary in devising methods for isolating those failures. Identification and

classification of available protection mechanisms is necessary to determine the most

relevant isolation mechanisms for implementing isolation domains. Finally, these

mechanisms must be critically evaluated and the most suitable mechanisms must be

chosen.

1.3.1.3 Goals

• Identification of causes and symptoms of failure

• Identification and classification of available protection mechanisms

• Identification of suitable mechanisms for implementing isolation domains

1.3.1.4 Design

The stage will be mainly an exploratory study aimed at laying the groundwork for

understanding the available mechanisms, and will be in the form of a literature

review. The process is detailed in Chapter 2.

1.3.2 Development of Functional Specification

1.3.2.1 Goal definition

This goal defines the isolation properties as well as the conditions that must be

satisfied in order to have confidence that these properties remain present.

1.3.2.2 Motivation

In order to isolate components, the specific definition of what isolation means must

be developed. The functions that must be provided to implement this isolation must

Chapter 1: Introduction 10

also be identified. Finally, the conditions which must hold in order to have

confidence that the isolation can function properly, must be identified.

1.3.2.3 Goals

• Identify threat model

• Identify the functionality that an isolation framework must provide

• Develop a specification and the conditions under which the specification

holds

1.3.2.4 Design

The isolation properties and relevant conditions are developed mainly through

rigorous argument. The details, including the methodology for developing the

conditions, are presented in Section 3.4.

1.3.3 Definition of Architecture and Abstract API

1.3.3.1 Goal definition

This stage defines the architecture and API which can be used to realize the

functional specification previously developed in Stage 2.

1.3.3.2 Motivation

This stage will use the outcomes of the previous stages to define an architecture for

the isolation container and subsequently develop and implementation agnostic API.

The architecture will also need to take into account practical development concerns

and the API will have to be developed accordingly.

1.3.3.3 Goals

• Identify development concerns

• Define overall architecture

• Define abstract API to implement architecture

• Highlight implementation concerns

Chapter 1: Introduction 11

1.3.3.4 Design

This stage will mainly be carried out through a rigorous analysis of the outcomes of

Stages 1 and 2. This is detailed in Chapter 3.

1.3.4 Implementation of Component Isolation Framework

1.3.4.1 Goal definition

This stage is an empirical evaluation of whether the hypothesised framework can be

implemented in practice.

1.3.4.2 Motivation

The purpose of this stage is to determine whether the architecture and design of the

previous stage can be realized in practice, via a working prototype. In addition, it

must demonstrate that the design is indeed abstract enough for multiple

implementations to be possible.

1.3.4.3 Goals

• Provide proof that architecture is viable

• Provide evidence that API is implementation agnostic by creating at least

two implementations

• Provide sufficient detail for recreating/duplicating this system

1.3.4.4 Design

This stage will be an empirical test of whether the architecture and design of

previous stages can be implemented in practice. The development process will

follow an iterative process, using standard software engineering practices. Relevant

design patterns will be applied where appropriate. Premature optimization will be

avoided, in favour of clarity of implementation. Testing will be done at the API level,

as this represents the most important functionality in the system (black box testing as

opposed to white box testing). By providing two separate implementations

employing different isolation mechanisms, it will be possible to provide objective

evidence that the API is implementation agnostic.

The detailed steps for recreating these implementations are provided in Chapter 4

and Chapter 5.

Chapter 1: Introduction 12

1.3.5 Evaluation

1.3.5.1 Goal definition

This stage analyses whether the implementations meet the security and performance

expectations set for it.

1.3.5.2 Motivation

The goal of this stage is to analyse whether the prototype implementations are viable

in practice, in terms of providing the security guarantees identified previously, as

well as being able to provide the required isolation with reasonable overheads.

1.3.5.3 Goals

• Testing whether performance overheads are acceptable

• Analysis of whether implementation meets functional goals

1.3.5.4 Design

The performance overheads will be measured through a combination of micro and

macro benchmarks. All benchmarks will follow the basic procedure below.

1. Running workload without isolation for a suitable number of iterations

2. Running workload within isolation container for the same number of

iterations

3. Running workload against similar solutions for the same number of

iterations

4. Repeating this process three times and averaging the values for

comparison purposes

The micro benchmarks will measure performance characteristics testing specific

aspects of functionality. The macro benchmarks will measure performance

characteristics under general workloads. The industry standard SPEC benchmark

[55] is particularly suited for measuring compute and IO heavy applications, and will

be one standardised measure of performance. In addition, other relevant tests will be

run an equal number of iterations, and the average execution times will be compared.

These measurements, as well as results, are detailed in Chapter 5:

Chapter 1: Introduction 13

The analysis of whether the implementation meets its functional goals will be

accomplished through the following methods.

1. Controlled tests which test specific aspects of the isolation mechanism

(Detailed in Section 5.3.3)

2. Rigorous argument that analyses whether the conditions under which the

security specification holds, is maintained. (Detailed in Chapter 6)

3. Using the Common Criteria [67] as a guiding framework (Detailed in

Chapter 6)

1.4 THESIS STRUCTURE

Chapter 1 introduces the research problem, aims, methods and structure of the thesis.

It gives a working definition of the term “component”, some background to the

importance of the problem, and the key contributions that this thesis aims to make.

Chapter 2 provides a detailed review of the literature. It provides an analysis of the

causes and symptoms of failure as well as the mechanisms available to isolate

components. The mechanisms as well as the work done by others in this area, are

critically reviewed. Based on this review, the chapter describes a classification of

isolation mechanisms, which resulted in a publication [46].

Chapter 3 provides an overview of the design and rationale behind the isolation API,

termed LibVM, and lays the groundwork for all concrete implementations of the

API. It provides an architectural overview as well as an analysis of implementation

concerns, which are useful to those building a conformant implementation. The

concepts and implementation described subsequently has resulted in an accepted

publication [45].

Chapter 4 describes the first concrete implementation of the LibVM API, based on

process tracing facilities [70] provided by the operating system. It is an in-depth

discussion of the technicalities in realizing the API, the tradeoffs between various

design decisions, and the implications on isolation.

Chapter 5 describes the second concrete implementation of the LibVM API, based on

hardware virtualization support available in modern processors. It describes the

architecture of the system, and provides an in-depth comparison against some

Chapter 1: Introduction 14

competing solutions, including an analysis of functional and performance tradeoffs.

The process-tracing based implementation of LibVM is also compared against the

hardware solution. The implementation described here has resulted in a publication

which is in submission [44].

Chapter 6 provides a detailed functional evaluation of both LibVM implementations

against a rigorous specification of its function. It identifies the strengths and

weaknesses in each implementation. The ISO standard Common Criteria for

Information Technology Security Evaluation was also used as a guiding framework

in this evaluation.

Chapter 7 describes the final conclusions of this thesis, and describes future

enhancements as well as directions for further research.

1.5 CONCLUSION

This chapter has provided an overview of the key research problem: that of isolating

an untrusted component from its host application, such that the host application can

shield itself from any harmful effects of such components. It has provided the

background and motivation to this thesis, the general aims of the research, as well as

the unique contributions made by this thesis, including the definition of an abstract

API for isolating components, the realization of two concrete implementations of that

API, and the preservation of address space transparency to preserve the benefits of

single address space programming. The research methodology followed in the thesis

has been outlined and the chapter has also described the structure of this thesis.

The next chapter provides a more detailed exploration of the problem and its

background, as well as existing solutions, their drawbacks and lays the theoretical

foundation for the rest of the thesis.

Chapter 2: Background and Literature Review 15

Chapter 2: Background and Literature

Review

2.1 INTRODUCTION

This chapter puts the research problem into perspective by providing some working

definitions, examining prior research in this area and highlighting the technology

gap. It starts by providing a working definition of a “software component” that will

be used for the rest of this thesis, as the term itself is somewhat vague and

amorphous in general usage. This is followed by highlighting the importance of

isolating software components, reviewing the key literature addressing the issue, and

the various techniques available for the task. The existing techniques are divided

into five main mechanisms, as published elsewhere [46] as a part of this research.

Finally, a comparative analysis of these techniques is made, in order to highlight the

gap that is being addressed by this research.

2.2 SOFTWARE COMPONENTS

2.2.1 What are Software Components?

The idea of reusable components was first proposed as far back as 1968 by

McIlroy [91]. The idea was to create a library of reusable software units as a

solution to the “software crisis”, i.e., as a solution to the problem of unreliable,

poorly performing software systems which practitioners were increasingly grappling

with at the time [28], and for which no “silver bullet” exists to this day [35].

While components are an essential means of how any piece of software is

constructed today, the definition of what constitutes a software component has

evolved over time. Mendelsohn [93] provides an overview of this evolution, from

the earliest form of reuse in the form of subroutines, to statically linked libraries,

followed by dynamically linked libraries and culminating in component technologies

such as Microsoft ActiveX/COM, and cross-platform portable components such as

JavaBeans.

Chapter 2: Background and Literature Review 16

As a result, the definition of what constitutes a software component remains vague

and amorphous. Szyperski [128] defines it as

“a unit of composition with contractually specified interfaces and explicit context

dependencies only. A software component can be deployed independently and is

subject to composition by third parties”.

Szyperski [128] also states that the need for independent deployment requires the

component to be in binary form and therefore, any composable unit in binary form is

a component, which includes a wide range from DLLs, Microsoft ActiveX/COM,

XPCOM, CORBA components to Java classes and .NET assemblies or even entire

applications.

Law and McCann [79] define a component as an “object encapsulating state and

behaviour in order to achieve some specific task”. Typical characteristics of a

software component [79, 93] are:

1. Well defined interfaces defining the operations available on the

component.

2. Use of object-orientated techniques by which components can be extended

or specialized.

3. A binary calling standard for mapping between different implementations.

4. A means of instantiating and destroying components dynamically, and the

ability to recursively nest or assemble multiple components in order to

create richer components.

5. Machine readable meta-class descriptions to support tools.

6. Persistence mechanisms.

7. Standard packaging and registration mechanisms.

Despite the above identified features, much of current component based reuse

continues to be in the form of code libraries. For example, Microsoft Windows

utilises dynamic link libraries and Unix based operating systems utilise Shared

Objects libraries [93]. These do not meet some of the typical characteristics

highlighted by Law and McCann, such as the use of object-oriented techniques for

Chapter 2: Background and Literature Review 17

enabling extension, machine readable meta-class descriptions for tool support or

even binary calling standards for mapping between different implementations.

Therefore, we limit a component to be any executable binary unit which is loaded by

an application into its own address space, with communication taking place between

the component and its host application via a well-defined interface, since both of the

definitions given above are too expansive in their scope. Primarily, this will be in the

form of dynamic link libraries (DLL)/shared object (SO) libraries, which form the

primary means of composability in modern operating systems and applications.

Furthermore, most other binary component standards such as COM and the Mozilla

Foundation’s XPCOM [99] are typically built on top of basic DLLs. Therefore,

enforcing protection at a DLL/SO level would allow these higher level component

models to utilise such protection mechanisms with relative ease.

2.2.2 The Need for Components

Traditionally, the basic abstraction offered by an operating system for protecting

applications from each other is that of a process [130]. A process can be thought of

as having its own virtual CPU and can be considered a container for grouping

together related resources such as address spaces, threads, permissions, etc [130].

Processes can communicate with each other via an Inter-Process Communication

(IPC) mechanism.

However, Mendelsohn [93] argues that as component based software is now the

dominant means of assembling applications, the process as the main abstraction is

incomplete and that future operating systems should support components as a

fundamental abstraction.

The argument is bolstered by two major trends in software development as noted by

Xu et al. [143]. The first is that of dynamic extensibility. This would typically

involve a trusted host loading an untrusted extension dynamically into its address

space. The second major trend is component based software development, where

off-the-shelf components from multiple vendors are used to assemble a complete

application.

Examples of such extensions are prevalent: OS kernels load device drivers from any

number of disparate vendors, a web browser may load browser extensions and many

applications support some form of extension components to provide or augment their

Chapter 2: Background and Literature Review 18

basic functionality [121]. Few operating systems provide any support for managing

such components and better support for such extensions is a pressing need,

particularly where trust in the component is a critical concern.

2.2.3 Problems with Components

Despite the need for component technology, the currently available mechanisms for

providing any form of trust in those entities are often fraught with problems. In

general, components are not protected from each other, and the failure of a single

component can adversely affect the entire host application. This makes the process

of creating dependable systems difficult, where dependability is defined by the

“ability to deliver service that can be justifiably trusted” [5].

The statistics are quite revealing: over 85% of Windows XP crashes are due to faulty

device drivers [125], and Linux drivers have 3 to 7 times the bug count of the

kernel [20]. In Windows 2000, an analysis of support calls revealed that 27% of

crashes were due to device driver failures, compared to 2% due to the kernel

itself [127]. This indicates that the situation seems to have worsened since Windows

XP suffers from an even greater percentage of device driver based issues.

Such failures are not limited to kernel drivers and user-level applications suffer from

similar problems. Over 50% of CERT-reported security threats are due to buffer

overflow vulnerabilities [77]. Zeigler [145] indicates that over 70% of crashes in the

popular browser Internet Explorer are due to third party add-ons. One of the primary

attack vectors used to compromise computers with internet access include

applications such as Adobe PDF Reader, QuickTime and Adobe Flash [111], which

typically run as embedded components within a browser. The Java Virtual Machine

(JVM) has similar vulnerabilities, because any misbehaving Java Native Interface

(JNI) component has the potential to overwrite critical memory regions of the JVM,

bringing down the entire virtual machine [16].

As highlighted above, both accidental/unwitting errors and malicious exploitation of

vulnerabilities can be at the heart of a component failure. However, the causes that

give rise to such vulnerabilities are best understood through analysis of field failure

studies which have been extensively published in previous research [21, 124, 142].

However, not all failure scenarios occur with equal prevalence, and a critical part

Chapter 2: Background and Literature Review 19

was determining the most relevant and common failure scenarios which needed to be

addressed.

Failures have a cause and exhibit certain symptoms. Figure 2.1 shows this

relationship.

Figure 2.1: Failures, causes and symptoms

As identified by these previous studies [21, 124, 142], causes can be broadly

categorised into overlay errors and regular errors [124]. Some typical overlay errors

identified by various studies [20, 21, 30, 80, 124, 142] are given in Table 2.1.

Error Description

Allocation

management

A module deallocates a region of memory before it is

completely finished with it. After the region is allocated,

the original module continues to use it in its original

capacity.

Copying overrun The program copies bytes past the end of a buffer. Quite

commonly, this is caused by off-by-one errors or an

incorrect calculation on the required length of the buffer.

Chieuh [17] points to techniques for preventing these

errors by the use of machine debug registers.

Pointer management A variable containing the address of data was corrupted.

Failure

Causes (Failures can be triggered

manually if causes are known)

Symptoms (The failure will need

to be detected by its symptoms.

This allows a recovery procedure

to be initiated)

Chapter 2: Background and Literature Review 20

Code using this corrupted address caused the overlay.

Register reused In assembly language code, a register is reused without

saving and restoring its original contents.

Type mismatch A field is added to a message format or a structure, but not

all code using the structure is modified to reflect the

change. Type mismatch errors also occur when the

meaning of a bit in a bit field is redefined.

Uninitialised pointer A variable containing the address of the data is not

initialised.

Table 2.1: Common memory overlay errors

Error Description

Data Error An arithmetic miscalculation, use of incorrect constant or

variable or other error in the code produces wrong data.

Statement logic Statements were executed in the wrong order or omitted.

Synchronization An error in locking code or synchronization between

threads of control.

Unexpected situation Unexpected parameter call from a process, or unexpected

machine state or operation scenario.

Other Difficult to classify.

Table 2.2: Common non-overlay/regular errors

As can be seen from these tables, the causes of errors are wide and varied, from

rarely triggered edge conditions to complete failures in logic. A key observation is

that memory overlay related errors form a significant portion of reported problems

and thus is deserving of special consideration [124]. Approximately 34% of errors

Chapter 2: Background and Literature Review 21

were deemed to be related to such overlay errors [30]. However, the causes of such

failure can be traced to bugs in the program code itself. Therefore, causes of failure,

while important towards gaining contextual understanding, cannot directly be

addressed by a component isolation framework.

A more useful way for a protection framework to deal with such problems is via the

symptoms of the problem. By detecting the effects/symptoms of failure, appropriate

action for recovery can be taken. For example, a wild pointer store could be detected

and attempts to erroneously access a protected memory area could result in the

component being terminated. Similarly, a deadlocked component should be

terminated after the expiration of a timeout. Sullivan and Chillarege [124] identify

the main symptoms characteristic of failure. In the context of a component, the

symptoms could be explained as shown in Table 2.3.

Symptom Description

Abnormal termination The component attempts to execute an illegal

instruction which results in a trap into the operating

system. This may occur as a result of division by zero,

for example. Typically, a signal will be raised notifying

the application.

Addressing error The component makes an attempt to address an illegal

memory address. The memory may simply be corrupted

if it is a valid address or result in a trap for an

unmapped or invalid address.

Endless wait/infinite loop The component enters an infinite loop or deadlocks,

waiting for an event which never occurs.

Incorrect output The component returns an invalid result to the parent.

Table 2.3: Symptoms of failure

If a component is properly constrained within an isolation domain, any of the

symptoms in Table 2.3 would enable an isolation container to detect a failure in the

component. Abnormal termination could be handled relatively easily by handling

Chapter 2: Background and Literature Review 22

the signal raised by the operating system. Similarly, attempts to access memory

outside of the isolation domain can be detected and an appropriate notification made

to the hosting application of the failure, allowing the host to unload the component.

This is under the assumption that the isolation domain enforces memory protection

and that the component cannot access memory beyond its allowed ranges. Finally,

infinite loops can be dealt with through the use of a timer, after which the hosting

component can be notified of failure, allowing the host to decide whether to continue

execution or terminate the component. Since the upper bound on execution time

may be better known to the host application, the host can implement a user-

defined/application-specific policy which determines whether a component has hung

(this can also include user intervention, such as displaying a dialog box which allows

the user to terminate the offending component, or continue waiting). However, there

may be cases where it is not possible to use any heuristics to determine whether the

component has hung. Nevertheless, since the host component has a chance to execute

and intervene, it can, in principle, terminate the component, which is a marked

improvement over a situation where the component may not relinquish control at all,

and the host never receives a chance to arbitrate.

The only situation that cannot be handled by an isolation container is that of incorrect

output. The hosting application must take appropriate care to not use invalid output

returned by the component, as there is no way for an isolation domain to know what

the legal values are. Therefore, it is of critical importance that the hosting process is

made fail-safe through the use of defensive programming techniques [47]. This

means that all inputs, intermediate results, outputs and data structures should be

checked as a matter of course. Any detected problem can be used to initiate recovery

procedures.

Following from this, isolating a component in such a container is of critical

importance, as emphasised by others [57, 59, 82, 126]. Indeed, microkernel-based

operating systems take this concept to its ultimate manifestation [132]. Modern

trends in browser architecture also emphasise the gravity of this issue, as both

Microsoft’s Internet Explorer [145] and Google’s Chrome [8] browser have changed

to multi-process architectures in which program components are isolated into several,

disparate operating system processes.

Chapter 2: Background and Literature Review 23

In contrast to components, processes are typically protected from each other so that a

buggy or malicious application has a hard time bringing down the entire system.

Typically, protection is afforded by the following means in an OS process, as

mentioned by Law and McCann [79].

a. Preventing applications from executing privileged instructions (i.e.,

disabling interrupts).

b. Preventing an application from accessing illegal memory locations (i.e.,

another application’s memory)

Most operating systems today enable this isolation through use of processor modes

and memory paging [130], while earlier computer designs such as memory

segmentation and typing structures have been largely ignored. However, the more

recent notion of an application-oriented, software component does not have the

ability to take advantage of similar isolation schemes. Typically, an application will

load a component into its existing address space, enabling the component to access

any part of the host application’s memory, thus leaving the host vulnerable to bad or

misbehaving applications. Small and Seltzer [121] argue that if a component

consistently crashes its host, the extra functionality is hardly worthwhile. Despite

this, they note that few component extensions address the reliability issue.

Xu et al. [143] note that dynamically loaded extensions need to be verified as the

hosting process needs to be assured that the untrusted component is safe and does not

compromise the host’s integrity. Similarly, components coming from different

vendors and sources must ensure that they can survive without interfering with each

other. Due to the low reliability of system components, there has been a renewal of

interest in isolating components, justifying the need for this research [139].

Based on these requirements, the next section analyses current research on protection

mechanisms for software components, and highlights the relative strengths and

drawbacks of the various approaches.

Chapter 2: Background and Literature Review 24

2.3 PROTECTION MECHANISMS

2.3.1 Types of Protection

This section provides an overview of more current mechanisms available for

component isolation. Three basic mechanisms for isolation are identified and

categorised by Small and Seltzer [121]. As a part of this research, this was expanded

to a more fine-grained categorization, to reflect the variety of isolation mechanisms

available and has been published elsewhere [46]. The categorization, shown in Table

2.4, is based on the mechanism’s level within the computer’s architecture. It will be

the basis for discussing those various isolation mechanisms. It should be noted

however, that some mechanisms do not fit cleanly into a category and may be a mix

of many techniques.

Chapter 2: Background and Literature Review 25

Isolation

Mechanism

Description Examples

Hardware

isolation

This category deals with

mechanisms that utilise some

hardware support in enforcing

isolation. The main drawback is

that, due to reliance on specific

hardware features, these

techniques may not be portable

across all computer

architectures.

Privilege level change including

protection ring hardware structures,

Isolation using memory

segmentation and/or typing support,

Isolation using paging hardware,

Isolation into separate processors,

e.g. peripheral I/O processors,

Hardware virtualization support.

Binary code

level

isolation

Protection afforded by

modifying binary code.

Software Fault Isolation,

Binary translation,

Virtual Machine Monitors.

Integration

into OS

kernel

isolation

facilities

OS kernel protection

mechanisms for isolating

components.

Kernel Wrapping,

Process containers.

Language

support

Isolation provided through

language level/compiler level

support.

Type safe languages,

Static analysis,

Compilers.

Application

level

isolation

Isolation facilities implemented

entirely in user space.

Interpreters,

JIT Compilers,

Application Virtualization

Table 2.4 - Categorization of isolation mechanisms and examples

Chapter 2: Background and Literature Review 26

2.3.2 Hardware Isolation

A variety of hardware-based techniques have been utilised for process/component

isolation for almost 50 years, dating from the earliest second generation computer

systems providing multiprogramming facilities, e.g., English Electric KDF-9 [50].

Some techniques, such as simple, dual-state privilege level change, based on OS-user

separation, are available in most modern system architectures. Some other

techniques, such as memory segmentation support, are now only widely available in

certain architectures like the Intel “x86” line of processors. This section examines

each of these mechanisms in turn, highlighting their usage and specific advantages

and disadvantages.

2.3.2.1 Privilege level change

The idea of protection rings and segmentation was pioneered in the Multics system

and implemented by the GE-645 machine architecture [10, 113], which utilised 8

rings of protection [115]. Earlier second and third generation mainframe computer

architectures did, however, provide separate hardware mechanisms to assist with a

form of isolation. These varied greatly from complete isolation into distinct and

separate processor units, as in the peripheral processor concepts in the Control Data

6000, 7000, Cyber-70/170 computer systems and memory “tagging” used in the IBM

System/360 series. Amdahl et al. [4] clearly pointed out in 1964 that program

isolation was essential in the System/360 in terms of “tamper-proof storage

protection” and a “protected supervisor program”. The Burroughs B5000,

introduced in 1961 was also an early system which featured segmentation and tagged

memory [89], while the later VAX system included similar features, as well as

support for virtualization of the operating system (OS) [74].

Most modern operating systems utilise at least a two level protection mechanism,

which separates the operating system itself from application level programs [130].

The OS executes at a higher privilege level (ring), allowing it to execute any

instruction. Applications have a lower privilege level and the hardware ensures that

any attempt to execute a high privilege instruction causes a “trap” [131]. When a

trap occurs, the operating system has the chance to intervene and arbitrate whether or

not the process has sufficient privileges to execute the said instruction.

Chapter 2: Background and Literature Review 27

Figure 2.2: Protection rings

The details of this ring structure, as illustrated in Figure 2.2, may vary. For example,

the x86 line actually defines 4 rings of protection, with the kernel running in

ring 0 [130]. The VMX (Virtual Machine eXtensions) root mode introduced in some

modern Intel processors, created an additional level of privileged execution [65],

colloquially referred to as ring “−1”. VMX root operation is described in greater

detail in Section 2.3.2.4. The SMM (System Management Mode) mode [62], which

operates at an even lower privilege level, is informally referred to as ring “−2”, and is

used typically by firmware.

Regardless of these differences, the basic kernel/user mode separation is the

important mechanism in implementing protection. The kernel can pre-empt any

application that does not respond in a timely fashion. Normally however, paging or

segmentation hardware is also utilised on top in order to implement memory

protection.

Windows XP and Linux execute most of the operating system in kernel mode, with

applications executing in user mode. In combination with paging hardware, it is

possible to protect Operating System level processes from interfering with each

other. In a similar vein, Banerji et al. [6] utilise the kernel user mode separation

along with paging and segmentation hardware, as discussed later, to protect shared

Ring 0

Ring 1

...

Ring N

Increasing Privilege Level

Chapter 2: Background and Literature Review 28

libraries. Effectively, the OS kernel is used as a “trampoline” to make sure that

libraries can only be accessed at predefined entry points. By placing each library in a

separate segment, libraries are prevented from directly accessing or corrupting each

other’s memory.

Czajkowski and Dayn’s work [24] uses privilege level based protection for isolating

Java Virtual Machine (JVM) components from Java Native Interface (JNI)

extensions. Each JNI extension is isolated in a separate process and normal process

protection applies in separating the JNI component from the rest of the JVM.

A more specific version of privilege level based protection is utilised in micro-kernel

based operating systems [130]. In such operating systems, the kernel is extremely

minimal, consisting of mechanisms for simply transferring control between

applications [130]. This minimalist approach is an attempt to enforce the general

security principle of having the least common mechanism and the principle of

employing economy of mechanism [114]. At its extremes, even paging and

scheduling may run as user mode applications [37, 132], which allows for a more

modular approach with a greater degree of robustness and isolation of faults [29].

For example, in the Minix kernel [132], the kernel remains extremely minimal with

most components running in user space. In the event of a failure in a user-space

component, a “reincarnation server” is responsible for the automatic restart of the

failed processes [56]. The reincarnation server periodically polls each process to see

whether or not it is healthy. If the process is found to be defective, it is

“reincarnated”, by sending it a “kill” signal and restarting the process shortly

thereafter [56]. A similar mechanism would be viable for restarting failed

components.

The major drawback of the privilege level approach is the high cost of switching

protection domains [69]. Estimates for the switching overhead over traditional

monolithic kernels run as high as two orders of magnitude [106]. However, Leslie et

al. [82] demonstrate that it is possible to drive a high speed gigabit Ethernet driver

entirely in user space without significant performance loss, while work on the L4

microkernel also demonstrates that proper optimization can lead to very low

overheads [86].

Overall, the level of protection afforded by this mechanism is mostly at the level of

process level granularity. For components which are at much finer levels of

Chapter 2: Background and Literature Review 29

granularity, the protection domain switching overhead may be too prohibitive,

depending mainly on the granularity of the component. This is sharply highlighted

by the fact that many traditional monolithic kernels still continue to minimise

privilege level changes specifically because of such perceived overheads [137]. This

issue is explored further in this thesis when discussing the implementation issues of

LibVM’s p-trace based isolation mechanism in Chapter 3, which is reliant on process

switching via privilege-level change.

2.3.2.2 Paging protection

“Paging protection” is a memory protection feature offered by most modern CPU

hardware and works by dividing the address space typically into fixed-length pages,

with the ability to set permissions per page [54]. Most modern operating systems

utilise paging protection for enabling process isolation [130]. Mehnert et al. [92]

point out that separate address spaces are beneficial even in real-time kernels, due to

the higher level of protection afforded between subsystems. Attempts have been

made to utilise paging protection for component level isolation as well.

One such attempt is the protection of the JVM heap through the use of paging

support [16]. Unlike the more general approach adopted by Chiueh et al. [19], this

approach focuses on protecting the various heap spaces only, under the assertion that

many instabilities in the JVM are caused by heap corruption. While the approach

itself is limited to heap protection, their technique, described below, has some

interesting attributes. The basic idea behind their technique is to allow only certain

threads to access different heap areas. The “HotSpot” JVM has two heap areas, one

for Java data structures and another for dynamically compiled code. Each of these

two heaps is placed in two separate “protection domains”. A protection domain is,

very simply, a separate memory page with read/write access permissions set.

Whenever a thread switch occurs, the JVM changes the protection domains such that

the thread may only access pages it is granted access to. For example, the compiler

thread may access all heaps, but other threads cannot access the compiler heap. The

technique relies on switching these protection domains at each thread switch. One

major advantage of their method is that it does not rely on hardware segmentation

support, unlike Chiueh et al.’s approach [18, 19], making the technique portable to

most modern hardware.

Chapter 2: Background and Literature Review 30

2.3.2.3 Segmentation protection

The use of memory segmentation was also pioneered in the Multics system and

implemented in the GE-645 architecture [10, 113]. Segmentation provides a

hardware supported mechanism for neatly separating software components from each

other. The basic idea is that system memory can be divided into variable sized

regions (segments), and each segment can have four possible segment privilege

levels (SPL), and two possible page privilege levels (PPL). The hardware ensures

that lower privilege segments cannot access higher privilege segments, thus isolating

memory segments from each other. The advantages of such hardware support for

preserving high performance are stressed by Chiueh et al. [18]. They introduce an

intra-address space component isolation scheme by using the paging and

segmentation support in the Intel x86 hardware architecture, which is the most

prevalent architecture for desktop machines. SPL support is utilised in isolating

kernel extensions from the kernel itself, by placing all extensions in a separate

segment of lower privilege than the kernel. A slightly different approach is utilised

for user space components, due to problems with dynamic link libraries. Here PPLs

are utilised for protection, to avoid the complexity of calculating relocation tables, as

segment addresses start at zero. The result is a relatively low overhead approach for

isolating regions of memory from each other.

An attempt to avoid the ring transition overhead by using segmentation support is

reported by Vasudevan et al. [136], indicating that the technique has a wide degree of

flexibility and is a viable alternative to privilege level changes.

However, a significant problem in using segmentation is the gradual dwindling of

support for this hardware feature in the x86 hardware, as a flat memory model was

conceptually simpler to program for and thus became the dominant paradigm.

Current programming models on the x86 are based on the flat memory model where,

in effect, segmentation support is completely disabled [60, 66]. In fact, the newer

Intel 64 bit architectures do not support segmentation at all and is only available in

backwards compatible modes [64].

Chapter 2: Background and Literature Review 31

2.3.2.4 Virtualization

Hardware virtualization is also an isolation mechanism which has been around for

decades. The concept of virtual machines goes back to the 1950s and 60s, e.g., in

early computer systems from the United Kingdom, as well as in the likes of the IBM

System/360 Model 67 and System/370 series [49, 117]. The formal requirements for

such fully virtualizable machines were later laid down by Popek and Goldberg [104],

who established the essential characteristics for a system to be considered a Virtual

Machine Monitor (VMM). System/370 featured hardware support for interpretive

execution, making the development of VMM software much simpler [49].

Despite this, however, the popularity of VM technology waned somewhat over the

years, but has gained a resurgence of interest with the invention and popularity of

systems such as VMWare [1, 123]. VMWare provides a VMM for the original,

popular Intel x86 architecture, despite the fact that the Intel x86 architecture itself

had several non-virtualizable instructions [110], which did not meet Popek and

Goldberg’s virtualization requirements [104]. Many novel techniques have since

been used to overcome such limitations, such as binary translation [1, 123] and para-

virtualization [7, 13, 33, 138]. As a result, a variety of types of VMs exist, with

Figure 2.3 providing an overview based on a taxonomy by Robin and Irvine [110].

Chapter 2: Background and Literature Review 32

Figure 2.3: Graphical depiction based on Robin and Irvine’s taxonomy [110]

In 2005, Intel and AMD introduced additional machine instructions to their

respective architectures to improve virtualization support [3, 62, 64]. The machine

instructions were similar in nature to the old System/370 and enabled the interpretive

execution of code and additional hardware managed control blocks. The Intel and

AMD extensions are extremely similar [1], which makes it easier to support either

instruction set. Uhlig et al. [134] provide an overview of the architecture, with

additional details being available elsewhere [62, 64]. Figure 2.4 depicts the basic

operation of the Intel VT instruction set.

Virtualised execution

CSIM (Complete Software

Interpreter Machine)

Hybrid VM (All privileged

instructions in software

and non-privileged in

hardware)

VMM (Statistically

dominant subset in native

hardware including

privileged instructions)

Type I (VM runs directly

on bare hardware) Eg:

VMare ESX

Type II (VM runs within

another operating system)

System call layer VM

(Solaris, Linux VServer)

Hosted VMs (VMWare

GSX)

Hosted Emulators (QEMU)

Paravirtualization

(VMWare)

Real Machine

Chapter 2: Background and Literature Review 33

Figure 2.4: Intel VMX operation

As shown in Figure 2.4, processor support for virtualization is provided by a special

form of processor operation named VMX operation [62, 64]. A Virtual Machine

Monitor (VMM) is intended to run in a special processor mode known as VMX root,

which is considered a higher privilege level, and colloquially referred to as “ring −1”.

The virtual machine monitor (VMM) may enable VM operation by executing the

VMXON instruction, which changes the processor mode into VMX non-root

operation. A VMM may then launch multiple guests by executing the VMEntry

instruction. As the guest executes, any attempt to execute a privileged instruction

will result in a trap, and the VMM will regain control The VMM can then safely

emulate the privileged instruction and resume execution of the guest code. The

VMM itself may exit via the VMXOFF instruction. Each logical processor in a

virtual machine has an associated VMCS (Virtual Machine Control Structure) which

maintains its state. By using these basic structures, it is possible for a VMM to

execute a guest operating system with far fewer traps than traditional techniques such

as binary translation [1].

However, as also noted by Adams and Agesen [1], early versions of Intel’s and

AMD’s hardware virtualization did not necessarily result in better performance, due

to the lack of support for Memory Management Unit (MMU) virtualization. To

remedy this, AMD introduced Nested Page Tables (NPT) [3] and Intel has followed

suit by adding support for Extended Page Tables (EPT) in their new “Nehalem”

processor architecture, both of which add support for MMU virtualization [65].

While VMMs have achieved widespread use today [1, 7, 107] for emulation of

complete machines, variations are seen of this, such as the work done by Rutkowska

and Wojtczuk on the Qubes Operating System [68]. While Qubes builds an

Guest 0 Guest 1

VM Monitor VMXON VMXOFF

VM Exit

VM Entry

VM Exit

VM Entry

Chapter 2: Background and Literature Review 34

Operating System on top of the Xen Hypervisor, it provides several child domains,

called “AppVMs”, which can be used to create a task-based separation of

applications. For example, “banking”, “work” and “personal” might be three

separate tasks into which relevant applications can be isolated, with differing levels

of security. It should be noted however, that these AppVMs do run full versions of

the Operating System, in contrast to other schemes discussed later, in Section 2.3.3.2.

The trade-off is between greater confidence in isolation versus greater performance.

This virtualization support has proven pivotal in implementing one of LibVMs own

isolation mechanisms.

2.3.2.5 Non-standard protection schemes

This section reviews proposed protection schemes which are not provided as yet in

readily available hardware. Foremost amongst these, Mondrian Memory Protection

(MPP) [141] introduces a hardware architecture for protecting memory segments up

to word level granularity, so that extremely fine grained control over individual

memory segments is possible. MPP works by maintaining a permissions table, and

works in a similar fashion to current page table architectures. MPP has a concept of

a Protection Look-aside Buffer, which is analogous to a Translation Look-aside

Buffer in conventional memory management units. The processor is responsible for

scanning the permission table for each memory access. However, while the

mechanisms suggested in MPP are extremely interesting, such hardware does not

exist as yet [132].

A similar hardware based proposal for enforcing fine-grained memory protection and

protected procedure calls was made by Wiggins et al. [139], but it suffers from the

same problem as MPP. In addition, Chiueh [17] proposes a novel technique, which

is the use of hardware debug registers to detect buffer overflow attempts. However,

the solution deals exclusively with buffer overflow detection only, and can be

considered a building block for higher level mechanisms.

Chapter 2: Background and Literature Review 35

2.3.3 Integration into OS Kernel Isolation Facilities

Attempts have been made to enforce isolation through integrating separate

application level components with the OS kernel Application Programming Interface

(API) layer.

2.3.3.1 Wrapping

One such example is the use of “wrapping” techniques. Wrapping involves the

verification of all parameters passed between a containing host and its

extensions [127]. In the Nooks architecture [127], an amalgamation of techniques

such as hardware memory protection, software fault isolation and privilege lowering

along with kernel wrapping are used to prevent device driver failures. Each device

driver is carefully wrapped by a proxy which is responsible for fault isolation and

recovery [127]. The wrapping process involves hand-crafting a software strait-jacket

which proxies all calls made to the driver. The system has been further enhanced by

Swift et al. [125] to also enable recovery of failed device drivers, by carefully

playing back logged requests. However, Tanenbaum et al. [132] points out that

attempting to write a wrapper around each device driver is an error-prone and painful

process, hampering the adoption of the technique. Further, Erlingsson et al. [31]

point out that the protection offered by Nooks can be easily circumvented by

malicious code.

Peterson et al. [102] describe a generic operating system API for creating sandboxed

programs, where each sandboxed process runs in a separate address space. Their

work lends support to the need for making components an integral concept within the

operating system, as argued by Mendelsohn [93]. An interesting implementation is

also made in the “Go!” Operating system [79]. Instead of weaving in and out of

kernel mode and user mode, the Go! component-based OS works entirely in kernel

mode. Analogous to a traditional kernel, Go! has an Object Request Broker (ORB),

which arbitrates communication between components [79]. To protect components

from interfering with each other, and to prevent them from executing privileged

instructions, the entire program is scanned for privileged instructions before being

executed. The ORB is responsible for doing this and delegates the task to a helper

component. Once the component is deemed to be safe, the ORB will allow its

instantiation. Certain trusted components, such as interrupt service routines, are

Chapter 2: Background and Literature Review 36

exempt from this verification process. By eliminating protection domain switching,

the Go! OS manages to achieve extremely high performance [79].

2.3.3.2 Process containers

Process Containers provide a means of executing a program in a sandbox, typically

by building an isolation container on top of the Operating System’s process isolation

facilities. Such process containers provide restricted access to resources for the

sandboxed application, for example, by providing a limited view of the file system.

Examples include such systems as chroot() [36], which provides a limited view of

the file system to an untrusted application, FreeBSD Jails [73] and Solaris Zones

[105], which provide an operating system level virtualization environment for

applications. Linux Security Modules such as AppArmour [9] and SELinux [87] also

enforce administrator defined security policies in applying fine-grained restrictions to

the capabilities of processes.

A common approach to creating such a container is via system interpositioning [39,

40, 42, 101], which typically relies on a kernel level trace mechanism (e.g.,

ptrace [70]) to intercept the system calls executed by a process. It is based on the

observation that an isolated process has no way to influence the system at large, other

than through system calls [42]. Therefore, by restricting the execution of system

calls, or modifying them before execution, an application can be made secure.

Some of these mechanisms required kernel level modifications [34, 39, 87, 102],

with the advantage of being able to add all facilities as required but having the

drawback of making widespread deployment difficult. Others were built on top of

existing facilities such as ptrace and /proc [70, 85], with the drawback of having to

retrofit functionality onto available mechanisms. These systems sometimes resulted

in timing and race related bugs such as TOCTOU (Time of Check To Time Of

Use) [39], but workarounds have been implemented [101].

One of the chief drawbacks is high overhead due to the repeated context switches

that are required [39]. While Kernel based mechanisms can reduce this overhead,

they must also run an additional risk in doing so, as any exploitable bugs in the

mechanism would result in a total compromise of the operating system. User space

interception on the other hand, can attract even heavier overheads. In addition, user

space mechanisms such as ptrace provide limited ways with which to manipulate the

Chapter 2: Background and Literature Review 37

confined application, making the technique more complicated to employ in library

level isolation (as discussed in Chapter 3).

2.3.4 Binary Code Level Isolation

Binary code level isolation relies on modifying the application binary at load-time or

run-time, in order to insert additional checks and guards for ensuring isolation.

2.3.4.1 Software Fault Isolation

This method was first described by Wahbe et al. [137] and the basic technique has

been utilised in many forms. The authors make a strong case against placing

software modules in their own private address space, as this would require a Remote

Procedure Call (RPC) between them for communication, resulting in unacceptable

context-switch overhead. Context-switching overhead is one of the chief reasons

that such RPCs have unacceptable performance overheads [137]. For example, a

single RPC from one process to another requires four context switches, two on

making the call and two on return. However, considering the way in which operating

systems are structured, the only way to protect two components from each other is to

place them in two separate processes and to make an RPC call between them.

Wahbe et al. [137] describe an alternate approach. It enables you to place untrusted

code within the same process and avoid the overhead of making an RPC. To ensure

protection, the system uses software-based verification to ensure that no illegal

memory accesses are made. The main technique used is to verify the object code of

the distrusted module through static analysis, and inject code for double checking

any potentially harmful instructions. A “sandboxed” code version is created so that

memory references always fall within the sandboxed region, thus preventing a

component from accessing memory outside of its bounds [137].

Software Fault Isolation (SFI), originally demonstrated by Wahbe et al. on a

Reduced Instruction Set Computer (RISC) architecture, has also been demonstrated

on Complex Instruction Set Computer (CISC) architectures [90]. Techniques such as

binary translation [1] are offshoots of the ideas in SFI.

The ideas in SFI are directly utilised in the Google Native Client (NaCl) software

system, which provides a software framework for safe execution of untrusted binary

components [144]. NaCl aims to provide browser-based applications access to

Chapter 2: Background and Literature Review 38

increased computational performance through native binary components which have

access to performance-oriented features such as Streaming SIMD Extensions (SSE)

instructions, compiler intrinsics, hand-coded assembler, etc., without compromising

on safety [144].

SFI techniques have also been used in Nooks in combination with hardware support,

in order to create an architecture for device driver fault isolation and recovery [127].

Fraser et al. [34] describe similar protection mechanisms for “Commercial Off-the-

Shelf (COTS)” systems. Kumar et al. [76] describe the use of SFI in embedded

systems, where hardware support for protection domains is often absent. In addition,

Small and Seltzer [121] have estimated the performance characteristics of various

techniques, and conclude that SFI-based techniques offer good overall performance.

A strong example of such software-based techniques providing better performance

than corresponding hardware protection comes from Adams and Agesen [1].

Through their experience in implementing the popular VMware virtual machine

monitor, they provide performance measurements which indicate that hardware

assisted techniques can be overshadowed by Binary Translation techniques.

Swift et al. [127] point out that it may be difficult to implement SFI when the range

of addresses are not contiguous. Further, although it is relatively cheap to call into

SFI code as opposed to a protection domain switch, the SFI code itself executes more

slowly due to the additional checks.

2.3.4.2 Static analysis of binaries

While SFI and “Static Analysis” of binary code are closely related, we differentiate

techniques which rely on a preventive approach, where the code is statically analysed

to determine whether a program violates its safety contract, and not allowed to

execute at all if it is found to do so. Typically, a verifier is used to perform a static

analysis of the untrusted machine code program. The machine code itself can be

directly passed to the verifier, requiring no modifications to current development

methodologies.

The main advantages of this method, as identified by Xu et al. [143], are as follows.

1. It operates directly on binary code, allowing the freedom to choose any

source language for program development

Chapter 2: Background and Literature Review 39

2. It provides the ability to extend the facilities offered by a host program at

a very fine-grained level, in that the “foreign” code is allowed to

manipulate the internal data structures of the host directly

3. It enforces a default collection of safety condition enforcement schemes

to prevent array out-of-bounds violations, address-alignment violations,

use of uninitialised variables, null-pointer dereferences and stack

manipulation violations.

Xu et al. [143] utilise this technique to verify untrusted machine code. However, the

program calling the extension is now required to send in type-state information and

linear constraints in order for the verifier to work. The type-state information

specifies the expected pre and post conditions of the calling program. The verifier

uses this information in order to determine whether the machine code satisfies the

given constraints, thus ensuring its safety.

In addition to passing in the type-state information, the caller may impose a custom

security policy, which makes the method very flexible [143]. However, the

requirement that the caller supply such type-state conditions requires a radical

change in invocation semantics. Further, the verifier performs a rather complex

static analysis of the program, which requires a significant amount of time per

extension. In addition, compiler level modifications are required for the technique to

work. However, Erlingsson et al. [31] have attempted to address this problem by

using control flow analysis and a binary rewriter which ensures that all expected

properties and guards continue to hold.

Overall, static analysis could be deemed a preventive measure and mainly be used in

determining whether a given component obeys certain constraints before its

execution. Thus, it could be used to prevent a faulty component from being loaded

in the first place, but not to prevent failure during the execution of the component. In

addition, static analysis is also prone to false positives.

Chapter 2: Background and Literature Review 40

2.3.5 Language Support

Language-based protection relies on the safety of a language’s type system, where

the operations that a program performs can only be operations that are deemed

sensible for that type [52]. Typically, this will involve both a dynamic and a static

access control mechanism to be available. Static checks can be made at compile time

to verify that illegal operations on a type are not permitted and dynamic checks may

be needed at runtime, for example to perform an array bounds check [52].

2.3.5.1 Type-safe code

The SPIN operating system utilises “Modula-3” as a type-safe programming

language along with a trusted compiler to create type-safe extensions [11]. A more

modern example of the use of type safe code for component protection is the

“Singularity” operating system, a prototype operating system created by Microsoft

Research [2]. The key philosophy behind Singularity is the concept of a Software

Isolated Process (SIP), which, unlike traditional hardware-based process isolation,

relies on static type checking and language safety rules to ensure protection between

processes. The results indicate that compared to the 25-33% overheads that

hardware-based isolation incurs, SIP only incurs as little as 5% overhead in the

benchmark tests [2].

However, the major drawback in Singularity is that all software components would

have to be rewritten in a type safe language (in this case a Microsoft “.NET”

compatible language) in order for the scheme to work, making it unsuitable for the

large base of existing applications [2].

In addition, Swift et al. [127] point out several difficulties in the adoption of type-

safe languages. The major issue is the problem of rewriting all drivers in that type

safe language and the significant overheads in copying data in and out of a driver.

Further, they also mention that an elegant mechanism for accessing device drivers in

a type-safe fashion is not available. Further, Dean [26] points out that building

“bullet-proof” implementations remains a difficult problem.

Chapter 2: Background and Literature Review 41

2.3.5.2 Static analysis at language level

Static analysis of code allows the analysis and verification of a program prior to

execution. The emphasis here is similar to the case of static binary analysis –

ensuring that the program conforms to safety properties prior to execution.

For example, in order to deal with common buffer overrun situations, a combination

of static analysis techniques and SFI can be used. Cowan et al. [23] provide an

overview of common techniques used to combat buffer overflows. Apart from

defensive programming techniques, of interest are tools like purify [51], which use

object code insertion to instrument all memory accesses and StackGuard [22], which

uses a canary value to detect whether a stack smashing attack has been attempted, for

which a hardware based mechanism has also been mentioned previously [17].

Another approach is that of the Proof Carrying Code (PCC) technique, whereby an

automated proof generator is used to analyse each program and attach a proof that

the program will execute within its defined boundaries [100]. In essence, PCC

involves statically checking program code and the automated generation of a proof

that the program obeys a given safety policy. At runtime, the proof can be verified

by the operating system. One major advantage of this technique is that no run-time

checking is required, since a program passing the verification process is guaranteed

to be safe.

However, writing a comprehensive proof generator which can deal with the

complexities of optimised code remains a problem in this suggested solution and so

far, the technique has not been demonstrated with non-trivial examples [132]. An

additional difficulty is that the policy needs to cover any implied rules of the

execution environment. Guaranteeing the completeness of the policy itself is also

difficult [38].

Chapter 2: Background and Literature Review 42

2.3.6 Application Level Isolation

“Application Level Isolation” is a technique that involves isolation being enforced

entirely in user address space and being managed by the application itself.

2.3.6.1 Interpretation and intermediate language compilation

Interpretation based isolation of application and like programs has been categorised

under application level support, as it is usually performed entirely in user-space.

Interpretation techniques have been used in a variety of scenarios. These include

complete virtual machines such as the “Java Virtual Machine (JVM)”, the earlier

UCSD “p-System” [14], etc. or scripting languages such as AWK, Tcl, etc.

Interpreted languages have shown excellent safety properties and can be made

extremely secure [132]. For example, the JVM contains a built-in verifier that

provides several safety checks to ensure that no forged pointers or pointer

manipulations can be performed, effectively preventing code from accessing

unauthorised memory locations [16, 132]. A security management policy can

perform fine-grained control over each running thread.

The major drawback of interpretation techniques is speed. Although a great deal of

optimization work has been performed, such as “Just-In-Time Compilation (JIT)”, to

dramatically boost the speed over simple interpretation, the overheads imposed by

the use of constant checks continue to be very significant, and loss of performance

still continues to be a concern over use of pure binary code [132].

A further problem is that not all programs can be written in an interpreted language.

At some point, especially when high performance or low level device access is

needed, it is necessary to fall back into lower level languages for software

development. For example, the JVM uses the “Java Native Interface (JNI)” in order

to access hardware specific features. Once the JNI barrier is crossed, the JVM is

entirely at the mercy of the loaded C-language library [16] in the called component.

A JNI environment pointer is passed into the JNI library in order for it to

communicate. A badly written extension Dynamically Linked Library (DLL)

element can easily crash the entire JVM, as they all reside within the same address

space. To address this issue, Czajkowski and Dayn [24] propose isolating JNI

components in separate address spaces. This however, incurs the usual context

Chapter 2: Background and Literature Review 43

switching and parameter marshalling overheads for inter-process communications

(IPC) calls, incurring a significant penalty on the additional robustness provided.

Lastly, there is a large existing base of code that is in binary format. It is not feasible

to rewrite all of these programs in an interpreted language [132], and as mentioned

above, certain actions require low-level hardware access, posing a security risk to the

integrity of the virtual machine (VM). However, since a large class of applications

can be solved using this approach, there continues to be a massive surge in its

popularity, particularly in the commercial and business areas.

Further, Small and Seltzer [121] argue that interpreted technologies are not suitable

for building kernel extensions, since the timing granularity in systems events are

extremely fine and the performance requirements more exact.

Another component isolation model and technique scheme is known as the “multi-

process application architecture”. This model is becoming increasingly popular in

web browsers [8, 109]. The basic idea is to isolate individual components into

private address spaces through disparate OS processes and use the operating system’s

IPC mechanisms to communicate between them. In Google’s Chrome browser, a

single browser coordinating process spawns additional processes to perform sub

tasks [133]. These additional processes run at a lower privilege level and access is

tightly arbitrated by the coordinating browser process. In effect, different

components are loaded into different processes and communication takes place using

OS supplied IPC mechanisms. This isolation into separate processes allows the

browser to survive component crashes. Microsoft’s Internet Explorer 8 follows a

similar model [145]. There is however, an increase in complexity as coordination

between several processes is required. Also, Wahbe et al. [137] make a strong case

against placing software modules in their own address space, as this requires IPC

between them for communication, resulting in unacceptable context-switch

overheads [137], so a trade-off is made between performance and reliability [133].

2.4 CONCLUSION

This literature review in this chapter provides a working definition for the term

“component”, as suited to the purposes of this thesis, as a dynamically loaded shared

object library (DLL or SO). The pressing need for such library level isolation was

Chapter 2: Background and Literature Review 44

also highlighted, especially in view of the failures caused by third-party plugins.

Common causes of failures as well as a taxonomy for isolation mechanisms were

introduced. These were – hardware isolation, binary code level isolation, OS kernel

level isolation, language level isolation and application level isolation. The currently

available isolation mechanisms, and their strengths and drawbacks, were also

discussed. In addition, existing efforts to isolating components from each other have

also been analysed, and some common drawbacks are as follows.

• They do not maintain address space transparency.

• Require rewriting libraries as well as host applications.

• Require custom tool chains.

• Not general purpose.

• SFI based techniques require code verification and patching – large TCB.

• Restrictions on allowed machine instructions.

• False positives.

• Performance issues.

• Limited to certain hardware architectures.

 The remainder of this thesis builds on this discussion and the next chapter introduces

the isolation architecture utilised by our LibVM system.

Chapter 3: Isolation Architecture Design and Rationale 45

Chapter 3: Isolation Architecture Design

and Rationale

3.1 INTRODUCTION

Following from our analysis of the scientific, technological and engineering

literature, and associated research outcomes and system offerings, in Chapter 2, this

chapter provides an overview of the system architecture we developed to address the

main research questions covered in this thesis. We begin by arguing for a generic

Application Programming Interface, named LibVM, which encapsulates the

functionality necessary for library isolation when used in an application program,

and provides a specification for such an API. We then describe the design decisions

that motivated the various architectural choices, and relate them to the overall

problem of the need to isolate shared libraries, for improved robustness and security.

3.2 AIMS OF THE ARCHITECTURE

A key research aim in this thesis is to isolate untrusted shared libraries from their

host program, so that, in particular, a badly written or misbehaving component will

have minimal impact on its host, thus improving overall system robustness and

resilience as well as guarding the host against potential security issues. However,

untrusted libraries may include genuinely malicious code, masquerading as a useful

library entry. For example, malicious web browser “plugins” would fall into such a

category. Isolating libraries into sandboxed environments would thus minimise the

threat posed by such a plugin, increasing safety. In addition to such malicious

libraries, non-malicious yet potentially “buggy” libraries are also suitable candidates

for secure isolation, since any unwitting programming errors in a non-critical

component should not cause a wholesale crash of the entire application. For

example, a buffer overflow vulnerability, which could enable a stack smashing

attack, can be rendered ineffective because the component is confined to its sandbox.

Ideally, failures in non-critical components should be recoverable, perhaps through a

simple reload/replacement or reset of the faulty component, thus increasing overall

system resilience.

Chapter 3: Isolation Architecture Design and Rationale 46

Therefore, any isolation architecture should aim to:

1. Create protection domains for individual components, so that the

interaction between the component and its environment can be tightly

controlled.

2. Prevent an errant component from corrupting critical memory regions or

having adverse effects on the hosting process.

3.3 THREAT MODEL

As explained above, isolation can be analysed from both resilience and

safety/security perspectives. While resilience is the key reason for isolation in a

trusted environment, safety becomes paramount in an untrusted one. This is best

exemplified by Internet browsers which extend their functionality through plug-in

components. In such an environment, both these factors are very important, as the

extension code may be of unknown provenance and quality.

Our system, LibVM, is designed to deal with arbitrary binary components, from

untrusted sources, which need to be executed in a constrained environment. Once a

component is accepted for execution, it must have controlled access to resources, as

determined by the host. Access to memory must be restricted to areas allowed by the

host application and attempts to exceed these limits must be caught. The host must

be able to constrain the component by preventing arbitrary access to the full

operating system call interface. Such access must be mediated and the host must be

allowed to set resource limits on memory usage or disk / storage access.

3.4 LIBVM – A FUNCTIONAL SPECIFICATION

In order to demonstrate that an implementation of LibVM is correct in achieving its

functional intent, we must first establish the following.

a. A clear specification of its functional requirements.

b. A methodology for extracting the conditions under which an implementation

can be considered correct with respect to that specification

We discuss each of these in turn.

Chapter 3: Isolation Architecture Design and Rationale 47

3.4.1 Overview of Functional Specification

The stated goal of LibVM is to isolate a library from its host application, so as to

ensure that the host’s (and the underlying system’s) security and integrity cannot be

violated. However, since security and integrity are broad terms, we narrow them

down to a very specific meaning. We require isolation such that a library component

cannot affect its host (including the host’s underlying environment), without the

host’s explicit knowledge. More specifically, by “affect”, what is meant is that the

library component cannot change the data or control flow in the host, nor its

environment, without the host being explicitly party to the fact, and thus in a position

to permit or reject that effect (This is analogous to a “non-interference” security

policy model [122] or other multi-level security policies such as the Bell-LaPadula

model [25], although we do not use the related nomenclature as we do not such strict

information flow policies. However, stronger policies could be implemented by

restricting the conditions that are identified even further, such that they are

conformant with such multi-level security policies).

If the library can have no effect on its host, without the host’s knowledge, we

contend that it is sufficiently isolated. Since the host is aware of any effect that can

potentially alter its control/data flow or environment, it can determine its own

security policy. This is the desired improvement over the prevailing norm for

libraries, which is that library components are free to execute unfettered within the

host’s address space.

Therefore, what LibVM provides is a security mechanism, not a security policy. The

LibVM isolation container cannot guard against incorrectly implemented security

policies in the host. Nor can it guard against bugs in the host application. For

example, if the host application allows a system call made by a library component in

order to access the network, and the host does not adequately check whether the

library component should be performing network communications in the first place,

it is a failure in the host’s policy. Similarly, if the host suffers from a bug where it

unwittingly performs a jump into a location within the isolation container’s

boundaries, LibVM has no ability to guard against that situation. It is only the host’s

own correctness that must guard against this. However, in Chapter 7, we discuss

techniques for reducing the burden placed on the host, so that it can enforce its

security policies with greater ease.

Chapter 3: Isolation Architecture Design and Rationale 48

In addition, it is also possible for the component to starve the host of resources. For

example, it could sit in a tight loop eating up CPU cycles, or, if so allowed by the

host, allocate memory or disk space without bound. However, we assume that the

Operating System enforces resource limits to guard against such possibilities, in

addition to the host itself being prudent in allocating resources to the component.

Furthermore, covert channels for leaking information may exist [78]. However, we

contend that these issues are orthogonal to our main goal of preventing an errant

component from compromising the host’s integrity.

3.4.2 Methodology for developing correctness conditions

The methodology we use for extracting the conditions under which a LibVM

implementation can be valid, is as follows. The strategy is to treat the security

specification as an invariant that must be preserved by each feature of the

implementation.

a. Start with a minimal, totally isolated container which does nothing, and

therefore can have no effect on its host, which conforms to our security

specification by definition.

b. Progressively add new features which are necessary, using key security

principles as guidelines.

c. Ensure that each added feature continues to conform to our specification (the

invariant).

d. If it does not, add a new "security requirement/condition" which will

guarantee that the invariant will be preserved.

e. Repeat till all essential features have been added.

During this process, since the identified conditions ensure that the specification is

met at each step, we know that the final set of conditions will meet the specification

in aggregate. Therefore, we present these final set of conditions as those that must

explicitly be met in order to be conformant to the specification.

While the method outlined above works well for conceptual features, it becomes far

more difficult to follow as features become embroiled in the complexity of actual

implementation details, rendering the process itself very tedious and time consuming.

Chapter 3: Isolation Architecture Design and Rationale 49

As a remedy to this issue, we utilise principles from the Common Criteria as a

guiding framework by which confidence can be gained in a concrete implementation.

3.4.3 Requirements for Correctness of LibVM

In order to provide the assurances of correctness that the specification above defines,

we show that five propositions must hold. We establish these five propositions by

following the methodology outlined above. It should be noted that some of these

propositions are reliant on conditions outside of the control of a LibVM

implementation. We flag these external conditions as appropriate, but include them

in our overall list of conditions, as all of these must be satisfied for the specification

to hold. In the process of doing this, we always enforce the well-known principle of

“granting least privilege” [114], giving the isolation container only the minimal

privileges it needs to accomplish its tasks.

We start with a hypothetical isolation container “C”, which is totally devoid of a

CPU or memory. In other words, C can do nothing, as it can perform no

computation. Such an isolation container is the epitome of total isolation, and

implements the principle of least privilege best, since it cannot affect the host or even

itself in anyway. Therefore, it conforms to our specification, by definition.

However, such an isolation container is also of no utility whatsoever.

3.4.3.1 Deriving Condition C1

In order to remedy the uselessness of the container described above, we introduce a

Central Processing Unit (CPU) to this container. This CPU may contain some

internal, volatile registers, but no other memory apart from this. When we introduce

this CPU, we must ensure that it remains separate from the host’s CPU in order to

arrive once again at total isolation. If it is totally isolated, it once again meets our

specification by definition. For this total separation to occur, two conditions must

clearly hold.

Lemma A: The CPU (including registers) must be fully virtualised, so that C will

continue to be unable to affect its host H.

Lemma B: Conversely, the host H cannot access the registers of the isolation

container’s CPU.

Chapter 3: Isolation Architecture Design and Rationale 50

If either of the two conditions is not met, information leakage clearly occurs between

the host and the isolation container.

In order to clarify the importance of the above two conditions further, let us assume

the inverse of these conditions, such that a thread of execution T within a LibVM

container is not virtualised so that it can affect the CPU state S in a host process H.

It is possible that T could then succeed in either of the following.

a. Affecting a segment register and thereby causing the host H to access an

erroneous memory location. (For example, by changing the CS (Code

Segment) register, the thread T could offset the host’s instruction pointer by a

desired amount, thus causing it to execute arbitrary code.)

b. If T leaves a residual value in a register S, and if the host unknowingly uses

this value, it is possible for T to affect the execution of the host

These are contradictions to our specification that our host H cannot be adversely

affected by T. While it is not the case that allowing access from T to host CPU state

S will always result in a vulnerability, we nevertheless adopt the more restrictive

condition of completely disallowing access to the host CPU’s state, erring on the side

of caution and safety. This is in keeping with the principle of “using the least

common mechanism” [114], which aims to minimise shared information paths.

Thus far, we have defined an isolation container C which is far more restricted than

the one defined by LibVM. Clearly therefore, this isolation container is also

inherently more secure than LibVM, due to the reduction in the size of the “attack

surface” [58, 88]. We therefore utilise this intermediate result of Lemma A, as a

suitable invariant that must hold from now onwards till we get to the functionality

level of LibVM, while Lemma B will be relaxed (while preserving our desired

properties) for reasons explained later.

Therefore, we promote Lemma A to our first condition:

The CPU utilised by the LibVM container must be virtualised such that it is

isolated from the host application.

3.4.3.2 Deriving Condition C2

Although the isolation container described above is marginally more useful than one

that achieves nothing at all, as it can perform some limited computations, any useful

Chapter 3: Isolation Architecture Design and Rationale 51

result is still inaccessible to the host, due to Lemma B. Furthermore, the host is also

unable to pass parameters to this CPU to invoke a desired computation, since the

registers are inaccessible. Therefore, we are required to relax this restriction, while

ensuring that our specification continues to be met.

Therefore, we allow the host access to the isolation container’s CPU registers, and

observe that there are only two possibilities that emerge.

a. The host writes data to the registers

b. The host reads and subsequently uses data from these registers

In order to deal with these two possibilities in a way that does not affect our

invariant, we qualify that access with two more conditions.

Lemma C: Any information placed in the CPU’s registers must be guaranteed to be

non-sensitive data, so as to prevent data leakage.

Lemma D: Any information retrieved from these registers must be treated with the

utmost suspicion, and always checked for validity before use.

By stipulating the above two conditions, we make access to the CPU registers

possible, while preserving our desired safety properties, although it should be noted

that data flow safety is entirely in the hands of the host. This is in keeping with our

originally stated specification.

However, we argue that Lemma C is not essential to our purpose, since placing data

into the CPU registers of the isolation container is a deliberate decision, and while

such data can affect the execution flow within the container, they cannot affect

execution flow, data flow or resources external to the container. Therefore, Lemma

C is outside the scope of our specification, although it would be important if even

more secure data flow semantics are desired.

On the other hand, the absence of Lemma D can affect the conditions outside of the

container and we provide a practical example of how the integrity of the host could

be potentially affected. Suppose that we utilise a value obtained from one of these

registers without adequate circumspection. For example, a value returned by a

thread of execution within the isolation container is used to index into a memory

array. Should that return value be illegal, it would be possible to overwrite or corrupt

host memory, including triggering a segmentation fault which could crash the host.

Chapter 3: Isolation Architecture Design and Rationale 52

Or consider an even more careless situation in which this value is used to index into

a jump target. In such a scenario, the execution flow of the host could be altered

through this illegal value, forcing for example, a return-to-libc attack [23].

Therefore, Lemma D gives rise to a more general condition, C2:

A host must never utilise a value obtained from within the isolation container

without ensuring that it is adequately validated.

However, it must be explicitly noted that validating these values is a responsibility

which is delegated to the host application itself, and cannot be implemented by a

LibVM implementation, as the legal range of values are meaningful in the context of

the host application only. However, this can also be considered a separation of policy

and mechanism, as the security policy must be enforced in a meaningful way by the

host application, and LibVM only provides the mechanisms with which to do so.

Therefore, as with any security mechanism, an incorrect security policy could result

in exploitable vulnerabilities.

It should also be noted that this places a considerable burden on the host application

as careful validation of values is required, especially when dealing with potentially

malicious components. We discuss ways of mitigating this burden through

techniques such as compiler support and predefined security templates, in Section

7.3.

We also observe that this expansion of rights to include host access to CPU registers,

was done in full accordance with the principle of granting least privilege [114], and

that the additional privileges proffered to the isolation container are indeed minimal.

We also continue to preserve our invariant, in concordance with our specification.

3.4.3.3 Deriving Condition C3

The isolation container discussed thus far can perform rudimentary computations, but

is still unable to perform extensive ones, due to the absence of any sizeable volatile

memory, apart from the CPU registers. We now introduce this memory. Once

again, to preserve total isolation, we would have to ensure that this memory is

entirely separate from the host’s memory with the following conditions.

Lemma E: The CPU within the isolation container cannot access memory outside of

its allocated regions, in accordance with condition C1.

Chapter 3: Isolation Architecture Design and Rationale 53

Lemma F: The Host cannot access memory within the isolation container.

The above two conditions would continue to keep all our conditions intact, since the

introduction of the above disallows interaction between host and container.

Once again, it is possible to show concrete examples of how the absence of the above

conditions could affect the host. If a thread of execution T within a LibVM

container, can access a memory location M outside of its boundary, it trivially

follows that it can compromise the host’s integrity, since it could potentially write to

memory locations used or accessed by the host. In the most innocuous scenario, it

can result in data leakage, or perhaps an attempt to access the host’s memory could

result in accessing an unmapped region of memory, causing a page fault and causing

thread T to crash with no significant effect on the host. However, if it is a mapped

page, it could cause data corruption in the host’s memory. In the most dangerous

scenario, it could trigger a buffer overflow [23] or otherwise induce the host to

execute arbitrary code.

Lemma F could be similarly demonstrated in practice by the same logic used in

demonstrating Lemma B previously.

We can therefore readily promote Lemma E to a required condition, since allowing

the isolation container to access data outside of its regions is far too dangerous, as

shown above. Consequently, our next condition C3 is:

A thread of execution within a LibVM container cannot access memory regions

outside of its allocated regions.

However, Lemma F is too restrictive for the same reasons that Lemma B was too

restrictive, which is that the host cannot access useful results of computations made

by the container. Being able to access and share this memory with the host is

therefore a desired characteristic of LibVM. However, allowing access to this

memory results in the same weaknesses as those caused by allowing access to

registers, since registers are also a form of memory. Therefore, it trivially follows

that lemmas C and D apply in this situation, and by the same process of

argumentation, gives rise to the same condition C2. Condition C2 has already been

sufficiently generalised to apply to both memory and registers. In other words,

Lemma F can be discarded in favour of Condition C2, which gives us greater

flexibility while preserving our desired properties.

Chapter 3: Isolation Architecture Design and Rationale 54

3.4.3.4 Deriving Conditions C4 and C5

Finally, we add one more necessary capability to our hypothetical isolation container

- the ability for the isolation container to trigger a domain transition in order to

request additional required (and allowed) resources from its host. We refer to this

transition as a “host call”, analogous to a system call made by the host process itself.

Several steps are involved in this process

a. The isolation container must trigger a domain transition indicating that it

wishes to avail itself of a particular host call.

b. The host must resume execution from a predefined, safe call gate (the

isolation container cannot be allowed to make the host resume from an

arbitrary location).

c. The host must obtain the parameters required for the requested host call from

the isolation container’s memory (or registers).

d. The host must execute this request, once it has determined that the requested

action is “safe”.

e. The host must place the results in the isolation container’s memory or

registers.

f. The host must return control to the isolation container so that it can resume

execution by triggering a domain transition.

Step a above does not affect our isolation objectives. It is merely a step in the

mechanism of a host call. In contrast, step b has implications for our isolation

objectives, as the host must resume from a safe location, and not an arbitrary one

triggered by a thread of execution within the Isolation Container. However, we

assume that this too is an integral part of the transition mechanism.

Step c accesses the isolation container’s memory. Such accesses are already covered

under Condition C3, which states that all such accesses must be thoroughly

validated.

Step d involves determining whether an action is “safe” before execution. At this

point however, complexity erupts. Of the resources discussed so far (CPU and

memory), the isolation container has always been provided private “copies”, thus

maintaining isolation. However, any new resources requested at this point may well

Chapter 3: Isolation Architecture Design and Rationale 55

be shared resources. For example, a library executing within the isolation container

may request to write to a file. This file may potentially be accessed by the host itself

or some other process in the system. The library execution within LibVM may

proceed to corrupt this file, affecting the host or the rest of the system.

Therefore, our isolation guarantees are most subject to vulnerablity during the

execution of this step, due to the sheer number of possible actions. LibVM itself

cannot determine a priori what actions are safe, since it is the host that determines

what the host call interface is. As a result, this decision must necessarily be deferred

to the host. Therefore, the same caveats which applied to condition C2 apply here.

However, we observe that “an application can do little damage if its access to the

underlying operating system is restricted”, which is the core assumption behind

system call interpositioning based isolation mechanisms [42]. Since a component is

a subset of an application, it follows that if the components access to both the host

and the underlying operating system can be restricted, the damage it can cause will

be minimal. Therefore, at the minimum, LibVM provides defence in depth, by

adding an extra layer in which the principle of complete mediation can be

exercised [114].

By looking at the above requirements, we formulate two more conditions, which are

C4: The domain transition mechanism provided by LibVM must not

compromise the host’s integrity.

C5: An action executed by the host on behalf of a library isolated within LibVM

must not compromise the host’s own integrity.

These two conditions encompass all the steps above.

We consider both these lemmas to be full requirements in order to maintain our

invariant that the host’s integrity cannot be compromised by a library executing

within a LibVM container.

3.4.3.5 Final Conditions

Through a process of incrementally expanding the abilities of a LibVM container, as

outlined in our methodology, we have carefully derived the conditions under which a

library executing within that container can be guaranteed to be unable to compromise

its host. This incremental process relied on many security principles, including the

Chapter 3: Isolation Architecture Design and Rationale 56

principle of least privilege [27, 114], where at each step, we provided the minimal

abilities necessary to accomplish the actions executing within that step and added

conditions which ensured that our target invariant would be preserved. All of these

conditions taken together therefore, present the necessary and sufficient conditions to

guarantee that a library executing within a LibVM container cannot compromise the

integrity of its host.

The five propositions that were derived are.

Condition 1 (C1): The CPU utilised by the LibVM container must be virtualised

such that it is isolated from the host application.

Condition 2 (C2): A host can never utilise a value obtained from within the isolation

container without ensuring that it is adequately validated.

Condition 3 (C3): A thread of execution within a LibVM container cannot access

memory regions outside of its allocated regions.

Condition 4 (C4): The domain transition mechanism provided by LibVM must not

compromise the host’s integrity.

Condition 5 (C5): An action executed by the host on behalf of a library isolated

within LibVM must not compromise the host’s own integrity.

It should be noted that conditions C2 and C5 are outside of the control of the security

mechanisms provided by LibVM, and must be guaranteed by correct implementation

of security policies by the host, as discussed in Section 3.4.3.2. Nevertheless, both of

these conditions must be fulfilled for assurance of correctness.

Next, we discuss the architecture which can be used to realise this .functional

specification.

Chapter 3: Isolation Architecture Design and Rationale 57

3.5 LIBVM ARCHITECTURE

The basic architecture of LibVM consists of shared library isolation domains, each of

which can contain multiple shared libraries, as depicted in Figure 3.1.

This model enables individual domains to have different isolation policies,

depending on the level of trust awarded to the shared library. Domains can also

contain multiple shared libraries, allowing an isolation policy to be shared.

From an application developer’s perspective, LibVM is a sandboxing library that can

be used to define such an isolation domain and to load additional shared libraries into

it. One significant assumption in LibVM is that it provides address space

transparency, in that pointer values can be freely passed from the containing host to

the isolation domain and vice versa. (The rationale for this design decision is laid

down in Section 3.6.3.) Therefore, the developer must specify the size of the

reserved address space range in advance. Although this specified address space is

initially only reserved and not actually used yet, it does have the restriction that it

cannot subsequently be relocated, since all pointers within this address space would

need to be adjusted.

 Once a shared library is loaded, the methods in the library can be invoked in a

manner analogous to the POSIX-based mechanism used in most UNIX systems.

When a method is invoked, a controlled transition must be made into the isolation

container, and the code then executed within it, with any return values returned to the

host. The shared library is in turn free to make additional system calls, all of which

can be intercepted by the host and proxied as desired by the programmer.

Importantly, LibVM’s isolation domain separates “policy” from “mechanism” by

defining an interface which abstracts away the details of the specific implementation.

In order to test this, we have created two separate implementations, one based on

hardware virtualization support and another based on shared memory and ptrace-

based system call interpositioning. However, this chapter focuses on laying out the

details of the interface in the abstract, with concrete implementations being discussed

in chapters 4 and 5.

Chapter 3: Isolation Architecture Design and Rationale 58

3.6 KEY ISSUES WITH A LIBRARY ISOLATION ARCHITECTURE

In this section we outline some of the rationale underlying the design of our LibVM

architecture.

3.6.1 Changes to Existing Development Practice

In order for a library isolation architecture to be useful in practice, it is also necessary

for it to be similar to existing shared library manipulation mechanisms, so that

isolating shared libraries in separate domains does not require a significant re-

engineering effort. Having to rewrite shared libraries in their entirety would be

detrimental to the practicality of isolating libraries and could easily be rejected on

economic and business grounds. Therefore, the library code should remain largely

Shared library text/data

Shared library text/data

Figure 3.1: Process memory layout in a program which utilises LibVM

Host Application

LibVM sandbox library

Stack

Isolation Domain 2 -

Sandboxed Shared

libraries

System call

interpositioning

layer

Isolation Domain 1 -

Sandboxed Shared

libraries

Chapter 3: Isolation Architecture Design and Rationale 59

“as is” and ignorant of the fact that its components are executing within an isolated

domain.

The hosts too should require minimal change, and in keeping with this requirement,

the API is designed to closely mimic the POSIX API for shared library manipulation,

so that host applications can be ported to use the isolation API with less effort. In

this way, the additional software effort is limited to the host program.

3.6.2 Implementation Agnosticism

The isolation API separates policy from mechanism by defining an interface which

abstracts away the details of the specific implementation. In order to test this, we

have created two separate implementations, one based on CPU hardware

virtualization support and another based on shared memory and ptrace-based system

call interpositioning (Other mechanisms are possible, such as an RPC-based

mechanism which isolates components into different operating system processes).

This frees the application developer from being tied to a specific implementation,

allowing variation in the mechanism chosen, based upon security requirements.

3.6.3 Shared Address Space

Given that support for shared libraries is generally provided at an operating system

level, it stands to reason that isolation of those libraries is also most easily

implemented at an operating system level. Mendelsohn [93] argues that

“components” should be a “first class” concept in operating system development and

deployment. Unfortunately, this has not come to pass, for two key reasons.

a. Software components in shared libraries are usually designed to share the

address space of their hosts, in order to make data sharing between the

host and the library component simpler. However, due largely to the

unavailability of a hardware mechanism to simultaneously share address

space and constrain instruction execution within an isolation boundary,

few attempts have been made to isolate libraries from the hosting

application (Exceptions to this, such as Google’s Native Client, Vx32 etc.

have been reviewed in Chapter 2).

b. There are significant performance costs in switching between address

spaces [86].

Chapter 3: Isolation Architecture Design and Rationale 60

With regard to the first disadvantage, the main issue is that pointers have no meaning

beyond the address space in which they were originally created, requiring that they

be specially manipulated or readjusted before use. Consider a simple data structure

with a pointer to another data structure, such as a linked list. Any attempt to pass this

data structure unmodified between private address space boundaries would render

the data structure invalid, as the memory address to which the structure is copied

cannot be guaranteed to be the same. All pointers within the structure would have to

be readjusted so that they remain valid in their new location. Therefore, some

additional technique is needed to share data structures between address spaces, such

as marshalling or pointer “swizzling” [140], adding overhead and complexity to the

process and making data sharing between address spaces awkward. While this can

be avoided in a classic segmented memory architecture, as all addressing is done

relative to the base of the segment, it complicates inter-segment addressing, which

led to it dwindling out of use in favour of a flat address space.

Secondly, address space switching has traditionally come at significant cost. While

address space switching with schemes like hardware supported memory

segmentation can reduce such costs, they have fallen out of favour due to the

increase in overall software development complexity, as mentioned above. The

currently available schemes, such as operating system supported context switches,

incur significant overhead, and synchronization is required when crossing address

spaces [19].

Therefore, the benefits of address space sharing have given rise to research into

single address space operating systems, particularly in 64 bit environments, where

address space is abundant [15, 53, 75].

Such address space sharing becomes even more important for fine-grained

components, where it becomes prohibitive to bear the cost of complete context

switches or to suffer the complexity of programming for different address spaces.

Unfortunately, few viable mechanisms exist for isolating components within the

same address space, as contemporary hardware isolation mechanisms were designed

to isolate processes into different address spaces. While there have been attempts to

commandeer existing paging and segmentation hardware for this purpose, they do so

at the cost of reduced isolation guarantees [19].

Chapter 3: Isolation Architecture Design and Rationale 61

Many other approaches to component isolation simply do not address this dimension

at all, falling back to traditional RPC mechanisms and shared memory pages in order

to pass data between a component and its host [8, 32, 144, 145]. This, of course,

incurs a performance and complexity penalty in terms of parameter marshalling

across process boundaries, or reduced functionality (the inability to use pointers)

when using shared pages.

Thus, the very benefits of fine-grained components are lost in the process, as simple

and efficient sharing of data structures is hampered. While shared memory pages

can be conceivably made to emulate this functionality by mapping the same memory

pages into different processes at the same virtual address, this must be done with

great care to avoid potential conflicts, as synchronization between two processes is

required. Reaching an agreement becomes proportionately more difficult when

multiple components are involved [53].

Thus, this problem remains largely unsolved or altogether neglected in practice,

mainly due to the lack of feasible alternatives. Now however, hardware

virtualization [134] offers a greater degree of flexibility that can be utilised in

enabling secure address space sharing, and this forms the basis of one approach

presented in Chapter 5, for isolating components with strong guarantees while

preserving the benefits of a single address space.

 1 void *handle;

 2 typedef void (*hello_func)(char * str);

 3

 4 /* open the needed object */

 5 handle = dlopen("/usr/home/me/libfoo.so", RTLD_LOCAL |
 RTLD_LAZY);

 6

 7 /* find the address of function and data objects */

 8 hello_func fptr = (hello_func)dlsym(handle, "my_function");

 9

10 /* invoke function, passing value of string as a parameter */

11 (*fptr)("hello world");

Figure 3.2: POSIX example of shared library call

Chapter 3: Isolation Architecture Design and Rationale 62

Nevertheless, in designing a general purpose isolation architecture, no assumption

can be made that the shared library must necessarily reside in the same address space

as its host, in keeping with the previously stated goal of implementation agnosticism.

3.7 LIBVM - API SPECIFICATION

To solve these problems, we have designed an Application Programming Interface

specification sufficient to achieve component isolation with minimal changes to

existing coding practices. In this section, we present the API specification in a

generic form. Specific implementations of this interface are presented in Chapters 4

and 5.

3.7.1 Overview of API Specification

As mentioned previously, the interfaces are largely implementation independent,

with the only assumption being that the library executes within the same address

space as the hosting container, although strictly speaking, even this assumption is

only necessary for certain parts of the functionality requirements. The basic interface

strives to emulate the standard POSIX interfaces, which we describe below.

3.7.2 Existing POSIX Interface

The POSIX standard [61] defines three basic calls for loading a component into its

host address space. These are as follows.

1. dlopen – Loads the library

2. dlsym – Extracts contents

3. dlclose – Unloads the library

The above three system calls are utilised in most UNIX-based operating systems

(Microsoft Windows utilises similar system calls – LoadLibrary [96],

GetProcAddress [95] and FreeLibrary [94]).

The code snippet in Figure 3.2 highlights the basic process of loading a shared

library and invoking a function call within that library. As line 5 shows, the

dlopen function is responsible for opening the shared library, giving its location,

and returning a handle for future references to the library. This handle can be

subsequently used to obtain a pointer to a symbol within the library (line 8). The

Chapter 3: Isolation Architecture Design and Rationale 63

symbol may be a function or data pointer. If it is a function pointer, it can then be

utilised to directly invoke the function (line 11).

Several observations can be made at this point.

1. It is trivial to obtain a pointer to a function and invoke it directly as in line

8, without the necessity for parameter marshalling, demonstrating

programming simplicity within a single address space memory

environment.

2. Preserving this same model is advantageous, as a lot of previously written

code can be transferred to this model with minor changes.

3. The interface is suitably simple and easy to understand for something as

important as dynamic shared libraries.

3.7.3 LibVM Interface

The LibVM interface was designed to closely mimic the functionality of the POSIX

interface. This is in keeping with the idea of making it easier to port applications to

be able to use LibVM isolation, yet general enough to support multiple

implementations. Therefore, the POSIX interface can also be implemented as a

“subset” of the LibVM interface, which however, would be equal to having no

isolation at all.

The most important methods provided by LibVM’s interface are outlined below.

1. libvm_initialise – Initialises the isolation subsystem

2. libvm_open – Loads a library

3. libvm_sym – Extracts contents

4. libvm_close – Unloads the library

5. libvm_guest_malloc – Allocates memory within the guest component’s

address space

6. libvm_guest_free – Frees memory allocated by a guest component

7. libvm_destroy – Frees resources used by the isolation sub-system

Predictably, the libvm_open function maps closely to dlopen, libvm_sym to dlsym

and libvm_close to dlclose.

Chapter 3: Isolation Architecture Design and Rationale 64

In order to demonstrate the functionality of this approach, the code snippet in Figure

3.3 can be contrasted with the POSIX implementation.

As demonstrated in Figure 3.3, the basic interface to the host is almost identical to

the POSIX case. The differences are the addition of an extra initialisation function in

line 5, which must be done once to initialise the isolation subsystem, followed by the

subsequent destruction of it (not shown). It should be noted that no changes are

required to the target shared library. The calling semantics of the function also

remain identical as in lines 8, 11 and 14, meaning that, in simple scenarios, the

application can be trivially ported to execute the library within an isolated

environment.

In addition, this interface specification avoids being bound to a specific

implementation of LibVM, in line with previously stated goals.

3.7.4 Interface Details

This section discusses each of the methods in the interface in greater detail, and

describes their rationale and function. The section also tabulates the functions in a

summarised form, and serves a point of reference throughout this thesis.

 1 void *handle;

 2 typedef void (*hello_func)(char * str);

 3

 4 /* Initialise the isolation sub-system */

 5 struct libvm * libvm_ptr = libvm_initialise(argv);

 6

 7 /* open the needed object */

 8 handle = libvm_load(libvm_ptr, "/usr/home/me/libfoo.so");

 9

10 /* find the address of function and data objects */

11 hello_func fptr = (hello_func)libvm_sym(handle, "my_function");

12

13 /* invoke function, passing value of integer as a parameter */

14 (*fptr)("hello world");

Figure 3.3: LibVM example of shared library call

Chapter 3: Isolation Architecture Design and Rationale 65

3.7.4.1 libvm_initialise

The purpose of this function is to initialise a LibVM isolation domain. It is provided

so that an implementation has an opportunity to perform state initialisation, such as

the allocation of initial resources required for the domain. It should be noted that

multiple invocations of the method are possible, and therefore, multiple isolation

domains can be created.

The method accepts a single argument in the form of an array of environmental

values. This array can be used to provide various implementation specific properties

so that the isolation domain can be fine-tuned if necessary. An array of arbitrary

length can be supplied, with the end of the array indicated through a NULL

terminator. The implementation specific parameters must be supplied as a character

array with a name=value format, where name is the parameter name and value is the

parameter’s value.

The function returns a handle to the newly created isolation domain, which can be

used to refer to and manipulate the newly created domain. All subsequent calls to a

LibVM method must necessarily pass in the libvm_context, either directly or in

an encapsulated form. Each invocation of the initialise method should return a

unique libvm_context, each pointing to a unique isolation domain. All

subsequent methods in the LibVM interface necessarily require this handle in order

to identify, retrieve state from and modify the isolation domain. In the event of an

error, a non-NULL context must nevertheless be returned, so that an implementation

can determine the cause of the failure, through a call to

libvm_get_last_error (see Table 3.8).

The libvm_initialise function is summarised in Table 3.1.

3.7.4.2 libvm_open

This method is analogous to the dlopen command in a POSIX implementation. It is

provided so that shared libraries can be loaded into an isolation domain initialised

previously.

Multiple shared libraries may be loaded into a single isolation domain. Each

invocation therefore, returns a unique, opaque, implementation specific handle that

can be subsequently used by the implementation to identify a library. Therefore, the

Chapter 3: Isolation Architecture Design and Rationale 66

handle must not be interpreted by the caller in anyway. In addition, the

implementation must ensure that the handle encapsulates the libvm_context returned

by the initialise method as well, so that the parent isolation domain can be obtained

from a library handle.

The filename of the library to be loaded must be passed into the method. Each

implementation may have its own security policy and search paths for locating the

library. Additional implementation specific parameters can also be passed through a

flags parameter, although this parameter would ideally remain unused, to avoid such

implementation specific dependencies.

This libvm_open function is summarised in Table 3.2.

3.7.4.3 libvm_sym

This method provides a means for resolving symbols within libraries loaded into a

LibVM sandbox. It is analogous to the dlsym method provided in a POSIX

implementation. Its primary use is in providing the caller with a reference to a

function within the library, which can then be used to invoke that function.

Therefore, in the simplest possible implementation, it would return a direct function

pointer to the library method, which is exactly what the dlsym method in a POSIX

implementation does. However, such a function pointer would provide no isolation,

since calling the function would cause it to be executed within the host’s domain,

effectively providing the untrusted function with the same privileges as the host.

Therefore, a more advanced implementation of LibVM should return a proxy

function in place of the actual library function, which will also perform an isolation

domain switch into the LibVM sandbox, before executing the actual library function,

thus properly isolating the shared library. The proxy function would be responsible

for copying parameter values safely from the caller’s address space into the

sandbox’s address space.

This creates complications when passing values by reference, or when passing values

which are pointers to values residing in the host’s address space. The values would

need to be serialised and copied over to the sandbox’s shared address space, so that

the library executing within the sandbox can access these values. Alternatively, the

Chapter 3: Isolation Architecture Design and Rationale 67

values should be pre-allocated within the shared address space, so that the untrusted

code can reference them without affecting the host.

This libvm_sym function is summarised in Table 3.3.

3.7.4.4 libvm_close

This method is provided in order to unload a shared library from within a LibVM

sandbox, thus freeing up the memory and resourced used by that library. It is

analogous to the dlclose method in a POSIX implementation. Once the dlclose

method is called, previous handles issues through the libvm_open method should be

invalidated. However, the isolation domain should not be destroyed, and it should be

possible to reload the library afresh by calling the libvm_open method.

This libvm_close function is summarised in Table 3.6.

3.7.4.5 libvm_guest_malloc

This method’s purpose is to provide a means through which to allocate memory

within a guest’s address space. While address space transparency is assumed

between the guest and host, it is also essential that the guest code executing within

the sandbox cannot access memory outside of the bounds of the sandbox. Therefore,

this method provides a means by which a host application can negotiate a shared

chunk of memory within the sandbox’s allowed memory regions, which can then be

addressed by both the untrusted guest code and by the host application itself.

While this memory region can be freely accessed by the guest, the host must take

precautions when utilising a value obtained from this shared address space and treat

is as untrusted, since untrusted code executing within the sandbox may

asynchronously manipulate that memory. Therefore, validation must be performed

before using such values, and TOCTOU [39] bugs should be avoided.

This libvm_guest_malloc function is summarised in Table 3.4.

3.7.4.6 libvm_guest_free

This method is the counterpart of the libvm_guest_malloc method and provides a

means by which to release memory previously allocated with libvm_guest_malloc. It

should be noted that the memory must be released from the guest’s address space.

Thus, an invalid free or a double free invocation would not result in an error in

Chapter 3: Isolation Architecture Design and Rationale 68

the memory tables of the host’s address space. An invalid free may corrupt the

guest’s address space, but this must be limited to the pre-defined address space of the

guest, thus having no effect on the host.

This libvm_guest_free function is summarised in Table 3.5.

3.7.4.7 libvm_destroy

This method provides means by which an isolation domain can be completely

destroyed and all resources used by it, released. Therefore, an implementation should

suspend the execution of code within the sandbox, unload all libraries and release all

resources used by it.

This libvm_destroy function is summarised in Table 3.7.

Method name: libvm_initialise

Method description: Initialises the isolation subsystem. Any state initialisation,

global to an isolation domain, can be performed here.

Method signature: struct libvm_context *

libvm_initialise(const char *const

*argv)

Parameter description:

argv – An array of strings containing environmental

values, with the last element being equivalent to a NULL

value. This can be used to pass in an array of arbitrary

length, containing implementation specific parameters in

name=value format.

returns – A pointer to a libvm_context. A

libvm_context is a handle that can be used to retrieve

isolation domain state by the LibVM implementation. All

subsequent calls to a LibVM method must necessarily pass

in the libvm_context, either directly or in an

encapsulated form. Each invocation of the initialise

method should return a unique libvm_context, each

Chapter 3: Isolation Architecture Design and Rationale 69

pointing to a unique isolation domain. In the event of an

initialisation error, a non-NULL libvm_context must

nevertheless be returned. Callers can retrieve a detailed

error code by passing in this invalid libvm_context to

libvm_get_last_error.

Notes: In the simplest implementation (POSIX case, with no

isolation), this method would nevertheless return a basic

libvm_context with the error_code field set to 1

(SUCCESS). In more advanced uses, the

libvm_context’s impl_data field can be used to

store additional implementation specific details.

Table 3.1: Initialising the isolation subsystem – libvm_initialise

Method name: libvm_open

Method description: Opens a shared library, given its path, and loads it into a

previously defined isolation domain.

Method signature: void * libvm_load(struct libvm_context

*libvm_ptr, char * filename, int flags)

Parameter description:

libvm_context – A pointer to a specific instance of an

isolation domain, obtained by calling

libvm_initialise.

filename – The filename/path of the library to be

loaded.

flags – Additional implementation specific parameters.

Implementations must supply intelligent defaults if a NULL

value is passed as the flags parameter.

returns – A pointer to a handle which can be used by the

implementation to identify the library in future. This

Chapter 3: Isolation Architecture Design and Rationale 70

handle must not be interpreted by the caller in anyway, and

must be treated as opaque. In a typical implementation,

the handle will also encapsulate the libvm_context. If

an error occurs during libvm_open, the returned

libvm_context can be used with the

get_last_error function to obtain detailed error

information.

Notes: In the simplest implementation (POSIX case, with no

isolation), this method would be equivalent to the dlopen

command, with the flags parameter functioning

identically. In a more advanced implementation, the

flags parameter can be used to pass implementation

specific details, but ideally, it would remain unused,

shielding the caller from any implementation specific

details.

Table 3.2: Loading a library - libvm_open

Method name: libvm_sym

Method description: Accepts a handle of a previous opened library and a

symbol name, and returns an address via which the value

of the symbol can be accessed.

Method signature: void * libvm_sym(void * handle, char *

name)

Parameter description:

handle – A handle to a library returned by a previous

call to libvm_open.

name – The name of the symbol that should be located.

returns – An address via which the symbol can be

Chapter 3: Isolation Architecture Design and Rationale 71

accessed. If the address is a function, then it must be

possible to invoke the function as any other. The function

may be a proxy function that takes care of switching

isolation domains before invoking the actual library

function. If an error occurs during libvm_sym, a NULL

value may be returned, after which the current

libvm_context may be used with the

get_last_error function to obtain detailed error

information.

Notes: In the simplest implementation (POSIX case, with no

isolation), this method would be equivalent to the dlsym

command. If the returned symbol is a function pointer, it

should be possible to directly invoke the function as with

invoking a function via any other function pointer.

Advanced implementations may return a proxy function in

place of the actual library function, with the proxy function

being responsible for switching to and back from the

isolation container, and copying parameters and return

values back to appropriate locations so that the caller and

callee can both access these values.

Table 3.3: Extracting contents - libvm_sym

Method name: libvm_guest_malloc

Method description: Allocates memory in the isolation container’s address

space, which should be accessible to both the host and the

guest. Address transparency between guest and host is

assumed.

Method signature: void * libvm_guest_malloc(void *

handle, size_t size)

Chapter 3: Isolation Architecture Design and Rationale 72

Parameter description:

handle – A handle to a library returned by a previous

call to libvm_open.

size – The amount of memory to be allocated in bytes.

returns – The address of the allocated memory region or

NULL in the event of an error.

Notes: This method has no equivalent in the POSIX case, but has

been provided in order to enable the host and guest to

negotiate a shared address space. The guest cannot access

the host’s memory, in order to maintain a strict isolation

boundary, and any shared memory must be established

within the guest’s address space. The host should copy

values back upon completion and double check the values

in order to guard against timing attacks.

Table 3.4: Allocating memory within the guest component’s address space - libvm_guest_malloc

Method name: libvm_guest_free

Method description: Frees memory previously allocated by

libvm_guest_malloc.

Method signature: void libvm_guest_free(void * handle,

void * ptr)

Parameter description:

handle – A handle to a library returned by a previous

call to libvm_open.

ptr – The address of the memory in the guest’s address

space, to be freed.

returns – n/a

Notes: This method has no equivalent in the POSIX case, but has

Chapter 3: Isolation Architecture Design and Rationale 73

been provided in order to enable the host and guest to

negotiate a shared address space. The free method must

only be performed within the guest’s address space. Thus,

an invalid free or a double free invocation would not

result in an error in the memory tables of the host’s address

space. An invalid free may corrupt the guest’s address

space, but this must be limited to the pre-defined address

space of the guest.

Table 3.5: Freeing memory within the guest component’s address space - libvm_guest_free

Method name: libvm_close

Method description: Unloads a library previously loaded by libvm_open.

Method signature: void libvm_close(void * handle)

Parameter description:

handle – A handle to a library returned by a previous

call to libvm_open.

returns – n/a

Notes: In the simplest implementation (POSIX case, with no

isolation), this method would be analogous to the

dlclose command. The implementation can unload the

library from the isolation domain and free any memory

utilised by it. However, the isolation domain must not be

destroyed unless a close to libvm_destroy is made.

Table 3.6: Unloading a library - libvm_close

Chapter 3: Isolation Architecture Design and Rationale 74

Method name: libvm_destroy

Method description: Unloads the entire isolation container and frees up any

resources used by it.

Method signature: int libvm_destroy(struct libvm_context

* libvm_ptr)

Parameter description:

libvm_context – A handle to an isolation domain

returned by a previous call to libvm_initialise.

returns – 1 on success, 0 otherwise. Error codes can be

obtained via a call to libvm_get_last_error.

Notes: This method does not have an analogous POSIX

command. The implementation should unload the entire

isolation domain and free all memory utilised by it. Any

libraries within the domain must also be unloaded.

Table 3.7: Freeing resources used by an isolation domain - libvm_destroy

Method name: libvm_get_last_error

Method description: Returns an error code by which the last error code returned

by the API can be accessed.

Chapter 3: Isolation Architecture Design and Rationale 75

Method signature: char * libvm_get_last_error (struct

libvm_context * libvm_ptr)

Parameter description:

libvm_context – A handle to an isolation domain

returned by a previous call to libvm_initialise.

returns – NULL if there are no errors, or a human readable

string with a description of the error that occurred.

Notes: This method is analogous to the dlerror command, and

in a POSIX implementation, would be identical.

Table 3.8: Getting last error code - libvm_get_last_error

3.8 IMPLEMENTATION NOTES

While our LibVM interface strives to be implementation agnostic, and the basic

methods required for its functionality do not expose many implementation specific

details, thus enabling a variety of conforming implementations, all implementations

do rely on a few assumptions, which are outlined below.

3.8.1 Requirements

The ideal implementation of LibVM relies on the availability of a CPU implemented

virtual machine environment wherein the execution of arbitrary code is possible in a

controlled fashion. The VM environment must match the architecture and

implementation of the hosting application. Strictly speaking, LibVM requires a

virtual machine library with the following specific features.

1. It must support full virtualization of the CPU features and memory.

2. It must be compatible with the host environment’s architecture (e.g., 32-bit

Intel x86).

3. Memory regions must be supported, with access attempts to unmapped

regions resulting in trappable page faults.

4. It must provide full control over its address space layout (e.g., in a 32 bit

system, it must provide access to all 4 GB of available address space).

Chapter 3: Isolation Architecture Design and Rationale 76

5. Privileged instructions (e.g., interrupt invocations, syscall instructions)

must be trappable.

6. The host operating system must have a clearly defined system call

interface, so that system-call interpositioning is possible (currently

unavailable on Microsoft’s Windows operating system).

Therefore, the primary version of LibVM is built on LibKVM [107], which provides

an abstraction layer over the hardware virtualization support built into newer Intel

and AMD x86 processors, and is presented in Chapter 5. The combination of

LibKVM and hardware virtualization support provides an extremely light-weight

virtual machine facility which fulfils basic CPU and memory virtualization

requirements well, without incurring the overhead of a full-blown virtual machine

implementation. Performance measurements confirm that the overhead is low

enough to offer competitive performance in comparison to other techniques, as

shown in Chapter 5. However, a software-based implementation which relies on

existing operating system isolation facilities, has also been implemented, and is

presented in Chapter 4.

3.9 CONCLUSION

This chapter has defined the architecture and functional specification for LibVM,

identifying the key conditions under which LibVM can be guaranteed to be correct

with respect to isolating libraries from their host, such that the host is fully able to

control the execution of the libraries. Five conditions were identified under which

this guarantee could be provided, two of which are reliant on the correct

implementation of security policies by the host. Each condition was analysed in

depth. However, these five conditions are not designed to guarantee a non-

interference policy [122] as LibVM was not build with the aim of enforcing a secure

information flow policy. Nevertheless, these conditions can be expanded upon to

provide such guarantees, if required. The section has also provided an overview of

the functions underpinning our design of an isolation container, as well as the

rationale behind each method in the Application Programming Interface. The API

specification strives to be implementation independent, and as a result, there are

three implementations — one degenerate case which is equivalent to the plain

Chapter 3: Isolation Architecture Design and Rationale 77

POSIX API’s structure with no isolation, and two other implementations which are

described in Chapters 4 and 5.

Chapter 4: Software Solution – Process Tracing Based 78

Chapter 4: Software Solution – Process

Tracing Based

4.1 INTRODUCTION

This chapter describes a reference implementation of the LibVM Application

Programming Interface (API) as defined in Chapter 3. It is based on existing

software facilities, and serves to highlight the general techniques that can be used to

realise LibVM’s API. It relies on existing Operating System isolation features, in

contrast to the hardware virtualization supported implementation described in the

next chapter. The purpose of this implementation is to assess the possibility of

appropriating existing Operating System functionality for the purpose of intra-

address space isolation, its effectiveness, as well as performance implications. This

chapter delves into these aspects, and provides an in-depth discussion of the

implementation details.

4.2 APPROACH

In selecting an appropriate software-based implementation for library component

isolation, we evaluated several of the techniques discussed in Chapter 2. While

Software Fault Isolation (SFI) has been successfully utilised to “sandbox” libraries, it

places many restrictions on the origin and source of the shared libraries themselves,

as well as the subset of machine instructions such libraries are allowed to execute. In

order to enforce these restrictions, existing approaches require that the libraries be

recompiled through custom tool chains [32, 144] and existing libraries in binary form

be altogether rejected [144]. Our goal was to avoid these restrictions, allowing a

binary component to take advantage of any new or existing machine instruction, as

long as it was not a privileged one, as well as to avoid the burden of requiring that

binary components obtained from various sources be recompiled according to the

restrictions imposed by an SFI implementation. Given these constraints, we rejected

SFI as a suitable approach to this problem.

Chapter 4: Software Solution – Process Tracing Based 79

A well-known technique used to execute untrusted programs in a sandboxed

environment, thus restricting them from accessing system resources, is System Call

Interpositioning [39, 40, 42, 70, 101]. It is based on the idea that “an application can

do little harm if its access to the underlying operating system is appropriately

restricted” [42] and therefore, denying or modifying a system call before the

Operating System executes it, is an effective way to jail the application. Operating

system provided tracing mechanisms such as ptrace, or kernel level drivers, can be

used to intercept all system calls made by a jailed application, and to modify these

system calls as needed, effectively confining the application to a restricted subset of

resources.

We decided to investigate the possibility of utilising a similar mechanism, although

most existing implementations were meant to confine entire processes, not libraries

within a process. Nevertheless, the approach itself presented several advantages,

such as the ability to utilise existing OS facilities such as ptrace, /proc etc. To our

knowledge, ours is the first attempt to utilise this method for jailing individual

libraries used by a process.

There were several potential ways to set about this. One approach was to use a

kernel module to intercept system calls. However, errors or faults in kernel drivers

are likely to be more disastrous than at a user level. Therefore, we decided to reject

this approach in favour of user level tracing mechanisms.

 Of the user level tracing mechanisms, the most well-known are ptrace and

/proc [70], the latter of which provides tracing facilities on SUN’s Solaris operating

systems. We decided to utilise the ptrace interface since it is available in our chosen

operating system - Linux.

Ptrace provides a fairly simple interface by which one process can trace the

execution of another. As the traced process executes, the ptrace interface provides a

callback on the execution of each system call, allowing the tracing process to observe

and manipulate the system call as desired. In addition, a rudimentary interface is

provided to write to the traced process’s memory.

This interface was originally introduced to support debuggers and as a result, ptrace

has several limitations. One of the main limitations is that it is an “all or nothing”

interface – in that either all system calls need to be traced, or none can be. There is

Chapter 4: Software Solution – Process Tracing Based 80

no possibility of being selective in choosing which calls to trace, incurring the

overhead of a callback on each system call. In contrast, the /proc interface allows for

more fine grained control. One of the biggest shortcomings in ptrace however, is

that it does not provide a way to abort or ignore a system call. However,

workarounds for these issues have been demonstrated [40, 101] and do not pose a

significant impediment to its use.

4.3 IMPLEMENTATION OVERVIEW

Figure 4.1 depicts the basic idea behind enabling library isolation using process

tracing. The host application is the parent, and the library executes in a different

Figure 4.1: Relationship between parent and child processes

Host Application Text

Host Application Heap

Host Application Data

VDSO

LibVM Sandbox Library

VDSO

C Runtime libraries

Sandboxed

Component

Stack

libVM bootstrapper ELF

Component Heap

ELF intepreter

Tracing Process

(Parent)

Traced Process

(Child)

Shared Libraries Additional shared libraries

Shared

Memory

Region

Chapter 4: Software Solution – Process Tracing Based 81

process, as a child of the host process. This enforces a strict separation between the

parent and the child, using existing process isolation facilities.

The next task is to make sure that the child cannot execute any system calls without

arbitration by the parent, which is achieved by the parent process tracing the child

process. As explained previously, this enables the parent process to intercept all

system calls made by the child, effectively controlling the worldview provided to it

and constraining the child’s execution with an isolation container.

The final task is to enable address space transparency between parent and child. This

is achieved by establishing a shared memory segment between the two, and carefully

ensuring that the child is limited to accessing memory only within that shared

memory segment, in full view of the parent process. This enables the desired address

transparency.

An important decision with regard to the implementation of this isolation mechanism

was the portability factor. Since this was primarily a proof of concept to evaluate

reference transparency in shared libraries, we decided to allow for platform specific

assumptions to reduce the implementation burden. While the mechanics are specific

to Linux, we show that the general ideas are applicable to any operating system,

although they would need to be re-implemented to suit those systems.

Another trap we wanted to avoid was to place a new burden on those using LibVM,

namely that they adapt existing libraries according to the constraints imposed by

LibVM. This is in contrast to the method utilised in Google’s Native Client [144]

and Vx32 [32], as well as other SFI based isolation systems, which rely on the

libraries being recompiled using a custom tool chain. This requirement is specified

by SFI systems mainly because of the complexity in guaranteeing that arbitrary

machine code is secure. By placing some restrictions on these machine instructions,

such as disallowing unaligned jumps, this complexity is greatly reduced. However,

we argue that this places an undue burden on developers, as it is not always feasible

to expect that a third party library can be recompiled using a custom tool chain.

Instead, our focus was on utilising existing libraries unaltered, and have the burden

of adapting and isolating them placed on the host program only. We believe this is a

more practical approach, as there is no escaping the fact that a host application which

wishes to utilise LibVM’s isolation facilities must be modified, whereas modifying

shared libraries obtained from third parties is optional. This is also more desirable; as

Chapter 4: Software Solution – Process Tracing Based 82

such third-party libraries may not always come in an adaptable or recompilable form

and would introduce a maintenance burden in addition.

The easiest method of achieving this end is to “fool” the library into thinking that it

is executing as normal, within an OS process, as part of an application, and with full

access to the usual machine instructions and system calls. However, by placing the

application in a separate isolation container (in this case, a separate process), and

restricting the library at a system call level, we effectively restrict the world view

available to the library as well as its effect outside of the isolation container. This

basic idea is portable across operating systems.

In the case of Linux, the simplest way to achieve this is to let the libraries be loaded

by the existing dynamic linker/loader provided by the operating system. This

removes a significant number of burdens and limitations imposed by other systems.

For example, early versions of Google’s Native Client system required that the

libraries be statically linked [118, 144], with dynamic loading support introduced

later, albeit in limited ways. Vx32 also imposes similar restrictions [32]. By

allowing the system’s standard runtime linker to perform all symbol resolution, we

avoid all such restrictions, while simultaneously enabling the use of existing libraries

with no modification.

Therefore, we opted to utilise the standard Linux dynamic linker to perform these

tasks. However, we also wanted to avoid the complexity of adapting, recompiling or

otherwise modifying the linker, which would create an unnecessary maintenance

burden. Therefore, our aim was to use the linker unmodified as well, while

constraining its worldview in a similar fashion, through interception of system calls.

The process of linking and loading is discussed in great detail by Levine [84]. The

ELF (Executable and Linkable Format) interpreter utilised by Linux is basically a

linker/loader which is executed by the operating system in response to a request to

execute an actual program, typically through an exec system call. The operating

system loads the ELF interpreter into a high address in memory, and populates the

“AUXV” data structure, which points to where the actual executable lies. In

addition, environmental variables are also placed just after the AUXV vector. The

operating system will then switch to the process and jump to the interpreter’s entry

point.

Chapter 4: Software Solution – Process Tracing Based 83

The ELF interpreter is position independent and therefore, fully relocatable, which

means that it can be placed anywhere within an address space and executed, in

contrast to executables with fixed load addresses. When the ELF interpreter starts

executing, it will read in the AUXV vector and environmental variables, in order to

initialise itself. While this overall process is involved and described by Levine [84],

the basic idea is that the interpreter will follow the AUXV vector to find the base

address of the actual executable, read its ELF header, and start performing the

dynamic linking routine. If it is a static executable, little else needs to be done, and

the linker can transfer control over to the executable. However, if it is a dynamic

executable, the linker must first load all dependent libraries, such as the C runtime

library and all other dependencies recursively. This symbol resolution process is also

quite involved. Once complete, execution can be transferred to the executable.

However, the interpreter must remain in memory to perform any dynamic

linking/symbol resolution needed by the running program.

As described above, rather than rewriting the ELF interpreter from scratch, we utilise

it as it is for library loading and symbol resolution. By emulating the behavior of the

operating system, we can effectively use the existing ELF interpreter with no

modifications. Therefore, we utilise a “bootstrapper” executable, written to support

LibVM’s functionality, which we ask the ELF interpreter to execute. The ELF

interpreter dutifully executes the executable program, within our isolated and fully

traced and controlled process.

The bootstrapper executable is an executable which acts as a proxy for LibVM

within the memory space of the child process. The idea is that we make the

interpreter execute the bootstrapper executable, which in turn provides a set of

services that we can use to control the child process, such as loading additional

shared libraries. We consider the child process a sort of virtual machine for shared

libraries, and hence, the bootstrapper is responsible for “booting” that VM, in

collaboration with the ELF interpreter. This is also where the name “LibVM” comes

from.

This bootstrapper executable must also be relocatable, since we wish to constrain all

interaction with the shared memory region which is shared by the child with its

parent. This is done by compiling the bootstrapper executable as a Position

Independent Executable (PIE), via the –PIE flag in GCC. Normally, executables are

Chapter 4: Software Solution – Process Tracing Based 84

not position independent and are loaded at a fixed base address, whereas shared

libraries are position independent, since they are loaded dynamically and it is

difficult to predict in advance where in memory a space for it will be available.

However, it is possible to compile standalone executables as being position

independent, which is also how the ELF interpreter itself is compiled. This is also

important in enabling Address Space Layout Randomization (ASLR), which is used

by modern operating systems to reduce, or minimise return-to-libc attacks [119].

Next we discuss how the actual process of creating the isolation container in the

software solution works.

4.3.1 Initialising the Library – libvm_initialise

As outlined in Chapter 3, the basic process of initialising a new isolation container is

triggered through the libvm_initialise call. This creates a cascade of actions, which is

presented in outline form below as a point of reference, but elaborated upon in detail

subsequently.

1. A shared memory region is allocated;

struct libvm_mem_region {
 void * base;
 size_t size;
};

struct libvm_mem_region * create_shared_region()
{
 void * mapped_address;

 struct libvm_mem_region * region_ptr = malloc(sizeof (struct
 libvm_mem_region));
 if (region_ptr == NULL)
 return NULL;

 if ((mapped_address = mmap(LIBVM_SHARED_BASE, LIBVM_SHARED_SIZE,

PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_SHARED | MAP_ANONYMOUS, -1, 0)) ==

 (void*) -1)
 {
 free(region_ptr);
 return NULL;
 }

 region_ptr ->base = mapped_address;
 region_ptr ->size = size;
 return region_ptr;
}

Figure 4.2: Allocation of shared memory region

Chapter 4: Software Solution – Process Tracing Based 85

2. The ELF interpreter and a “bootstrapper” are loaded into this shared

memory region;

3. A child process is forked;

4. The parent immediately attaches itself to the child;

5. The child process then proceeds to clean up its address space;

6. The child jumps to the interpreter’s start address. The interpreter executes,

and in turn, executes the bootstrapper, with the parent carefully ensuring

that the child’s access is constrained within the shared memory region;

7. The bootstrapper heralds completion by invoking a special syscall;

8. The dlsym function in the child’s C runtime is resolved; and

9. The host returns from the libvm_initialise call, with the child process

suspended.

4.3.1.1 Setting up a shared address space between parent and child

When the libvm_initialise method is invoked, the first thing that LibVM does is to

allocate a region of memory that will be shared between the host (parent process) and

the library (child process). This is done by way of operating system provided shared

memory facilities, in this case, POSIX shared memory [61].

The C code in Figure 4.2 highlights the process. The creation of the shared memory

is done through the mmap operating system call. Function mmap is a POSIX-

compliant UNIX system call that provides a mechanism to establish a mapping

between a process’s address space and a file or shared memory object. The key to

ensuring that this memory is shared between parent and child, as per our

requirement, is to create an anonymous region (MAP_ANONYMOUS) which is also

shared (MAP_SHARED). An anonymous mapping simply means that the mapped

memory region is not backed by a file. When combined with the MAP_SHARED

flag, the POSIX standard guarantees that when a child process is forked, it too will

inherit and share this memory region with its parent. Since the POSIX standard is

supported by most UNIX based operating systems, this method is also portable

across these systems.

Chapter 4: Software Solution – Process Tracing Based 86

An alternative design choice that was available was to establish this shared memory

region via the shmat system call, another POSIX compliant system call which

provides a mechanism for attaching a named segment to a process’s memory, which

could subsequently be shared. However, shmat was unsuitable for several reasons.

One reason was that we wanted to ensure that the parent and child would be able to

attach themselves to identical virtual memory addresses, so as to meet our goal of

maintaining pointer transparency between host and shared library. This meant that

even in a multi-threaded host, which could have other memory mapping operations

ongoing, we needed to make sure the host and child were kept in lock step. The

easiest way to ensure this is to establish the memory region prior to forking the child

process, thus ensuring that the child process will inherit the same memory segment.

Using shmat would have caused additional complications, since the child would have

had to negotiate a shared region with its parent after having launched itself, which

may or may not be possible in a host which has many threads contending for

memory, as has been mentioned by others [53]. Therefore, by opting for the former

method, we avoided this possible race condition.

4.3.1.2 Loading the ELF interpreter and bootstrapper into the shared region

Once the shared memory region is established as shown in Figure 4.2, we then

proceed to read in and parse the ELF files that represent the ELF interpreter and

bootstrapper respectively. They are laid out in memory in the manner shown in

Figure 4.1. We do not perform extensive validation in our ELF parser, as both the

interpreter and bootstrapper come from trusted sources, and will execute prior to the

execution of any potentially malicious code. It should be noted however, that neither

of these are part of the system’s TCB (Trusted Computing Base), since they too are

executed within the isolation container.

Once the two executables are loaded into memory, the AUXV vector which was

described earlier, is laid out in the format required by the ELF interpreter. We also

ensure that the AUXV vector contains a pointer to the bootstrapper’s entry point, so

that the interpreter may find and execute it.

4.3.1.3 Forking the child process

After the executables are correctly set up within the shared memory, the next step in

the initialisation process is to perform the actual fork. A fork basically splits a

Chapter 4: Software Solution – Process Tracing Based 87

running process into two separate processes, with an identical state of execution,

with the original process being marked the parent and the forked process being

marked as the child. Typically, a fork is followed by an exec, in order to launch

another process. However, we utilise fork as the mechanism for establishing the

parent child relationship while retaining an anonymous shared memory mapping

between parent and child, as described in Section 4.3.1.1.

4.3.1.4 Attaching the parent process to the child

At this point, we make the parent immediately attach itself to the child process, via

ptrace, using the code shown in Figure 4.3. The parent then goes into a loop

(ptracevm_loop), in which it traces the child process till bootstrap completion is

signaled.

4.3.1.5 Cleaning up the child’s address space

However, since we forked from a parent process, the child now also inherits all

memory mappings from the parent, and the runtime state is also identical, including

the state of the C runtime libraries. This is unacceptable, for two main reasons. The

first is that the child process can now see the state of the parent, albeit a stale state

since the memory mappings are inherited as Copy on Write (COW) However, from

an isolation perspective, this needs to be avoided, as it presents an information leak

from parent to child. Secondly, the C runtime itself maintains state, such as all

memory allocations made by malloc, thread state information etc., all of which are

now invalid, since the child is not expected to be able to inspect or modify the

parent’s state. Therefore, our next step should be to cleanup this inherited address

 child = fork();
 if (child == 0)
 {
 // child’s code omitted for brevity
 }
 else
 {
 ptrace(PTRACE_ATTACH, child, NULL, NULL);
 libvm_ptr->child = child;
 if (ptracevm_loop(libvm_ptr) == 0)
 return libvm_ptr;
 }

Figure 4.3: Point at which parent and child fork off

Chapter 4: Software Solution – Process Tracing Based 88

space (apart from the shared segment itself) as well as reset/unload the C runtime

code.

This is achieved by unmapping the memory segments used, apart from the shared

memory segment itself, based on a technique detailed elsewhere [48]. The existing

mapped segments are obtained through reference to /proc/self/maps. An additional

complication here is that care must be taken not to unmap the LibVM code itself, as

it is the code which is executing to perform the unmapping in the first place.

Unmapping the running code would result in an immediate segmentation fault,

terminating the child application.

Similarly, all other resources used by the parent, such as open files, must be released,

in order to prevent them being inadvertently shared with the child process. However,

as we describe later, this is not a major concern, as we perform a check at the system

call layer to ensure that the child is only capable of accessing files and sockets it has

opened itself.

4.3.1.6 Transferring control to the ELF interpreter

Once this process is complete, the thread local storage register is cleared, the stack is

set to our custom stack as depicted in Figure 4.1, and a jump is performed to the

entry point of the interpreter.

The interpreter in turn executes the bootstrapper executable, and proceeds to resolve

its dependencies, such as the C runtime library. Since the C runtime library was

unmapped, this ensures that it will be reloaded afresh, and the bootstrapper starts

with that fresh environment.

However, since the parent is tracing the child executable, all system calls made by

the child are intercepted by the parent. The interpreter will typically perform actions

like checking ld.so.conf (the library preload locations), find the dependent libraries

such as the C runtime library (libc.so), and map these libraries into memory.

However, since these are all trusted libraries, and no untrusted code has begun

execution, the parent process does not have to impose any restrictions, other than

making sure that any mapped files are made within memory regions endorsed by the

parent, so as to keep the parent’s and child’s memory maps in lock step.

Chapter 4: Software Solution – Process Tracing Based 89

4.3.1.7 Bootstrap completion

Once the bootstrapper finishes executing, it heralds completion to the parent, as

shown in Figure 4.4. This snippet performs four main tasks. It sets a “magic” value

in the eax register (a magic value is a unique value of significance to the recipient),

the receipt of which will confirm to the parent process, which is tracing these events,

that the bootstrapper has completed execution. It also stores the address of dlsym,

the symbol resolution routine provided by the C runtime, within the ebx register.

Finally, it invokes interrupt 0x80, which is the traditional system call interrupt.

Since a system call has been made, the operating system promptly suspends

execution of the child and notifies the tracing process of the fact. The tracing

process (LibVM), then reads in this value and ensures that it is indeed the magic

value agreed upon previously. It also saves the instruction pointer for future use, as

well as the dlsym address sent in via the ebx register, within local variables. Finally

LibVM’s state is marked as initialised, and LibVM goes into lockdown mode as

explained below.

Figure 4.5: LibVM-ptrace - State transition diagram

asm volatile("movl %%eax, %%edx\n\t" // save current eax - potential return value

 "movl $0xCAFE, %%eax\n\t" // special syscall value indicating bootstrap

 completion

 "movl %0, %%ebx \n\t" // ebx will contain address of dlsym - for all future

 symbol resolution

 "int $0x80\n\t"

 : : "c"(&dlsym)
 : "memory", "cc");

Figure 4.4: Bootstrapper completion

Uninitialised Booting

Locked Down Destroyed

initialise

notify_boot_complete

destroy

Chapter 4: Software Solution – Process Tracing Based 90

Lock-down mode refers to a state transition in LibVM as depicted in Figure 4.5. It is

triggered on completion of the boot process. This state is utilised to track the fact

that, from this point onwards, potentially untrusted code can be loaded into the

isolation container, and therefore, all system calls must be strictly fielded.

LibVM then saves the child’s register state (recalling that the child’s execution was

suspended at the point of lockdown) within the LibVM context data structure. This

saved register state is used to resume the child process at a later point. Essentially,

what remains now is a full controllable execution container in the form of a child

process. This child process can be used to load additional libraries or perform

arbitrary actions under the supervision of the parent process. This is precisely the

characteristic that is needed in loading and isolating libraries.

4.3.1.8 Resolving symbols in the child’s address space

The main reason that the C runtime and bootstrapper was loaded into the child

process’s address space was so that these could in turn load additional shared

libraries on behalf of the parent process. However, since they are running within a

different, fully isolated and restricted process, the parent process is effectively

isolated from the shared libraries loaded into the child process’s address spaces

As discussed previously, the best way to load these libraries is to use the existing C

runtime to do this, since writing a specialised “bespoke” dynamic linker is a time

consuming process. We also gain the advantage of being able to utilise existing

libraries as is. Libraries are typically loaded by invoking the dlopen function, as

described in Chapter 3, and symbol resolution is performed by using dlsym.

Chapter 4: Software Solution – Process Tracing Based 91

The key to using the C runtime code executing within the child process is then, the

dlsym function, since it can be used to obtain a pointer to any function or symbol

within the child process. This is the reason that the function address of dlsym is

passed onto LibVM on completion of the child’s bootstrap process. By restarting the

child process with the instruction pointer set to dlsym’s address, and with the

appropriate parameters passed through the stack, we can resolve any symbol in the

child’s C runtime, including the dlopen symbol.

Figure 4.6 shows this basic idea in action. Recall from the previous section that the

child process was suspended, and its registers saved upon completion of the

bootstrap process. This function effectively manipulates the child process, by

pushing the values needed to invoke the dlsym function into the child processes’s

stack. These are basically the name of the symbol to be resolved, the handle to a dll

if available (NULL in this case, since we are resolving a global symbol) and the

return address upon completion of the function, as shown in lines 4, 5 and 6.

In normal function execution, the function epilogue would pop the return-address off

the stack and jump to that return address, effectively returning control to the calling

function (assuming cdecl calling conventions, which is the default calling convention

used). However, we carefully change this return address to point to a location within

our bootstrapper code, known as the spring board, a shown in line 6. The spring

 1. int libvm_dlsym_wrapper(struct libvm_context * libvm_ptr,
 long dll_handle, char * name)
 2. {
 3. void * temp_str = libvm_stack_push_string(libvm_ptr,
 name);
 4. libvm_stack_push_word(libvm_ptr, (uintptr_t)test_str);
 5. libvm_stack_push_word(libvm_ptr, dll_handle);
 6. libvm_stack_push_word(libvm_ptr,
 libvm_ptr->springboard_adress); // force return
 address to springboard instruction
 7. libvm_ptr->regs.eip = libvm_ptr->dlsym_address;
 8. libvm_run(libvm_ptr);

 9. libvm_stack_pop_word(libvm_ptr);
10. libvm_stack_pop_word(libvm_ptr);
11. libvm_stack_pop_bytes(libvm_ptr, strlen(name) + 1);

13. return libvm_ptr->regs.eax;
14. }

Figure 4.6: Symbol resolution by wrapping dlsym

Chapter 4: Software Solution – Process Tracing Based 92

board effectively performs a domain transition, suspending the execution of the child

and returning control to the parent, in the exact same manner depicted in Figure 4.4.

In line 7, we force the child process’s instruction pointer (eip) to dlsym’s address,

and then line 8 performs the actual task of resuming the execution of the child, in the

exact same manner shown in Figure 4.3. Since the instruction pointer has been

changed to point to dlsym, the child will resume execution at that instruction, execute

the dlsym function, resolve our desired symbol, and return to our spring board

address.

The spring board will notify LibVM that the child has completed its function, and

once again, the child’s execution will be suspended, registers saved and control will

return to line 8 above.

Subsequently, we perform a cleanup of the child’s stack, since the parameters must

be popped off the stack upon completion of the function call, an action that was

deliberately left incomplete by our spring board. At the end of this process, the eax

register contains the return value from dlsym, which is the address of the symbol that

was resolved.

Thereafter, the LibVM runtime proceeds to invoke dlsym again, caching frequently

used symbols such as dlopen, malloc and free in the child’s runtime. These can now

be invoked to load libraries into the child process, allocate additional memory in the

child and free any allocated memory, respectively. In short, the parent process can

completely control the runtime of the child process as desired.

Finally, control is returned from the libvm_initialise method, with the caller receiving

a pointer to the LibVM context data structure.

This completes the initialisation process.

4.3.2 Loading a Library – libvm_open

Once a LibVM context has been obtained, it is possible to load libraries into the

guest’s address space. This is accomplished by invoking the libvm_open function, as

elaborated in Chapter 3. The desired functionality at this point is to simply have the

child’s C runtime load the library on our behalf, into its address space. Since the

library is loaded into a different process, it is completely isolated within its confines,

and is unable to access or modify the host application in anyway. This is the exact

Chapter 4: Software Solution – Process Tracing Based 93

characteristic which we desire, in order to prevent a faulty library from otherwise

accidentally trampling over the memory of the parent.

With some detail omitted for brevity, Figure 4.7 helps to highlight the essence of

how this procedure works. Recall from the previous section that the address of the

dlopen function in the guest’s C runtime was cached within LibVM context. We

utilise this cached copy to forge a request to the guest, in a manner analogous to that

described in prior sections.

What should be noted is that the method that is being invoked, guest_dlopen, has the

exact same signature as that in the actual dlopen method in the C runtime (described

in Chapter 3). In a traditional IPC setting, this would require that the parameters be

marshaled across process boundaries, and copied back on completion. However, we

achieve this same effect without these marshalling overheads, by taking advantage of

our shared address space.

By allowing the host application to access and manipulate memory in the guest in a

transparent fashion, it makes the process of manipulating the guest’s stack, allocating

memory in the guest’s address space etc., far easier than the alternative of having to

readjust pointers to match the guest’s address space. This is where the true

advantage of the transparent address space comes into play.

Secondly, in contrast to heavyweight approaches such as Remote Procedure Calls,

which are designed to abstract away the actual address space and even the machine

itself which is executing the function, we dispense with that complexity by making

simplifying assumptions. Specifically, by assuming that the child is executing on an

identical architecture with a fully transparent memory, which is a practical

void * libvm_dlopen_wrapper(struct libvm_context * libvm_ptr,
 char * filename)
{
 void * guest_handle =
 (void*)libvm_stack_push_string(libvm_ptr, filename);
 void * dll_handle =
 libvm_ptr->guest_cache.guest_dlopen(guest_handle,
 RTLD_LAZY | RTLD_GLOBAL);

 libvm_stack_pop_bytes(libvm_ptr, strlen(filename) + 1);

 return dll_handle;
}

Figure 4.7: Library open implementation

Chapter 4: Software Solution – Process Tracing Based 94

assumption to make given that we are dealing with program libraries, unnecessary

overheads are avoided. Through the demonstration above of the simplicity of

transferring data between guest and host, we validate our hypothesis on the

advantages of having a shared and transparent address space.

4.3.3 Resolving a Symbol in the Isolated Library – libvm_sym

The sequence of events, which transpire when a host application calls libvm_sym in

order to obtain a pointer to a function within an isolated library, is depicted in Figure

4.8. The host must pass in a handle to the shared library itself, as described in

Chapter 3, as well as the name of the function/symbol to be resolved. Since the

library resides in the child process, we utilise libvm_dlsym_wrapper as shown in line

5. As explained in Section 4.3.1.8, libvm_dlsym_wrapper is used to resolve the

symbol in the guest’s address space and obtain a pointer to that function, which is

still referring to the guest’s address space.

However, simply invoking this obtained function would be disastrous, since the

function would be executed in the host’s address space, and not the guest’s, which is

counter to our purpose of isolating the library. What needs to happen then, is that a

transition must be made to the child process, the function executed in the child

process, and the result returned back to the host. In order to do this, we dynamically

generate a proxy function, by calling the libvm_install_trampoline method, as shown

in line 6.

This method, very simply, generates some binary code “on the fly” to perform the

domain transition from the host to the child, so that the “guest_symbol” can be

executed within the child’s domain, as well as return the obtained result back to the

1. void * libvm_sym(void * handle, char * name)
2. {
3. struct libvm_handle * lib_ptr =
 (struct libvm_handle *) handle;
4. struct libvm_context * libvm_ptr = lib_ptr->libvm_ptr;

5. int guest_symbol =
 libvm_dlsym_wrapper(libvm_ptr, lib_ptr->guest_handle,
 name);

6. return libvm_install_trampoline(libvm_ptr, guest_symbol);
7. }

Figure 4.8: Dynamic proxy generation

Chapter 4: Software Solution – Process Tracing Based 95

host. The binary code is generated and placed in a special page in the host’s address

space, and one trampoline is installed for each function resolved with dlsym.

The snippet in Figure 4.9 shows the code which constitutes each trampoline. As

shown in lines 4, 5 and 6, the values 0xDEADBEEF and 0xCAFE indicate

placeholders which are binary patched to their correct values at runtime. Line 4 is

patched with the value of the symbol in the child’s address space, denoted by

“guest_symbol” in Figure 4.8. Line 5 is patched to implicitly pass the LibVM

context that is associated with the library that the symbol belongs to. Finally, line 6

is patched to point to the libvm_switch_domain function, which is responsible for the

actual domain switch from parent to child.

A simplified version of libvm_switch_domain is shown in Figure 4.10. When control

is received by libvm_switch_domain, note that the guest’s target function pointer,

which is essentially the instruction pointer at which the guest must be executed, as

well as the current stack pointer and base pointer, are passed in by libvm_tramp.

1. IDENTIFIER(libvm_tramp):
2. pushl %esp // Argument 4 to cvm transfer is current esp
3. pushl %ebp // Argument 3 to cvm transfer is current ebp
4. pushl $0xDEADBEEF // Argument 2 to libvm_switch_domain is
 guest ip
5. pushl $0xDEADBEEF // Argument 1 to libvm_switch_domain is
 the LibVM pointer - patched at runtime to the correct value
6. ljmp $0xCAFE, $0xDEADBEEF
7. IDENTIFIER(libvm_tramp_end):

Figure 4.9: Trampoline for transitioning from host to guest

Chapter 4: Software Solution – Process Tracing Based 96

Therefore, as shown in line 3, these same values are copied verbatim to the child’s

stack, with the calling conventions assumed to match. However, since the copied

values will contain a return address in the host’s address space, which the child

cannot access, it must be popped and replaced with the “springboard_address”, as

shown in lines 4 and 5. The springboard_address is a helper function which was a

part of the original bootstrapper coder, which helps the child to transition back from

the child to the parent. By forcing the return address to the springboard_address, we

trigger an automatic transition back to the parent at the end of function execution.

Line 6 shows how the guest’s instruction pointer is forced to be the function we wish

to invoke within the guest. In line 7, we execute the familiar libvm_run to resume

execution of the suspended child, except that execution will now resume from the

guest_eip which it was forced into.

Upon completion of the function, the springboard will trigger the transition back to

the host, which in turn will return from the libvm_run function at line 7. Afterwards,

line 8 shows how the guest’s stack is restored to its original state and in line 9, the

return value of the function, which is stored in the eax register is returned to the

original function caller, which is oblivious to the machinations that occurred during

invocation of the function.

Omitted from this description, is the process by which the caller’s stack values are

overwritten with the guest values, in order to support passing arguments by

reference. However, the guest is not able to manipulate the return address in any

 1. int libvm_switch_domain(struct libvm_context * libvm_ptr,
 const long guest_eip, const long ebp, const long esp)
 2. {
 3. libvm_stack_push_bytes(libvm_ptr, esp, ebp - esp);
 4. libvm_stack_pop_word(libvm_ptr); // pop current return
 address
 5. libvm_stack_push_word(libvm_ptr,
 libvm_ptr->springboard_adress); // force return
 address to springboard instruction
 6. libvm_ptr->regs.eip = guest_eip;
 7. libvm_run(libvm_ptr);

 8. libvm_stack_pop_bytes(libvm_ptr, ebp - esp –
 sizeof (long)); // restore original stack

 9. return libvm_ptr->regs.eax;
10. }

Figure 4.10: Switching domains

Chapter 4: Software Solution – Process Tracing Based 97

way, since it is always overwritten to ensure that no stack smashing attacks can

occur. At this point, a few caveats are necessary, since some information leakage is

occurring when copying values from the guest to host. However, this is not a critical

issue, as it is an entirely optional process, and can be bypassed if more secure

semantics are desired. This can be achieved by omitting the proxy generation

altogether, and creating manual wrappers around the desired function, an example of

which is the original dlsym function shown in Figure 4.6. However, the convenience

of being able to bypass such manual proxy generation, thus improving transparency

and usability to the user of LibVM, is a strong motivation for enabling this

functionality. It is further mitigated by the low security risk.

A second caveat is with regard to passing values into the child’s address space. Any

pointer values passed into the child which are outside of its bounds, cannot be

accessed by the child, thus ensuring the security of the host application. However,

any values returned by the child, which contain pointer values, must be treated as

suspect, since they may be forged to point to locations in the host’s address space.

This issue has been discussed previously under section 3.4, and was stated as Lemma

D. If the host application blindly dereferences such a return value from the guest,

and/or writes values to such locations, there is every possibility for the child to

launch an attack on the host application. As such, these values must be treated as

suspect.

However, how strict a stance should be taken depends entirely on the nature of the

library which is being isolated. If the library is being isolated in order to localise

errors, and the library is not expected to be actively hostile, there is relatively little

security risk in accessing these values, only a risk in terms of errors propagating out

of the isolation container. Nevertheless, advantages are still gained because the

library’s execution is isolated.

On the other hand, if the library is expected to be actively hostile, there is significant

risk in using pointer values returned by the untrusted library. As such, great care

must be taken by clients to validate that all values fall within the boundaries of the

isolated container, before they are accessed. In later chapters, we show how future

work could lessen the burden on clients through language level support for LibVM in

the compiler. However, in the absence of such support, it is necessary that the client

Chapter 4: Software Solution – Process Tracing Based 98

treat all values received from the untrusted library, as well as all other actions taken,

as highly suspect in the interests of security.

4.3.4 Execution of System Calls

Due to the nature of ptrace, each system call is intercepted twice,

a. before it is executed by the OS; and

b. immediately after it is executed but before returning to the calling process.

This provides the ability to modify both the actual call executed by the OS as well as

the return value sent back to the child process. This process is illustrated in Figure

4.11.

Figure 4.11: LibVM-ptrace – system call execution sequence

As shown in Figure 4.11, the number of context switches required is one of the main

reasons for performance penalties in this architecture. The domain transitions occur

in the following order: child → OS → host → OS → host → OS → child, a total of 6

transitions per system call, instead of the two transitions that occur in a typical,

Context Switch

Untrusted

Code Dispatcher

Pre-Execution

Parameter

Validation

OS syscall

implementation

Untrusted

Code

LibVM-ptrace Operating System

Context

Switch

Context

Switch

Host

Context

Switch

Post-Execution

Parameter

Validation

Context

Switch

Context

Switch

ptrace

notification
prior to

execution

ptrace

notification post

execution

Syscall

Implementation

Context

Switch

Chapter 4: Software Solution – Process Tracing Based 99

untraced system call (process → OS → process), which is a threefold increase in

overhead. However, as our performance measurements show, these costs are

ameliorated over the lifetime of the program, as other factors like waiting for IO or

the CPU tend to dominate the transition costs, leading to far more acceptable

performance overheads. We discuss performance characteristics in detail in the next

chapter.

In addition, due to the very nature of this mechanism, there are several potential

security vulnerabilities that emerge, which are discussed extensively by

Garfinkel [39]. However, solutions have also been proposed to many of these

deficiencies [40, 101]. We discuss our own approach to these problems extensively

in Chapter 6.

We default to a delegating approach wherever a security risk is possible, by

executing the system call in the host, on behalf of the child. This helps to eliminate

race conditions and timing attacks caused by TOCTOU (Time of Check To Time Of

Use) bugs [40]. However, more innocuous system calls are simply passed through

for the Operating System to execute. The decision on which system calls are

innocuous must be made on a case by case basis, and is determined by whether the

system call is read-only (such as getting the system time), or whether it can affect the

execution state of the host. Allowing read-only system calls is safe, as discussed in

Section 3.4, since information flow security is not amongst our security objectives.

However, if a more secure implementation is desired, even read-only system calls

may have to be vetted based on a user-defined policy.

The greatest difficulty lies however, in ensuring that the child’s actions are confined

to its shared memory areas, as well as ensuring that the host and the child continue to

share state. Some of the most problematic calls are the memory mapping related

calls, as well as file handling calls.

Memory mapping related calls, such as mmap, mprotect and munmap, are handled by

carefully modifying the parameters in such a way that a file being mapped into

memory is mapped into both the parent and the child at the exact same memory

locations, thus keeping the two processes’ memory maps in synchronization.

File descriptors are handled by the technique of passing them to the child via domain

sockets, as described by Noordende et al. [101].

Chapter 4: Software Solution – Process Tracing Based 100

4.3.5 Handling of Unsafe Instructions

It should be noted at this point that the loaded library can execute any machine

instruction it desires. In contrast to techniques that explicitly rely on filtering out

potentially dangerous instructions through static analysis, we focus on a runtime

approach. This helps to:

a. Prevent falsely flagging valid executables as malicious;

b. Provide maximum flexibility for compiler optimizations as well as

developers to hand tune their libraries as desired; and

c. Make the technique immune to processor architectural changes, allowing

the latest and greatest features to be used, such as newer SSE instructions,

with no changes to our isolation container.

These represent a tremendous advantage and simplicity over other approaches.

The reason that this is possible is because we rely on the natural split between

privileged and unprivileged instructions provided by hardware protection rings, and

focus on the transitions between these rings. Therefore, any instruction that executes

in the child’s privilege ring is contained within its address space. It is at the border

that malicious code must be caught, since this is the only point at which it can affect

the outside world. We achieve this through the system call filtering mechanisms that

have been described thus far.

4.3.6 Threading

This implementation of LibVM currently does not support threads executing within

the library due to time constraints, although our hardware supported implementation,

described in Chapter 5, does. However, since we rely on system call interpositioning

mechanisms, it is possible to add on threading support, in a manner analogous to that

followed by others [101].

4.4 PERFORMANCE OF THE ISOLATION ARCHITECTURE

We provide a comparative performance analysis of this implementation in the next

chapter, along with our hardware virtualization based implementation.

Chapter 4: Software Solution – Process Tracing Based 101

4.5 CONCLUSION

This chapter has described the implementation details of the system call

interpositioning-based implementation of LibVM. It has shown how a practical

library isolation mechanism can be built based on our defined interface, proving the

validity of the design. It has also shown how such an interface can be implemented

by simply relying on existing process isolation facilities provided by the operating

system, in concert with hardware mechanisms. To our knowledge, this is the first

approach that uses these mechanisms for the purpose of isolating individual shared

libraries. Although the described implementation has been limited to Linux, the

general techniques and ideas can be easily transferred to other operating systems.

The main drawbacks of this system are the performance penalties induced due to the

inherent overheads of the ptrace mechanism, as well as the nature of the ptrace

mechanism itself being prone to introducing race conditions. However, we have

pointed out various techniques available to mitigate these drawbacks and have shown

that overall, this is a viable mechanism for isolating libraries. We propose

enhancements to this mechanism in Chapter 7.

Chapter 5: Hardware Solution – Virtualization Based 103

Chapter 5: Hardware Solution –

Virtualization Based

5.1 INTRODUCTION

As described in the previous chapter, the process tracing based implementation of

LibVM had several drawbacks, including performance penalties, which were

difficult to mitigate through available mechanisms. This motivated us to explore

other options that could provide a mechanism for intra-address space isolation. As

elaborated in the literature review (Chapter 2), a relatively newer mechanism is the

hardware virtualization support provided by modern Intel and AMD processors

(although the original idea dates back to the 1960s and was implemented in the likes

of the IBM System/360 Model 67 and later in the System/370 [49, 117]). Based on

our literature review, we considered this the most promising unexplored candidate

for the task. In order to test this hypothesis, we followed a staggered approach, by

first testing the solution on an existing platform, and then migrating it to a standalone

solution implementing the LibVM interface. This chapter describes the approach in

detail.

5.2 APPROACH

The hardware virtualization based solution comprised of design, development and

testing carried out in two separate stages. The first stage consisted of testing the

viability and performance characteristics of the overall concept by integrating

hardware virtualization support into an existing system of a similar nature. A key

motivator for this stage was the potential overhead in the approach described by

Adams and Agesen [1]. Once we had validated that the performance characteristics

were indeed satisfactory, we went ahead with creating a standalone solution, based

on the LibVM interface.

Chapter 5: Hardware Solution – Virtualization Based 104

5.3 STAGE 1 - GOOGLE NATIVE CLIENT BASED IMPLEMENTATION

This section provides an in-depth discussion of the implementation, the performance

figures of the implementation compared to software based solutions and analyses its

overall suitability to LibVM’s purposes.

5.3.1 Implementation Overview

In order to test the hypothesis that virtualised technology would be a suitable

mechanism for isolating applications, we chose an existing solution as a base on

which to add on this hardware-assisted mechanism. We chose Google’s Native

Client (NaCl) [144] sandbox as the basis, given its support by a large software

enterprise, its open source nature and the fact that it is actively maintained. In order

to differentiate our hardware virtualization based isolation container from the

Software Fault Isolation (SFI) based Native Client sandbox structure, we will refer to

our container as the “VT Sandbox”.

The VT Sandbox was added onto NaCl in such a way that it supported both standard

ELF (Executable and Linkable Format) executables as well as the modified native

executables supported by Google Native Client. An additional advantage of this is

that we can directly execute standard GCC [41] compiled ELF executables, whereas

NaCl requires a custom tool chain, which is a modified version of GCC generating

non-standard executables [144]. We utilise the ELF loader provided in the NaCl

implementation to create the in-memory layout of the ELF executable. In this

section, we describe the loading and execution process of a typical component that

may be integrated into a full application.

Chapter 5: Hardware Solution – Virtualization Based 105

Figure 5.1: Implementation of the VT sandbox

Figure 5.1 shows the VT Sandbox’s components at an implementation level. We

read and parse an Executable and Linkable Format (ELF) executable program. We

then load the executable into our VT Sandbox, which is where the bulk of our

implementation lies. The VT Sandbox is responsible for the safe execution of the

component and the mediation of any potentially dangerous instructions or activity.

The VT Sandbox is built on top of KVM (Kernel Virtual Machine), which provides a

layer of abstraction over the lower level hardware virtualization instructions, in the

form of a device driver [107].

If a component makes a system call, the VT Sandbox carries it out on behalf of that

component. Here too, our prototype saved a significant amount of work by building

on top of NaCl’s system call layer. The NaCl implementation provides a highly

restricted system-call layer which we have modified to suit our needs.

The typical process, as per the sequence numbers in Figure 5.1, is as follows:

1. An ELF executable is loaded into the VT Sandbox.

2. The VT Sandbox uses the KVM device driver to execute the component.

3. The KVM module interfaces with the virtualization hardware and shields

the layers above from the specific processor in use (Intel or AMD).

4. System calls by a component are intercepted and passed on to the modified

system call layer.

VT

Container

KVM

ELF Loader
System Call

Service Layer

Virtualization Hardware

1 4

3

5
2

Kernel space

User space

Chapter 5: Hardware Solution – Virtualization Based 106

5. The system call layer may invoke the operating system to carry out the

actual system call and return results to the component.

The following sections give a detailed, step by step description of the tasks carried

out by the VT Sandbox, during various stages of execution.

5.3.1.1 Initialisation of a component

This section describes the step-wise process for initialising the VT Sandbox and

loading an executable into it for execution.

1. When an ELF executable is launched, the module is initially read in and the

ELF header parsed. Our implementation supports standard ELF files as well

as Google’s customised ELF format.

2. The ELF executable is mapped into a contiguous block of memory, which is

256MB in size by default. This 256MB block serves as the initial physical

memory for the virtual machine. Thus, there is a 1:1 correspondence between

this memory block and the physical memory map seen by the virtual

machine. If the ELF executable is in NaCl format, the first 64KB of this

memory is padded with nulls, similar to NaCl’s default implementation,

which helps in the detection of null pointer exceptions. We also use the

“trampoline” code used in NaCl. This trampoline code is used to exit the VT

Sandbox in NaCl executables and carry out system calls and is described in

detail below. The executable’s text and data sections come afterwards. The

rest of the memory is uninitialised.

3. Once the executable is mapped in and the memory area initialised, we

initialise the Virtual Machine Control Block (VMCB) needed by the

processor, specifying the aforementioned memory area as the physical

memory block used by the virtual machine. We use KVM’s abstraction layer

to initialise the VMCB.

4. Once the virtual machine’s processor control block is defined, we then

initialise the processor registers and switch the machine directly into 32 bit

mode. In this way, we avoid having to write a bootstrap loader which would

switch the processor from 16-bit real mode to 32-bit protected mode.

Chapter 5: Hardware Solution – Virtualization Based 107

Protected mode is set by setting the Protection Enable (PE) bit in the CR0

register [63].

5. Before protected mode can be properly used, the machine’s Global Descriptor

Table (GDT) [63] must be initialised. In order to simplify our

implementation, we disable paging hardware altogether and use segmentation

hardware only. We use a flat memory model, and the GDT is initialised with

a code segment which is the size of the text portion of the memory map.

Therefore, the total amount of addressable memory on a 32-bit system is

4GB, while the actual memory is constrained by the memory available to the

Operating System process within which the sandbox executes.

6. We make the data segment span the entire virtual memory and the stack

segment and other segment registers such as FS, GS and ES are also set to

use a flat memory model, by spanning the machine’s allocated physical RAM

(ES is an extra segment used by certain machine operations such as for far

pointer addressing and FS and GS are general purpose segment registers

which, while having no processor defined purpose, can be used for

implementation specific purposes). We do not use Local Descriptor Tables

and therefore do not need to initialise the relevant structures.

7. Thus, we directly bootstrap a minimal virtual machine with the processor

already in 32-bit mode and assigned a flat memory model, greatly simplifying

the programming model for a component. The memory map is shown in

Figure 5.2.

5.3.1.2 Execution within a VT Sandbox

Execution of a component within our VT Sandbox begins as follows.

1. After initialisation of the virtual machine, we set the VM’s Instruction

Pointer to the component’s entry point. In keeping with Native Client’s

implementation, only ELF executables which are statically linked and the

relative locations zero based are supported, so that there is no need to

perform any relocation.

Chapter 5: Hardware Solution – Virtualization Based 108

2. An initial stack is set up for the program and the base pointer and frame

pointer are initialised to point to the top of the stack. Any command line

arguments used are pushed onto the stack area and the memory is adjusted

as required.

3. The virtual machine is then launched via KVM, and execution begins from

the program’s entry point.

Figure 5.2: Component memory layout

5.3.1.3 Initialisation of the C runtime environment

The first task performed by the running program is to initialise the C programming

language runtime environment, which is needed for basic input/output and for

accessing system services. NaCl executables use a modified version of the newlib C

runtime library [108], which is statically linked with the component. We support this

same version of newlib so that direct binary compatibility with NaCl components can

be enabled.

The newlib runtime initialises itself by allocating memory for the “Thread Control

Block”, which is a structure used by the runtime to maintain thread related

information. Subsequently, it makes a system call to initialise the corresponding

operating system thread. NaCl’s default implementation additionally stores a pointer

to the Thread Control Block in the GS segment register. In our implementation, we

modify the virtual machine’s GS segment register instead. This is an example of the

kind of modification needed at the system call layer in order to make NaCl

compatible with our implementation. Figure 5.3 shows the typical sequence of

actions which take place in our VT sandbox during a system call.

1. A normal ELF executable will initiate a system call by invoking INT 0x80

or by using the fast system call instructions. In the case of Google’s

Native Client executables, it does this by jumping to the NaCl trampoline

mechanism where each system call goes through a trusted code routine.

 Program Text Program Data Heap Stack

Chapter 5: Hardware Solution – Virtualization Based 109

2. We modify this routine to suspend execution of the virtual machine by

executing a sequence that triggers a VMEXIT event, which was described

in Chapter 2. When this occurs, libkvm performs a call back to our VT

Sandbox, allowing us to intercept the system call.

3. Upon interception of the system call, we use a modified version of the

Native Client’s dispatcher routine to figure out which system call was

requested. We carry out the actual system call after verifying the

parameters (e.g. checking whether the parameter values are in range, of the

expected format, whether referenced handles are valid etc.). The

component can only execute a subset of the available system calls and

these are completely controllable, making the execution of arbitrary code

secure.

4. Before the system call is executed, the parameters are validated to ensure

that the values are within range and that only permitted system resources

are accessed.

5. Once the system call is complete, the results are set in the virtual

machine’s registers and the stack and frame pointers adjusted to store the

necessary return values.

6. Finally, execution resumes by changing the virtual machine’s instruction

pointer to resume execution from the return address stored on the stack.

7. The untrusted code resumes execution.

Chapter 5: Hardware Solution – Virtualization Based 110

Figure 5.3: Execution sequence for a system call

5.3.1.4 Handling of unsafe instructions

Potentially unsafe machine instructions are handled by trapping the execution of

sensitive instruction types. The process is described below.

1. The execution of instructions defined as sensitive causes the virtualization

hardware to trigger an exit into the VT Sandbox. By default, all privileged

ring 0 instructions are trapped. All other instructions are allowed to

execute with no constraints within the virtual machine. The VMCB is

configured to trap these sensitive instructions through the KVM layer.

2. If an attempt to execute a sensitive instruction is detected, our trap

handlers are invoked. The trap handler then takes steps to terminate the

offending component.

We also use this trapping functionality for our implementation of system call

handling. However, in that instance, we execute the system call on the component’s

behalf and return the results via the virtual machine’s stack.

Context Switch

Untrusted Code

Trampoline Dispatcher

Parameter

Validation

Modified syscall

Implementation
Untrusted Code

VT Container Host

Context Switch

via KVM

Context Switch

via KVM

Chapter 5: Hardware Solution – Virtualization Based 111

5.3.1.5 Threading

We provide an extremely simplified implementation of threads, with one virtual

processor per thread.

1. When a component requests the creation of a new thread, we create a new

virtual machine, but map in the same memory belonging to the creator’s

thread. In other words, both virtual machines share the same physical

memory.

2. Once the virtual machine is initialised, the virtual processor’s instruction

pointer is set to the thread’s entry point.

3. The GS register must also be set to point to the Thread Control Block of

the new thread.

4. The virtual machine execution is then started, thereby having two virtual

processors executing the two different threads.

5.3.2 Comparative Analysis

This section directly compares our solution to the Google Native Client, which

focuses on using static analysis, as well as Vx32 [32], which emphasises runtime

binary translation.

Table 5.1 provides an overview of steps needed to load and execute a component.

As can be seen, our approach saves significantly on load-time complexity by

removing the code verification and patching steps altogether. Our approach thus

eliminates an entire class of problems related to static analysis and code verification,

as discussed below.

Chapter 5: Hardware Solution – Virtualization Based 112

VT Sandbox Google Native Client Vx32

Load component

Switch to sandbox

Execute code

Trap on exception or

execute till end

Load component

Verify component

Patch unsafe instructions

Switch to sandbox

Execute code

Trap on exception or

execute till end

Load component

Create sandbox

Translate code fragment

Execute code fragment

Repeat Steps 3 and 4 till

execution ends or an

exception occurs

Table 5.1: Comparison of steps to load and execute a component

Our implementation saves significantly on execution overheads since no additional

instructions need to be inserted. Our initial measurements show that code bloat for

Google Native Client is significantly high, because it requires that jumps be aligned

to 32-byte boundaries. Neither our implementation nor Vx32 have such an

alignment requirement, so they can significantly lower the size of the executable

code. In addition, while we suffer a heavier penalty for sensitive instructions since

the trap handler may need to perform a context switch back to user space in order to

handle the instruction, the complexity of our implementation is greatly reduced as no

binary code patching needs to be done.

As shown in Table 5.2 our technique also differs fundamentally at a conceptual level.

Google’s NaCl relies on pre-execution checking, using static analysis, and rejects a

component if it does not meet its defined criteria. It also inserts run-time checks into

the code. Our technique simply starts executing the component and aborts if unsafe

instructions are encountered. Therefore, our focus is on run-time checking as

opposed to both load-time and run-time checking. We argue that our technique is

faster, less complicated and more robust. In particular, our approach will execute

components which contain potentially unsafe instructions only in dead code, whereas

NaCl will not execute such components at all.

Notably, our implementation is immune to problems that may occur in static analysis

and associated verification bugs. In contrast, a security contest conducted by Google

to test for loopholes in NaCl revealed several bugs in the code verifier and patching

Chapter 5: Hardware Solution – Virtualization Based 113

system, which allowed for arbitrary code execution vulnerabilities, enabling a

malicious component to escape component isolation [43]. Our implementation is not

vulnerable to such errors, since execution is entirely constrained to the virtual

machine, making for a more secure implementation. We have tested this by

executing similar classes of bugs reported in the Native Client security contest, and

showed that the code is unable to break free from the confines of our container. A

detailed example is discussed in Section 5.3.3.4.

Our technique also offers the advantage of being easily adaptable to 64-bit code,

something that introduces much greater complexity to NaCl and Vx32. 64-bit

support was added onto NaCl through a paging based mechanisms at a later

stage [118], while the 32bit version uses segmentation hardware, which is no longer

available on Intel’s 64-bit architecture [144]. 64-bit support is altogether absent in

Vx32 as it too relies on segmentation hardware.

However, we do share similar vulnerabilities as NaCl and Vx32 at the system call

layer, since any loopholes at this level can be exploited in an identical way. (In both

systems the problem can potentially be avoided by validating parameters before

execution of system calls.)

Chapter 5: Hardware Solution – Virtualization Based 114

 LibVM-VT LibVM-ptrace Google Native

Client

Vx32

Approach Hardware

Virtualization

Process tracing SFI SFI

Technique Minimal virtual

machine

container

OS provided ptrace

mechanism

Static Analysis Runtime binary

translation

ISA 32bit

(currently)

32bit (currently) 32bit/64bit 32bit (currently)

Specific

Hardware

features used

Intel VT/AMD

SVM

None (standard OS

facilities)

Segmentation Segmentation

Compile time

requirements

None None Customised tool

chain with code

alignment

requirements

None

Advantages/

Disadvantages
• Smaller TCB

• Simpler model

• Hard isolation

boundaries

• No restrictions

on allowed

instructions

• Compatible

with 32/64-bit

• Hardware

dependent

• Maintains

address space

transparency

• Smaller TCB

• Simpler model

• Hard isolation

boundaries

• Drawbacks in

ptrace interface

• High context

switching

overheads

• Maintains address

space transparency

• Large TCB

• Complicated model

• Restrictions on

allowed

instructions

• More restrictions

and overheads in

64-bit mode

• No address space

transparency as

segments are 0

based.

• Requires custom

tool chains

• Requires rewriting

libraries as well as

host application

• Requires code

verification and

patching

• Possible false

positives

• Large TCB

• Complicated

model

• 32-bit only

• No address

space

transparency as

segments are 0

based.

• Requires

custom tool

chains

• Requires

rewriting

libraries as

well as host

application

• Requires code

verification

and patching

Table 5.2: Comparison of approaches

Chapter 5: Hardware Solution – Virtualization Based 115

5.3.3 Effectiveness of the Isolation Architecture

In this section we evaluate the effectiveness of our method by demonstrating its use

through examples, while comparing and contrasting the results with Google’s Native

Client and Vx32. These examples were incorporated into test routines and applied

against both systems. We show that our solution provides stronger security

guarantees than NaCl and Vx32, while eliminating the complexity of the code

analysis and verification process and the need for runtime binary translation.

5.3.3.1 Example 1 – Handling illegal instructions

Figure 5.4 shows a C code fragment containing an illegal assembler instruction. It

illustrates an attempt to directly access an I/O port through the out instruction.

Typically, user level programs are disallowed from accessing I/O ports directly. This

kind of problem could arise both from malicious code or a programming error such

as an attempt to divide by zero.

Figure 5.4: Example code containing an unsafe instruction

We can selectively forbid sensitive instructions that should not be executed, and our

VT Sandbox adopts the policy of disabling such instructions by default. This is done

by configuring the VMCB to intercept the specified instruction, in this case, the out

instruction. The virtualization hardware will then automatically trigger a trap when

an attempt is made to execute the instruction. We can then mediate and terminate the

module gracefully or allow it to continue if the instruction is deemed innocuous.

#include <stdio.h>

void run_test() {
asm ("movl $32, %%eax; \
 out %%eax, $0xf1"
 :
 :
 :"%eax"
);
}

int main(int argc, char* argv[]) {
 run_test();
 return 0;
}

Chapter 5: Hardware Solution – Virtualization Based 116

When compared to NaCl, the protection offered is similar. NaCl would refuse to

allow execution of the above component since the verification process would detect

the presence of the disallowed instruction statically. Vx32 allows execution of the

component but, because it dynamically translates the next ‘fragment’ of code to be

executed, it may abort during runtime if it encounters the illegal instruction during its

binary translation process, even when the instruction itself is only executed

conditionally. We, however, trap only when an illegal instruction is actually

reached, if ever. The advantage of this is better illustrated by the example below.

5.3.3.2 Example 2 – Reducing false positives

In this example we modify the previous program slightly to conditionally execute the

illegal instruction by only calling the run_test method if condition ‘argc < 0’

is true. In practice, argc will never be less than 0, which means that this will be

dead code in the running program and the potentially harmful instruction can never

be executed. NaCl however, would nevertheless generate a false positive and refuse

to allow execution of the program and Vx32 would fail at runtime when it encounters

that fragment of code. Our method entirely eliminates this class of false positive

altogether.

Although the above example is somewhat contrived, it serves to illustrate that NaCl

is always forced to err on the safe side, and disallow a range of instructions which are

generally innocuous but potentially unsafe, such as all instructions that modify the

x86 segment state, including lds, far calls, etc. Vx32 also suffers from similar

constraints. Our method does not require such caution, as execution is entirely

constrained to the virtual machine, and loading segment registers for example, only

affects the virtual processor. Therefore, it highlights a strong advantage that our VT

Sandbox has over NaCl.

5.3.3.3 Example 3 – Addressing errors

The program in Figure 5.5 highlights an extremely common programming mistake.

It makes use of an uninitialised pointer which performs a ‘wild store’ into memory.

When an attempt is made to access memory outside of the boundaries defined by the

VMCS, the VT hardware can be configured to trap into our specific error handler.

Chapter 5: Hardware Solution – Virtualization Based 117

Figure 5.5: Example code with an uninitialised pointer

In comparison to NaCl and Vx32, the protection performance is identical, since both

NaCl and Vx32 use x86 segmentation hardware to enforce similar constraints.

5.3.3.4 Example 4 – Addressing exploits

This example demonstrates a situation where our technique is safer than NaCl. This

example is an actual bug detected and submitted during the Native Client security

competition, where several flaws in the verifier were identified [43]. Although the

bug has been subsequently patched, it serves to illustrate the potential danger of

instructions missed during the verification process, and that eliminating the

verification process provides far greater security guarantees as well as flexibility.

The exploit took advantage of a miss in the verifier, where opcode prefixes for 2 byte

instructions were not constrained. The code fragment in Figure 5.6 illustrates the key

instructions used in the exploit. It works by pushing the value 0x10001 onto the

stack, which points to the middle of the first mov instruction, which now represents

the restricted instruction int 3.

Figure 5.6: Example code with an illegal jump

#include <stdio.h>

void run_test() {
 int *test, offset = 1024*1024*10;
 test[offset] = 10;
}

int main(int argc, char* argv[]) {
 run_test();
 return 0;
}

cs:0x10000: mov eax, 0xCCCCCCCC
…

…

cs:0x10080: mov $0x10001,%ebx

cs:0x10085: push %ebx

cs:0x10086: xor %eax,%eax

cs:0x10088: test %eax,%eax

cs:0x1008a: data16 je 0x7f4f

cs:0x1008f: add %al,(%eax)

Chapter 5: Hardware Solution – Virtualization Based 118

Normally, such an unaligned jump would be disallowed and detected by the verifier.

However, the bug exploits the 16-bit data prefix to truncate the jump target, which

the verifier miscomputed. As a result, the code jumps into a ret instruction in the

trampoline code region, which results in a return to the address pushed onto the

stack, in this case, the illegal int 3 instruction. In our approach the illegal

instruction is detected when it attempts to execute.

While this problem was patched in NaCl soon afterwards, it serves to illustrate the

difficulty in writing a fool-proof static verifier. As a result, even legal instructions

need to be severely restricted in order to prevent potentially harmful exploits. This

same class of problems applies to Vx32, as the binary translation process is

vulnerable to similar circumvention. In our method, since all execution occurs

within the confines of a virtual machine, code execution can be allowed in an

unrestrained fashion, as long as proper checking is done when switching between

borders. This border crossing happens only during system calls, making our method

far simpler and easier to verify as correct. Therefore, the above example executes

but is unable to bypass the confines of the virtual machine (barring, of course, any

actual errors in the hardware implementation).

5.3.3.5 Example 5 – General-purpose applications

In order to evaluate the technique in a more real-world situation, we create a

modified version of the “bzip2” compression program with various bugs inserted to

test isolation effectiveness. This included illegal instructions within dead code,

accidental array bounds violations and other suspicious but harmless code. We ran

this modified version under the Native Client, Vx32 and the VT Sandbox. We found

that, while all three effectively prevented malicious code from executing, the pre-

emptive approach of the Native Client resulted in increased false positives, even

though the actual code did nothing harmful. Vx32’s binary translation process

triggered false positives only when the code fragment was encountered, although it

would abort even if the instruction itself was never executed. Our solution delays

this process to the last possible moment, when the instruction is actually executed,

and therefore, does not result in false positives.

Chapter 5: Hardware Solution – Virtualization Based 119

5.3.4 Performance of the Isolation Architecture

To ensure that our solution does not introduce unacceptable overheads, we executed

some micro-benchmarks of illustrative cases as well as some large scale benchmarks,

keeping in mind that our current VT Sandbox implementation is merely a proof-of-

concept prototype. In all cases our VT Sandbox solution was compared with

Google’s Native Client, and certain benchmarks were also run against Vx32.

Performance was tested in three cases—native execution as a linux executable,

execution within Google’s NaCl Sandbox and execution within our VT Sandbox.

5.3.4.1 Micro-benchmarks

The micro-benchmarks were chosen to test performance under highly specific

circumstances. These help to establish the upper and lower bounds that can be

expected in best and worst case scenarios respectively.

We performed empirical performance measurements on four main workloads:

1. Execution of a simple loop based calculation.

2. Execution of a “null” system call.

3. Execution of I/O instructions (which require an operating system call and

therefore, at least one context switch).

The measurements were repeated thrice, and an average value was obtained. The

results show that the overheads of our approach in compute-bound scenarios are

comparable to those of NaCl with no significant differences in performance (keeping

in mind that our prototype implementation utilises the NaCl system call layer for

NaCl compatible executables).

In the second experiment, a simple transition in and out of the VM was performed in

a tight loop, and added about 20% overhead in comparison to NaCl’s performance.

In the third experiment, the system call execution overhead varied, with 10% being

typical with an outlier case of 400%. The difference between the typical case and the

outlier demonstrates that attendant circumstances of the environment, such as

competition with other system processes, internal kernel buffering etc. can be

dominating factors in determining overall overheads.

Chapter 5: Hardware Solution – Virtualization Based 120

5.3.4.2 Large-scale benchmarks

In order to empirically measure how these approaches perform under more realistic

workloads, we have tested their performance in several scenarios.

1. Execution of three compute-bound graphics performance tests provided

with Native Client’s test suite;

2. Earth: a ray-tracing workload, projecting a flat image of the earth onto a

spinning globe;

3. Voronoi: a brute force Voronoi tessellation;

4. Life: a cellular automata simulation of Conway’s Game of Life;

5. Quake; and

6. The SPEC2006 benchmark suite.

In all of the above cases, we disabled VSYNC (Vertical Synchronization) so that the

rendering thread would not be put on hold until the display’s vertical refresh had

completed.

5.3.4.3 Graphics performance tests

The samples were built with nacl-g++ version 4.2.2 with compiler parameters –O3

–mfpmath=sse –msse –fomit-frame-pointer. The Linux time

command was used to measure the execution time in all 3 cases.

Both Earth and Voronoi were executed with four worker threads for 1000 frames,

averaged over three runs. Life was run as a single thread for 5000 frames. The

results are summarised in Table 5.3.

Sample Linux

Executable

Native Client VT Sandbox

Execution

Time

Overhead Execution Time Overhead

Voronoi 34.13 19.18 −43.8% 19.12 −43.98%

Earth 11.38 11.64 2.28% 12.48 9.66%

Life 14.88 17.47 17% 17.88 20.16%

Table 5.3: Compute/graphics performance tests. Times are elapsed time in seconds. Lower is better.

Chapter 5: Hardware Solution – Virtualization Based 121

Somewhat surprisingly, we found that both the Native Client and the VT Sandbox

significantly out-performed the native executable in the Voronoi test. However, the

results are consistent with those reported by Yee et al. [144].

In the other two instances, the results were as expected, with the native Linux

executable having the best performance. The Native Client and the VT Sandbox had

fairly similar performance in all 3 cases, with the VT Sandbox having a slight edge

on the Voronoi example and a slight loss in the other two tests.

5.3.4.4 Quake

Quake was executed on Suse Linux 11.3, with kernel mode-setting switched off, at

1024x768 graphics resolution. Quake was built using –O3 optimization. The

version used was sdlquake-1.0.9 from www.libsdl.org. The results are shown in

Table 5.4.

Run # Linux Executable Native Client VT Sandbox

1

2

3

137.1

136.9

136.0

123.0

124.0

124.1

122.1

121.5

121.3

Average 136.67 123.7 121.63

Table 5.4: Quake performance comparison. Numbers are in frames per second. Higher is better.

While performance differences between nulls were minimal and almost negligible,

we found that the native Linux executable performed best overall. The difference

between the Native Client and the VT Sandbox were extremely small, with the VT

Sandbox incurring a slight overhead of about 1.7%.

5.3.4.5 SPEC2006 results

The performance of our approach was tested primarily by executing the SPEC2006

benchmark suite. We compared our approach against

a. Native execution of the binary executable with no modifications;

b. Google’s NaCl implementation; and

c. Vx32.

Chapter 5: Hardware Solution – Virtualization Based 122

It should be noted that only the C integer benchmarks are supported by the Vx32

runtime at the time of writing [32].

The tests were run on two machine configurations. Figure 5.7 shows the results on a

Core-i5 540M processor dual core CPU with 4GB of RAM, running on OpenSuse

11.3 with kernel version 2.6.34.07. The executables were compiled with the –O3

gcc flag in all three cases. The vertical axis is the ratio of each tests’ execution time

against a reference execution time provided by SPEC. Higher values are better.

As expected, in all cases, native execution of the unmodified binary provided the best

results. In all except one case, the NaCl execution time was slightly better than the

VT Sandbox execution. This was not unanticipated, since the context switch

overhead takes a toll on execution times. However, in all cases, the performance of

the VT Sandbox was extremely competitive, with the overhead being less than 1% in

all cases, except for the mcf benchmark, which peaked at 4%. In contrast, Vx32’s

results were slower, with overheads increased up to 4%.

The tests were rerun on a Core-i7 920 quad core processor with 4GB Ram as shown

in Figure 5.8. The configuration was identical to the previous machine, with both

kernel versions and executable compilation flags matching.

Chapter 5: Hardware Solution – Virtualization Based 123

Figure 5.7: SPEC2006 on Core i5-540M processor

0

5

10

15

20

25

30

Core i5 Base Run

Core i5 Nacl Run

Core i5 VT Sandbox Run

Core i5 Vx32 Run

Chapter 5: Hardware Solution – Virtualization Based 124

Figure 5.8: SPEC2006 on Core i7-920 processor

The results were similar, although the differences were more pronounced this time.

The overheads ran as high as 10%, although the mcf overheads were far more

pronounced at 34%. The difference is mainly attributable to cache locality and

context switching overheads. However, since this was the only anomolous case, we

do not consider it to be representative of average case performance.

Overall, we found that the performance of the NaCl production code, current Vx32

implementation and our initial VT Sandbox prototype were competitive with each

other. This is despite the fact that our prototype currently suffers from excessive

context switching due to its reliance on the KVM driver.

0

5

10

15

20

25

30

35

Core i7 Base Run

Core i7 Nacl Run

Core i7 VT Sandbox Run

Core i7 Vx32 Run

Chapter 5: Hardware Solution – Virtualization Based 125

5.4 STAGE 2 – STANDALONE LIBVM IMPLEMENTATION

Once we had ascertained that the performance of the hardware virtualization based

solution was satisfactory, the second stage involved creating a standalone

implementation based on the LibVM interface. We refer to this particular

implementation as LibVM-VT, in order to distinguish it from the software based

implementation, which was referred to as LibVM-ptrace.

Figure 5.9 depicts the basic address space layout of a LibVM-VT isolated shared

library.

Figure 5.9: LibVM-VT address space structure of guest and host

LibVM-VT works by partitioning the host address space into several sandboxed

regions. Each sandboxed region is a lightweight virtual machine. The virtual machine

VDSO

Host Application (code, data, bss)

LibVM

Sandboxed

VM1

Stack

LibVM bootstrapper ELF

Heap

ELF Interpreter

LibVM Sandbox Library

Host Application Heap

C Runtime

Shared Library 1 (code, data, bss)

Shared Library 2 (code, data, bss)

Chapter 5: Hardware Solution – Virtualization Based 126

and its host container share their address spaces as shown in Figure 5.9. Therefore,

there is complete parity between a guest address and a host address, which is the key

to enabling transparent sharing of data between the shared library and its host.

Each virtual machine is a simple execution container, in which arbitrary code can be

executed safely. Code executing within the virtual machine cannot exceed its defined

boundaries and it cannot affect the rest of the system other than through system calls.

The LibVM-VT runtime intercepts all system calls, thus ensuring that code executing

within the container cannot bypass security measures.

In order to load an existing shared object unmodified into this execution container,

we must use a dynamic linker, which loads the shared object and its dependencies, as

well as carrying out relocation of the executable image. To avoid the complexity of

writing our own dynamic linker, we utilise the system’s existing ELF interpreter [84]

for the purpose. The basic process we follow is to emulate the operating system’s

process initialisation routine, by first loading the system’s ELF interpreter into the

address space, and then executing the interpreter, which in turn is requested to load a

small bootstrap executable which we provide. The interpreter dutifully performs

these tasks, unaware that it is executing within a virtualised container. We intercept

all system calls made by the interpreter, and provide appropriate emulations which

confine all operations to the isolation container’s address space. Once the interpreter

executes our bootstrap code, we have a fully initialised “mini-process”, along with a

C runtime and dynamic linker, all of which reside within the execution container. We

then utilise the dynamic linker to load additional shared libraries in turn, exactly as

would occur within a standard process.

5.4.1 Initialisation

The virtual machine bootstrap process is triggered when libvm_initialise() is invoked

for the first time as shown in Figure 3.3. The process is as follows.

1. The LibVM-VT runtime first creates an instance of a light-weight virtual

machine.

Chapter 5: Hardware Solution – Virtualization Based 127

We utilise the KVM library [107] to create a simple virtual machine. The

virtual machine consists of a single CPU and is set to the same architecture as

the hosting process, in this case, a 32bit Intel x86 machine. We emulate the

CPUID instruction to match the host, create a flat memory model, enable all

instructions including SSE and create a basic virtual machine which serves as

our isolation container. It should be noted that this is not as expensive a

process as it may sound at first, as KVM simply creates the processor data

structures used by Intel VT/AMD SVM as well as page tables used by the

virtual machine, and there is no need for the emulation of complex devices.

Furthermore, this virtual machine/isolation container can be used to load

multiple libraries and is therefore a one-off cost that is amortized over the

lifetime of the program.

2. The virtual machine memory layout is then created and a shared memory

region between the host application and the virtual machine is defined (as

shown in Figure 5.9).

This involves allocating a region of memory which is shared between the

guest virtual machine and its host process. The memory within the guest

virtual machine is defined at the exact same addresses as the host, thus

achieving parity in the memory layouts, which serves our goal of

transparently passing memory references between guest and host.

At the very top of the VM’s address space, we map-in the Linux VDSO

(Virtual Dynamic Shared Object) [103]. The Linux VDSO is a springboard

that is used by the Gnu C library to make system calls and therefore must be

mapped into a fixed location in memory.

3. LibVM-VT uses a simple ELF loader which loads the Linux ELF

interpreter [84] and our bootstrapper into memory at the top of LibVM-VT’s

allocated address space.

Chapter 5: Hardware Solution – Virtualization Based 128

Our ELF loader performs a few basic integrity checks, such as ensuring that

the ELF program segments fall into valid memory regions. However,

extensive security checks are not necessary as the ELF loader is not a part of

the attack surface. This is because the loader is only used to load the system’s

ELF interpreter and our own bootstrapper, and not untrusted libraries. The

ELF loader also maps our bootstrapper executable into memory, and places it

immediately after the ELF interpreter.

4. LibVM-VT sets up the VM’s stack and begins executing the VM.

We create the data structures necessary for the ELF interpreter, such as the

AUXV vector specifying system parameters and copy all system environment

variables onto the VM’s stack. The AUXV vectors instruct the ELF

interpreter, where in memory our bootstrapper executable can be found, and

the ELF interpreter will load and execute the bootstrapper as well as its

dependencies, such as the C runtime library.

Our bootstrapper executable is compiled as a position independent

executable, with the -PIE flag, so that it can be placed anywhere in memory.

This is in contrast to standard executables which have a fixed load address.

This again helps us to ensure that there are no memory overlaps between the

virtual machine and the host machine.

We also copy environment variables and command line arguments onto the

stack. Following this, we set the VM’s program counter to the ELF

interpreter’s entry point and launch the VM.

5. The ELF interpreter initialises our bootstrapper.

The ELF interpreter starts its boot up process, unaware that it is executing

within a virtual machine, and carries out the same sequence of actions which

it normally would during the execution of a process. This includes mapping

our executable into memory, loading its dependencies, such as the C runtime

library, and jumping to the entry point of our bootstrapper executable.

We intercept all system calls made by the ELF interpreter during this process,

and proxy all the operating system functionality, forcing the memory

mappings for example, to fall within the allocated boundaries of the

execution container.

Chapter 5: Hardware Solution – Virtualization Based 129

6. Bootstrap completion.

Once the bootstrapper’s main() function executes, we make a standard system

call with an unused system call number, which our interception layer

recognizes as special. As parameters to our custom/special system call, the

bootstrapper passes the address of the dynamic linker’s symbol resolution

routine – dlsym. This value is cached by LibVM-VT for all future symbol

resolution within the execution container. This special system call also

heralds the completion of the bootstrap process, and LibVM-VT suspends

execution of the virtual machine and returns from its main initialisation

routine.

5.4.2 Library Function Calling Sequence

We now describe the sequence that transpires when a function call is made from the

host to a shared library. Whereas a direct function call can be made in standard

POSIX, LibVM-VT must maintain the illusion that the same process is occurring,

while in reality, ensuring that the library executes within an isolated environment.

Figure 5.10 highlights the actual process that takes place when a function call occurs.

Figure 5.10: Invocation sequence of shared library call

Host address space layout

Component VM Address space

layout

0 4

4 0

1. Host calls

component

3. Original function

executes within VM

4. Call returns value

to proxy
5. Proxy turns off

VM and returns

control to host

2. Proxy intercepts call and switches to VM

Chapter 5: Hardware Solution – Virtualization Based 130

Since the guest and component address space layouts are identical, a pointer in the

host and a pointer in the VM refer to the same memory location. Therefore,

everything is completely transparent to caller and “callee”. However, the component

can only access the solidly shaded memory areas in Figure 5.10, whereas the host

can access any area. This way, passing pointers back and forth can be done without

any pointer swizzling [140] or manipulation.

However, it should be noted that while addresses in the component address space can

be freely accessed by the host, any additional memory areas must be specifically

granted to the component. This means that only memory at page level granularity can

be granted, since a page in the host address space must map into a page in the virtual

machine’s address space.

A host utilises the following steps in executing a function within a loaded

component. The process is largely transparent to the host.

1. Host calls a function within the component.

The function should have been obtained via libvm_sym, which returns a

proxy function that shields the host from the details of the emulation layer.

The proxy function is generated “on the fly” inside a specially allocated

memory region. This function is binary patched to implicitly pass the

libvm_context as well as the guest function pointer.

2. Proxy intercepts call and switches to VM.

The LibVM proxy function copies the call parameters from the caller to the

private stack of the VM. It then sets the instruction pointer in the VM to point

to the actual function in the guest, and also sets the return address to our

trampoline function. It then activates virtualised execution.

3. Original function executes within VM.

As the function call executes within the VM, any system calls it makes are

intercepted by LibVM through detection of privilege level changes, and

channeled to the user-defined interceptor functions.

4. Call returns value to proxy.

Chapter 5: Hardware Solution – Virtualization Based 131

Once the function has finished executing, it returns, but to the address of the

proxy trampoline function that was originally passed to it by the LibVM-VT

runtime. The trampoline function triggers an exit from the virtual machine.

The stack values are then copied back to the caller’s stack. Although, strictly

speaking, there is information leakage at this point, this is entirely an optional

process, and can be disabled if more secure semantics are desired. It is

provided only to aid passing arguments by reference.

5.4.3 Effectiveness & Performance of the Isolation Architecture

We evaluated the functionality and performance of our LibVM system by carrying

out several micro and macro benchmarks. The micro benchmarks were designed to

measure several edge cases which can be used to glean the performance

characteristics of LibVM, whereas the macro benchmarks provide a more holistic

gauge. Both the hardware-based and software-based implementations of LibVM

were evaluated.

5.4.3.1 Micro benchmarks

We carried out four main benchmarks.

1. Execution of a ‘null’ call which simply measures the overhead for

transitioning in and out of the isolation container.

This gives us a measure of pure isolation overhead, although such rapid

switching would be unnatural in an actual program. Nevertheless, it is a

useful measure of the most pathological case.

2. A highly-inefficient Fibonacci calculation in order to measure a compute-

intensive workload.

This provides a more realistic measurement through a compute intensive

process, focusing on making execution within the container trump the number

of transitions outside of the container.

3. A get-pid system call to measure raw system call performance.

This scenario provides an estimate of the overhead incurred in a “plain

vanilla” system call.

4. A file copy routine to measure raw I/O performance.

Chapter 5: Hardware Solution – Virtualization Based 132

This scenario provides a measurement of situations where much of the time is

spent waiting for I/O.

Sample Linux

Executable

LibVM –

Hardware

Virtualization

LibVM –

ptrace

Jail

Linux

RPC

Execution

Time

Execution

Time

Execution

Time

Null call 1 926 4989 4962

Fibonacci 1 1.04 1.08 1.04

Get-PID 1 88.12 516 278.2

File copy 1 1 1 1

Table 5.5: Micro-benchmark results – Core i5

Sample Linux

Executable

LibVM –

Hardware

Virtualization

LibVM –

ptrace

Jail

Linux

RPC

Execution

Time

Execution

Time

Execution

Time

Null call 1 1296 5518 5304

Fibonacci 1 1.07 1.07 1.1

Get-PID 1 91.28 397.37 320.26

File copy 1 1.02 1.04 1.02

Table 5.6: Micro-benchmark results – Core i7

Chapter 5: Hardware Solution – Virtualization Based 133

Table 5.5 and Table 5.6 summarise the execution speeds on two different processors,

a Core i5 and Core i7 respectively, both running identical SUSE Linux 11.3

installations. The figures are displayed as a proportion of the execution time of a

basic Linux executable performing a local procedure call in a tight loop.

In the null call measurement, which simply measures the overhead of transitioning in

and out of the isolation container, an RPC is 3 orders of magnitude slower than a

local procedure call (no isolation), and is consistent with figures reported in

literature [86]. However, LibVM is about 5 times faster than an RPC, demonstrating

a significant, but expected, boost in performance. The main reason for increased

performance is the reduction in context switching, as transitions are made only

between the kernel and the process for each call. In the case of an RPC, a process

switch is required, doubling the number of context switches, as well as reducing

cache locality, thus incurring a commensurate performance penalty. The ptrace jail

predictably has the highest performance penalty in such an extreme scenario, as it

must perform an additional context switch due to the interpositioning layer.

The get-pid system call test measurements produced similar results. This time

however, the native case also incurs a performance overhead due to a context switch,

reducing the dramatic differences displayed in the null call case, where there were no

context switches at all. The relative performance between LibVM, ptrace and RPC

remain proportionate in both cases, as expected.

However, when the benchmark becomes IO or compute bound, the differences

immediately vanish, as demonstrated by the Fibonacci and File copy benchmarks,

since context switching overhead pales into insignificance.

While these measurements are unlikely to be found in real world applications, they

serve to demonstrate that:

1. LibVM can perform, at best, up to 5 times faster than an RPC, when using

hardware virtualization.

2. LibVM’s ptrace-based isolation can be, at worst, 2 times slower than an

RPC.

Real world performance differences however, are likely to be less dramatic,

depending mainly on context switching and parameter marshalling overheads.

Chapter 5: Hardware Solution – Virtualization Based 134

5.4.3.2 Macro benchmarks

The macro benchmarks are designed to measure both performance characteristics as

well as porting effort needed to utilise LibVM. We execute the following

benchmarks for this purpose.

1. Using the LibVorbis library to decode a Vorbis encoded audio file.

2. Using the BZip2 library to measure a compression algorithm.

This example measures the passing of a large buffer to be decompressed in a

compute-intensive run, followed by the return of the decompressed buffer to

the caller.

3. Using LibJPG library to measure image compression/decompression

performance.

The benchmarks are compared against their raw execution times.

Sample Linux

Executable

LibVM – Hardware

Virtualization

LibVM – ptrace Jail

Execution

Time

Overhead Execution

Time

Overhead

LibVorbis 46.8 49.5 5.77% 53.7 14.7%

LibBZ2 38.8 39.1 0.74% 39.2 1.1%

LibZip 70.3 80.2 14% 83.3 18.5%

Table 5.7: Macro-benchmark results

Chapter 5: Hardware Solution – Virtualization Based 135

Figure 5.11: Comparison of native, software-based and hardware-based implementations – Core i5

Our results in Table 5.7 and Figure 5.11 show that the hardware virtualization based

implementation of LibVM adds modest overheads ranging from 6% to 14%,

depending largely on the number of domain transitions. This is entirely within

expectation, as the VT hardware adds almost no overheads for normal execution of

instructions. However, each domain transition/system call is intercepted by LibVM-

VT, which proxies it on the callers behalf, including making additional security

checks. This is the main source of overheads during execution.

Ptrace-based execution predictably suffers even worse overheads, as each system call

results in at least 3 additional system calls – one to retrieve the processes’s registers

from the system, one to make the actual system call, and one to resume execution. In

addition, security checks may end up causing additional system calls, worsening the

performance as expected. However, when the total number of system calls are lower,

for example in the BZ2 test, the performance differences become neglible. However,

the LibZip benchmark, which contains a high volume of system calls, suffers fairly

high overheads at around 20%.

0

5

10

15

20

25

30

35

40

zlib bz2 vorbis

Native

LibVM-VT

LibVM-Ptrace

Chapter 5: Hardware Solution – Virtualization Based 136

Sample Linux

Executable

LibVM – Hardware

Virtualization

LibVM – ptrace Jail

Execution

Time

Overhead Execution

Time

Overhead

LibVorbis 39.6 41.8 5.55% 44.9 13.4%

LibBZ2 36.5 36.8 0.82% 36.9 1.09%

LibZip 64.1 73.2 14% 75.1 17.1%

Table 5.8: Macro-benchmark results – Core i7

Figure 5.12: Comparison of native, software-based and hardware-based implementations – Core i7

The results when executed on a Core i7 machine are largely similar, with differences

being accounted for by processor and disk speed differences.

5.5 CONCLUSION

This chapter provided an overview of the hardware based implementation of our

isolation structure, as well as how the implementation evolved from initial prototypes

to validate performance characteristics. The discussion was split into two parts,

describing the initial validation of performance by adding hardware virtualization

support to an existing solution, followed by the LibVM-based implementation.

Performance measurements demonstrated that the hardware based solution was

competitive with software only solutions, while improving confidence in the

0

5

10

15

20

25

30

35

40

zlib bz2 vorbis

Native

LibVM-VT

LibVM-Ptrace

Chapter 5: Hardware Solution – Virtualization Based 137

robustness of the solution through clearly demarcated isolation boundaries, as well as

by eliminating the need for machine code verification. These results validate one of

the major hypotheses in this thesis, which is that hardware virtualization can be used

to provide an effective mechanism for isolation of components in a simplified and

more easily understood and verified manner.

Chapter 6: Evaluation of Implementations against Functional Specification 139

Chapter 6: Evaluation of Implementations

against Functional Specification

6.1 INTRODUCTION

This thesis has demonstrated, through the LibVM interface design and its software

and hardware implementations, that component isolation is achievable with

reasonable overheads, while preserving binary compatibility with existing libraries,

in a manner comparable to or better than current practice. A performance evaluation

has been detailed in Section 5.3.4. However, it is also necessary to provide

assurance that the functions and mechanisms involved are effective in providing this

isolation, and that they meet the functional specification defined in Section 3.4. This

chapter provides an evaluation of the two LibVM implementations against that

specification, identifying their key strengths and weaknesses. We evaluate LibVM

through two methods. Firstly, by providing a rigorous argument that the isolation

container encapsulated by the LibVM interface is sound in meeting its functional

specification. Secondly, by using the Common Criteria for Information Technology

Security Evaluation (CC), an international standard for trusted system

evaluation [67], as a guiding framework for evaluating possible implementations.

While a full CC evaluation is outside of the scope of this research, because it is a

large-scale process intended for independent evaluation of commercial products with

distinct roles for “developers”, “evaluators” and “sponsors”, the following sections

are based on the processes and procedures outlined for security evaluation under the

Common Criteria version 3.0. The main aim of such an evaluation is to gauge the

effectiveness of our approach as well as to define security evaluation guidelines for

the overall problem addressed in this thesis, namely that of isolating application

libraries or components, from their host.

6.2 EVALUATING THE PROCESS TRACING BASED

IMPLEMENTATION OF LIBVM

In this section, we evaluate the process tracing based implementation of LibVM,

LibVM-ptrace, by analysing how well it conforms to LibVM’s specification, as

defined in Section 3.4. Since five conditions were identified under which an

Chapter 6: Evaluation of Implementations against Functional Specification 140

implementation can be analysed for conformance, we take each of these conditions in

turn and evaluate the process tracing based implementation against it, identifying its

strengths and weaknesses.

6.2.1 Conformance to Condition C1

Condition C1 states that “The CPU utilised by the LibVM container must be

virtualised such that it is isolated from the host application”. As described in Chapter

3, LibVM-ptrace is implemented on top of existing operating system provided

process isolation facilities. OS processes are isolated in typical operating systems by

providing them with their own “virtual” CPU and registers, which are kept

completely separate from the registers and state used by other processes, although the

actual physical CPU is often shared, as has been discussed at greater length in

Chapter 2. Furthermore, through the use of hardware protection rings, all sensitive

instructions executed by a process (in which “sensitive” refers to those instructions

which are liable to have an effect on state outside of the process itself) can be trapped

and intercepted by the operating system. In addition, the ptrace mechanism also

provides the ability to relay relevant traps to the host process. Overall, we contend

that process isolation facilities are well understood facilities which provide entirely

satisfactory guarantees that each process’s CPU is adequately virtualised with respect

to other processes running in the system.

Since the LibVM sandbox runs as a completely separate and dedicated OS process, it

follows that it is completely isolated from the host process, and is unable to influence

its CPU state or execution flow. This allows us to claim full conformance to

Condition C1 for LibVM-ptrace.

6.2.2 Conformance to Condition C2

Condition C2 states that “A host can never utilise a value obtained from within the

isolation container without ensuring that it is adequately validated”. It should be

noted here that this condition is one that is imposed largely on the host application,

and not upon LibVM itself, as it is impracticable for LibVM to determine which use

of data is valid or invalid. Therefore, that decision must be made in accordance to the

host’s security policy.

Chapter 6: Evaluation of Implementations against Functional Specification 141

However, it is possible to highlight the points at which validation could be most

easily implemented, at times by LibVM itself, so that the burden of implementing the

host’s security policy is greatly reduced. Towards this end, it is necessary to identify

the key gateways through which information can flow between host and guest in

LibVM-ptrace.

By going back to the LibVM interface, discussed in Chapter 3, it is possible to

identify the key methods through which interaction with LibVM is made possible.

Since these methods represent the only ways through which to instantiate a LibVM

sandbox, all potential interaction paths also flow through these methods

subsequently. The key methods are:

6.2.2.1 libvm_initialise

Since this method is responsible for initialisation of the libvm container, and no

untrusted library has been loaded yet, it presents no security threat.

6.2.2.2 libvm_open

The method itself does not provide any untrusted data, since it returns an opaque,

implementation specific handle, which will not be directly manipulated by the host.

However, the method will cause an untrusted library to be loaded into the LibVM

sandbox, and any initialisation routines in the library to be executed. At this point,

the untrusted library may trigger additional host calls, at which point data will be

passed from the sandbox out to the host. This is a critical point at which the

parameters and information provided in these calls must be carefully vetted. We

discuss the host call interface in greater detail under condition C4.

6.2.2.3 libvm_sym

This method provides a direct access point by which a function within a library

residing in the LibVM sandbox, can be obtained. Once such a function pointer is

obtained, it can be invoked as described in Chapter 4. While the mechanism

provided for invocation is safe, as also explained in Chapter 4, the return values of

the function are entirely suspect, since the library is untrusted.

For example, the invoked function could return a data structure, which contains a

pointer referring to an illegal memory location outside of the sandbox address space.

Chapter 6: Evaluation of Implementations against Functional Specification 142

If such a pointer were to be used, it can be potentially used to overwrite data in

arbitrary locations of the host, potentially allowing an attacker to gain control.

Therefore, it is up to the host application to perform adequate checks before using

any such value.

However, we recognize that this procedure is likely to be error prone. While this

may be less significant for libraries which are not malicious and are simply

erroneous, it presents a far more significant threat when dealing with potentially

malicious libraries.

In Chapter 7, we propose some methods to mitigate this issue, such as adding

compiler support to natively recognize LibVM isolation containers, and to utilise

type information available to the compiler to automatically insert validity checks,

such as range checks on pointers, or to flag potential errors, before allowing the use

of untrusted data. More advanced methods could include those such as taint

analysis [116], which could perform more sophisticated forms of information flow

analysis [112], both into and out of the isolation container, again flagging potentially

dangerous use of untrusted data. These possibilities are also discussed in detail in

Chapter 7.

6.2.2.4 libvm_guest_malloc

This method allocates a region of memory within the sandbox’s address space. Since

address space transparency is assumed, the host application can refer to this memory

as if it were in its own address space. While LibVM-ptrace itself performs a range

check to ensure that the return address falls within the sandbox’s address space, once

again, the onus falls on the host to use this memory region with caution, as it can

potentially be altered by a library executing within the sandbox. The scenario

becomes even more dangerous in a multi-threaded environment, which can give rise

to TOCTOU (Time Of Check To Time Of Use) bugs [39]. Therefore, the same

concerns as well as solutions discussed under the dlsym method, apply here.

6.2.2.5 libvm_guest_free

This method does not constitute a security threat because it is executed within the

context of the sandbox, and no outbound information exchange occurs. However, it

does call the free method in the C runtime within the sandbox to release memory.

Chapter 6: Evaluation of Implementations against Functional Specification 143

Since this method can potentially be hijacked, and therefore, the library could invoke

host calls, security being tight at the host call layer is essential as always.

6.2.2.6 libvm_close

This method unloads an existing library within the sandbox. While this method too

is largely safe, the same caveats that applied to libvm_guest_free apply, since

LibVM-ptrace invokes the dlclose method on the library executing within the

sandbox, and that too could be hijacked to perform system calls.

6.2.2.7 libvm_destroy

This method is safe, as LibVM-ptrace simply terminates the child process, and any

malicious code executing within the sandbox has no further opportunity to execute.

6.2.2.8 libvm_get_last_error

This method is used to return internal error codes in LibVM-ptrace, and therefore,

has no interaction with untrusted code executing within the sandbox.

6.2.3 Conformance to Condition C3

Condition C3 states that “a thread of execution within a LibVM container cannot

access memory regions outside of its allocated regions”. There are two broad ways

in which LibVM-ptrace ensures that this is satisfied. The first is by pre-allocating a

shared memory area before forking the child process. Since the child process now

runs in a completely separate address space, it is isolated from the host through the

operating system’s isolation facilities, which we assume can be relied upon. The

only contact with the host is through the shared memory area, which the operating

system guarantees is confined to the agreed upon region. Therefore, the shared

memory area fully satisfies condition C3.

However, matters are complicated when additional pages are mapped into the

sandbox’s memory. The main method by which this is achieved is through the mmap

(and related) system calls, which are POSIX compliant system calls [61]. These calls

allow a process to map files or devices into memory, so that memory mapped I/O can

be performed on them. Since these calls are vital to the function of many libraries,

we provide a default implementation in LibVM-ptrace, although there can be

libraries which do not require it, in which case it should be explicitly disabled.

Chapter 6: Evaluation of Implementations against Functional Specification 144

The default implementation ensures that the parameters to these calls are validated,

and that the memory regions are mapped into both the guest and the host. These

memory regions are mapped such that they fall into unallocated memory regions

available to both the host and the guest. (As described in Chapter 4, we ensure that

the host and guest memory maps are kept in lock step) These newly mapped regions

are also considered a part of the sandbox’s address space, and therefore, must be

checked by the host before use. It should also be noted therefore, that the sandbox

address space is non-contiguous in the default LibVM-ptrace provided

implementation, although this implementation should be overridden by the host if

necessary.

6.2.4 Conformance to Condition C4

Condition C4 states that “the domain transition mechanism provided by LibVM must

not compromise the host’s integrity”.

The domain transition mechanism used by LibVM-ptrace is the operating system

provided ptrace facility, in conjuction with the operating system’s own process

switching facilities. Therefore, there is a reasonable expectation of correctness in the

functions ability to inform LibVM of domain transitions, such as system calls. In

addition, the Operating System utilises hardware protection rings to intercept the

execution of privileged instructions by a sandboxed library. Once the ptrace

mechanism informs LibVM-ptrace of the domain transition, it examines the reason

for the domain transition, and terminates the library if an invalid action has been

executed. If a host call has been requested, as described in Chapter 4, LibVM-

ptrace’s default implementation processes it, or delegates to the host if required.

Therefore, we assert that this overall mechanism is tamper proof and reliant on the

trustworthiness of the operating system itself, and that the real potential for

vulnerabilities lies in the actual execution of the host calls, described below.

6.2.5 Conformance to Condition C5

Condition C5 states that “an action executed by the host on behalf of a library

isolated within LibVM must not compromise the host’s own integrity”.

Recall from Chapter 4 that LibVM-ptrace enters lockdown mode soon after its initial

bootstrapping process. Therefore, it screens all host calls which are deemed

Chapter 6: Evaluation of Implementations against Functional Specification 145

dangerous before passing them onto the host. For example, if the untrusted library

executes an exit system call, this system call should not be executed in the host’s

context at all, as it would cause the host to exit abruptly. Instead, we make the

assumption that a library which executes this system call is either erroneous or

malicious, and take steps to shutdown the isolation container immediately, as well as

inform the host of the attempted transgression. Similarly, we have discussed under

Condition C2, how memory mapping related calls are filtered.

Therefore, of the system calls for which default implementations are provided, the

chief means by which confidence can be held in their safety is through the use of

judicious programming techniques, which we have attempted to follow. These

include careful checking of parameters and return values (while avoiding TOCTOU

bugs), assertion of program invariants, and following the principle of least privilege.

However, as noted in Chapter 4, LibVM-ptrace is more prone to TOCTOU bugs, as

well as other implementation complexities, caused by the very nature of the ptrace

mechanism.

In addition, given the plethora of system calls available, as well as the highly

context-specific nature of host security policies, it is impracticable for LibVM to

filter all system calls by itself. Therefore, in the current implementation, the host is

responsible for implementing its own security policies, and it is therefore, prudent to

revisit well known principles of security. As discussed above, minimising the size of

the attack surface by disabling unneeded system calls, failing securely in the face of

errors, and generally following the principle of granting least privilege at all times,

are important principles by which the host’s security policies should be guided.

In Chapter 7, we propose means by which the burden placed on the host can be

eased, such as providing ready-made “security profiles”, which are applicable to

individual libraries. For example, a “compute-only” profile would allow an

untrusted library the ability to execute a computation within the sandbox, but would

disallow system calls altogether, whereas a “network” profile would allow an

untrusted library to make network-related system calls.

Chapter 6: Evaluation of Implementations against Functional Specification 146

6.3 EVALUATING THE HARDWARE BASED IMPLEMENTATION OF

LIBVM

This section follows in the footsteps of the evaluation made for LibVM-ptrace, by

considering each of the identified conformance criteria and evaluating our hardware

based implementation, LibVM-VT, against it. Since there are many commonalities

between the two implementations, we will compare and contrast whenever possible,

as well as refer to the previous discussion for additional context.

6.3.1 Conformance to Condition C1

To restate condition C1, “the CPU utilised by the LibVM container must be

virtualised such that it is isolated from the host application”. As described in Chapter

4, LibVM-VT implementation follows a virtualization based approach for isolation.

Popek and Goldberg [104] defined the main criteria that needed to be met for full

virtualization of hardware, which the original Intel x86 architecture did not fully

meet [110]. However, in 2005, both Intel and AMD introduced additional machine

instructions to remedy this issue [3, 62, 64], and LibVM-VT is built on top of those

machine instructions.

While we discovered that directly building on top of those hardware instructions is

tedious, by utilising an abstraction layer provided by the Linux operating system,

The Kernel-based Virtual Machine (KVM) [107], the drudgery was greatly

simplified. It should be noted that LibVM-VT does not utilise the full KVM, which

is a full-blown Virtual Machine Monitor (VMM), but instead, uses a minimal subset

of it known as LibKVM, which is the portion that provides a layer of abstraction

over the hardware instructions themselves. As a result, LibKVM is extremely

lightweight, as it provides little more than virtualization of CPU and memory.

The hardware instructions themselves fully virtualise the CPU, including all

registers, by running the CPU in an interpretive mode of execution. Each logical

processor in the virtual machine has an associated VMCS (Virtual Machine Control

Structure), which maintains its actual state. LibKVM therefore, provides a high-level

wrapper over this functionality. In addition, LibKVM also virtualises memory page

tables by using hardware support when available, and falls back to shadow page table

based software techniques, in the absence of hardware support [135].

Chapter 6: Evaluation of Implementations against Functional Specification 147

Therefore, the correctness of the LibVM-VT implementation is dependent on the

correctness of LibKVM. However, since LibKVM is provided as a part of the

operating system itself, and is a relatively thin layer of abstraction over the actual

hardware virtualization support, there is a reasonable basis for high confidence in its

implementation. Virtualization technology is fairly well-understood and mature, and

therefore, we believe that there is a sound basis to have confidence that the CPU

virtualization works effectively, making LibVM-VT conformant to condition C1.

6.3.2 Conformance to Condition C2

Condition C2 states that “a host can never utilise a value obtained from within the

isolation container without ensuring that it is adequately validated”. We note that

most of the discussion carried out for LibVM-ptrace is applicable to LibVM-VT for

this particular condition, and therefore, refer to Section 6.2.2 for a more in-depth

discussion. Some of the minor differences are in the fact that the LibVM-VT

implementation is less prone to TOCTOU bugs, since the system calls are carried out

synchronously on the host, in contrast to the asynchronous nature of system call

handling in LibVM-ptrace, as dictated by the ptrace system call. In addition, due to

the absence of the two-stage interception of system calls brought on by the nature of

ptrace (discussed in detail in Chapter 3), implementation complexity is also greatly

reduced, increasing confidence in the LibVM-VT bases solution’s conformance to

Condition C2, due to the greater economy of mechanism [114].

6.3.3 Conformance to Condition C3

Condition C3 states that “a thread of execution within a LibVM container cannot

access memory regions outside of its allocated regions”. In order to assess this, it is

necessary to delve briefly into how LibVM-VT handles memory allocated to the

sandbox. As mentioned in the previous section, LibVM-VT relies on the layer of

abstraction over memory and CPU provided by LibKVM. LibKVM will either use

hardware NPT/EPT [3, 65] structures where available, or fallback to shadow page

tables in their absence [135]. In either case, the end result is that the virtual machine

can only access these assigned pages, and LibKVM ensures that pages outside of the

assigned regions cannot be accessed. We, therefore, remap a region of memory

within the host’s address space, which is dedicated for use by the Virtual Machine

used for the LibVM-VT sandbox. This region of memory is also shared with the

Chapter 6: Evaluation of Implementations against Functional Specification 148

host however, which then becomes identical to the shared memory segment

described in the LibVM-ptrace implementation. As discussed above, we believe that

LibKVM is a relatively mature implementation, and distributed as a part of the Linux

Kernel, and therefore, can be relied upon to ensure that a thread of execution within

the sandbox cannot access regions outside of it.

In addition to this, any mmap calls made by the host are also easier to handle than in

the case of LibVM-ptrace. This is because it is a simple matter of mapping the page

in the host’s address space, and reassigning that space to the guest virtual machine at

the desired location. The asynchronous nature of the ptrace mechanism makes this

far more difficult, once again increasing confidence in the correctness of the LibVM-

VT implementation.

6.3.4 Conformance to Condition C4

Condition C4 states that “the domain transition mechanism provided by LibVM must

not compromise the host’s integrity”. The domain transition mechanism for LibVM-

VT is based on the virtualization hardware, which suspends interpretive execution

and prompts a VMEXIT (described in Chapter 2), whenever a sensitive instruction is

encountered [64], such as an interrupt invocation. Whenever such an exit based on a

sensitive instruction occurs, LibKVM performs a callback to our userspace listener,

which takes over in filtering the actual host calls. As discussed earlier, this

mechanism is quite robust, and cannot be bypassed by a malicious executable.

6.3.5 Conformance to Condition C5

Condition C5 states that “an action executed by the host on behalf of a library

isolated within LibVM must not compromise the host’s own integrity”. Once again,

much of the discussion which applied to the ptrace implementation applies to this

implementation, since both are largely identical except for the lesser complexity in

the VT based implementation. Additionally, since the onus of managing system calls

is largely placed on the host, the discussion in Chapter 7 on reducing that burden is

also applicable to LibVM-VT. Therefore, full conformance to this condition is

deferred to the host application itself, although future implementations of LibVM can

potentially claim full conformance by adopting the strategies mentioned previously

and discussed in detail in Chapter 7.

Chapter 6: Evaluation of Implementations against Functional Specification 149

6.4 PART 5 – EVALUATING THROUGH THE COMMON CRITERIA

This section is based upon the processes and procedures outlined for security

evaluation in the Common Criteria for Information Technology Security Evaluation

version 3.0 [67]. The Common Criteria was chosen as a guiding framework as it is an

international standard. While a full CC evaluation is not performed, we utilise

relevant sections to ensure greater confidence in the processes and practices used in

developing LibVM. Our basic approach has been to describe the security target

aimed for, and to evaluate it against security functional requirements defined in the

Common Criteria. The cross references below, of the form ASE_, are taken from the

CC standard.

6.4.1 Related Security Targets and Experience

While there is no existing Protection Profile which matches our needs, we have

relied on available security targets for operating systems as a basis on which to

model our own CC-like Security Target, i.e. the object being evaluated, which in our

case, is a LibVM implementation.

6.4.2 Introduction to the Security Target

6.4.2.1 ASE_INT.1.3C - TOE reference

The Target of Evaluation (TOE) is LibVM, a reference monitor/isolation container

for dynamic shared libraries.

6.4.2.2 TOE description

ASE_INT.1.4C - The Target of Evaluation is a component isolation sub system,

which is a container designed to protect its host from components of unknown

provenance and quality. The TOE comes in the form of a sandboxing library that can

be used to define such isolation domains and to load shared libraries into these

domains. The TOE will be able to constrain faulty or malicious components through

the following.

a. Preventing access to unauthorised host container memory regions

b. Disallowing access to privileged system resources

c. Allowing arbitration of all system calls

Chapter 6: Evaluation of Implementations against Functional Specification 150

d. Preventing a component from causing a denial of service

e. Acting as a reference monitor for an untrusted component

The TOE will detect and flag attempts to bypass security constraints.

6.4.2.3 ASE_INT.1.8C - Logical scope

Our system is designed to deal with such arbitrary binary components, from

untrusted sources, which need to be executed in a constrained environment. Once a

component is accepted for execution, it must have controlled access to resources, as

determined by the host. Access to memory must be restricted to areas allowed by the

host application and attempts to exceed these limits must be caught. The host must

be allowed to constrain the component by preventing arbitrary access to the

operating system call interface. Such access must be mediated and the host must be

allowed to set resource limits on memory usage or disk access. On the other hand,

the component must be able to freely avail itself of all safe machine instructions.

Therefore, our system is based on the observations that a process cannot perform any

actions harmful to the system as long as its system call interface, which is its window

to the outside world, is strictly controlled. We utilise this principle for isolating

components within a restricted address space, and provide strict arbitration over all

system calls.

6.4.2.4 Definitions

A component is any binary unit which is loaded by an application into its own

address space with communication taking place between the component and its host

application via a well-defined interface. Primarily, this will be in the form of

dynamic link libraries (DLL)/shared object (SO) libraries, which form the primary

means of composability in modern operating systems (OS) and applications.

A malicious component is a component which intentionally attempts to subvert the

hosting container and gain access to disallowed resources, including privilege

elevation, information corruption or denial of service.

A faulty component is a component which unintentionally corrupts the host

containers state or accidentally attempts to access memory or resources denied to it,

causing failure or corruption of the containing host.

Chapter 6: Evaluation of Implementations against Functional Specification 151

6.4.2.5 Conformance claims

6.4.3 Operating Environment

ASE_INT.1.6C -The TOE depends on

a. The Suse Linux 11.3 operating system

b. The LibKVM virtualization library provided with above operating system

c. The Gnu C Compiler

6.4.4 Objectives

The purpose of environmental objectives is to explicitly state the requirements which

are expected of the operating environment. When these environmental objectives are

met by the operating environment, the TOE itself meets its own security objectives

satisfactorily.

The security objectives for the operations environment are as follows:

a. It must support full virtualization of CPU and memory.

b. Access attempts to unmapped memory regions must result in trappable page

faults.

c. Privileged instructions (i.e. interrupt invocations, syscall instructions) must be

trappable.

d. The host operating system must have a clearly defined system call interface,

so that system-call interpositioning is possible.

e. The underlying Operating Environment is assumed to be free of exploitable

vulnerabilities which reside outside of its system call interface.

f. It is assumed that the operating systems own security policies are sufficient to

constrain a host application such that no component residing with that

application can gain elevated privileges which are greater than the host

application itself.

g. The host application must ensure that the conditions specified in Section

3.4.3.5 are met.

The security objectives for the TOE are as follows:

Chapter 6: Evaluation of Implementations against Functional Specification 152

a. The TOE will detect and mitigate the effects of untrustworthy components.

b. The TOE will ensure that the subjects are only able to access resources

according to a user-mediated policy object.

c. The TOE’s reference monitor will operate in a separate domain from that of

the untrusted library and allow full mediation over resources accessed and

allocated by the untrusted library.

d. The reference monitor’s mechanisms are tamper proof.

6.4.5 Special Requirements

None.

6.4.6 TOE Security Assurance

6.4.6.1 Assurance

Development

Sound software engineering practices were adopted, and key security principles

adhered to, such as the principle of granting the least privilege, the principle of using

the least common mechanism, and the principle of complete mediation. These

practices have been outlined over the course of this document. In addition, automated

testing has been performed through limited use of unit tests. These tests were

designed to stress specific edge conditions, such as attempts to access memory

outside of the bounds assigned to the TOE. In addition, defensive programming

techniques have been utilised through the development of this software, and are

detailed in Chapters 4 and 5.

Documentation

This thesis serves as the documentation for the TOE, and provides a complete

description of its implementation aspects as well as a systematic basis for evaluation.

6.4.6.2 Platform assurance

Vulnerability assessment

We have conducted a systematic search for vulnerabilities by identifying all possible

attack surfaces on the TOE as described in Sections 6.2 and 6.3. In addition to this

systematic analysis of attack surface, we have conducted several targeted tests which

Chapter 6: Evaluation of Implementations against Functional Specification 153

evaluated the robustness of the TOE to different kinds of attack, such as attempts to

escape sandbox limits. These have been discussed at length in Chapter 4.

6.4.6.3 Summary

This section has provided a further evaluation of LibVM against the security

guidelines defined in the internationally standardised Common Criteria for

Information Security Evaluation. The Target of Evaluation, LibVM, was defined and

its security objectives outlined. Secondly, the objectives were evaluated according to

relevant assurance requirements in the Common Criteria (exluding those parts of the

CC that are relevant only to mass-produced commercial products). References have

been made to previous evaluations where relevant.

6.5 CONCLUSION

This chapter has provided an evaluation of both LibVM implementations, discussing

the conditions under which LibVM can be guaranteed to be correct with respect to

isolating libraries from their host, such that the host is fully able to control the

execution of the libraries, as per the functional specification defined in Section 3.4.

The five conditions under which this guarantee can be provided, have been analysed

in depth, identifying the strengths and weaknesses of both implementations. Due to

economy of mechanism, the hardware based implementation is deemed to be more

secure than the software based implementation. Finally, the objectives and processes

used in LibVM has been evaluated by using the Common Criteria as a guideline.

While there is good confidence in the robustness of the mechanisms, potential pitfalls

have been highlighted, and improvements outlined.

Chapter 7: Conclusions 155

Chapter 7: Conclusions

7.1 INTRODUCTION

This chapter summarises the contributions and outcomes of this thesis. The chapter

also outlines future enhancements as well as further research that can be undertaken

in this area. Finally, it concludes the thesis with an analysis of the implications of this

research.

7.2 SUMMARY OF RESEARCH AND ITS CONTRIBUTIONS

This thesis has addressed the problem of untrusted components potentially

decreasing the reliability of host applications. The evidence for this position has been

presented and discussed, including the prevalence of application crashes caused by

component failures, as well as the security threats posed by insecure components. To

solve this problem, we have investigated methods for creating protection domains for

individual components, thus preventing an errant or untrusted component from

adversely affecting the host. We also aimed to preserve the benefits of shared address

spaces, a key advantage in library components, while doing so.

Therefore, the causes and symptoms of component failure were investigated, and the

errors that are relevant to isolation domains were identified, which contribute to the

literature on this subject. Subsequently, we have evaluated the methods available to

create such isolation domains and have published our findings [46]. In addition, we

have also identified some of the major shortcomings in present research in this area.

Some of the key shortcomings include the inability to preserve the benefits of shared

address spaces, as well as the requirement that components be recompiled through

custom tool-chains, or that they adhere to a highly restricted subset of available

machine instructions, in order to be safely executed.

To remedy these shortcomings, we have introduced an abstract API that defines the

broad semantics of such isolation containers and described a hardware virtualization-

based implementation for speed, and a less efficient ptrace-based software

implementation for use in the absence of such hardware support.

Chapter 7: Conclusions 156

Our solution retains the advantage of not requiring custom tool chains, and operates

against standard linux binaries, providing an advantage over previous efforts in this

area [32, 144]. The shared libraries themselves require no modifications before use.

We found that the porting effort itself is proportional to the complexity of the host.

While our hardware virtualization-based implementation provides simpler

mechanisms for data sharing, the ptrace jail-based mechanism offers more limited

options. However, such limitations could be remedied with kernel modifications.

This approach provides an attractive alternative to existing solutions because it

requires less porting effort due to its similarity to existing POSIX interfaces, and

provides a more natural programming metaphor due to pointer transparency, while

maintaining comparable performance when hardware virtualization support is

available, and good isolation guarantees even in its absence.

In addition, neither of these techniques had previously been explored for the purpose

of isolating library components. Therefore, to our knowledge, this is the first

documented research effort to do so.

We have also carried out extensive performance evaluations against competing

solutions, using industry standard benchmarks, and show that our solutions offer

competitive performance, while reducing the size of the required Trusted Computing

Base, and eliminating entire classes of problems related to code verification and

static analysis.

The two implementations have also been evaluated in-depth, and this thesis has

identified five conditions that are necessary and sufficient to guarantee that a

component can be isolated from its host. These conditions are:

1. The CPU utilised by the LibVM container must be virtualised such that it is

isolated from the host application.

2. A host can never utilise a value obtained from within the isolation container

without ensuring that it is adequately validated.

3. A thread of execution within a LibVM container cannot access memory

regions outside of its allocated regions.

4. The domain transition mechanism provided by LibVM must not compromise

the host’s integrity.

Chapter 7: Conclusions 157

5. An action executed by the host on behalf of a library isolated within LibVM

must not compromise the host’s own integrity.

As has been discussed, these conditions can be conformed to in various degrees, in

accordance to the isolation needs of a particular application, while still being

implemented through the LibVM API. For example, an application that supports

components of unknown provenance could utilise a strictly conformant API with

extremely strong isolation guarantees, whereas an application which simply wishes

to guard itself against component failures, could utilise a less conformant API which

nevertheless provides satisfactory fault isolation.

In summary, the contributions of this research are

1. A classification of isolation mechanisms.

2. An abstract API which encapsulates component isolation domains.

3. A set of conditions under which an isolation sandbox can correctly isolate a

component.

4. A process-tracing based implementation of the LibVM API.

5. A hardware-virtualization based implementation of the LibVM API.

6. A comparative evaluation of the implementations.

Ultimately, we believe that the ideas presented in this thesis serve to validate our

initial hypothesis that it is indeed possible to create lightweight isolation domains for

libraries while maintaining heavyweight security guarantees. In the following

sections, we note further work that can be undertaken to improve and build upon

these ideas.

7.3 FUTURE WORK

The work presented in this thesis demonstrates how lightweight isolation domains for

libraries can be created, while abstracting away the implementation details. The

resultant LibVM sandbox has provided a base on which further work can be

undertaken. This section includes not only enhancements which can be made to

LibVM, but also to the general problem of component isolation, which, as we have

Chapter 7: Conclusions 158

argued throughout this thesis, is a problem of critical importance when developing

more dependable systems.

7.3.1 Support for Multiple Operating Systems

The current implementation of LibVM is built on the Linux operating system. While

the general concepts and ideas presented in this thesis are not operating system

dependent, the two implementations makes several operating system specific

assumptions. An example would be the use of POSIX shared memory primitives in

LibVM-ptrace. Some operating systems, such as Microsoft Windows, are not fully

POSIX compliant [97] and therefore, LibVM would need to be ported to use the

corresponding OS calls in Microsoft Windows. In addition, both LibVM-ptrace and

LibVM-VT directly use the GNU/Linux loader/linker for loading additional libraries

into the sandbox. Such issues too can be solved by utilising the operating system

specific linking/loading mechanism.

In all cases, since the LibVM API itself is abstract, it is possible to implement these

mechanisms in a highly operating system dependent manner, yet leave the host

program itself largely unaware of those underlying mechanisms (although

recompilation for each operating system is required). However, a more difficult issue

lies with the operating system call interface itself, as the current version of LibVM

requires that this interface be intercepted and mediated by the host application. Since

this call interface is highly operating system dependent, the host application too will

be tied down to that particular operating system interface.

Several solutions to this problem are possible. One possibility is to absorb the

operating system dependent portions into LibVM itself, and to expose a more high-

level security policy abstraction to the host application, based on pre-defined

templates. For example, if a component is known to require only CPU and internet

access, the host application could simply inform LibVM to activate a “CPU only”

and “Internet only” security policy. This would then allow system calls related to

those policies only, with all other system calls being barred. Such functionality-based

confinement policies have already been suggested and implemented in application-

oriented access control mechanisms [120], and can be readily adapted to LibVM.

Yet another approach is to define an operating system independent system call

interface, which require that components use only these system calls. This approach

Chapter 7: Conclusions 159

is utilised in Google’s Native Client [144]. However, such a policy forces all

components to be recompiled to support the new interface, which is disadvantageous

when using pre-existing library components.

A third approach is for LibVM to abstract away the operating system interface, yet

provide the host with an OS independent mechanism for making policy decisions.

Combined with the first approach of policy templates, this method could be used on

existing library components while allowing the host application to remain

independent of operating system details.

7.3.2 64-bit Support

The current implementation of LibVM has been developed on a 32-bit architecture,

and therefore, a port to a 64-bit architecture would be useful. It should be noted

however, that neither implementation of LibVM has any specific dependency on a

32-bit architecture, and consequently, can be easily ported to 64-bit systems. For

example, LibVM-ptrace is built on existing process isolation facilities and ptrace,

both of which are supported in 64-bit Linux systems. LibVM-VT is reliant on

hardware virtualization, and this too is easily ported to support 64-bit instruction sets

by simply setting the virtual processor to 64-bit mode.

This should be contrasted with Vx32, which relies on hardware segmentation [32],

and therefore is dependent on 32-bit systems, as well as Google’s Native Client,

which uses segmentation on 32-bit systems and has a paging-based mechanism to

support 64-bit systems [118].

7.3.3 Improved Debugging Support

Debugging support for components executing within a LibVM sandbox is also an

important consideration. We have implemented rudimentary debugging capabilities

in our current version of LibVM-VT, such as the ability to set breakpoints as well as

step-through instructions individually. However, better debugging support, such as

the ability to inspect variable values, utilise debugging information embedded in

binaries etc., is a clear necessity. Adding such support would be a tremendous

improvement in supporting application development using LibVM.

The LibVM-ptrace implementation also has similarly rudimentary debugging

capabilities, but would need to be enhanced to provide better external debugging

Chapter 7: Conclusions 160

support. One particularly problematic issue is that, the ptrace interface supports

attaching only one parent process to each child-process being traced. Since LibVM is

already tracing the sandboxed process, an external debugger process cannot

therefore, attach to this sandboxed process. Such limitations could be avoided by

providing direct operating system support for LibVM sandboxes, which we discuss

next.

7.3.4 Operating System Support for Component Sandboxes

In this thesis, we have argued that support for isolating components should be a

fundamental abstraction in operating systems, and would lead to more robust

applications. In the course of implementing this support, we have not directly

modified the operating system Kernel, so as to maximise the portability of the

solution. Based on our experience with LibVM-ptrace, we have shown that, while it

is possible to implement component sandboxing independent of such operating

system modifications, the mechanisms themselves would become more efficient as

well as more economical, if the operating system recognizes components as a

fundamental abstraction.

For example, in our current implementation of LibVM-ptrace, we have used the

ptrace mechanism, which is a mechanism provided by the operating system mainly

to support debuggers. While we have commandeered this mechanism for the purpose

of component isolation, the ptrace mechanism has much inefficiency, as it was

originally intended for a different purpose. Such inefficiencies include an excess of

up-calls to the tracing process, which could have been avoided with direct operating

system support, as well as limited support for manipulating the child process. This

fact has also been demonstrated in application confinement [42].

Therefore, we believe that adding direct support in the operating system kernel, for

component sandboxing, would be a useful area of further research.

7.3.5 Compiler Support for LibVM Sandboxes

In addition to the idea that component sandboxing should be an integral part of the

operating system, we have also shown (in Chapter 6) that compiler supported

sandboxed components could increase confidence in the security of the solution, as

Chapter 7: Conclusions 161

well as make the process of using sandboxed components more transparent (Chapters

4 and 5).

For example, pointers obtained from a call to a sandboxed component, could be

automatically validated by the compiler to ensure that they fall within the sandboxed

region. This would provide a more natural programming metaphor for host programs,

as they could be largely insulated from the details of validating information obtained

from within the sandbox, a process which the host must do manually in the current

implementation of LibVM.

This task would require data and control flow analysis to determine which

data/methods in a sandboxed components are being accessed by the host, and

additional instructions could be emitted to validate such accesses. If the validation

cannot be automatically done, issuing a compilation warning would be sufficient to

alert the user to potential security vulnerabilities.

This support could be built on top of the core infrastructure provided by LibVM, and

provides an important avenue for further research.

7.3.6 Use of Hardware Virtualization for Driver Isolation

This thesis has focused on the isolation of user-level libraries, and we have utilised

hardware virtualization support towards this end, in the LibVM-VT implementation.

However, we have not explored the issue of isolating device drivers and other kernel

modules, which constitute a frequent source of system failure too. For example, over

85% of Windows XP crashes are due to faulty device drivers [125], and Linux

drivers have 3 to 7 times the bug count of the kernel itself [20]. Therefore, isolation

of kernel modules is also a pressing requirement.

While others have explored the isolation of driver isolation using full virtual

machines [83], lightweight driver isolation using hardware virtualization support has

been described by Tan et al. [129], by using Intel’s VT-x extensions. However, their

research predated the introduction of Intel EPT and AMD Nested Paging support

(described in Chapter 2), and therefore, this also presents opportunities for further

performance and isolation improvement, as well as more general purpose abstraction.

Chapter 7: Conclusions 162

7.4 CONCLUSION

This chapter has provided a summary of the research undertaken and contributions of

this thesis, as well as future work required in this area. We have shown, through

LibVM, that isolating library components with strong security guarantees, while

preserving their key benefits such as shared address spaces, is possible. This has been

validated through the development and evaluation of two concrete implementations

of the LibVM API. The first implementation is based on operating system provided

process tracing facilities. The second implementation is based on hardware

virtualization support present in more recent processors. We have shown the relative

merits and demerits of each approach, and conclude that the hardware virtualization

based approach currently provides greater flexibility and performance in providing

intra-address space isolation, while maintaining a relatively smaller TCB. However,

we have also shown that, if components were to become a fundamental abstraction

offered by the operating system, these isolation facilities could also be built on top of

existing process isolation facilities while minimising the shortcomings in our

process-tracing based approach. We have shown that our approach has the following

key advantages.

1. Elimination of an entire class of problems related to code verification and

patching.

2. A significantly smaller Trusted Computing Base and therefore, increased

confidence in the safety of the system.

3. Our prototype implementation already provides competitive performance in

comparison to NaCl and better performance than Vx32, with the promise of

even better performance in an optimised implementation.

4. Since we perform checks at runtime, we minimise false positives which

would prevent the execution of valid components.

5. The approach is easily extendable to support 64-bit code.

6. Our approach does not require the use of custom tool chains, and can isolate

standard Linux binaries.

In addition, this thesis has also identified five conditions that are necessary and

sufficient to guarantee that a component can be isolated from its host. This provides a

Chapter 7: Conclusions 163

basis on which future isolation containers can be developed, with varying levels of

assurance/conformance claims against those conditions.

Finally, the thesis concludes by presenting the argument that the ability to isolate

untrusted components should be a fundamental abstraction supported by the

operating environment, leading to more robust and fault-tolerant applications, which

are also more resilient to security threats. By combining such an abstraction with

compiler support at the programming language level, we believe it is possible to

tremendously increase the ease of use of such isolation sandboxes, while having

increased confidence in its security provisions.

Appendix A: Detailed SPEC Results 165

Appendix A: Detailed SPEC Results

This section provides the detailed SPEC benchmark reports for the results

summarised in Chapter 5. These reports provide more detailed information in

comparing the individual performance of the solutions, as well as the flags and

parameters used in their execution. The pages that follow include the SPEC reports

in the following order.

1. Core i5 processor

a. Native run (Pages 166-168)

b. LibVM –VT (Pages 169-171)

c. Google Native Client (Pages 172-174)

2. Core i7 processor

a. Native run (Pages 175-177)

b. LibVM-VT (Pages 178-180)

c. Google Native Client (Pages 181-183)

Appendix A: Detailed SPEC Results 166
Appendix A: Detailed SPEC Results 166

Appendix A: Detailed SPEC Results 167 Appendix A: Detailed SPEC Results 167

Appendix A: Detailed SPEC Results 168

Appendix A: Detailed SPEC Results 168

Appendix A: Detailed SPEC Results 169

Appendix A: Detailed SPEC Results 169

Appendix A: Detailed SPEC Results 170

Appendix A: Detailed SPEC Results 170

Appendix A: Detailed SPEC Results 171

Appendix A: Detailed SPEC Results 171

Appendix A: Detailed SPEC Results 172
Appendix A: Detailed SPEC Results 172

Appendix A: Detailed SPEC Results 173

Appendix A: Detailed SPEC Results 173

Appendix A: Detailed SPEC Results 174

Appendix A: Detailed SPEC Results 174

Appendix A: Detailed SPEC Results 175

Appendix A: Detailed SPEC Results 175

Appendix A: Detailed SPEC Results 176

Appendix A: Detailed SPEC Results 176

Appendix A: Detailed SPEC Results 177

Appendix A: Detailed SPEC Results 177

Appendix A: Detailed SPEC Results 178

Appendix A: Detailed SPEC Results 178

Appendix A: Detailed SPEC Results 179

Appendix A: Detailed SPEC Results 179

Appendix A: Detailed SPEC Results 180

Appendix A: Detailed SPEC Results 180

Appendix A: Detailed SPEC Results 181
Appendix A: Detailed SPEC Results 181

Appendix A: Detailed SPEC Results 182

Appendix A: Detailed SPEC Results 182

Appendix A: Detailed SPEC Results 183

Appendix A: Detailed SPEC Results 183

Appendix B: Source Code Outline 185

Appendix B: Source Code Outline

This section provides an overview of the program code structure in the LibVM user

space library, which can be used by clients to create library sandboxes via the

LibVM interface. Additional files, such as testing code, examples and performance

benchmarks have been omitted. Full source code can be obtained by e-mailing the

author at nuwan.goonasekera@student.qut.edu.au or nuwan.ag@gmail.com.

LIBVM MODULE STRUCTURE

Figure B.1 depicts a simplified block diagram of the LibVM module structure. A

description of each module follows.

Figure B.1: LibVM module overview

LibVM Abstract

Implementation

Memory

Manager
PIE ELF Loader

Dynamic Proxy

Generator

LibVM Interface

Bootstrapper

LibVM-VT LibVM-ptrace

LibVM-VT

Syscall

Implementation

LibVM-ptrace

Syscall

Implementation

Appendix B: Source Code Outline 186

1. LibVM Interface - The LibVM interface is the external façade of the

LibVM user space library. The interface exposes the methods defined in

Section 3.7.3. In addition, it exposes a libvm_context data structure,

which is an opaque pointer supplied to clients, and is used to maintain

LibVM state.

2. LibVM Abstract Implementation – This module provides an abstract

implementation of the LibVM interface, based on the simplified virtual

machine defined in Section 3.8. Concrete implementation details are

deferred to the two implementations of LibVM, although other

implementations conformant to the afore mentioned stack based virtual

machine can also be plugged in.

3. PIE ELF Loader – The Position Independent Executable (PIE) ELF

Loader module is responsible for loading and parsing position independent

ELF modules. It is used by the LibVM implementation to load the LibVM

bootstrapper code as well as the system ELF interpreter, which handle

domain transitions and symbol resolution respectively, both of which are

discussed in Section 4.3.

4. Bootstrapper – The Bootstrapper module is a PIE elf executable which

provides domain transition support functions and executes within LibVM,

and is discussed extensively in Section 4.3.

5. Memory Manager – The Manager Module handles basic memory

allocation/de-allocation in the LibVM virtual machine, setting up the

required memory regions and tracking memory regions which are in use

by the LibVM virtual machine. This modules assists in determining

whether memory references are valid, since all references obtained from

untrusted code running within the virtual machine must fall within a region

recognized and allowed by the memory manager.

6. Dynamic Proxy Generator – This module assists the libvm_sym

function in the dynamic generation of proxy functions which are

responsible for transparently switching execution from the executed

function into the LibVM isolation domain for safe execution. This process

is described in Section 4.3.3.

Appendix B: Source Code Outline 187

7. LibVM-VT – The module provides a concrete implementation of LibVM

based on hardware virtualization support, and is described extensively in

Section 5.4. It relies on libKVM [107] for the abstraction of lower level

virtualization hardware. Some support modules have been omitted from

the diagram for clarity, such as debugging support and CPUID emulation.

8. LibVM-ptrace – The module provides a process-tracing based

implementation of LibVM, and is described in Section 4.3.

9. LibVM-VT Syscall Implementation – This module implements system

calls for the LibVM-VT module. The implementation is discussed in

Section 5.4. It shares code where possible with the LibVM-ptrace based

implementation of system calls, but due to the two-stage nature of the

ptrace mechanism is necessarily different from LibVM-VT.

10. LibVM-ptrace Syscall Implementation – This module implements

system calls for the LibVM-ptrace module. Since ptrace is a two-stage

process, the system calls are handled by a pre and post process. Where

possible however, code is shared with the LibVM-VT based

implementation. The implementation is discussed in Section 4.3.4.

LIBVM FOLDER STRUCTURE

The LibVM source code folder consists of a root folder which contains code

common to both LibVM-ptrace and LibVM-VT. Implementation specific source

code is contained in two subfolders.

LibVM root folder

• auxv.h – Header file for creating in-memory auxiliary vector.

• auxv.c – Implementation file for creating in-memory auxiliary vector.

• bootstrapper.c – LibVM bootstrapper executable.

• libvm.h – Main header file for LibVM interface.

• libvm.c – Abstract implementation of LibVM interface.

• libvm_tramp.h – Header file for LibVM domain transition proxy.

Appendix B: Source Code Outline 188

• libvm_tramp.S – Assembler routines for LibVM domain transition proxy, patched

at runtime.

• memory_region.h – Header file for LibVM memory region management.

• memory_region.c – Implementation of LibVM memory region management.

• pie_elf_loader.h – Header file for Position Independent ELF executable loader.

• pie_elf_loader.c – Position Independent ELF loader, used to load LibVM

bootstraper and ELF interpreter.

• syscall.h – Header file for LibVM recognized POSIX system calls.

• syscall.c – Abstract implementation of system calls.

• trampoline.c – Implementation of LibVM runtime trampoline patching for

dynamically generated proxies.

LibVM-VT folder

• cpuid.h – Header file for LibVM CPUID emulation.

• cpuid.c – Implementation of LibVM CPUID emulation.

• debugger.h – Header file for debugging support in LibVM components.

• debugger.c – Implementation of debugging support for LibVM components such as

breakpoints and step-through.

• kvm-impl.h – Header file for libKVM/VT based implementation of LibVM.

• kvm-impl.c – Implementation of VT based LibVM.

• libkvm.h – Header file for libKVM (from KVM source).

• syscall_proxy.h – Header file for LibVM-VT system calls.

• syscall_proxy.c – Implementation of LibVM-VT system calls.

Appendix B: Source Code Outline 189

LibVM-ptrace folder

• mem_clean.h – Header file for process memory cleanup routines.

• mem_clean.c – Implementation of process memory cleanup after fork, for LibVM-

ptrace.

• ptrace_impl.h – Header file for ptrace based implementation of LibVM.

• trace_impl.c – Implementation of ptrace based LibVM.

• shared_mem.h – Header file for shared memory region management.

• shared_mem.c – Implementation file for shared memory region management.

• syscall_proxy.h – Header file for LibVM-ptrace system calls.

• syscall_proxy.c – Implementation of LibVM-ptrace system calls.

References 191

References

[1] K. Adams and O. Agesen, "A comparison of software and hardware
techniques for x86 virtualization," ACM SIGARCH Computer Architecture

News, vol. 34, pp. 2-13, 2006.
[2] M. Aiken, M. Fahndrich, C. Hawblitzel, G. Hunt, and J. Larus,

"Deconstructing Process Isolation," presented at the Proceedings of the 2006
workshop on Memory system performance and correctness, San Jose,
California, 2006.

[3] AMD. (2008, Accessed: 2009 Jan. 30). AMD-V™ Nested Paging [Online].
Available: http://developer.amd.com/assets/NPT-WP-1%201-final-TM.pdf

[4] G. M. Amdahl, G. A. Blaauw, and F. P. Brooks, "Architecture of the IBM
System/360," IBM Journal of Research and Development, vol. 8, 1964.

[5] A. Avizienis, J. Laprie, and B. Randell, "Fundamental Concepts of
Dependability," LAAS-CNRS, Toulouse, FranceApril 2001.

[6] A. Banerji, J. M. Tracey, and D. L. Cohn, "Protected shared libraries - a new
approach to modularity and sharing," Proceedings of the USENIX 1997

Annual Technical Conference, pp. 59-75, 1997.
[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.

Neugebauer, I. Pratt, and A. Warfield, "Xen and the art of virtualization,"
ACM SIGOPS Operating Systems Review, vol. 37, pp. 164-177, 2003.

[8] A. Barth, C. Jackson, C. Reis, and The Google Chrome Team. (2008,
Accessed: 2009 Jan. 30). The Security Architecture of the Chromium

Browser. Available: http://crypto.stanford.edu/websec/chromium/
[9] M. Bauer, "Paranoid Penguin: An Introduction to Novell AppArmor," Linux

Journal, vol. 2006, p. 13, 2006.
[10] A. Bensoussan, C. T. Clingen, and R. C. Daley, "The Multics virtual

memory: concepts and design," Commun. ACM, vol. 15, pp. 308-318, 1972.
[11] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski, D.

Becker, C. Chambers, and S. Eggers, "Extensibility Safety and Performance
in the SPIN Operating System," presented at the Proceedings of the fifteenth
ACM symposium on Operating systems principles, Copper Mountain,
Colorado, United States, 1995.

[12] L. Blaxter, C. Hughes, and M. Tight, How To Research, 2nd ed.: Open
University Press, 2001.

[13] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum, "Disco: running
commodity operating systems on scalable multiprocessors," ACM

Transactions on Computer Systems (TOCS), vol. 15, pp. 412-447, 1997.
[14] F. Campbell, "The portable UCSD p-System," Microprocessors and

Microsystems, vol. 7, pp. 394-398, 1983.
[15] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska, "Sharing and

protection in a single-address-space operating system," ACM Transactions on

Computer Systems, vol. 12, pp. 271-307, 1994.
[16] Y. Chiba, "Heap Protection for Java Virtual Machines," in The 4th

International Symposium on Principles and Practice of Programming in

Java, Mannheim, Germany, 2006.

References 192

[17] T. Chiueh, "Fast Bounds Checking Using Debug Register," in High

Performance Embedded Architectures and Compilers. vol. 4917/2008, ed:
Springer Berlin / Heidelberg, 2008, pp. 99-113.

[18] T. Chiueh, G. Venkitachalam, and P. Pradhan, "Integrating segmentation and
paging protection for safe, efficient and transparent software extensions,"
presented at the Proceedings of the Seventeenth ACM Symposium on
Operating Systems Principles, Charleston, South Carolina, United States,
1999.

[19] T. Chiueh, G. Venkitachalam, and P. Pradhan, "Intra-address space protection
using segmentation hardware," in Proceedings of the Seventh Workshop on

Hot Topics in Operating Systems, 1999, pp. 110-115.
[20] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, "An empirical study of

operating systems errors," ACM SIGOPS Operating Systems Review, vol. 35,
pp. 73-88, 2001.

[21] J. Christmansson and R. Chillarege, "Generation of an error set that emulates
software faults based on field data," in Proceedings of the Annual Symposium

on Fault Tolerant Computing, 1996, pp. 304-313.
[22] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie, A.

Grier, P. Wagle, and Q. Zhang, "StackGuard: Automatic Adaptive Detection
and Prevention of Buffer-overflow Attacks," presented at the Proceedings of
the 7th conference on USENIX Security Symposium - Volume 7, San
Antonio, Texas, 1998.

[23] C. Cowan, F. Wagle, P. Calton, S. Beattie, and J. Walpole, "Buffer
overflows: attacks and defenses for the vulnerability of the decade," in
Proceedings of the DARPA Information Survivability Conference and

Exposition, 2000, pp. 119-129 vol.2.
[24] G. Czajkowski and L. Dayn, "Multitasking Without Compromise: A Virtual

Machine Evolution," presented at the Proceedings of the 16th ACM
SIGPLAN conference on Object oriented programming, systems, languages,
and applications, Tampa Bay, FL, USA, 2001.

[25] D. Bell and L. LaPadula, "Secure Computer Systems: a Mathematical
Model," MITRE Corp., Bedford, MA Technical Report MTR-2547 (Vol. II),
1973.

[26] D. Dean, "Secure Mobile Code: Where Do We Go From Here?," presented at
the DARPA Workshop on Foundations for Secure Mobile Code, Monterey,
CA, USA, 1997.

[27] P. J. Denning, "Fault Tolerant Operating Systems," ACM Comput. Surv., vol.
8, pp. 359-389, 1976.

[28] E. W. Dijkstra, "The humble programmer," Communications of the ACM,

vol. 15, pp. 859-866, 1972.
[29] K. Elphinstone, "Future Directions in the Evolution of the L4 Microkernel,"

in NICTA workshop on OS verification, Sydney, Australia, 2004.
[30] A. Endres, "An analysis of errors and their causes in system programs,"

presented at the Proceedings of the international conference on Reliable
software, Los Angeles, California, 1975.

[31] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula, "XFI:
Software Guards for System Address Spaces " Symposium on Operating

System Design and Implementation, pp. 75–88 2006.
[32] B. Ford and R. Cox, "Vx32: Lightweight User-level Sandboxing on the x86,"

in USENIX Annual Technical Conference, Boston, MA, 2008, pp. 293–306.

References 193

[33] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and M. Williamson,
"Safe hardware access with the Xen virtual machine monitor," presented at
the 1st Workshop on Operating System and Architectural Support for the On-
Demand IT Infrastructure, Boston, MA, 2004.

[34] T. Fraser, L. Badger, and M. Feldman, "Hardening COTS software with
generic software wrappers," in Foundations of Intrusion Tolerant Systems

[Organically Assured and Survivable Information Systems], 2003, pp. 399-
413.

[35] J. Frederick P. Brooks, The Mythical Man-Month (anniversary ed.): Addison-
Wesley Longman Publishing Co., Inc., 1995.

[36] S. Friedl. (2002, December 15th) Go Directly to Jail: Secure Untrusted
Applications with chroot. Linux Magazine. Available: http://www.linux-
mag.com/id/1230/

[37] E. Gabber, C. Small, J. Bruno, J. Brustoloni, and A. Silberschatz, "The
Pebble Component-Based Operating System," in Proceedings of the 1999

USENIX Annual Technical Conference, Monterey, CA, 1999.
[38] I. Ganev, G. Eisenhauer, and K. Schwan, "Kernel plugins: when a VM is too

much," in Proceedings of the 3rd conference on Virtual Machine Research

And Technology Symposium, San Jose, California, 2004.
[39] T. Garfinkel, "Traps and pitfalls: Practical problems in system call

interposition based security tools," in In Proceedings of Network and

Distributed Systems Security Symposium (NDSS), ed, 2003, pp. 163--176.
[40] T. Garfinkel, P. Ben, and R. Mendel, "Ostia: A Delegating Architecture for

Secure System Call Interposition," in Proceedings of the Network and

Distributed Systems Security Symposium, 2004.
[41] GNU. (2011, Accessed: February 16th). GCC, the GNU Compiler Collection.

Available: http://gcc.gnu.org/
[42] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer, "A secure

environment for untrusted helper applications confining the Wily Hacker,"
presented at the Proceedings of the 6th conference on USENIX Security
Symposium, Focusing on Applications of Cryptography - Volume 6, San
Jose, California, 1996.

[43] Google. (2009, Accessed: 2010 Jul. 20). Native Client Security Contest

[Online]. Available: http://code.google.com/contests/nativeclient-security/
[44] N. A. Goonasekera, W. J. Caelli, and C. J. Fidge, "A Hardware Virtualization

Based Component Sandboxing Architecture," Journal of Software, vol. 7, pp.
2107-2118, 2012.

[45] N. A. Goonasekera, W. J. Caelli, and C. J. Fidge, "LibVM: An Architecture
for Shared Library Sandboxing," In Submission, 2012.

[46] N. A. Goonasekera, W. J. Caelli, and T. Sahama, "50 Years of Isolation," in
Proceedings of the 2009 Symposia and Workshops on Ubiquitous, Autonomic

and Trusted Computing, Brisbane, Australia, 2009, pp. 54-60.
[47] J. Gray, "Why do computers stop and what can be done about it?," Technical

Report 85.7, Tandem Computers, June 1985.
[48] Grugq. (2004, Accessed: 6th January 2012). Userland Exec. Available:

http://www.derkeiler.com/Mailing-Lists/securityfocus/bugtraq/2004-
01/0002.html

[49] P. H. Gum "System/370 Extended Architecture: Facilities for Virtual
Machines," IBM Journal of Research and Development, vol. 27, 1983.

References 194

[50] A. C. D. Haley, "The KDF.9 computer system," presented at the Proceedings
of the December 4-6, 1962, fall joint computer conference, Philadelphia,
Pennsylvania, 1962.

[51] R. Hastings and B. Joyce, "Purify: Fast detection of memory leaks and access
errors," in In Proc. of the Winter 1992 USENIX Conference, 1991, pp. 125-
138.

[52] C. Hawblitzel and T. von Eicken, "A Case for Language-Based Protection,"
Cornell University Technical Report 98-1670, 1998.

[53] G. Heiser, K. Elphinstone, J. Vochteloo, S. Russell, and J. Liedtke, "The
Mungi single-address-space operating system," Software: Practice and

Experience, vol. 28, pp. 901-928, 1998.
[54] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative

Approach, 4th ed.: Morgan Kaufmann Publishers Inc., 2006.
[55] J. L. Henning, "SPEC CPU2006 benchmark descriptions," SIGARCH

Comput. Archit. News, vol. 34, pp. 1-17, 2006.
[56] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum,

"Construction of a Highly Dependable Operating System," in Sixth European

Dependable Computing Conference, 2006, pp. 3-12.
[57] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum, "Fault

isolation for device drivers," in IEEE/IFIP International Conference on

Dependable Systems & Networks, 2009, pp. 33-42.
[58] M. Howard. (2004) Attack surface: Mitigate security risks by minimizing the

code you expose to untrusted users. Microsoft MSDN Magazine.
[59] G. Hunt, M. Aiken, M. Fahndrich, C. Hawblitzel, O. Hodson, J. Larus, S.

Levi, B. Steensgaard, D. Tarditi, and T. Wobber, "Sealing OS processes to
improve dependability and safety," ACM SIGOPS Operating Systems Review,

vol. 41, pp. 341-354, 2007.
[60] R. Hyde, The Art of Assembly Language: No Starch Press, 2003.
[61] IEEE, "1003.1-2008 Standard for Information Technology - Portable

Operating System Interface (POSIX(R))," ed: Institute of Electrical and
Electronics Engineers, 2008.

[62] Intel, Intel 64 and IA-32 Architectures Software Developer's Manual vol. 1:
Basic Architecture: Intel Corporation, 2007.

[63] Intel, Intel 64 and IA-32 Architectures Software Developer's Manual Volume

3A vol. 3A: System Programming Guide: Intel Corporation, 2007.
[64] Intel, Intel 64 and IA-32 Architectures Software Developer's Manual Volume

3B vol. 3B: System Programming Guide: Intel Corporation, 2007.
[65] Intel. (2008, Accessed: 25th May, 2011). Intel® Virtualization Technology

[Online]. Available:
http://www.intel.com/technology/virtualization/index.htm

[66] K. R. Irvine, Assembly Language for Intel-Based Computers, 4th ed.: Prentice
Hall, 2002.

[67] ISO/IEC-15408, "Common Criteria v3.0," ed, 2005.
[68] J. Rutkowska and R. Wojtczuk, "The Qubes OS Architecture," Invisible

Things Lab2010.
[69] T. Jaeger, J. Liedtke, and N. Islam, "Operating System Protection for Fine-

Grained Programs," in Proceedings of the 7th USENIX Security Symposium,
San Antonio, Texas, 1998, pp. 143–158.

References 195

[70] K. Jain and R. Sekar, "User-Level Infrastructure for System Call
Interposition: A Platform for Intrusion Detection and Confinement," ed,
1999, pp. 19-34.

[71] A. Jedlitschka, M. Ciolkowski, and D. Pfahl, "Reporting Experiments in
Software Engineering," in Guide to Advanced Empirical Software

Engineering, F. Shull, J. Singer, and D. K. Sjøberg, Eds., ed: Springer
London, 2008, pp. 201-228.

[72] N. Juristo and A. M. Moreno, Basics of Software Engineering

Experimentation: Springer Publishing Company, Incorporated, 2010.
[73] P. Kamp and R. N. M. Watson, "Jails: Confining the Omnipotent Root," in

Second International SANE Conference, 2000.
[74] P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Mason, and C. E. Kahn, "A

VMM security kernel for the VAX architecture," in Research in Security and

Privacy, 1990. Proceedings., 1990 IEEE Computer Society Symposium on,
1990, pp. 2-19.

[75] E. J. Koldinger, J. S. Chase, and S. J. Eggers, "Architecture support for single
address space operating systems," SIGPLAN Not., vol. 27, pp. 175-186, 1992.

[76] R. Kumar, E. Kohler, and M. Srivastava, "Harbor: Software-based Memory
Protection For Sensor Nodes," in 6th International Symposium on

Information Processing in Sensor Networks, 2007, pp. 340-349.
[77] L. Lam and T. Chiueh, "Checking array bound violation using segmentation

hardware," in The International Conference on Dependable Systems and

Networks, 2005, pp. 388-397.
[78] B. W. Lampson, "A note on the confinement problem," Communications of

the ACM, vol. 16, pp. 613-615, 1973.
[79] G. Law and J. McCann, "A new protection model for component-based

operating systems," in Proceedings of the IEEE International Performance,

Computing, and Communications Conference, 2000, pp. 537-543.
[80] I. Lee and R. K. Iyer, "Faults, symptoms, and software fault tolerance in the

Tandem GUARDIAN90 operating system," in The Twenty-Third

International Symposium on Fault-Tolerant Computing, 1993, pp. 20-29.
[81] P. D. Leedy and J. E. Ormrod, Practical Research: Planning and Design, 8th

ed.: Prentice Hall, 2004.
[82] B. Leslie, P. Chubb, N. Fitzroy-Dale, S. Götz, C. Gray, L. Macpherson, D.

Potts, Y.-T. Shen, K. Elphinstone, and G. Heiser, "User-Level Device
Drivers: Achieved Performance " Journal of Computer Science and

Technology, vol. 20, pp. 654-664, 2005.
[83] J. LeVasseur, V. Uhlig, J. Stoess, and S. G\\#246tz, "Unmodified device

driver reuse and improved system dependability via virtual machines,"
presented at the Proceedings of the 6th Symposium on Operating Systems
Design & Implementation, San Francisco, CA, 2004.

[84] J. R. Levine, Linkers and Loaders: Morgan Kaufmann Publishers Inc., 1999.
[85] Z. Liang, V. N. Venkatakrishnan, and R. Sekar, "Isolated program execution:

an application transparent approach for executing untrusted programs," in
Computer Security Applications Conference, 2003. Proceedings. 19th

Annual, 2003, pp. 182-191.
[86] J. Liedtke, K. Elphinstone, S. Schonberg, H. Hartig, G. Heiser, N. Islam, and

T. Jaeger, "Achieved IPC performance (still the foundation for extensibility),"
in The Sixth Workshop on Hot Topics in Operating Systems, 1997, pp. 28-31.

References 196

[87] P. Loscocco and S. Smalley, "Integrating Flexible Support for Security
Policies into the Linux Operating System," presented at the Proceedings of
the FREENIX Track: 2001 USENIX Annual Technical Conference, 2001.

[88] P. K. Manadhata and J. M. Wing, "A Formal Model for a System’s Attack
Surface," in Moving Target Defense. vol. 54, S. Jajodia, A. K. Ghosh, V.
Swarup, C. Wang, and X. S. Wang, Eds., ed: Springer New York, 2011, pp.
1-28.

[89] A. J. W. Mayer, "The architecture of the Burroughs B5000: 20 years later and
still ahead of the times?," SIGARCH Computer Architecture News, vol. 10,
pp. 3-10, 1982.

[90] S. McCamant and G. Morrisett, "Evaluating SFI for a CISC architecture,"
presented at the Proceedings of the 15th conference on USENIX Security
Symposium, Vancouver, B.C., Canada, 2006.

[91] M. Mcllroy, "Mass Produced Software Components," presented at the
Software Engineering: Report of a conference sponsored by the NATO
Science Committee, Garmisch, Germany, 1968.

[92] F. Mehnert, M. Hohmuth, and H. Hartig, "Cost and benefit of separate
address spaces in real-time operating systems," in 23rd IEEE Real-Time

Systems Symposium, 2002, pp. 124-133.
[93] N. Mendelsohn, "Operating systems for component software environments,"

in The Sixth Workshop on Hot Topics in Operating Systems, 1997, pp. 49-54.
[94] Microsoft. (2012, Accessed: February). FreeLibrary function. Available:

http://msdn.microsoft.com/en-
us/library/windows/desktop/ms683152(v=vs.85).aspx

[95] Microsoft. (2012, Accessed: February). GetProcAddress function. Available:
http://msdn.microsoft.com/en-
us/library/windows/desktop/ms683212(v=vs.85).aspx

[96] Microsoft. (2012, Accessed: February). LoadLibrary function. Available:
http://msdn.microsoft.com/en-
us/library/windows/desktop/ms684175(v=vs.85).aspx

[97] Microsoft. (2012, Accessed: February). POSIX and OS/2 are not supported in

Windows XP or in Windows Server 2003. Available:
http://support.microsoft.com/kb/308259

[98] Mozilla. (2011, Accessed: 25th May, 2011). Multi-process architecture.
Available: https://developer.mozilla.org/en/Multi-Process_Architecture

[99] Mozilla. (2011, Accessed: 22/12/2011). XPCOM. Available:
https://developer.mozilla.org/en/XPCOM

[100] G. C. Necula and P. Lee, "Safe Kernel Extensions Without Run-Time
Checking," in Proceedings of the Second USENIX Symposium on Operating

Systems Design and Implementation, Seattle, WA, 1996.
[101] G. V. t. Noordende, B. Ádám, H. Rutger, M. T. B. Frances, and S. T.

Andrew, "A secure jailing system for confining untrusted applications," in In

proceedings of the second International Conference on Security and

Cryptography (SECRYPT), 2008, pp. 414--423.
[102] D. S. Peterson, M. Bishop, and R. Pandey, "A Flexible Containment

Mechanism for Executing Untrusted Code," presented at the Proceedings of
the 11th USENIX Security Symposium, 2002.

[103] J. Petersson. (2005, Accessed: 2011, Jun. 18). What is linux-gate.so.1?

[Online]. Available: http://www.trilithium.com/johan/2005/08/linux-gate/

References 197

[104] G. J. Popek and R. P. Goldberg, "Formal requirements for virtualizable third
generation architectures," Communications of the ACM, vol. 17, pp. 412-421,
1974.

[105] D. Price and A. Tucker, "Solaris Zones: Operating System Support for
Consolidating Commercial Workloads," presented at the Proceedings of the
18th USENIX Conference on System Administration, Atlanta, GA, 2004.

[106] A. Purohit, C. P. Wright, J. Spadavecchia, and E. Zadok, "Cosy: Develop in
User-Land, Run in Kernel-Mode," presented at the Proceedings of HotOS IX:
The 9th Workshop on Hot Topics in Operating Systems, Lihue, Hawaii,
USA, 2003.

[107] Redhat. (2010, Accessed: 2010, Jul. 20). Kernel Based Virtual Machine

[Online]. Available: http://www.linux-kvm.org/page/Main_Page
[108] Redhat. (2012, Accessed: February). Newlib homepage. Available:

http://sourceware.org/newlib/
[109] C. Reis, B. Bershad, S. D. Gribble, and H. M. Levy, "Using Processes to

Improve the Reliability of Browser-based Applications," Department of
Computer Science and Engineering, University of Washington, Technical
Report UW-CSE-2007-12-01, 2007.

[110] J. S. Robin and C. E. Irvine, "Analysis of the Intel Pentium's ability to
support a secure virtual machine monitor," in Proceedings of the 9th USENIX

Security Symposium, Denver, Colorado, 2000, p. 10.
[111] Rohit Dhamankar, Mike Dausin, Marc Eisenbarth, James King, Kandek W,

Ullrich J, S. E, and L. R. (2009, The Top Cyber Security Risks.
http://www.sans.org/top-cyber-security-risks/summary.php.

[112] A. Sabelfeld and A. C. Myers, "Language-based information-flow security,"
Selected Areas in Communications, IEEE Journal on, vol. 21, pp. 5-19, 2003.

[113] J. H. Saltzer, "Protection and the control of information sharing in Multics,"
Commun. ACM, vol. 17, pp. 388-402, 1974.

[114] J. H. Saltzer and M. D. Schroeder, "The protection of information in
computer systems," Proceedings of the IEEE, vol. 63, pp. 1278-1308, 1975.

[115] M. D. Schroeder and J. H. Saltzer, "A hardware architecture for
implementing protection rings," Commun. ACM, vol. 15, pp. 157-170, 1972.

[116] E. J. Schwartz, T. Avgerinos, and D. Brumley, "All You Ever Wanted to
Know about Dynamic Taint Analysis and Forward Symbolic Execution (but
Might Have Been Afraid to Ask)," in Security and Privacy (SP), 2010 IEEE

Symposium on, 2010, pp. 317-331.
[117] L. Seawright and R. MacKinnon, "VM/370 - a study of multiplicity and

usefulness," IBM Systems Journal, vol. 18, pp. 4-17, 1979.
[118] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko, K. Schimpf, B. Yee, and

B. Chen, "Adapting software fault isolation to contemporary CPU
architectures," presented at the Proceedings of the 19th USENIX conference
on Security, Washington, DC, 2010.

[119] H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu, and D. Boneh, "On
the effectiveness of address-space randomization," presented at the
Proceedings of the 11th ACM conference on Computer and communications
security, Washington DC, USA, 2004.

[120] Z. C. Shreuders, "Functionality-Based Application Confinement," PhD
Thesis, Murdoch University, 2011.

References 198

[121] C. Small and M. Seltzer, "A comparison of OS extension technologies," in
Proceedings of the USENIX 1996 Annual Technical Conference, San Diego,
CA, 1996, pp. 41-54.

[122] G. Smith, "Principles of Secure Information Flow Analysis," Advances in

Information Security, vol. 27, pp. 291-307, 2007.
[123] J. Sugerman, G. Venkitachalam, and B. Lim, "Virtualizing I/O Devices on

VMware Workstation's Hosted Virtual Machine Monitor," presented at the
Proceedings of the General Track: 2002 USENIX Annual Technical
Conference, 2001.

[124] M. Sullivan and R. Chillarege, "Software defects and their impact on system
availability-a study of field failures in operating systems," in Fault-Tolerant

Computing, 1991. FTCS-21. Digest of Papers., Twenty-First International

Symposium, 1991, pp. 2-9.
[125] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy, "Recovering

Device Drivers," Proceedings of the 6th Symposium on Operating Systems

Design and Implementation, 2004.
[126] M. M. Swift, B. N. Bershad, and H. M. Levy, "Improving the reliability of

commodity operating systems," in The Nineteenth ACM Symposium on

Operating Systems Principles, Bolton Landing, NY, USA, 2003, pp. 207-222.
[127] M. M. Swift, S. Martin, H. M. Levy, and S. J. Eggers, "Nooks: an

architecture for reliable device drivers," in The 10th ACM SIGOPS European

Workshop: Beyond the PC, Saint-Emilion, France, 2002.
[128] C. Szyperski, Component Software - Beyond Object-Oriented Programming,

2nd ed.: Addison-Wesley, 2002.
[129] L. Tan, E. M. Chan, R. Farivar, N. Mallick, J. C. Carlyle, F. M. David, and R.

H. Campbell, "iKernel: Isolating Buggy and Malicious Device Drivers Using
Hardware Virtualization Support," in Third IEEE International Symposium

on Dependable, Autonomic and Secure Computing, 2007, pp. 134-144.
[130] A. S. Tanenbaum, Modern Operating Systems, 2nd ed.: Prentice Hall, 2001.
[131] A. S. Tanenbaum, Structured Computer Organization, 5th ed.: Prentice Hall,

2005.
[132] A. S. Tanenbaum, J. N. Herder, and H. Bos, "Can we make operating systems

reliable and secure?," Computer, vol. 39, pp. 44-51, 2006.
[133] The Google Chrome Team. (2008, Accessed: 2009, Jan 30). Chromium

Developer Documentation: Multi-process Architecture [Online]. Available:
http://dev.chromium.org/developers/design-documents/multi-process-
architecture

[134] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. M. Martins, A. V.
Anderson, S. M. Bennett, A. Kagi, F. H. Leung, and L. Smith, "Intel
virtualization technology," Computer, vol. 38, pp. 48-56, 2005.

[135] Unascribed. (2010, Accessed: February, 2012). How KVM deals with

memory. Available: http://www.linux-kvm.org/page/Memory
[136] A. Vasudevan, R. Yerraballi, and A. Chawla, "A high performance Kernel-

Less Operating System architecture," presented at the Proceedings of the
Twenty-eighth Australasian conference on Computer Science, Newcastle,
Australia, 2005.

[137] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, "Efficient software-
based fault isolation," SIGOPS Operating Systems Review, vol. 27, pp. 203-
216, 1993.

References 199

[138] A. Whitaker, M. Shaw, and S. D. Gribble, "Scale and performance in the
Denali isolation kernel," ACM SIGOPS Operating Systems Review, vol. 36,
pp. 195-209, 2002.

[139] A. Wiggins, S. Winwood, H. Tuch, and G. Heiser, "Legba: Fast hardware
support for fine-grained protection," in Proceedings of the 8th Asia-Pacific

Computer Systems Architecture Conference, Aizu-Wakamatsu City, Japan,
2003.

[140] P. R. Wilson, "Pointer swizzling at page fault time: efficiently supporting
huge address spaces on standard hardware," SIGARCH Computer

Architecture News, vol. 19, pp. 6-13, 1991.
[141] E. Witchel, J. Cates, and K. Asanovi, "Mondrian memory protection,"

SIGARCH Computer Architecture News, vol. 30, pp. 304-316, 2002.
[142] J. Xu, Z. Kalbarczyk, and R. K. Iyer, "Networked Windows NT system field

failure data analysis," in Proceedings of the Pacific Rim International

Symposium on Dependable Computing, 1999, pp. 178-185.
[143] Z. Xu, B. P. Miller, and T. Reps, "Safety checking of machine code," in

Proceedings of the ACM SIGPLAN 2000 conference on Programming

language design and implementation, Vancouver, BC, Canada, 2000, pp. 70-
82.

[144] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar, "Native Client: A Sandbox for Portable,
Untrusted x86 Native Code," Communications of the ACM, vol. 53, pp. 91-
99, 2010.

[145] A. Zeigler. (2008, Accessed: 2009, Jan 30). IE8 and Loosely-Coupled IE

(LCIE) [Online]. Available:
http://blogs.msdn.com/ie/archive/2008/03/11/ie8-and-loosely-coupled-ie-
lcie.aspx

